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A B S T R A C T

The use and availability of magnetic resonance imaging (MRI) and other neurosurgical devices is rapidly
increasing in the field of veterinarian medicine. Coincident with these technological advances, there is
an increased expectation to treat drug resistant epilepsy in dogs and cats by epilepsy surgery. However,
the presurgical evaluation of epileptic animals, by using methodologies to detect the epileptogenic zone
for example, have yet to become established in common practice.

The epileptogenic zone, defined as the minimum amount of cortex to produce seizure freedom, con-
sists of five conceptual cortical abnormal ‘zones’: symptomatogenic, irritative, seizure-onset, structurally
abnormal (epileptogenic lesion) and functional deficit. These zones can now be detected by suitable mo-
dalities including ictal video monitoring, interictal non-invasive or invasive electroencephalography (EEG),
ictal video-EEG, magnetoencephalography, structural and functional MRIs, or nuclear imaging. These di-
agnostic techniques are essential for selecting both appropriate patients and surgical techniques, and are
also important in understanding the pathophysiology of epilepsy. This review describes the diagnostic
techniques available for detecting each abnormal zone while considering the current veterinary status
to realise future surgery for canine and feline epilepsy.

© 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Epilepsy is a chronic and functional pathophysiology of the ce-
rebrum that is likely to occur in all mammalian species and is
encountered most frequently in dogs, cats, and humans (Löscher,
1984, 1997; Hasegawa et al., 2002; Sanders, 2015). Recently, inter-
national consensus reports of canine and feline epilepsy have been
published by the International Veterinary Epilepsy Task Force (IVETF)
and proposed to standardise a range of factors relating to epilepsy
in animals. The IVETF particularly focussed upon classification and
terminology (Berendt et al., 2015), diagnostic approaches (De Risio
et al., 2015) including routine magnetic resonance imaging (MRI)
(Rusbridge et al., 2015), medications (Bhatti et al., 2015), out-
comes (Potschka et al., 2015), and methods for obtaining brain
samples (Matiasek et al., 2015), and provided an overview of the
predisposition of canine epilepsy with relation to genetics and breed
(Hülsmeyer et al., 2015). These consensus proposals are generally
acceptable for both generalists and specialists dealing with small
animal epilepsy. However, important issues such as electroencepha-

lography (EEG), drug resistant (refractory) epilepsy, guidelines for
status epilepticus and/or cluster seizures, feline epilepsy and al-
ternative therapeutic methods, have yet to be debated fully since
these are more complicated.

It has been reported that approximately 30% of canine epilep-
tic patients show resistance to anti-epileptic drugs (AEDs), so-
called refractory epilepsy, intractable epilepsy, or drug resistant
epilepsy (Muñana, 2013; Martlé et al., 2014). Drug resistant epi-
lepsy in humans is defined by the International League Against
Epilepsy (ILAE) as ‘drug resistant epilepsy is defined as failure of ad-
equate trials of two tolerated, appropriately chosen and used antiepileptic
drug schedules (whether as monotherapies or in combination) to achieve
sustained seizure freedom’ (Kwan et al., 2010). Although the IVETF
agreed with the ILAE’s definition and that complete seizure control,
i.e. ‘seizure freedom’, is also an ideal (primary) goal in veterinary
medicine, the IVETF recommended ‘partial therapeutic success’ as
a secondary treatment goal, taking into account the results of past
studies in veterinary patients and also differences of the implica-
tion between human and veterinary patients (Potschka et al., 2015).

In humans, surgical treatment for drug resistant epilepsy (‘ep-
ilepsy surgery’) is performed positively, and comparatively good
prognosis has been achieved. With the development and in-
creased availability of MRI and other neurosurgical devices such as
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the surgical microscope, ultrasonic aspirator and neuronavigator in
the veterinary field, it has been possible to identify a variety of
veterinary epilepsy pathologies. Consequently, epilepsy surgery has
begun to attract increasing attention as a challenging area of vet-
erinary neurology and neurosurgery. Martlé et al. (2014) summarised
epilepsy surgery in humans and remarked upon the relative lack
of progress with this condition in the veterinary field. In order to
realise epilepsy surgery in the veterinary field in the near future,
it is the intention of the current paper to provide a synopsis of the
relevant presurgical diagnostic tests, alongwith each conceptual area
of the epileptogenic zone. Needless to say, knowledge of the epi-
leptogenic zone, and the diagnostic tests with which to target these
zones, are essential in analysing and understanding the pathophysi-
ology of epilepsy across different species.

Concepts of the epileptogenic zone

Epileptic seizures, particularly focal epileptic seizures, are thought
to originate from a certain region or network of the cortex, histor-
ically referred to as the ‘epileptic (epileptogenic) focus’. However,
as advancements were made with epilepsy surgery in human med-
icine, this terminology has since changed to ‘epileptogenic zone’.
The concepts of the epileptogenic zone were first described by Hans
O. Lüders (Rosenow and Lüders, 2001; Lüders et al., 2006), with the
epileptogenic zone defined as ‘the minimum amount of cortex that
must be resected (or completely disconnected) surgically to produce
seizure freedom’. In other words, the epileptogenic zone cannot be
defined pre-operatively; therefore, epileptologists and neurosurgeons
that perform epilepsy surgery must carry out various examina-
tions with which to detect the ‘presumed’ epileptogenic zone.
Conceptually, the (presumed) epileptogenic zone consists of five dif-
ferent abnormal cortical zones: symptomatogenic, irritative, seizure-
onset, structurally abnormal (or epileptogenic lesion), and functional
deficit zones. An IVETF proposal report discussed the concept of the
epileptogenic zone briefly from the viewpoint of pathology (Matiasek
et al., 2015); however, it may be not understandable for veteri-
nary clinicians. The precise definitions for these cortical zones, along
with the respective diagnostic technique, are summarised in Table 1
and described below with reference to potential application in vet-
erinary medicine.

It is very easy to determine the epileptogenic zone when those
five zones indicated the same location. For instance, let us consid-
er a human patient with focal limbic seizures (orofacial
automatisms). The epileptogenic zone of such a patient can be de-
termined in the unilateral hippocampus and selective
amygdalohippocampectomy will be performed if the following in-
dications are evident: (1) EEG reveals unilateral temporal spikes
(irritateive zone); (2) video-EEG captured ipsilateral temporal onset
epileptiform activities with clinical seizures (symptomatogenic and
seizure-onset zone); (3) MRI showing ipsilateral hippocampal scle-

rosis (structural abnormal zone); and (4) interictal positron emission
tomography (PET) using 18F-fludeoxyglucose (FDG-PET) suggests ip-
silateral hippocampal hypometabolism (functional deficit zone).
However, an important aspect to consider is that these five zones
are not always present in the same location, and the spatial rela-
tionship between these areas may differ between individuals. For
example, in another epileptic patient, although EEG study sug-
gested interictal spikes in the frontal lobe (irritative zone), an MRI
revealed hippocampal malformation (structural abnormal zone). A
similar situation has been reported in a veterinary patient re-
cently (Shihab et al., 2014) (see the section Clinical relevance and
conclusions). Therefore, detecting each abnormal zone and decid-
ing upon a ‘true’ epileptogenic zone (i.e. operation site) are still very
challenging issues for epileptologists and neurosurgeons, even in
human medicine.

Symptomatogenic zone

The symptomatogenic zone is defined as ‘the area of cortex which,
when activated by an epileptiform discharge, produces the ictal symp-
toms’. In other words, this zone is implicated when clinical signs
are apparent during seizure. The symptomatogenic zone can be de-
tected by careful analysis of seizure symptoms using ictal video
recording with or without EEG (video-EEG is described later – see
the section Seizure-onset zone). The initial symptoms of a seizure
are very important since they may be related to the laterality and/
or seizure-onset zone, and a sequential change of symptoms relates
to the propagation of seizure activities. Ictal (and post-ictal) symp-
toms in human focal seizure have been well documented
corresponding with ictal EEG and/or postsurgical outcome (Jan and
Girvin, 2008; Rossetti and Kaplan, 2010; Tufenkjian and Lüders,
2012). Some seizure semiological signs observed in humans may
also be observed in dogs and cats, and a list of examples is given
in Appendix: Supplementary material S1.

Digital devices, such as smartphones, have now become very ad-
vanced and are commonplace amongst the community.
Consequently, it is now very easy for owners to record videos of their
dogs and cats undergoing seizure. Such videos are helpful in de-
scribing or detecting seizure semiology and seizure type. In a study
analysing the inter-observer agreement of canine and feline
semiologic videos, it was found that the agreement of differentia-
tion between seizure types was moderate while the highest
agreement was with primary generalised seizures (Packer et al.,
2015). Videos recorded from a seizure onset (i.e. including the initial
sign) are especially useful in distinguishing between a primary
generalised epileptic seizure and a secondarily generalised seizure
(focal epileptic seizure evolving to become generalised). However,
videos that are already generalised (acquired during the middle of
a tonic–clonic convulsion) convey little information and cannot dis-
tinguish between primary or secondary generalised, and/or some

Table 1
Definitions of the epileptogenic zone and associated diagnostic techniques.a

Cortical zone Definition Diagnostic techniques

Epileptogenic zone The minimum amount of cortex that must be resected
surgically to produce seizure freedom

Postoperative seizure outcome

Symptomatogenic zone Area of cortex which, when activated, produces the
initial ictal symptoms or signs

Seizure semiology (video; video-EEG)

Irritative zone Area of cortex which generates interictal spikes EEG; ECoG; MEG; EEG-triggered fMRI
Seizure-onset zone Area of cortex that initiates clinical seizures EEG; video-EEG; ECoG; (ictal SPECT; MEG)
Structural abnormal zone (epileptogenic lesion) Structural lesion that is causally related to the epilepsy Structural MRIs
Functional deficit zone Area of cortex that is not functioning normally in the

interictal period
Neurological exams; functional imaging (ictal SPECT;
interictal PET; functional MRIs)

ECoG, electrocorticography; EEG, electroencephalography; fMRI, functional MRI; MEG, magnetoencephalography; PET, positron emission tomography; SPECT, single photon
emission computed tomography.

a Modified from Lüders et al. (2006).
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reactive seizures. This problemwas also pointed out by Packer et al.
(2015). Therefore, in order to determine the symptomatogenic zone,
and/or seizure type, in animal patients, veterinarians are required
to interview the owners in detail with regard to the clinical signs
of true seizure onset, as well as other conditions (De Risio et al.,
2015). Indeed, the author of this review has often experienced
orofacial automatism, forced head turning, gazing, ictal aggres-
sion, unilateral tonic/clonic or dystonic posture, hypermotor seizure
such as running fits, and postictal paresis, although all these signs
were not confirmed by ictal or interictal EEGs. Some of these signs
have also been demonstrated in feline and canine seizure models
(Tanaka et al., 1992; Hasegawa et al., 2002, 2014; Shouse et al., 2004).
On the other hand, for instance, paroxysmal behavioural changes
such as fly-biting, tail chasing, and rage syndrome, have not been
definitively associated with epilepsy as yet, and such clinical signs
are not defined as epileptic seizures, although some of these cases
do respond to AEDs (Wrzosek et al., 2015). Therefore, both general
veterinarians and veterinary neurologists need tomake special efforts
to accumulate seizure semiologic symptoms correlatedwith the find-
ings of various diagnostic modalities. Currently, a user-friendly
seizure (generalised convulsion) alert system using an accelerom-
eter synchronisedwith a video recorder has been developed (M Saito,
personal communication: patent pending in Japan1; application
number 2013-100046, publication number 2014-217649). This
system is able to record a movie tracing back several minutes prior
to an alerted generalised epileptic seizure, and is not too expen-
sive. This type of systemmay therefore be very useful to practitioners
and owners for evaluating seizure semiology and managing epi-
leptic animal patients.

Irritative zone

The irritative zone is defined as ‘the area of cortical tissue that
generates interictal spikes’. Consequently, the irritative zone in human
patients can be detected by non-invasive (scalp) and/or invasive EEG,
magnetoencephalography (MEG), and EEG-triggered functional MRI
(fMRI). The following section describes scalp EEG, MEG and EEG-
triggered fMRI, while invasive EEG is described in a subsequent
section relating to seizure-onset zone.

Scalp EEG

In humanmedicine, the EEG is a gold standard diagnostic method
and plays an important role in the classification of epilepsies or
seizure types. In veterinary medicine, however, the EEG is not com-
monly used, except in specific neurological referral hospitals such
as university teaching hospitals. It has been reported previously that
the detection rate of EEG abnormalities ranges from 65% to 86% in
dogs with epilepsy (Jaggy and Bernardini, 1998; Berendt et al., 1999).
However, more recent studies using propofol and rocuronim bromide
with photic activation and hyperventilation have claimed detec-
tion rates of 25% and 29% for canine idiopathic epilepsy and structural
(symptomatic) epilepsy, respectively (Brauer et al., 2012b). In another
EEG analysis of dogs with epilepsy using propofol, only 5/40 dogs
(12.5%) showed epileptiform discharges, and all of these dogs having
structural epilepsy (Pakozdy et al., 2012). Detection rates for cats
with epilepsy were 46% (propofol only) and 85% (propofol with
photic activation) (Brauer et al., 2012a).

Although human scalp EEGs are recorded globally by a stan-
dardised electrode arrangement (the ‘international 10–20 system’),
there is no standardised recording method for animals in

veterinary medicine, and thus no specific consideration of elec-
trode arrangement, montage, or immobilisation. Although some
veterinary researchers have suggested some recommended condi-
tions (Redding, 1978; Holliday andWilliams, 1999; Bergamasco et al.,
2003; Pellegrino and Sica, 2004; Wrzosek et al., 2009; Lewis et al.,
2011; James, 2014), there is no consensus as yet, even in recent IVETF
reports. However, the IVETF (Berendt et al., 2015; De Risio et al.,
2015) and Martlé et al. (2014) have also recognised and described
the importance of EEG, and note that the development of a stan-
dardised EEG protocol is an urgent priority for veterinary neurology
in order to promote epilepsy surgery in the future. Fortunately,
because digital EEGs have become common place, it is possible to
change the derivation montages (‘re-montage’), and some record-
ing conditions, after the recording in an ad libitum manner. The
present review, therefore, suggests a proposal for scalp EEG record-
ing conditions in dogs and cats which integrates the findings and
suggestions of earlier studies (Fig. 1, Table 2 and Appendix: Sup-
plementary material S2). Although this electrode arrangement
tentatively places the reference electrode on the tip of the nose, the
author prefers to use the average reference (AV) derivation. This par-
ticular derivation does not use a specific referential electrode and
instead, uses an average potential from all electrodes as a refer-
ence (Dien, 1998). Therefore, although the amplitudes of each
derivation are reduced, the differences or paroxysmal discharges,
and their sources, are recognised clearly without the disadvan-
tage of conventional referential derivation such as contamination
by muscle activity, or problems associated with volume conduc-
tion or the activating reference electrode. AV derivation has already
been used for electrocorticograms in dogs (Davis et al., 2011;
Howbert et al., 2014). The other advantages of digital EEG, such as
quantitative analysis and topography, have been described in other
reports (Holliday andWilliams, 2001, 2003; Bergamasco et al., 2003;
Wrzosek et al., 2009; Lewis et al., 2011). The present reviewmerely
proposes a set of conditions for recording, to enable us, as a vet-
erinary community, to reach a consensus of opinion upon the
evaluation of EEGs in veterinary practice.

MEG

The generation of electrical activity simultaneously creates amag-
netic field. While the EEG is a caption and tracing of electrical
activities from the cerebral neurons, MEG measures the magnetic
fields generated from the cerebral neurons (Stufflebeam, 2011;
Kharkar and Knowlton, 2014). The appearance of the MEG is very
similar to the EEG, however, it is not influenced by muscle activity
or the skull. Since the neurons of the cerebral cortex are arranged
perpendicularly to the surface of the brain and the electrical current
spreads in a vertical direction, the magnetic fields occur horizon-
tally to the neuronal arrangement. Therefore, in human medicine,
MEG is a superior method for detecting activity from the neurons
that form gyri within the sulci. Furthermore, MEG is also more ac-
curate than EEG at estimating the source of electrical currents, i.e.
equivalent current dipole, and is therefore frequently used for de-
tecting the epileptogenic zone in human epilepsy. Since themagnetic
field from the brain is very faint (on the order of 10−5 tesla), an ex-
tremely sensitive field detector called ‘superconducting quantum
interference device (SQUID)’ and a strictly magnetic shield room,
such as an MRI room, is needed. Unfortunately, these field detec-
tors are highly expensive and there is a lack of such a device
specifically for animal, which prevents the use MEG in veterinary
patients. However, because the signal-to-noise ratio of MEG is at-
tenuated by distance from the source (cerebral cortex), this strategy
may become a problem in dogs with thick temporal muscle cov-
ering the cranium. To date, there is only one experimental report
in the literature investigating MEG in a dog (Jäntti et al., 1995).

1 See and input application and/or publication numbers into: https://www4.j-
platpat.inpit.go.jp/eng/tokujitsu/tkbs_en/TKBS_EN_GM101_Top.action (accessed 20
October 2015).
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Fig. 1. Suggested electrode arrangement for scalp electroencephalography. (A) dorsal and (B) lateral view for dolichocephalic and mesaticephalic breed dogs. (C) dorsal
view for brachycephalic breed dogs. (D) and (E) for cats. Yellow electrodes, i.e. pair of frontal (F3/F4), central (C3/C4), temporal (T3/T4), occipital (O1/O2) and three longi-
tudinal midline electrodes (Fz, Cz, Pz), are essential and pink electrodes, i.e. a pair of frontal pole (Fp1/Fp2), are optional. Details of each electrode position, with the exception
of T3, T4 and Fz are based upon the results of Pellegrino and Sica (2004). Additionally, on large dolichocephalic dogs, a pair of parietal (P3/P4) electrodes (not shown) can
be positioned between C3/C4 and O1/O2. The referential electrode (R) is positioned on the dorsal aspect of nose tip (subcutaneous just caudal to the apex nasi), and the
grand electrode (E) is positioned at the level of the spinous process of axis. The utility of Fp3/Fp4 had been reported (Pellegrino and Sica, 2004); however, this is imprac-
tical in small breed dogs and cats, and these electrodes may lead activity of the eyeballs and eyelids. Midline electrodes (Fz, Cz, Pz) will be responsive to the activities from
the longitudinal fissure of the cerebrum, i.e. medial aspect of hemispheres, and are useful in evaluating asymmetries of bilateral hemispheres using transverse bipolar mon-
tages. Examples of derivation montages using this electrode arrangement are shown in Appendix: Supplementary material S2.
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EEG-triggered fMRI

Blood oxygen level dependent fMRI (BOLD-fMRI or simply ‘fMRI’)
is the representative functional imaging in current human neuro-
science. fMRI monitors the rate of blood flow and oxygen
consumption in neurons by evaluating the rate of increased dia-
magnetic oxyhaemoglobin and reduced paramagnetic
deoxyhaemoglobin, with active neurons requiring oxygen to be de-
livered at a higher rate. fMRI results are obtained by subtracting
images obtained during rest phases from images obtained while a
certain task (e.g. finger tapping, speech) is being performed. EEG-
triggered fMRI uses interictal spikes, that are recorded from
simultaneously recording EEG, as the task and have been studied
as a non-invasive method for the detection of the epileptogenic (ir-
ritative) zone in human epileptic patients (Warach et al., 1996;
Krakow et al., 1999; Flanagan et al., 2014; Kay and Szaflarski, 2014).
In general, fMRI is carried out while patients are awake. There have
been recent reports of using fMRI on awake dogs to localise the cog-
nitive function area (Berns et al., 2012; Cook et al., 2014; Jia et al.,
2014; Dilks et al., 2015). However, it is necessary for subject dogs
to be trained for a fewmonths to remain immobile within the noisy
scanner, which is not practical. EEG-triggered fMRI, on the other
hand, does not require patients to be awake since the EEG record-
ings and spikes used as the task are obtained under sedation.
Therefore it is expected that EEG-triggered fMRI could more fea-
sibly be used clinically for detecting epileptogenic zones in canine
and feline epileptic patients.

Seizure-onset zone

The seizure-onset zone is defined as ‘the area of the cortex that
initiates clinical seizures’. It is determined primarily by non-
invasive or invasive EEG with or without video monitoring, but also
by MEG and ictal single photon emission tomography (SPECT; de-
scribed in the section of Functional deficit zone).

Invasive EEG and video-EEG

In human medicine, long-term video-EEG monitoring and in-
vasive EEG are essential presurgical evaluations for epilepsy surgery
(Rosenow and Lüders, 2001; Cascino, 2002; Asano et al., 2013).
Video-EEGmonitoring is a simultaneous recording of patient’s phys-
ical behaviour during an EEG. It is useful for collating clinical seizure

symptomswith EEG findings, for the evaluation of symptomatogenic
and seizure-onset zones or for the exclusion of non-epileptic seizures.

Invasive EEGs, such as electrocorticography (ECoG) and depth
EEG, with/without video monitoring, or those of intraoperative re-
cording, are used to detect epileptogenic zones that were not
sufficiently detected using non-invasive methods. ECoGs are re-
corded from the surface of the cortex via subdural strip and grid
electrodes, and is useful for detecting not only the epileptogenic zone
but also the eloquent area (combined with evoked potential tests)
of the cortex. Depth EEGs are recorded from selective deep struc-
tures of the brain such as the hippocampus, amygdala and thalamus,
using stereotactically-inserted needle-like depth electrodes.

With the spread of digital EEGs which can record wideband EEG,
the ability of high-frequency oscillations (HFO) recorded from ECoG
or EEG to detect the epileptogenic zonemore accurately, has become
the hottest topic in human epileptology. Using >1000 Hz of sam-
pling frequency, HFOs are recorded as small high-frequency (>60 Hz)
burst discharges that are thought to be generated from the true epi-
leptogenic zone, and are classified as a ripple (80–250 Hz) or fast
ripple (>250 Hz). It has been reported that surgical resection of the
area that generated ripples on ictal-onset ECoG resulted in good prog-
noses (Ochi et al., 2007; Fujiwara et al., 2012). Fast ripples recorded
on interictal ECoG are thought to be a useful biomarker for
epileptogenicity (Jacobs et al., 2008, 2010; Akiyama et al., 2011).

Currently, the use of video-EEG monitoring and invasive EEG in
small animals has been mostly limited to experimental applica-
tion. A craniotomy is needed to place the subdural electrodes for
ECoG, and stereotaxic devices and procedures are required for the
placement of depth electrodes. Historically, placement of depth elec-
trodes had been carried out using a stereotactic frame (e.g. Kopf
stereotactic frame) (Hasegawa et al., 2002, 2014). However, the fa-
voured technique at present is to use a frameless stereotactic
technique using a neuronavigator (e.g. Brainsight) (Long et al., 2014).
The biggest problem in applying these techniques to dogs and cats
which are awake and freely moving is the requirement of connec-
tors and cables between the animal and the EEG device which can
get easily tangled. Historically, a rotary connector, referred to as a
‘slip-ring’ was used for long term EEG monitoring in freely-moving
animals, which allowed continuous electrical signal recording
without cable coiling, even if the animal is circling (Hasegawa et al.,
2014). It may be difficult to obtain approval from owners to fix their
pets with invasive electrodes and connect them to many devices.
Consequently, the best techniques to deploy are telemetry EEG
(ECoG) recording (Davis et al., 2011; Bassett et al., 2014), the seizure
alert system (Coles et al., 2013) and the forecasting seizures system
(Howbert et al., 2014), which are all synchronised with video re-
cording. Studies have shown that using a telemetry device
(NeuroVista Seizure Advisory System) to analyse epileptic dogs
showed sensitivity and specificity of the seizure alert system to be
100% and 91%, respectively (Coles et al., 2013), and the rate of seizure
prediction was 73% to 89% (Howbert et al., 2014). While the long-
term fixation of scalp electrodes to pet animals for video-scalp EEG
is comparatively difficult (James et al., 2011), several studies
analysing epileptic dogs using telemetric EEG with video monitor-
ing have been reported recently (Poma et al., 2010; James et al., 2015;
Wielaender et al., 2015).

Structural abnormal zone (epileptogenic lesion)

The structural abnormal zone, also known as the epileptogenic
lesion, is defined as ‘the macroscopic lesion which is causative of
the epileptic seizures because the lesion itself is epileptogenic or
by secondary hyperexcitability of adjacent cortex’. At present, the
most reliable diagnostic equipment for detecting structural abnor-
malities is the MRI. In human epileptology, ‘non-lesional’ epilepsy
refers to ‘MRI invisible’ epilepsy. Therefore, MRI is indispensable in

Table 2
Suggested standardised scalp EEG recording conditions for use on dogs and cats.

Sedation Medetomidine 20–40 μg/kg, IM (recommend)
Patient position Sternal recumbent
Electrode type Surface disk; subcutaneous needle; sub-

dermal wire
Electrode arrangementa,c (Fp1, Fp2)d, F3, Fz, F4, C3, Cz, C4, (P3, P4)d, T3,

T4, O1, Pz, O2
Montagesb,c Referential Use a reference electrode (nose tip) or AV

Bipolar Longitudinal, Transverse
Sampling frequency >200 Hze

Low-cut filter (TC)c 0.5–1.5 Hz (TC = 0.3–0.1)
High-cut filterc 60–120 Hz
AC filterc Appropriate
Sensitivityc 5–10 μV/mm
Tracing (paper) speedc 3 cm/sec (analogue); 10–15 sec/view (digital)

AC, alternating current; AV, average reference; EEG, electroencephalography; TC, time
constant.

a Electrode arrangement is shown in Fig. 1.
b An example of montages is shown in Appendix: Supplementary material S2.
c These conditions are changeable on digital EEG.
d Fp1, Fp2, P3 and P4 electrodes are optional.
e If possible, >1000 Hz is recommended for detecting high-frequency oscilla-

tions.
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that it can distinguish between idiopathic epilepsy and structural
epilepsy in both humans and animals. Consequently, the IVETF have
incorporated MRI into their criteria for the diagnosis of idiopathic
epilepsy (as the tier II confidence level, as well as the analysis of
post-prandial bile acids and cerebrospinal fluid) (De Risio et al., 2015).

Introduction of the MRI into the field of veterinary medicine led
to a significant breakthrough in the diagnosis of intracranial dis-
eases. MRI was able to diagnose causes of structural epilepsy such
as degenerative encephalopathies, malformations, brain tumours,
encephalitis and cerebrovascular accidents. In particular, malfor-
mations of the cerebral cortex, or ‘cerebral cortical dysplasia’, are
specifically related to epilepsy (i.e. epileptogenic lesions) in dogs
and cats, as they are in humans (Table 3 and Fig. 2). Malformation
of the human brain is classified by developmental stage (Barkovich
et al., 2001; Bano et al., 2012). Cortical dysplasia related to epilep-

sy is predominantly included in the neural proliferation, migration,
and organisation stage. As the relative contribution of genetic factors
becomes increasingly evident, a new classification has recently been
published (Barkovich et al., 2012). Although these classifications,
and/or associated gene mutations, have not yet been established
in veterinarymedicine, it is likely that a combination of specific cases
and future research may reveal more about the role of cortical dys-
plasia in canine and feline epilepsy.

On the other hand, the study of idiopathic (genetic, unknown
or ‘non-lesional’ cases) epilepsy byMRI represents a particularly chal-
lenging area, even in humanmedicine. Idiopathic epilepsy generally
presents with normal appearance of the brain; however, there have
been some reports of visible, or invisible, yet statistically identifi-
able findings, in canine and feline idiopathic epilepsy:

Firstly, visible MRI changes referred to as epileptic brain damage,
secondary brain injury, peri-ictal encephalopathy or epileptic seizure-
associated (post-ictal) MRI changes have been identified in both
idiopathic and structural epilepsies. This can be predominantly iden-
tified as hyperintensity on T2-weighted or FLAIR images in certain
regions, particularly limbic structures, and is induced by severe re-
current seizures such as cluster seizures and status epilepticus
(Mellema et al., 1999; Hasegawa et al., 2003, 2005; Viitmaa et al.,
2006; De Risio et al., 2015; Rusbridge et al., 2015). These signal
changes originate from focal cytotoxic and/or vasogenic oedema due
to excessive neuronal excitation (excitotoxic theory) in the epilep-
tic focus or the areas closely connected with the focus, and are can
be either transient or permanent.

Secondly, hippocampal atrophy and/or necrosis with or without
signal changes have also been reported as one of the pathologies
in canine and feline epileptic patients that may be closely related
to ‘hippocampal sclerosis (HS)’ (or mesial temporal sclerosis) which
is observed in human patients with temporal lobe epilepsy (Wieser,
2004; Blümcke et al., 2013). HS is a hippocampal pathology fea-
turing neuronal loss of the pyramidal layer with gliosis, and is
observed as hippocampal atrophy with hyperintensity on T2-
weighted/FLAIR images. HS is thought to be either a cause or a result
of epilepsy. In one study that investigated asymmetry of the hip-
pocampus in epileptic dogs, 12% of cases revealed a visually atrophic
hippocampus while 48% of cases were statistically identified as
atrophy (Kuwabara et al., 2010a). In epileptic cats, hippocampal pa-
thologies, such as swelling (inflammation), necrosis and HS, have
been reported comparatively far more frequently than in dogs (Brini

Table 3
Epileptic seizures and malformations of the brain reported in dogs and cats.

Category (developmental stage) Type of malformation Epileptic seizures References

Dorsal induction (formation of
the neural tube)

Anencephalya N/A Huisinga et al. (2010)
Cephalocele + Jeffery (2005); Martlé et al. (2009b); Dewey et al. (2011)
Chiari (-like) malformationb +/– Rusbridge and Knowler (2004); Driver et al. (2013)

Ventral induction (formation of
the brain segment)

Holoprosencephaly +/– Gonçalves et al. (2014)
Dandy-Walker (-like) malformationc

/Cerebellar hypoplasiac
+/– Bernardino et al. (2015); Gerber et al. (2015)

Neural proliferation Microencephaly +/– Herrmann et al. (2011)
(Hemi) megalencephaly (+) N/A in dogs and cats

Migration Lissencephaly + Saito et al. (2002); Herrmann et al. (2011); Lee et al. (2011)
Heterotopia + Author experienced (unpublished, Fig. 2)
Heterotopic cell cluster (in hippocampus) + Buckmaster et al. (2002)

Organisation and myelination Polymicrogyria + Cantile et al. (2001); Jurney et al. (2009); Nye et al. (2015),
author experienced (unpublished, Fig. 2)

Schizencephaly (+) N/A in dogs and cats
Focal cortical dysplasia + Cantile et al. (2001); Casey et al. (2014); Klang et al. (2014,

2015); Nye et al. (2015)
Acquired (not congenital
malformation)

Porencephaly +/– Davies et al. (2012); Machado et al. (2012); Schmidt et al.
(2012); Hori et al. (2015)

+, evident; (+), evident in humans; +/–, occasional or unclear; N/A, not available.
a There is no evidence that the anencephalic dog showed epileptic seizures. The anencephalic dog in the paper (Huisinga et al., 2010) was delivered dead by caesarean.
b Chiari-like malformation and epilepsy in Cavalier King Charles Spaniels are suspected to be unrelated.
c Relationship between epilepsy and Dandy-Walker-like malformation and/or cerebellar hypoplasia is unclear.

Fig. 2. T2-weighted transverse MR image of suspected polymicrogyria (white arrow)
and subependymal heterotopia (black arrowhead) in a 12 year-old, neutered male
miniature Dachshund with late-onset epilepsy.
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et al., 2004; Schmied et al., 2008; Pakozdy et al., 2011; Mizoguchi
et al., 2014; Wagner et al., 2014; Fors et al., 2015).

While some studies using 3D volumetry in animal brains are
evaluated by manual tracing (Milne et al., 2013; Mizoguchi et al.,
2014), the protocol for MRI is somewhat different. Structural MRIs,
especially those showing volumetric changes, are evaluated in a
manner that is routinely subject to observer subjectivity. In human
medicine, such structural changes, and/or functional imaging, are
evaluated statistically by comparing a patient with a standard (ref-
erence) brain, voxel by voxel, a technique referred to as voxel-
basedmorphometry (VBM) (Ashburner and Friston, 2000; Keller and
Roberts, 2008). If VBM is to be deployed clinically in dogs and cats,
it will be imperative to create a standard brainmodel for every breed
of dog and cat. However, more objective evaluation may also allow
the detection of other brain disorders in addition to epilepsy (Tapp
et al., 2006; Ogata et al., 2013).

Recently, the IVETF suggested a ‘veterinary epilepsy-specific MRI
protocol’ in order to standardise imaging sequences and direc-
tions of the slice plane that are known to vary so much across
different institutions or researchers (Rusbridge et al., 2015). One
feature of this new protocol is that the angles of the transverse and
dorsal planes are respectively modified to being parallel and per-
pendicular to the long axis of the hippocampus obtained in the
sagittal plane. These cross-sectional planes are also adopted in the
evaluation of the human hippocampus. In addition, this protocol
is suggested for both low-field and high-field machines and is likely
to be acceptable in all institutions. In the near future, it is ex-
pected that MRI studies of canine and feline epilepsy will be easy
to compare and will be far more objective.

Functional deficit zone

The functional deficit zone is defined as ‘the area of cortex that
is functionally abnormal in the interictal period’. In humans, this area
is determined by not only diagnostic functional imaging but also
from neurological and psychological examinations. In general, ab-
normal neurological findings in the interictal phase are indicative
of structural epilepsies in dogs and cats, and may be revealed by
structural MRI as described in the preceding section of this review
(Bush et al., 2002; Pákozdy et al., 2008, 2010; Vite and Cross, 2011).
However, the functional deficit zone relates not only to macroscop-
ic (MR visible) lesions but also microstructural and true areas of
functional abnormality, especially in idiopathic (non-lesional) epi-
lepsies. In contrast to structural (conventional) MRI, some advanced
MRI sequences, including BOLD-fMRI and nuclear imaging, have been
developed to evaluate brain function. Since epilepsy is a function-
al disorder of the brain, it is logical to presume that such methods
might also be useful methods with which to diagnose epilepsy, in
addition to EEGs.

PET and SPECT

In human epilepsy, PET and SPECT have become established tech-
niques with which to perform useful presurgical evaluations (la
Fougère et al., 2009; Kumar and Chugani, 2013a, 2013b). For example,
interictal FDG-PET – an indicator of cerebral glucose metabolism,
is able to successfully identify the epileptogenic focus as the focal
hypometabolic area. Meanwhile, cerebral perfusion SPECT using 99mTc
is suitable for ictal studies. Ictal and postictal perfusion SPECT is
capable of revealing hyperperfusion in the epileptogenic zone and
propagation area. Interictal SPECT is also able to reveal hypoperfusion,
but the detection rate of this technique is lower compared with ictal
SPECT or interictal FGD-PET. Therefore, subtraction images (i.e. ictal
images minus interictal images) fused with structural MRI, re-
ferred to as subtraction ictal SPECT co-registered to MRI (SISCOM),
represent very useful evaluations for clinical use. Furthermore, PET

and SPECT allow us to image the distribution of neurotransmit-
ters and/or receptors. In human epilepsy, GABA/central
benzodiazepine receptor imaging is commonly carried out using 11C-
or 18F-flumazenil for PET, and 123I-iomazenil for SPECT. The epilep-
togenic zone is indicated as an area of reduced binding area in the
images acquired.

In epileptic veterinary patients, there is a distinct lack of reports
using either PET or SPECT technology, although a Finnish group re-
ported two epileptological studies; Jokinen et al. (2014) showed
cortical hypometabolism corresponding with EEG changes in epi-
leptic juvenile Lagotto Romagnolo dogs, and Viitmaa et al. (2014)
also demonstrated hypometabolism in multiple regions of the brain
in Finnish Spitz dogs exhibiting idiopathic focal epilepsy. In these
reports, the sensitivity of FDG-PET was found to be superior to EEG
for localising or lateralising the epileptogenic focus and the authors
concluded that FDG-PET was a useful diagnostic test for epileptic
animals as well as human patients. In addition, Martlé et al. (2009a)
investigated interictal SPECT in 12 epileptic dogs with generalised
seizures and showed significant hypoperfusion in the subcortical
area (thalamus) compared with controls.

Diffusion and perfusion MRI

Diffusion-based MRI such as diffusion-weighted imaging (DWI)
and diffusion tensor imaging (DTI) evaluates the diffusibility of water
molecules thereby indicating abnormalities of microscopic struc-
tures. Seizures induce cytotoxic oedema by excitotoxicity at early
stage in the epileptogenic focus. DWI detects these areas as
hyperintensity from analysing the images and evaluating the as-
sociated reduction in apparent diffusion coefficient (ADC) values
(Fig. 3). DTI is able to evaluate anisotropy of diffusibility, which is
the direction of white matter and layer structures such as the ar-
rangement of cortical or hippocampal neurons. DWI and DTI have
been used to detect the epileptogenic zone, potential epileptic brain
damage and abnormalities in the network or neuronal fibres in both
human epileptic patients and animal models of epilepsy (Hasegawa
et al., 2003, 2015; Yogarajah and Duncan, 2008).

Perfusion-weighted image (PWI) assesses the haemodynamics
of the brain such as cerebral blood volume, cerebral blood flow, and
mean transient time, as well as CT perfusion and SPECT. PWI can
be obtained using a constant injection of a contrast agent (dynamic
susceptibility contrast method) or without the use of a contrast agent
(arterial spin labelingmethod). Interictal, ictal and postictal PWI have
become to be used for diagnosing the epileptogenic zone instead
of PET or SPECT in human patients and animal models (Heiniger
et al., 2002; O’Brien et al., 2007; Pizzini et al., 2013; Hasegawa et al.,
2015; Oner et al., 2015).

Diffusion-based and perfusion MRI methods in canine and feline
epileptic patients have not yet been reported. However, since the
use of PET and SPECT is very limited in veterinary medicine (due

Fig. 3. A conventional T2-weighted image (A), isotropic diffusion-weighted imaging
(DWI) (B) and apparent diffusion coefficient (ADC) colour map (C) obtained imme-
diately after a focal epileptic seizure evolving into a generalised seizure in a 6 year-
old male mix-breed dog with idiopathic epilepsy. (A) showing slight high intensity
in the left temporal lobe, but no obvious abnormal findings. (B) showing
hyperintensities in the left mesial and lateral temporal lobe. (C) showing low ADC
values (purple to black) corresponding with hyperintensity area on DWI (B).
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to factors such as costs, facilities, and licencing regulations), diffu-
sion and perfusionMRI should be developed as a feasible alternative
for detecting the epileptogenic focus in canine and feline epilepsy.

MR spectroscopy

MR spectroscopy (MRS) measures the concentration of metabo-
lites within a sample volume by analysing the chemical shift of
protons, usually 1H protons, referred to as 1H-MRS, and displaying
the shifts as a spectrogram (Fig. 4). Examples of metabolites that
can be measured are N-acetyl aspartate (NAA), creatine (Cr) and
phosphocreatine, choline-containing compounds, lactate (Lac), myoi-
nositol, and glutamate-glutamine complex (Glx). Decreased levels
of NAA, increased levels of Glx, and the appearance of Lac peaks
have been reported in the epileptic brain, especially in the epilep-
togenic side or focus, in both human and animal models (Neppl et al.,
2001; Hiremath and Najm, 2007; Caruso et al., 2013; Pittau et al.,
2014). In the veterinary field, several studies using MRS have been
reported (Warrington et al., 2013; Carrera et al., 2014, 2015; Ono
et al., 2014; Stadler et al., 2014). However, there is only one pre-
liminary study investigating canine epilepsy, which reported an inter-
hemispheric difference in the ratio of NAA/Cr in 6/10 epileptic dogs
(Olszewska et al., 2015). A consensus has not yet been established
regarding which acquisitions conditions, such as single or maltivoxel,
35 ms or 144 ms of TE, should be employed for MRS to obtain the
best results.

Clinical relevance and conclusions

In this review, the author has introduced the concept of the epi-
leptogenic zone and explored methodologies which can be used to
detect abnormal cortex areas for presurgical evaluation to aid future

epilepsy surgery in veterinary medicine. Modalities such as scalp
EEG and structural MRI are already performed in veterinary prac-
tice, and other advanced techniques such as invasive EEG, video-
EEG, functional MRIs and nuclear imaging are currently being
investigated worldwide to assist in epilepsy surgery treatments.
These modalities to detect the epileptogenic zone are not only es-
sential for presurgical evaluations for selecting appropriate patients
and/or surgical techniques, but are also very important in helping
to understand the pathophysiology of canine and feline epilepsy.
Although this is just a personal opinion, presurgical evaluations that
we should/can perform when epilepsy surgery is considered for
canine or feline drug resistant epilepsy in current veterinary med-
icine are suggested in Table 4. A good example of this concept was
published recently which related to a canine case report in which
temporal lobe surgery was performed (Shihab et al., 2014). In this
report, the dog had several orofacial automatisms with and without
evolving into generalised seizures. This suggested that the
symptomatogenic zone was in the limbic system, and MRI subse-
quently revealed a haemorrhagic lesion (finally cavernous
haemagioma) within the right mesial temporal lobe as a structur-
al abnormal zone (epileptogenic lesion). Additionally, neurological
examination also suggested dysfunction in the right forebrain (lat-
erality of the functional deficit zone). In this case, the three abnormal
zones indicated the same location and the authors performed
lesionectomy. However, focal seizures were still persisted follow-
ing surgery. This result suggested that the epileptogenic zone of this
case existed outside of the resected lesion (i.e. in the remaining
cortex). This case report highlights caution in terms of the relative
importance of determining other zones, namely the irritative zone
(EEG), seizure-onset zone (video- and intracranial-EEG) and/or func-
tional imaging. As another example, a summary of a series of
experiments in familial epileptic cats which applied the concept of

Fig. 4. An example of MR spectroscopy (MRS) in a familial spontaneous epileptic cat (Kuwabara et al., 2010b; Hasegawa et al., 2014; Mizoguchi et al., 2014). These MRS
data were obtained by single-voxel PRESS (TR/TE = 2000/35 ms) sequence with 3.0 Tesla MRI system (GE Health care) and analysed using the LC Model (See:
http://s-provencher.com/pages/lcmodel.shtml [accessed 20 October 2015]). The 10 × 10 × 10 mm volume of interest was located in the thalamus in each side (A). Spectro-
grams of the left and right thalamus are shown as (B) and (C) respectively. Results are shown in the table (C). The ratios of NAA + NAAG/Cr + PCr on both sides of this epileptic
cat were significantly lower than controls (Conts, the mean ± SD of six healthy cats). NAA, N-acetyl-aspartate; NAAG, N-acetyl-aspartyl-glutamate; Glx, glutamate-
glutamine complex; Cr, creatine; PCr, phosphocreatine; GPC, glycerophosphorylcholine; PCh, Phosphocholine; mIns, myo-Inositol.
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the epileptogenic zone is shown in Appendix: Supplementary ma-
terial S3. It is hoped that such studies will be considered as models
for the presurgical evaluations of candidates for future epilepsy
surgery in veterinary medicine. Lastly, it is hoped that the rele-
vant authorities such as IVETF, European College of Veterinary
Neurology (ECVN), American College of Veterinary Internal Medi-
cine (ACVIM) or surgery (ACVS) soon establish a scientific and ethical
consensus on the use of these presurgical evaluations and epilep-
sy surgery including criteria for selection of case or surgical
technique, before unscientific or inadequately evaluated surgical
reports are published.
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Table 4
Suggested presurgical evaluations with which to detect the ‘presumed’ epileptogenic zone when considering epilepsy surgery for canine and feline drug-resistant epilepsy.

Epileptogenic zone Modalities Recommendationa Notes

Symptomatogenic zone Ictal video analysis (seizure semiology) Minimum Requires movie from initial signs of seizure onset
to postictal signs

Irritative zone Scalp EEG (under sedation) Minimum Repetitive recordings are recommended
MEG N/A
EEG-triggered fMRI N/A

Seizure onset zone Video-EEG (awake) +/– telemetry Recommended Ictal video-EEG from seizure onset
Video-invasive EEG (+/– telemetry) or
Intraoperative ECoG/depth EEG

Advanced Requires surgical intervention to place intracranial
electrodes and others

Structural abnormal zone Structural MRI Minimum According to the IVETF epilepsy-specific protocol
3D volumetry Recommended Requires >1.5T MRI system

Functional deficit zone Neurological examination in interictal state Minimum
Advanced MRI (DWI, PWI, MRS, etc) Recommended Requires >1.5T MRI system
Interictal FDG-PET Recommended If available
SPECT (SISCOM) Advanced (N/A) If available
Receptor binding PET/SPECT Advanced (N/A) Fulmazenil-PET or Iomazenil-SPECT

DWI, diffusion-weighted imaging; ECoG, electrocorticography; EEG, electroencephalography; FDG, fluorodeoxyglucose; fMRI, functional MRI; IVETF, the international vet-
erinary epilepsy task force; MEG, magnetoencephalography; MRS, magnet resonance spectroscopy; PET, positron emission tomography; PWI, perfusion-weighted imaging;
SISCOM, substraction ictal SPECT co-registered to MRI; SPECT, single photon emission tomography; T, tesla.

a The author recommends that at least ‘minimum’ modalities should be addressed, and can be readily carried out in current veterinary practice. ‘Recommended’ mo-
dalities should be performed in cases where epilepsy surgery is being considered. When generalised epilepsy surgery, such as corpus callosotomy or vagus nerve stimulation,
is planned, these modalities need to be evaluated in order to detect seizure type or to estimate prognosis. ‘Advanced’ modalities provide more detailed information for
focal epilepsy surgery such as resection, lobectomy, amygdalohippocampectomy, or multiple subpital transections. However, the reliability of these modalities has yet to be
established in veterinary medicine. N/A, not available in current veterinary medicine and no information available for dogs and cats.
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