
FEBS 19177 FEBS Letters 414 (1997) 343 348 

Quantitative study of calcium uptake by tumorigenic bone (TE-85) 
and neuroblastoma × glioma (NG108-15) cells exposed to 

extremely-low-frequency (ELF) electric fields 

J.S. Kenny ~, W.S. Kisaalita ~*, G. Rowland b, C. Thai% T. F o u t z  ~ 

~ Biological and Agricultural Engineering Department, Drftmier Engineering Center, University ~/' Georgia Athens, G,4 30602. USA 
I'Department ~[" Avian Medicine. College of Veterinary Medicine, University of Georgia, Athens. GA 3(1602. ['SA 

Received 14 April 1997: revised version received 25 July 1997 

Abstract To verify the effect of cell culture state on frequency 
dependent increase in proliferation as well as Ca 2+ flux across 
the plasma membrane, tumorigenic bone (TE-85) and neuro- 
blastoma × glioma (NG108-15) cells cultured in the presence of 
fetal bovine serum (FBS) were exposed to capacitively coupled 
electric (CCEF) fields in the extremely low frequency (ELF) 
range of 10 to 18 Hz. [3H]Thymidine incorporation and 45Ca 2+ 
uptake were used as endpoints. TE-85 cells cultured in the 
presence of 10% FBS did not exhibit a frequency dependent 
increase in proliferation in contrast to previous studies under 
growth arrested culture conditions, in which the cells were 
deprived of FBS. However, both TE-85 and NG108-15 cells had 

• • 4 5  2 +  • an increase in Ca uptake in response to a 16 Hz 18.3 mV/cm 
CCEF. Fura-2 digital imaging microscopy was used to verify 

n 3+ • additio of 0.5 mM La and 0.5 mM mnomycin as negative and 
positive controls, respectively. Imaging microscopy data was 
combined with 45Ca z+ incorporation results to quantify free 
intracellular calcium ([Ca2+]i) increase in response to CCEF 
exposure. TE-85 [Ca2+]i increased from 140 to 189-210 nM 
where as NG108-15 [Ca2+]i increased from 67 to 189-210 nM. 
These results suggested that serum deprivation may be a 
requirement for a frequency dependent increase in proliferation 
in TE-85 cells but is not necessary for the electric field induced 
increase in 4~Ca 2+ uptake in both TE-85 and NG108 cells. The 
present study also represents the first demonstration of increased 
45Ca 2+ uptake by neuroblastoma and/or glioma cells in response 
to an electric field exposure. 
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!. Introduction 

The molecular mechanism to explain how cells may respond 
to external electromagnetic fields (EMF) in the extremely low 
frequency range of 0-300 Hz (ELF) to induce disease proc- 
esses like cancer [1,2] or promote beneficial effects like in- 
creased fracture healing rates [3-5] is not clearly understood. 
Based on the observation that bone naturally produces electric 
fields in response to mechanical loading, called stress-gener- 
ated potentials [6], numerous laboratories have investigated 
the hypothesis that bone cells detect and respond to electric 
fields [7 9]. The results of such investigations have been in- 
strumental in the development of FDA approved and physi- 
cian administered clinical electromagnetic treatment for osteo- 
genesis [5,10]. 
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Fitzsimmons and coworkers [11,12] were some of the first 
investigators to demonstrate a frequency-dependent increase 
in cell proliferation and mitogen activity in skeletal tissue ex- 
posed to extremely-low-frequency (ELF) capacitively coupled 
electric fields tCCEF). Given that increases in free intracellu- 
lar calcium ion concentration ([Ca ~]i) have been associated 
with EMF exposure in certain cells [13 16], Fitzsimmons et al. 
[15] further investigated ELF field exposure in partially 
growth arrested TE-85 osteosarcoma cells with =~r'Ca2+ uptake 
as the endpoint. The cells were partially growth arrested in the 
GJGI  stage by culturing in serum-free medium, 24 h before 
ELF-CCEF exposure. Interestingly, the net Lr'Ca~+ uptake 
was found to be frequency-dependent, with the peak occur- 
ring in a range similar to one found in their earlier cell pro- 
liferation/mitogen release work [11,12]. 

TE-85 cells exhibit several markers characteristic of the os- 
teoblastic phenotype, including type I collagen production [I 2] 
and alkaline phosphatase rich membranes [17]. Also. in re- 
sponse to 1,25-dihydroxyvitamin D:~, under serum free growth 
conditions, TE-85 cells exhibit increased alkaline phosphatase 
activity and produce osteocalcin [12,18]. Further, TE-85 cells 
exhibit increased proliferation when stimulated by parathy- 
roid hormone under reduced serum conditions [19]. In view 
of these observations, TE-85 cells are commonly used as a 
cellular osteoblast model. However, in the presence of 10% 
fetal bovine serum (FBS) TE-85 cells exhibit no increase in 
alkaline phosphatase levels and do not produce osteocalcin in 
response to 1,25-dihydroxyvitamin D:, stimulation [20,17], 
suggesting that FBS compromises the ability of TE-85 cells 
to model osteoblast responses. 

Assuming that culture conditions in the presence of serum 
are more likely to mimic in vivo conditions when compared to 
the serum-depleted environment, we set out to determine 
whether TE-85 cells cultured in serum-containing medium be- 
fore ELF-CCEF exposure also exhibit a frequency-dependent 
increase in proliferation, and if so, to quantitatively verily 
Ca ~+ uptake in response to ELF-CCEF exposure in TE-85 
and excitable cells. 

2. Materials and methods 

2.1. Cell lines and culture conditions 
The human osteosarcoma TE-85 of passage 28 was obtained from 

the American Type Culture Collection (Rockville, MD) and the neu- 
roblastoma X glioma hybrid NGI08-15 of passage 12 was obtained 
from Dr. Nirenberg, National Institute of Health (Bethesda, MD). 
The cells were maintained in a Forma Scientific incubator model 
3860 at 37°C, 10'7,, CO2 and 90% relative humidity in Dulbecco's 
modified Eagle's medium supplemented with 0.37% NaHCO:~ (w/v), 
2 mM L-glutamine, 51) units/ml penicillin and 50 ~tg/ml streptomycin, 
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and 10% FBS (DMEM/10% FBS). TE-85 cells were maintained in T- 
flasks and passaged every 4 to 5 days. For use in experiments, TE-85 
cells were trypsinized with 0.25% trypsin (w/v) and 2% EDTA (w/v) in 
phosphate buffered saline (PBS) [21] for 1.5 min. The PBS was re- 
moved and the flasks were placed in the CO2 incubator for 6 rain 
followed by cell resuspension in DMEM/10% FBS. Viable cells (able 
to exclude trypan blue) were plated at 50000 cells/cm 2 in six-well 
plates (Costar, Cambridge, MA) in DMEM/10% FBS and the me- 
dium was refreshed after 24 h. The cells were exposed to ELF- 
CCEF 24 h after medium change for either [3H]thymidine incorpora- 
tion or 45Ca~+ uptake studies. 

NG108-15 cells were maintained in 75-cm 2 T-flasks (Costar, Cam- 
bridge, MA) and passaged following previously published procedures 
[22]. The growth medium for NG108-15 cells was DMEM/10% FBS, 
supplemented with 0.1 mM hypoxanthine, 0.4 gM aminopterin, and 
160 pM thymidine [DMEM/10% FBS/HAT]. For use in experiments, 
confluent cultures were aspirated from the base of the flask with a 
Pasteur pipet. The suspension was centrifuged (500×g; 10 min) and 
viable cells were plated at 30000 cells/cm 2 in six well plates. As with 
TE-85, the medium was changed after 24 h and the cells were exposed 
to ELF-CCEF 24 h after medium change. 

2.2. Capacitively coupled electric field exposure system 
The exposure system was based on a design previously reported by 

Brighton and Townsend [23]. As shown in Fig. 1, the system was 
composed of two aluminum electrodes, designed and fabricated to 
fit the Costar polystyrene six-well-plates, a Leader LFG-1300S func- 
tion generator, a custom built high voltage amplifier, and a Tektronix 
2232 digital storage oscilloscope. The applied field strength (E, V/cm) 
was computed as E=pl/A, where p is the DMEM/10% FBS resistivity 
(equal to 95.2 ~ cm), I is the current in amperes and A is the exposure 
well cross-section area in cm 2. The stray magnetic field intensity in the 
Forma Scientific incubator (model #3860) was measured with W.H. 
Bell Gauss/Teslameter (model #9550) and found to range between 
0 and 14 gT. The vertical geomagnetic field was found to be 48 BT. 

2.3. [S H]Thymidine incorporation 
The ability of the externally applied electric field to stimulate DNA 

synthesis versus similarly treated controls was assessed by monitoring 
the incorporation of [aH]thymidine into DNA. The procedure previ- 
ously described by Gospodarowicz et al. [24] and validated by Puzas 
et al. [25] was followed. Just prior to CCEF exposure, the medium 
was replaced with 5 ml fresh DMEM/10% FBS, the top electrode was 
inserted into the well, and the cover was placed over the electrode. 
The exposure was started by applying an 800 V (peak-to-peak) signal 
at the desired frequency (10-18 Hz). The applied frequency and am- 
plitude of the voltage together with the resultant current were con- 
tinuously monitored by the digital oscilloscope throughout the 30 rain 
CCEF exposure period and was stopped by disconnecting and remov- 
ing the electrodes. Control plates were similarly treated, but were not 
subjected to an electrical signal. 

After CCEF exposure, the cells were incubated for a total of 18 h. 
At 16 h of incubation, [3H]thymidine (final activity of 1.0 gCi/ml), 
deoxycytidine (final concentration of 0.1 mM) and cold thymidine 
(final concentration of 0.1 mM) were added to wells 1 through 3 
that were labeled for [3H]thymidine incorporation [26]. Deoxycytidine 
(final concentration of 0.1 mM) and cold thymidine (final concentra- 
tion of 0.1 mM) were added to wells 4 through 6 that were labeled for 
DNA analysis. [aH]thymidine incorporation was stopped after 2 h by 
removing the medium and washing the cell layer twice with PBS. A 
cotton swab moistened with 12.5% trichloroacetic acid (TCA) was 
used to collect the cell layer from each of the wells labeled for 
[3H]thymidine incorporation. The swabs were washed twice in 
12.5% TCA and once in 95% ethanol for 10 min each. The dry cotton 
tips were cut from the swab and placed in 6 ml of a scintillation 
cocktail (Scintiverse BD, Fisher Scientific) for counting on a Beckman 
LS 6000 Series Liquid Scintillation Counter. The radioactivity was 
corrected for background and recorded as counts per minute (CPM). 

DNA analyses were performed on cells from wells 4 through 6 ac- 
cording to the methods by Labarca and Paigen [27]. This assay takes 
advantage of the fluorochrome Hoechst (2-[2-(4-hydroxypheny)-6- 
bnzimidazolyl]-6-(1-methyl-4-piperazyl)-benzimidazol 3HC1) a mem- 
brane permeable dye which specifically binds AT rich regions of 
DNA [28]. Hoechst binds DNA such that its fluorescence intensity 
is linearly proportional to the DNA concentration. Four ml of PBS-2 
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mM EDTA-Hoechst solution (1.5 nM final concentration of Hoechst 
33342, Molecular Probes, Eugene, OR) was added and the wells were 
allowed to sit overnight at room temperature. The fluorescence of the 
aspirated suspension was determined with a Perkin Elmer Lumines- 
cence Spectrometer LS50 at excitation and emission wavelengths of 
356 and 458 nm, respectively, under Perkin Elmer Fluorescence Data 
Manager Software control. The DNA calibration curve was generated 
with the sodium salt form of calf thymus DNA (Sigma). The degree of 
proliferation was expressed as CPM/gg DNA. Statistical analysis was 
performed using the Student's t-test because of the paired nature 
(exposed versus unexposed) of the experiments. 

2.4. 45Calcium uptake determination 
45Ca2+ uptake by cells was performed following a procedure de- 

scribed by Farley et al. [29]. Briefly, the cells were removed from the 
CO2 incubator and washed twice with 4 ml/well of Tris-BSS pH 7.4 
(10 mM Tris-HCl, 140 mM NaCI, 0.8 mM MgCI2, 5.3 mM KCI, 
1 mM CaCI2, pH 7.4), at room temperature. 45Ca 2+ was added to 
wells 1 through 3 labeled for a~ca2+ uptake experiments to a final 
radioactivity of 3.0 mCi/ml. Wells 4 through 6 were reserved for DNA 
analysis as described above. All wells were exposed in the CO2 incu- 
bator by applying a 16 Hz sinusoidal 800 V (peak-to-peak) signal for 
30 min. The signal induced a calculated CCEF of 18.3 gV/cm. At the 
end of the exposure, the plates were removed from the CO2 incubator 
and the wells were washed three times with ice-cold Tris-BSS supple- 
mented with 0.5 mM LaCIz. To the wells labeled for 45Ca2+ uptake 
experiments, 1.0 ml of 0.03% triton X-100 (v/v) was added. The wells 
were allowed to sit overnight at room temperature. Contents were 
mixed well and 800 I-tl of the homogenate was added to 6 ml of a 
scintillation cocktail (Scintiverse BD, Fisher Scientific) for counting 
on a Beckman LS 6000 series liquid scintillation counter. The radio- 
activity was corrected for background and recorded as CPM. DNA 
was analyzed as described before under the [aH]thymidine incorpora- 
tion section. The degree of 45Ca2+ incorporation was expressed as 
CPM/gg DNA. Control plates were similarly treated, but were not 
subjected to an electrical signal. Additional negative and positive con- 
trols were included in each run by adding LaC13 (final concentration 
of 0.5 mM) and ionomycin (final concentration of 0.5 gM), respec- 
tively, to wells before CCEF exposure. The additional positive and 
negative control wells were not exposed to the electric field. For dig- 
ital imaging microscopy experiments run at neutral to physiological 
pH, the calcium ionophore 4-Bromo-A231827 was used, because ion- 
omycin exhibits limited activity in this range. 

2.5. Free intracellular calcium ([Ca~+]i) measurements 
[Ca2+]i was determined by ratio fluorescence spectroscopy using 

Fura-2 loaded cells and computer controlled Photon Technology In- 
ternational (PTI) Delta Scan System. Both TE-85 and NGI08-15 cells 
were plated on sterile #1, 25-ram cover slips (Fisher Scientific) at 
10000 cells/cm 2 in six-well plates with respective growth medium. 
The cultures were incubated overnight allowing cells to attach to 
the cover slips. Cells on cover slips were washed twice with Tris- 
BSS and were loaded with Fura-2 by incubating in Tris-BSS contain- 
ing 2 mM Fura-2AM (Molecular Probes, Eugene, OR) for 45 min at 
37°C. The unincorporated Fura-2AM was removed by washing the 
cover slips twice with Tris-BSS. Cells were then incubated at 37°C for 
30 rain to ensure thorough hydrolysis of the Fura-2AM. The coves 
slips were then mounted in a stainless steel flow-cell (Atto Instru- 
ments, Rockville, MD) for Fura-2 digital ratio imaging. 

The PTI Delta Scan System was coupled to an Olympus Ix  70 
Inverted Microscope fitted with an UApo/340 40 × Objective, a Chro- 
ma Technology Fura-2 filter set and PTI IC100 digital camera. The 
PTI Delta Scan System was run under Imagemaster (Release I1) soft- 
ware control. Fluorescence intensity ratios 340 nrrd380 nm (emission 
wavelength, 510 nm) were collected every 5 s and [Ca2+]i was com- 
puted as: 

[Ca2+] i . St2 (R--Rmin)  
= 1¢~d Sb~ (Rmax-R) 

where R is the fluorescence intensity ratio from a region of interest of 
a single cell, Sf2 and Sb2 are the fluorescence intensities of Fura-2 at 
380 nm in zero and saturated Ca 2+ condition, respectively. Kd, the 
Fura-2-Ca 2+ equilibrium dissociation constant, was taken to be 170 
nM [28]. Fura-2 loaded cells were treated with 0.5 gM ionomycin and 
5 mM EGTA in Tris-BSS, pH 8.4, to establish the dynamic range of 
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Fig. 1. A schematic of the capacitively coupled electric field (CCEF) exposure apparatus depicting the culture dish and the electrical compo- 
nents. 

Fura-2 response to changes in [Ca2+]i [30,31]. This procedure estab- 
lished the maximum (ionomycin) and minimum (EGTA) fluorescence 
intensity ratios of 340 nm/380 nm (emission wavelength, 510 nm), 
corresponding to Rma× and Rmin, respectively. 

3. Results 

Based on data which showed that a 30-min exposure to 
ELF-EMF increased cell proliferation in the partially growth 
arrested osteosarcoma cell line TE-85 [11], frequency-depend- 
ence of [3H]thymidine incorporation in non-growth-arrested 
(with serum) TE-85 was investigated. [3H]thymidine incorpo- 
ration was not significantly different between control and ex- 
posed cells (Fig. 2). As shown, [3H]thymidine incorporation in 
CCEF exposed cells was approximately equal to that found in 
unexposed cells for all frequencies tested. Since these results 
did not provide a peak frequency, we decided to investigate 
45Ca2+ uptake at 16 Hz, previously identified by Fitzsimmons 
et al. [12] as the peak frequency in partially growth arrested 
TE-85 cells. 

The positive control (ionomycin addition) was verified by 
digital imaging microscopy. Addition of 0.5 BM ionomycin 
raised [Ca2+]i from a resting level of approximately 140 nM 
to the maximum level of approximately 1500 nM in a little 
over 100 seconds. The trivalent cation lanthanum acts like a 
nonspecific Ca z+ channel inhibitor by replacing calcium at 
calcium binding sites. Additionally, La a+ can mimic the prop- 
erties of calcium or inhibit the effects of calcium by binding at 
calcium binding sites. Based on these properties, LaCI3 was 
used as a negative control. Efforts to verify the negative con- 
trol (LaC13 addition) by spectrofluorometry and digital imag- 
ing microscopy revealed that Fura-2 bound La 3+ emitted flu- 
orescence in the same wavelength neighborhood as the Ca 2+- 
bound form (Fig. 3A). As shown in Fig. 3A, the fluorescence 
spectra for Fura-2-La 3+ and Fura-2-Laa+/ca 2+ solutions were 
identical, suggesting that Fura-2 exhibited a greater affinity 
for La 3+ in comparison to Ca +2. Addition of La 3+ to cells 
with depleted intracellular Ca 2+ stores in Ca2+-free extracel- 
lular environment revealed that La 3+ enters TE-85 cells as 
depicted by the gradual increase in the fluorescence ratios in 
Fig. 3B. Further, addition of Ca 2+ and later 4-Bromo-A23187 
in the presence of La a+ revealed that La 3+ inhibits but does 
not eliminate Ca 2+ entry in TE-85 cells (Fig. 3C). Taken to- 

gether, these results fully accounted for the relative difference 
in 45Ca2+ uptake when La 3+ was added to TE-85 cells (Fig. 4) 
both in the presence and absence of ionophores and are con- 
sistent with results previously reported by Pillai and Bikle [32] 
on keratinocyte [Ca2+]i levels in the presence of La 3+. The 
purpose of inomycin/La 3+ experiment was to verify the effect 
of La 3+ as a negative control in the presence of ionomycin, a 
powerful Ca 2+ ionophore. It should be pointed out that 4- 
Bromo-A23187 was used in the experiments reported in Fig. 4 
instead of ionomycin because ionomycin exhibits limited ac- 
tivity at pH 7.0. A pH of 7.0 was preferred for these experi- 
ments as opposed to 8.4 to enhance La 3+ solubility. 

The net 45Ca2+ uptake into both TE-85 and NG108-15 cells 
were significantly increased by CCEF exposure (18.3 BV/cm) 
at 16 Hz (Figs. 4 and 5). The La 3+ controls in NG108-15 
experiments are not presented since they were considered un- 
reliable as La a+ seemed to enhance NG108-15 cell attachment. 
DNA from wells treated with 0.5 mM La 3+ was found to be 
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Fig. 2. Effect of capacitively coupled electric field (CCEF) frequency 
on osteosarcoma TE-85 proliferation, assessed by [aH]thymidine in- 
corporation. The exposure involved applying a sinusoidal 800 V 
peak-to-peak signal. Presented are means_+ standard deviation from 
18 to 26 replicates. 



346 J.S. Kenny et al./FEBS Letters 414 (1997) 343 348 

150 

125 

.~ 100 

.~ 75 

50 
O ~ 

A Fura-2"La3+/Ca2+ 

~ . 2 . L a  ~ 

0 i i I i 

300 320 340 360 380 400 

Exci tat ion W a v e l e n g t h  (nm)  

O 

1 .5  

1.0 

0 . 5  

0.0 

B 

\ 
4-BrA23187 

I I 

0 1000 2000 

Time (seconds) 

C 

o3 
t~ 

2 3+ 
La 

0 ' I I ' I ' 

0 1000 2000 3000 4000 

Time ( s econds )  

Fig. 3. [A] The 510 nm fluorescence of Ca 2÷- and La3+-bound Fura-2 overlap extensively at the critical 340/380 nm excitation wavelengths. 
Also, fluorescence spectra for Fura-2-La 3+ and Fura-2-La3+/Ca 2+ solutions were identical, suggesting that Fura-2 exhibited a greater affinity 
for La 3+ in comparison to Ca 2+. The spectra were obtained with a Perkin Elmer Luminescence Spectrometer LS50. Ca 2+ and La 3+ were sepa- 
rately added to 1.0 laM Fura-2 in Tris buffer (pH 7.4) to final concentrations of 0.1 mM, before measurement. [B] Effect of La 3+ and 4-Bro- 
too-A23187 (calcium ionophore) addition to TE-85 cells. Intracellular Ca 2+ stores were depleted by incubating cells in Ca2+-free Tris-BBS, pH 
8.4, containing 5.0 mM EGTA for 45 min prior to experimentation. The gradual increase in fluorescence after La z+ (0.5 raM) addition was at- 
tributed to slow entry of La 3+ into the cells. As expected, addition of 4-Bromo-A23187 (10 IRM) facilitated La 3+ entry in the cells. Data repre- 
sents average of 16 cells. [C] Effect of La 3+ on the rate of Ca 2+ uptake by TE-85 cells. The fluorescence ratio changes on addition of Ca 2+ 
(1.0 mM) in the presence (D) and absence (6)) of La 3÷ (0.5 mM) suggested that La 3÷ inhibited but did not completely eliminate Ca 2÷ uptake 
by cells. Data represents averages of 16 cells. 

approximate ly  25% higher  tha t  the non t rea ted  control .  The  
quant i ta t ive  est imates of  average changes  in [Ca2+]i were 
based on  the assumpt ion  tha t  [Ca2+]i as determined with 
Fura-2  is linearly related to 4"~Ca2+ up take  and  the resting 
and  m a x i m u m  (in presence of  ionomycin)  [Ca2+]i levels cor- 
respond to the cont ro l  (unexposed) and  m a x i m u m  (in pres- 
ence of  ionomycin)  cell 45Ca 2+ uptake,  respectively. Using  
resting [Ca2+]i levels of  6 7 + 1  n M  [33] for NG108-15 cells 
and  140 n M  (n = 6) for TE-85 cells as well as Rmin of  0.32 
and  R . . . .  o f  6.21, the following [Ca2+]i levels were calculated:  
210.3, 203.6 and  188.5 for TE-85;  254.9 and  291.3 for NG108-  
15 ( n = 3 )  f rom separate  experiments.  Based on the above 

calculations,  NGI08-15  cells exhibited a higher  45Ca 2+ uptake  
in compar i son  to TE-85 cells. 

4. D i s c u s s i o n  

A frequency-dependent  increase in TE-85 cell prol i ferat ion 
similar to tha t  previously seen with embryonic  chick calvarial 
cells was repor ted by F i tzs immons  et al. [12]. The absence of  a 
similar response in the present  s tudy was a t t r ibuted  to use of  
serum in the growth medium,  24 h before E L F - C C E F  expo- 
sure. Serum depr ivat ion apparent ly  results in growth arrested 
cell cultures at  the G0/G1 t ransi t ion point  [35]. I t  is possible 
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that in the present study, the number  of  cells responding were 
too few to be detectable with the [3H]thymidine incorporat ion 
assay. It is interesting to note that the maximum error in 
[3H]thymidine incorporat ion in this study was observed at 
16 Hz, previously found to be the peak for net 45Ca2+ uptake 
[35]. 

The C C E F  exposure apparatus was composed of  a capaci- 
tively coupled system patterned after one previously used by 
Brighton and Townsend [23]. This system exposed cells to 
electric fields only. The choice of  the electric field component  
was based on detailed previous studies that have demon- 
strated that the electric field is the critical metric involved in 
increasing the calcium influx in the lymphocyte model  system 
[34]. The exposure system in these studies was calculated to 
induce a maximum potential gradient of  18.3 pV/cm in each 
tissue culture well. The observed increase in 45Ca 2+ uptake by 
TE-85 in response to E L F - C C E F  exposure is consistent with 
findings by Fitzsimmons et al. [35]. To extend these findings to 
other cell types we chose NGI08-15,  an excitable nervous 
system-like cell. The choice of  an excitable cell was based 
on several factors. First, epidemiological studies have sug- 
gested that E L F - E M F  exposure may have adverse effects on 
the nervous system [36]. Second, the ability of  E L F - E M F  to 
directly affect cellular calcium homeostasis through unknown 
mechanism(s), coupled with the ability of  specific voltage-de- 
pendent Ca 2+ channel blockers to antagonize the effect [37 
39], suggests the involvement of  voltage-dependent Ca ̀ -'+ 
channels. Yet, the majority of  ELF-EMF- induced  [Ca2+]i 
changes have been demonstrated on immune system and 
cells/tissues of  the neuroendocrine system [40,41] that are non- 
excitable. NG108-15 (glioma × neuroblastoma hybrid) cells 
have been shown to express a range of  calcium currents sim- 
ilar to those observed in neurons and therefore serve as a 
convenient alternative model for the study of  biological phe- 
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nomena involving voltage-sensitive calcium channel conduc- 
tances [21]. An increase in 4r'Ca2- uptake by NGI08-15 in 
response to E L F - C C E F  exposure was observed. Previous 
E L F - E M F  exposure studies with neuroblastoma cells have 
mainly focussed on neurite damage or outgrowth [42,43] as 
endpoints. The present study therefore constitutes the first 
demonstrat ion of  45Ca 2+ uptake by neuroblastoma and/or 
glioma cells in response to E L F - C C E F  exposure. 

The quantitative estimates of  average changes in [Ca"'+]~ 
were based on the assumption that [Ca2+]~ as determined 
with Fura-2 is linearly related to ~r'Ca~ ~ uptake and the rest- 
ing [Ca2~]i level corresponds to the control (unexposed) cells 
4"Ca2+ uptake. The estimated [Ca'-'+]i levels; 189-210 nM for 
TE-85 and 255 291 nM for NGI08-15 are within the general 
range of  [Ca'-'qi changes published by Lindstr6m et al. [40], 
who exposed Jurkat  cells to a 5--100 Hz 0,15 mT E M F  and 
examined [Ca-'~]i in individual cells using Fura-2. Within a 
minute of  25 Hz exposure, [Ca2+]i increased from baseline 
levels of  70 120 nM to 200 245 riM. It should be pointed 
out that the [Ca2+]i changes reported in the present study 
are averages from the whole cell population. Since in most 
single cell studies not all cells respond [40], it is reasonable to 
suggest that the actual single cell [Ca2~]i changes in response 
to E L F - C C E F  exposure to cells in this study would probably 
be higher than the reported values. 

The calculated [ C a 2 + ] i  changes in response to E L F - C C E F  
exposure were 30-40% higher for NG108-15 in comparison to 
TE-85 cells. Although no definitive experimental evidence has 
been provided to support the hypothesis that the regulation of  
calcium conductivity at the cell plasma membrane is a poten- 
tially critical process through which E L F - E M F  could signifi- 
cantly interact with cells [44], it is tempting to attribute the 
difference in [Ca'-'+]i changes between TE-85 and NG108-15 
cells to the differences in voltage-activated Ca 2~ channels in 
their plasma membranes which may lead to different trans- 
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membrane calcium conductances. In excitable cells, trans- 
membrane calcium conductances are dominated by high-volt- 
age acting L- and N-type channels, while nonexcitable cells 
commonly demonstrate the low-voltage activating T-type 
channels [45,46]. 

The results from the present study have suggested that se- 
rum deprivation, which results in a large percentage of growth 
arrested cells (i.e., partially synchronized) may be a require- 
ment for frequency-dependent increase in proliferation, but  is 
not necessary for 45Ca2+ uptake effects in response to ELF-  
CCEF exposure. The present study also constitutes the first 
demonstrat ion of 45Ca 2+ uptake by neuroblastoma and/or 
glioma cells in response to an electric field exposure. 
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