Cyclic Permutations and Nearly Symmetric Integer Vectors

A. Felzenbaum and A. Tamir*
Department of Statistics
Tel-Aviv University
Tel Aviv, Israel

Submitted by Hans Schneider

Abstract

Given an integer vector $x^{T}=\left(x_{1}, \ldots, x_{n}\right)$ with the property $x_{1}>x_{2}>\cdots>x_{n}>0$, it is shown that the convex hull of the n cyclic permutations of x contains all the nearly symmetric integer vectors majorized by x. A generalization to noninteger vectors and an application to a class of integer symmetric optimization problems are also given.

Given a vector $x^{T}=\left(x_{1}, \ldots, x_{n}\right)$, let \tilde{x} denote the n-dimensional vector obtained by arranging the coordinates of x in decreasing order. Hardy, Littlewood and Polya [3] introduced the following relation on R^{n}. A vector y is said to be majorized by a vector x if for $i=1, \ldots, n, \sum_{i=1}^{i} \tilde{y}_{i} \leqslant \sum_{j=1}^{i} \tilde{x}_{j}$, with equality holding for $i=n$. They proved that y is majorized by x if and only if y can be expressed as a convex combination of the $n!$ permuted vectors obtained from x. Equivalently, y is majorized by x if and only if $y=S x$ for some doubly stochastic matrix S. In fact, by using known linear programming arguments one can easily show that y being majorized by x implies that y can be described as a convex combination of only n permuted vectors of x. For example, the symmetric vector denoted by \bar{x}, whose coordinates are all equal to $(1 / n) \sum_{i=1}^{n} x_{i}$, can be described as $\bar{x}=(1 / n) \sum_{j=1}^{n} P_{i} x$, where $P_{1}, P_{2}, \ldots, P_{n}$ are the n cyclic permutation matrices.

The principal purpose of this paper is to investigate the convex hull of the n cyclic permutations of a given integer vector x, i.e. the polytope generated by $P_{1} x, P_{2} x, \ldots, P_{n} x$. We use $A(x)$ to denote this polytope.

We show that if the integer vector $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies $x_{1}>x_{2}$ $>\cdots>x_{n}$ or $x_{1}<x_{2} \cdots<x_{n}$, then $A(x)$ contains not only the symmetric point \bar{x}, but also $\binom{n}{t}$ integer vectors, where $t=\sum_{i=1}^{n} x_{i}(\bmod n)$. More

[^0]specifically, defining an integer vector y to be nearly symmetric if $\left|y_{i}-y_{j}\right| \leqslant$ 1 for all $i, j=1, \ldots, n$, it is shown that $A(x)$ contains all the nearly symmetric integer vectors y satisfying $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} x_{i}$. It is easily observed that each one of these nearly symmetric vectors y is majorized by the vector x. Hence, by results of [3], each such y can be expressed as a convex combination (which may depend on y) of some n permutations of x. Our result is stronger in the sense that it shows that the same set of n permutations, i.e. the cyclic ones, can be chosen for all (majorized) nearly symmetric integer vectors y.

Referring to a possible relaxation of the assumption $x_{1}>x_{2} \cdots>x_{n}$, we note that the strict inequalities cannot be weakened as illustrated by the 4-dimensional vector $x^{T}=(2,1,0,0)$, where $A(x)$ contains no nearly symmetric integer vectors. In fact, it can be verified that there exist no set of four permutations of the vector $(2,1,0,0)$ with the property that their convex hull contains all the nearly symmetric integer vectors which are majorized by (2, 1,0,0).

Given an integer vector $x^{T}=\left(x_{1}, \ldots, x_{n}\right)$ and a nearly symmetric integer vector y which is majorized by x, our problem is to verify the existence of a solution $\lambda^{T}=\left(\lambda_{\mathrm{I}}, \ldots, \lambda_{n}\right)$ to the following linear program:

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} P_{i} x=y, \quad \lambda_{i} \geqslant 0, i=1, \ldots, n, \quad \sum_{i=1}^{n} \lambda_{i}=1 \tag{1}
\end{equation*}
$$

where $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ is the group of cyclic permutations. We note that (1) has a solution for given x and y if and only if it has a solution for the vectors $x^{T}+(t, t, \ldots, t)$ and $y^{T}+(t, t, \ldots, t)$, where t is an arbitrary real number. Hence, we can assume that $x_{i}>0$ for all the components of the integer vector x.

Summing the elements of $\sum_{i=1}^{n} \lambda_{i} P_{i} x=y$ yields

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \lambda_{i}\right)=\sum_{i=1}^{n} y_{i}
$$

Since y is majorized by x, the latter equality implies that $\sum_{i=1}^{n} \lambda_{f}=1$. Therefore we may focus on solving the system

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} P_{i} x=y, \quad \lambda_{i} \geqslant 0, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

To prove the existence of a solution to (2) for integer vectors x and y satisfying the above assumptions, we shall first study the solvability of (2) for
a more general setting. Thus, suppose now that x and y are any two vectors in R^{n}, which are not necessarily integral.

The equations in (2) can be written as $C \lambda=y$, where

$$
C=\left[\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \tag{3}\\
x_{n} & x_{1} & \cdots & x_{n-1} \\
\vdots & & & \vdots \\
x_{3} & & & x_{2} \\
x_{2} & x_{3} & \cdots & x_{n} x_{1}
\end{array}\right] .
$$

The matrix C is recognized in the literature as a cyclic matrix $[1,4,6]$. It is known that

$$
\begin{equation*}
\operatorname{det} C=\prod_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i}^{j-1} x_{i}\right) \tag{3a}
\end{equation*}
$$

where $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ are the distinct nth roots of $1[4,6]$.

Lemma 1. Let C be a cyclic matrix, and assume that either one of the following is satisfied:
(i) $0<x_{1}<x_{2} \cdots<x_{n}$,
(ii) $x_{1}>x_{2} \cdots>x_{n}>0$

Then $\operatorname{det} C \neq 0$.
Proof. Suppose that $\operatorname{det} C=0$. Then from (3a) $f(Z)=\sum_{i=1}^{n} x_{j} Z^{i-1}=0$, where $Z^{n}=1$. From [5, p. 105] it follows that $|Z| \leqslant \max _{1<i \leqslant n-1}\left(x_{i} / x_{i+1}\right)=k$. Now, if the first condition holds, then $|Z| \leqslant k<1$, contradicting $Z^{n}=1$.

To obtain the contradiction with the second condition being met, we observe that $f(Z)=0$ with $Z^{n}=1$ imply that $g(V)=\sum_{i=1}^{n} x_{i} V^{n-i}=0$ has a solution with $V^{n}=1$. Again, it follows that $|V| \leqslant \max _{1<i \leqslant n}\left(x_{i} / x_{i-1}\right)<1$, which contradicts $V^{n}=1$.

As a corollary of the above lemma, we have that the linear system $C \lambda=y$ has a unique solution λ for any vectors x and y, provided either one of the conditions of Lemma 1 is satisfied. Next, we provide conditions under which this unique solution λ is nonnegative and satisfies $\sum_{i=1}^{n} \lambda_{i}=1$.

Theorem 2. Let $x^{T}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ satisfy $0<x_{1}<x_{2}<\cdots<x_{n}$, and let $y^{T}=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$ satisfy $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} x_{i}$. Define

$$
m=\min _{i=1, \ldots, n-1}\left(x_{i+1}-x_{i}\right) \quad \text { and } \quad M=\max _{i=1,2, \ldots, n}\left(y_{i}-y_{i \oplus 1}\right)
$$

where $i \oplus 1=i+1(\bmod n)$. If $m \geqslant M$, then the linear system

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \tag{4}\\
x_{n} & x_{1} & \cdots & x_{n-1} \\
\vdots & & & \vdots \\
x_{2} & x_{3} & \cdots & x_{1}
\end{array}\right] \lambda=y
$$

has a unique solution $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T}$, which also satisfies $\sum_{i=1}^{n} \lambda_{i}=1$ and $\lambda \geqslant 0$.

Proof. The existence of a unique solution to (4) is ensured by Lemma 1 . Furthermore, summing the n equations of (4) and using the relation $\sum_{i=1}^{n} y_{i}$ $=\sum_{i=1}^{n} x_{i}>0$, we have $\sum_{i=1}^{n} \lambda_{i}=1$. Thus it suffices to show that $\lambda \geqslant 0$. Generate a new linear system as follows.

For $k=1, \ldots, n$, the k th row of the new system is obtained by subtracting the $(k \oplus 1)$ st row of (4) from the k th row of $(4) .[k \oplus j=k+j(\bmod n)$.] If $A=\left(a_{i j}\right)$ is the matrix associated with this new system, then

$$
\begin{equation*}
a_{i j}=x_{(n-i) \oplus i \oplus 1}-x_{(n-i) \oplus i}, \quad i, j=1, \ldots, n \tag{5}
\end{equation*}
$$

where $x_{0}=x_{n}$. From (5) we note that $a_{i j} \geqslant m>0$ for $j \neq i$, while $a_{i j}=x_{1}-x_{n}$ for $j=i$. We also have

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=0, \quad j=1, \ldots, n \tag{6}
\end{equation*}
$$

The right-hand-side vector, $\overline{\bar{y}}$ of the new system $A \lambda=\overline{\bar{y}}$ is defined by $\overline{\bar{y}}_{k}=y_{k}-y_{k \oplus 1}$.

Suppose that $\lambda \ngtr 0$, and let $J=\left\{j \mid \lambda_{j}>0\right\}$. J is not empty, and $\Sigma_{j \in J} \lambda_{j}>1$. Moreover, since $a_{i j} \geqslant m$ for $j \neq i$, and since the only negative coefficient in any row $i(i=1, \ldots, n)$ is $x_{1}-x_{n}$, which is associated with λ_{i}, we have

$$
\begin{equation*}
\sum_{i \in J} a_{i j} \lambda_{i}>m \quad \text { for all } i, i \notin J . \tag{7}
\end{equation*}
$$

Let i be such that $i \notin J$. Applying (7) to the i th equation of the system $A \lambda=\overline{\bar{y}}$ and using the relation $\overline{\bar{y}}_{i} \leqslant M \leqslant m$ yield

$$
\begin{equation*}
-\sum_{i \notin J} a_{i i} \lambda_{i}=-\overline{\bar{y}}_{i}+\sum_{i \in J} a_{i j} \lambda_{i}>-\overline{\bar{y}}_{i}+m \geqslant 0, \quad i \notin J . \tag{8}
\end{equation*}
$$

Since $\lambda_{j} \leqslant 0$ for $j \notin \mathrm{~J}$,

$$
\begin{equation*}
\sum_{i \notin J} a_{i j}\left|\lambda_{i}\right|>0 \quad \text { for } \quad i \text { satisfying } i \notin J \tag{9}
\end{equation*}
$$

Summing (9) over all i such that $i \notin J$, we have

$$
\begin{equation*}
\sum_{i \notin J}\left|\lambda_{j}\right|\left(\sum_{i \notin J} a_{i i}\right)>0 \tag{10}
\end{equation*}
$$

We complete the proof by showing that

$$
\sum_{i \notin J} a_{i j} \leqslant 0 \quad \text { for } \quad j \notin J
$$

Using (5)-(6) and the fact that $a_{i j} \geqslant m>0$ for $i \neq j$, it is sufficient to observe that one of the elements in the sum $\Sigma_{i \notin J} a_{i j}$ is the unique negative element which exists in each column, i.e. the element $x_{1}-x_{n}$. But the latter is trivially implied by $j \notin J$, since by choosing $i=j$ we see that $a_{i j}=x_{1}-x_{n}$ is an element in that sum.

As a simple corollary of Theorem 2, we obtain the conditions referring to the case $x_{1}>x_{2}>\cdots>x_{n}>0$.

Corollary 3. Let $x^{T}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ satisfy $x_{1}>x_{2}>\cdots>x_{n}>0$, and let $y^{T}=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$ satisfy $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} x_{i}$. Define

$$
m=\min _{i=1, \ldots, n-1}\left(x_{i}-x_{i+1}\right) \quad \text { and } \quad M=\max _{i=1, \ldots, n}\left(y_{i \oplus 1}-y_{i}\right)
$$

where $i \oplus 1=i+1(\bmod n)$. If $m \geqslant M$, then the linear system (4) has a unique solution $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T}$, which also satisfies $\sum_{i=1}^{n} \lambda_{i}=1$ and $\lambda \geqslant 0$.

The specialization of the above results to the case of majorized nearly symmetric integer vectors is now straightforward.

Theorem 4. Let $x^{T}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ be an integer vector satisfying either one of the following:
(i) $0<x_{1}<x_{2}<\cdots<x_{n}$,
(ii) $x_{1}>x_{2}>\cdots>x_{n}>0$.

If y is a nearly symmetric integer vector which is majorized by x, then the linear system (2) has a unique solution λ, which also satisfies $\sum_{i=1}^{n} \lambda_{i}=1$ and $\lambda \geqslant 0$, i.e., y is in the convex hull of the n cyclic permutations of x.

If an n-dimensional integer vector x has at least one nearly symmetric, but not symmetric, integer vector, majorized by x, then there exist at least n linearly independent such vectors y. This implies that at least n of the n ! permutations of x are needed to span the entire set of nearly symmetric integer vectors which are majorized by x. The set of n cyclic permutations is, therefore, minimal in this respect.

We also state that at least $n / 2$ cyclic permutations are required to span a nearly symmetric integer vector, provided the conditions of Theorem 4 are met. To see this, consider the system (4), and observe that $\lambda_{i}+\lambda_{i \oplus 1}=0$ implies that $y_{i}>y_{i \oplus 1}>y_{i \oplus 2}$ (or $y_{i}<y_{i \oplus 1}<y_{i \oplus 2}$), thus contradicting the property that the components of y may only take on one of two different values. In fact, $n / 2$ is a tight bound, since for an even n and the vectors $x^{T}=$ $(n, n-1, \ldots, 1), y^{T}=(n / 2+1, n / 2, n / 2+1, \ldots, n / 2)$, we obtain $\lambda^{T}=$ ($2 / n, 0,2 / n, 0, \ldots, 2 / n, 0$).

As a corollary of Theorem 4, we have the following result.
Theorem 5. Let $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an integer vector with $x_{i} \neq x_{i}$ for $i \neq j$, and let P be the permutation arranging the coordinates of x in decreasing order. Then the convex hull of the vectors $\left\{P_{1} P x, P_{2} P x, \ldots, P_{n} P x\right\}$ contains the $\binom{n}{t}$ nearly symmetric integer vectors which are majorized by x. (t is given by $t=\sum_{i=1}^{n} x_{i}(\bmod n)$, and $\left\{P_{1}, \ldots, P_{n}\right\}$ is the group of cyclic permutations.)

Theorem 5 can be applied to provide additional insight into the class of integer symmetric optimization problems considered by Greenberg and Pierskala [2]. They introduced several definitions.

Definition 1. A set X is S-convex if $x \in X$ implies $S x \in X$ for all doubly stochastic matrices S.

Definition 2. A function f is S-concave on an S-convex set X if for all doubly stochastic matrices S

$$
f(S x) \geqslant f(x) \quad \text { for all } \quad x \in X
$$

Using the results in [3], the following is proved in [2].

Theorem 6. If X is S-convex and f is S-concave on X, then for any integer point $x \in X$, there exists a nearly symmetric integer point y such that $f(y) \geqslant f(x)$.

We shall now show that Theorem 5 enables us to relax the S-concavity property of f in Theorem 6. Given a permutation matrix P, define

$$
\begin{aligned}
X(P)= & \left\{x \in X, x_{i} \neq x_{i}, i \neq j,\right. \text { and } \\
& \text { the coordinates of } P x \text { are in decreasing order }\} .
\end{aligned}
$$

Replace the S-concavity property by
(i) For any permuation matrix P

$$
f(S x) \geqslant f(x)
$$

for all $x \in X(P)$ and for all matrices S which are convex combinations of $\left\{P_{1} P, P_{2} P, \ldots, P_{n} P\right\}$, and
(ii) For any doubly stochastic matrix S

$$
f(S x) \geqslant f(x) \quad \text { for all } \quad x \notin \bigcup_{P} X(P)
$$

Now, Theorem 5 ensures that for any integer point x in $\cup X(P)$, there exists a nearly symmetric integer point y such that $f(y) \geqslant f(x)$, while from (ii), combined with the results of [3], we obtain the same property for $x \notin \cup X(P)$.

Finally, we note that $X-\cup X(P)$ is contained in the union of $n(n-1) / 2$ ($n-1$)-dimensional hyperplanes. Hence, if X is a convex, n-dimensional set, then the S-concavity property is relaxed on $\cup X(P)$, which is dense in X.

Both authors wish to thank an anonymous referee for his suggestions and comments.

REFERENCES

1 C. Y. Chao, A remark on cyclic matrices, Linear Algebra and Appl. 3:165-172 (1970).

2 H. G. Greenberg and W. P. Pierskala, Symmetric mathematical programs, Management Sci. 16:309-312 (1970).

3 C. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge U. P., London, 1934 :
4 O. Ore, Some studies on cyclic determinants, Duke Math. J. 18:343-354 (1951).
5 A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Academic, 1966.
6 J. A. Silva, A theorem on cyclic matrics, Duke Math. J. 18:821-825 (1961).
Received 19 July 1978; revised 15 January 1979

[^0]: *Currently visiting at the Graduate School of Management, Northwestern University, Evanston, IL 60201.

