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Abstract

In this paper, we generalize TOPSIS to fuzzy multiple-criteria group decision-making (FMCGDM) in a fuzzy environment.
TOPSIS is one of the well-known methods for multiple-criteria decision-making (MCDM). Most of the steps of TOPSIS can be
easily generalized to a fuzzy environment, except max and min operations in finding the ideal solution and negative ideal solution.
Thus we propose two operators Up and Lo which satisfy the partial ordering relation on fuzzy numbers to the generalization of
TOPSIS. In generalized TOPSIS, these two operations (Up and Lo) are employed to find ideal and negative ideal solutions under
a fuzzy environment. Then the FMCGDM problem can be solved effectively and efficiently.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Decision-making is the procedure to find the best alternative among a set of feasible alternatives.
Sometimes, decision-making problems considering several criteria are called multi-criteria decision-making (MCDM)
problems [1–19]. An MCDM problem with m alternatives and n criteria can be expressed in matrix format as follows:

G =

A1
A2
...

Am

C1 C2 · · · Cn
G11 G12 · · · G1n
G21 G22 · · · G2n
...

... · · ·
...

Gm1 Gm2 · · · Gmn

 ,

W = [W1, W2, . . . , Wn] ,

where A1, A2, . . . , Am are feasible alternatives, C1, C2, . . . , Cn are evaluation criteria, Gi j is the performance rating
of alternative Ai under criterion C j , and W j is the weight of criterion C j .
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The MCDM problems may be divided into two kinds of problem. One is the classical MCDM problems [1–3],
among which the ratings and the weights of criteria are measured in crisp numbers. Another is the fuzzy multi-
criteria decision-making (FMCDM) problems [4–19], among which the ratings and the weights of criteria evaluated
on imprecision, subjective and vagueness are usually expressed by linguistic terms and then set into fuzzy
numbers [20–22]. The technique for order preference by similarity to ideal solution (TOPSIS) proposed Hwang
and Yoon [1] is one of the well-known methods for classical MCDM. The underlying logic of TOPSIS is to define
the ideal solution and negative ideal solution. The ideal solution is the solution that maximizes the benefit criteria
and minimizes the cost criteria, whereas the negative ideal solution is the solution that maximizes the cost criteria
and minimizes the benefit criteria. In short, the ideal solution consists of all of best values attainable of criteria,
whereas the negative ideal solution is composed of all worst values attainable of criteria. The optimal alternative
is the one which has the shortest distance from the ideal solution and the farthest distance from the negative ideal
solution.

Since TOPSIS is a well-known method for classical MCDM, many researchers have applied TOPSIS to solve
FMCDM problems in the past. Some of them [6,17] defuzzify fuzzy ratings and weights into crisp values, whereas
the defuzzification will lose some information. Others, such as Chen, Liang, Raj and Kumar [7,14,16], supposed that
TOPSIS should be generalized in a fuzzy environment. These methods can decline the loss of fuzzy information, but
there are some problems in their works. In Liang’s work, he utilized the maximizing set and minimizing set [23] to
rank a set of fuzzy evaluated values presented by approximate trapezoidal fuzzy numbers against criteria. However,
the distance values from two different alternatives to the ideal solution or negative ideal solution would be indifferent
on one criterion, if the intersections of two different evaluated values and the best or worst values on the same criterion
are ∅. Raj and Kumar also used the maximizing set and minimizing set to rank alternatives presented by approximate
trapezoidal fuzzy numbers. Their process could combat the problem of Liang, but their computation is more difficult
and complex than Liang’s. In Chen’s work, he constructed the normalized values for the ideal solution and negative
ideal solution on criteria. The normalized values for the ideal solution and negative ideal solution on criteria are
always (1, 1, 1) and (0, 0, 0) respectively. (1, 1, 1) and (0, 0, 0) are extreme values which are possibly far from away
true max and min values, so the extreme values could not represent the max and min values of TOPSIS. Beside the
disadvantage of extreme values, the weighted ratings on criteria in Chen’s work are presented by triangular fuzzy
numbers as ratings, and weights are triangular fuzzy numbers. In fact, the multiplication between two triangular fuzzy
numbers should be an approximate triangular fuzzy number, not a triangular fuzzy number. Thus, the computation of
Chen is very simple, but the weighted ratings could not express approximate triangular fuzzy numbers.

To avoid these above problems, we have proposed a fuzzy multiple-criteria group decision-making (FMCGDM)
method [19] called fuzzy TOPSIS in a fuzzy environment. In fuzzy TOPSIS, most of the steps of TOPSIS are easily
generalized to a fuzzy environment except the min and max operations. The max and min operations are in TOPSIS for
finding negative and ideal solutions, whereas the min and max operations are inadequate under a fuzzy environment.
We have proposed two operators, MAX and MIN, which satisfy the partial ordering relation on triangular fuzzy
numbers. By MAX and MIN operations, we can find the ideal and negative ideal solutions, whereas these fuzzy
numbers against criteria to ideal and negative ideal solutions gained by MAX and MIN operations may be not found
on these performance ratings of possible alternatives. In this paper, we will propose a new generalized TOPSIS which
substitutes Up and Lo operations for MAX and MIN operations. By Up and Lo operations, a set of fuzzy numbers are
ranked quickly. Then, we find the ideal and negative ideal solutions easily, and the fuzzy numbers against criteria on
ideal and negative ideal solutions can be also found on these possible alternatives.

For the sake of clarity, the related concepts of mathematics are presented in Section 2. The FMCGDM method
about generalized TOPSIS is expressed in Section 3. Finally, a numerical example of FMCGDM is illustrated in
Section 4.

2. Preliminaries

In this section, we review some basic notions of fuzzy sets [20–22]. These notions of fuzzy sets are expressed as
follows.

Definition 2.1. Let U be a universe set. A fuzzy set A of U is defined by a membership function µA(x) → [0, 1],
where µA(x), ∀x ∈ U , indicates the degree of x in A.
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Definition 2.2. The α-cut of fuzzy set A is a crisp set Aα = {x | µA(x) ≥ α}. The support A is the crisp set
Supp(A) = {x | µA(x) > 0}. A is normal iff supx∈U µA(x) = 1, where U is the universe set.

Definition 2.3. A fuzzy subset A of universe set U is convex iff µA(λx + (1 − λ)y) ≥ (µA(x) ∧ µA(y)), ∀x, y ∈ U ,
∀λ ∈ [0, 1], where ∧ denotes the minimum operator.

Definition 2.4. A is a fuzzy number iff A is normal and convex fuzzy set of U .

Definition 2.5. A triangular fuzzy number A is a fuzzy number with piecewise linear membership function µA defined
by

µA =


x − a1

a2 − a1
, a1 ≤ x ≤ a2,

a3 − x
a3 − a2

, a2 ≤ x ≤ a3,

0, otherwise,

which can be denoted as a triplet (a1, a2, a3).

Definition 2.6. Let A = (a1, a2, a3) and B = (b1, b2, b3) be two triangular fuzzy numbers. A distance measure
function d(A, B) can be defined [7]:

d(A, B) =

√
1
3
[(a1 − b1)2 + (a2 − b2)2 + (a3 − a3)2].

Definition 2.7. Let A be a fuzzy number. Then AL
α and AU

α are defined as

AL
α = inf(z)

µA(z)≥α

and

AU
α = sup(z)

µA(z)≥α

respectively.

Beside these previous concepts of fuzzy sets, the other related notions are stated as follows.

Definition 2.8. Let L(S) and U (S) be two boundaries for a set of fuzzy numbers S = {X1, X2, . . . , Xn}, defined as

L(S) = min
1≤ j≤n

{xl j }

and

U (S) = max
1≤ j≤n

{xr j },

where X j is a fuzzy number denoted as the triplet (xl j , xmj , xr j ) for j = 1, 2, . . . , n.

Definition 2.9. Let R(S)(X j ) indicate the relation of X j between L(S) and U (S), where S = {X1, X2, . . . , Xn} is a
set of fuzzy numbers. Define

R(S)(X j ) =

∫ 1
0 ((X j )

L
α − L(S))dα∫ 1

0 ((X j )L
α − L(S)) dα +

∫ 1
0 (U (S) − (X j )U

α ) dα
.

Lemma 2.1. Let A = (a1, a2, a3) be a triangular fuzzy number in S, then

R(S)(A) =
a1 + a2 − 2L(S)

a1 − a3 + 2(U (S) − L(S))
.
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Definition 2.10. Let � be a binary relation on fuzzy numbers. Assume A and B to be two fuzzy numbers in S. A � B
iff R(S)(A) ≥ R(S)(B), then A is said to be bigger than or equal to B.

Lemma 2.2. � is a partial ordering relation [24] on fuzzy numbers.

Proof. (1) � is reflexive. Since A � A iff R(S)(A) ≥ R(S)(A), ∀A ∈ S.
(2) � is anti-symmetric. If A � B(R(S)(A) ≥ R(S)(B)) and B � A(R(S)(B) ≥ R(S)(A)) then A and B are indifferent

(R(S)(A) = R(S)(B)), ∀A, B ∈ S.
(3) � is transitive. Assume C to be another fuzzy number for C ∈ S. If A � B and B � C then A � C . Since

R(S)(A) ≥ R(S)(B) and R(S)(B) ≥ R(S)(C), we can know that R(S)(A) ≥ R(S)(C), ∀A, B, C ∈ S.

It is obvious that � is reflexive, anti-symmetric and transitive. Thus � is the partial ordering relation on the set of
fuzzy numbers.

Definition 2.11. S = {X1, X2, . . . , Xn} denotes a set of fuzzy numbers. Define

X+
= Up(S) = Up({X1, X2, . . . , Xn}) to be the fuzzy maximum value in S

and

X−
= Lo(S) = Lo({X1, X2, . . . , Xn}) to be the fuzzy minimum value in S,

where

X+
= X i if X i � X t ∀X t ∈ S, i.e., max

t=1,2,...,n
{R(S)(X t )} = R(S)(X i ), for t = 1, 2, . . . , n

and

X−
= X j if X t � X j ∀X t ∈ S, i.e., min

t=1,2,...,n
{R(S)(X t )} = R(S)(X j ), for t = 1, 2, . . . , n.

Lemma 2.3. For S = {X1, X2, . . . , Xn}, the Up(S) and Lo(S) operations satisfy the partial ordering relation on S.

3. The FMCGDM method

Based on the two operations Up and Lo, the FMCGDM method being the generalized TOPSIS in a fuzzy
environment is presented as follows. First, performance ratings and weights are evaluated with linguistic terms [25,26].
These linguistic ratings, employed by experts to represent the performances under certain criteria, are very poor (VP),
poor (P), medium poor (MP), fair (F), medium good (MG), good (G) and very good (VG). The linguistic weights for
presenting the importance of criteria are very low (VL), low (L), medium (M), high (H) and very high (VH). Assume
that all linguistic terms can be represented with triangular fuzzy numbers, and that these fuzzy numbers are limited in
the interval [0,1]. Thus these performance ratings would be not normalized. Let Gi jk be the performance rating given
by expert Ek to alternative Ai against criterion C j , where Gi jk = (g1i jk, g2i jk, g3i jk) is a triangular fuzzy number,
i = 1, 2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , p. Then Gi j is the average performance rating of alternative Ai
against criterion C j . Let ⊗ and ⊕ be extended multiplication and addition defined by the extension principle; thus

Gi j = (g1i j , g2i j , g3i j ) = (1/p) ⊗ (Gi j1 ⊕ Gi j2 ⊕ Gi j3 ⊕ · · · ⊕ Gi j p),

where i = 1, 2, . . . , m; j = 1, 2, . . . , n.
By the extension principle, we have

g1i j =

p∑
k=1

g1i jk/p,

g2i j =

p∑
k=1

g2i jk/p
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and

g3i j =

p∑
k=1

g3i jk/p.

A decision-making matrix G is composed of the performance ratings of alternative A1, A2, . . . , Am ; that is,

G = [Gi j ]m×n .

[Gi1, Gi2, . . . , Gin] denotes the performance ratings of alternative Ai on all criteria.
Let A− and A+ denote the negative ideal solution and ideal solution respectively; thus

A−
= [G−

1 , G−

2 , . . . , G−
n ]

and

A+
= [G+

1 , G+

2 , . . . , G+
n ],

where

G−

j = Lo({G1 j , G2 j , . . . , Gmj })

and

G+

j = Up({G1 j , G2 j , . . . , Gmj }),

for j = 1, 2, . . . , n.
By the partial ordering relation, we know

G+

j � Gi j � G−

j ,

where i = 1, 2, . . . , m; j = 1, 2, . . . , n.
By Definition 2.6, we compute the distance from alternatives to the ideal solution (or negative ideal solution). Let

d−

i j and d+

i j be the distance from Gi j to G−

j and G+

j respectively; thus

d−

i j = d(Gi j , G−

j )

and

d+

i j = d(Gi j , G+

j ),

where i = 1, 2, . . . , m; j = 1, 2, . . . , n.
Let W jk = (w1 jk, w2 jk, w3 jk) denote the weight evaluated by expert Ek under criterion C j , where j = 1, 2, . . . , n;

k = 1, 2, . . . , p. Assume W j to be the average weight on criterion C j ; thus

W j = (w1 j , w2 j , w3 j ) = (1/p) ⊗ (W j1 ⊕ W j2 ⊕ W j3 ⊕ · · · ⊕ W j p),

where j = 1, 2, . . . , n.
By the extension principle, we have

w1 j =

p∑
k=1

w1 jk/p,

w2 j =

p∑
k=1

w2 jk/p

and

w3 j =

p∑
k=1

w3 jk/p.
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Table 1
The weighted distance values of alternatives

Alternative Negative weighted distance Positive weighted distance

A1 D−

1 D+

1

A2 D−

2 D+

2
.
.
.

.

.

.
.
.
.

Am D−
m D+

m

Then D−

i and D+

i express the weighted distance from alternative Ai to negative ideal solution A− and ideal solution
A+ respectively. Let

D−

i =

n∑
j=1

W j ⊗ d−

i j

and

D+

i =

n∑
j=1

W j ⊗ d+

i j ,

where i = 1, 2, . . . , m.
An alternative under any one criterion can be presented by two weighted distance values, i.e., positive weighted

distance value and negative weighted distance value. The positive weighted distance is the distance form the alternative
to the ideal solution, and the negative weighted distance is that from the alternative to the negative ideal solution. These
weighted distance values are presented in Table 1.

Thus the weighted distance of Ai can be expressed by [D−

i , D+

i ]. Let

L D−
= Lo({D−

1 , D−

2 , . . . , D−
m }),

U D−
= Up({D−

1 , D−

2 , . . . , D−
m }),

L D+
= Lo({D+

1 , D+

2 , . . . , D+
m })

and

U D+
= Up({D+

1 , D+

2 , . . . , D+
m }).

By the two operations of Lo and Up, we know that the negative ideal solution is [L D−, U D+
] and the ideal

solution is [U D−, L D+
] for weighted distance values of all alternatives. Let A−

i denote the distance from [D−

i , D+

i ]

to [L D−, U D+
], and A+

i denote the distance from [D−

i , D+

i ] to [U D−, L D+
]. Define

A−

i = d(D−

i , L D−) + d(D+

i , U D+)

and

A+

i = d(D−

i , U D−) + d(D+

i , L D+),

where i = 1, 2, . . . , m.
Finally, the closeness coefficient A∗

i of alternative Ai is defined:

A∗

i =
A−

i

A−

i + A+

i
,

where i = 1, 2, . . . , m.
Obviously, 0 ≤ A∗

i ≤ 1, where i = 1, 2, . . . , m. If A∗

i = 0, alternative Ai would be the negative ideal solution. In
contrast, A∗

i = 1 denotes Ai to be ideal solution. An alternative Ai is closer to the negative ideal solution and farther
from the ideal solution as A∗

i approaches 0, whereas alternative Ai is closer to the ideal solution and farther from
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Table 2
The linguistic performance ratings of the three airports

A1 A2 A3

(E1, E2, E3, E4) C1 (MG, G, G, VG) (VG, G, MG, MG) (MG, F, MG, F)
C2 (MG, VG, G, MG) (G, G, VG, G) (G, VG, G, G)
C3 (F, F, F, MG) (VG, G, MG, G) (VG, VG, G, G)
C4 (VG, G, VG, VG) (F, MG, MG, MG) (MG, MG, G, MG)
C5 (G, MG, F, G) (MG, G, F, G) (F, VG, G, MG)
C6 (VG, G, VG, VG) (MG, VG, G, G) (G, F, MG, G)
C7 (F, GMG, G) (G, MG, VG, MG) (VG, MG, VG, G)
C8 (MG, VG, MG, G) (VG, F, VG, G) (G, G, VG, MG)
C9 (VG, G, G, VG) (MG, G, G, VG) (VG, G, VG, VG)
C10 (G, G, G, F) (G, MG, G, G) (G, VG, G, MG)
C11 (MG, VG, MG, MG) (VG, MG, G, MG) (VG, MG, G, G)
C12 (G, VG, G, MG) (VG, G, VG, G) (G, G, VG, MG)
C13 (F, MG, MG, G) (F, MG, F, MG) (G, G, VG, VG)
C14 (VG, MG, MG, VG) (MG, MG, G, VG) (F, MG, G, MG)
C15 (G, VG, F, G) (MG, F, VG, G) (F, F, F, F)

the negative ideal solution as A∗

i approaches 1. Therefore, we can determine the ranking order of a set of alternatives
according to their closeness coefficients, and then the best alternative is found from the set of alternatives.

4. Numerical example

A numerical example is illustrated for presenting generalized TOPSIS to evaluate airport operation performance
with group decision-making. Assume that three airports A1, A2 and A3 are evaluated by four experts E1, E2, E3 and
E4 under a fuzzy environment for operation performance [3,6,17,27–33] against 15 criteria, C1, C2, . . . , C15. These
criteria are:
return on operation profit to capital (C1),
comfort and cleanness of airport terminal (C2),
trolleys approach travelers (C3),
signal and direction (C4),
aerodrome control (C5),
security measures (C6),
check-in and check-out time (C7),
aircraft take-off and loading time (C8),
traffic connecting city or out-bound (C9),
courtesy of crew (C10),
parking lots (C11),
airport scale (C12),
navigation equipment (C13),
noise pollution control (C14), and
flight safety control (C15),
where W1, W2, . . . , W15 are related weights of the criteria C1, C2, . . . , C15 respectively. The elements of the linguistic
performance rating set, {VP, P, MP, F, MG, G, VG}, are used to present seven situations of performance ratings, and
then set into the following fuzzy numbers, where VP = (0, 0, 0.2), P = (0, 0.2, 0.4), MP = (0.2, 0.4, 0.5), F =

(0.4, 0.5, 0.6), MG = (0.5, 0.6, 0.8), G = (0.6, 0.8, 1) and VG = (0.8, 1, 1). The elements of the linguistic weight
set, {VL, L, M, H, VH}, are used to describe five states for weights, and then set into the following numbers, where
VL = (0, 0, 0.3), L = (0, 0.3, 0.5), M = (0.3, 0.5, 0.7), H = (0.5, 0.7, 1) and VH = (0.7, 1, 1). The linguistic
ratings and weights of operation performance employed by four experts under 15 criteria for the three airports are
presented in Table 2. The fuzzy average ratings of the three airports computed from Table 2 are shown in Table 3.

From Table 3, we know that the ideal and negative ideal solutions are

A+
= [G+

1 , G+

2 , . . . , G+

15]
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Table 3
The average ratings of the three airport on 15 criteria

Gi j A1 A2 A3

C1 (0.625, 0.8, 0.95) (0.6, 0.75, 0.9) (0.45, 0.55, 0.7)
C2 (0.6, 0.75, 0.9) (0.65, 0.85, 1) (0.65, 0.85, 1)
C3 (0.425, 0.525, 0.65) (0.625, 0.8, 0.95) (0.7, 0.9, 1)
C4 (0.75, 0.95, 1) (0.475, 0.575, 0.75) (0.525, 0.65, 0.85)
C5 (0.4, 0.5, 0.6) (0.525, 0.675, 0.85) (0.575, 0.725, 0.85)
C6 (0.75, 0.95, 1) (0.625, 0.8, 0.95) (0.525, 0.675, 0.85)
C7 (0.525, 0.675, 0.85) (0.6, 0.75, 0.9) (0.675, 0.85, 0.95)
C8 (0.6, 0.75, 0.9) (0.65, 0.825, 0.9) (0.625, 0.8, 0.95)
C9 (0.7, 0.9, 1) (0.625, 0.8, 0.95) (0.75, 0.95, 1)
C10 (0.55, 0.725, 0.9) (0.575, 0.75, 0.95) (0.625, 0.8, 0.95)
C11 (0.575, 0.7, 0.85) (0.6, 0.75, 0.9) (0.625, 0.8, 0.95)
C12 (0.625, 0.8, 0.95) (0.7, 0.9, 1) (0.625, 0.8, 0.95)
C13 (0.5, 0.625, 0.8) (0.45, 0.55, 0.7) (0.7, 0.9, 1)
C14 (0.65, 0.8, 0.9) (0.6, 0.75, 0.9) (0.5, 0.625, 0.8)
C15 (0.6, 0.775, 0.9) (0.575, 0.725, 085) (0.4, 0.5, 0.6)

and

A−
= [G−

1 , G−

2 , . . . , G−

15],

where

G+

1 = (0.625, 0.8, 0.95), G−

1 = (0.45, 0.55, 0.7),

G+

2 = (0.65, 0.85, 1), G−

2 = (0.6, 0.75, 0.9),

G+

3 = (0.7, 0.9, 1), G−

3 = (0.425, 0.525, 0.65),

G+

4 = (0.75, 0.95, 1), G−

4 = (0.475, 0.575, 0.75),

G+

5 = (0.575, 0.725, 0.85), G−

5 = (0.4, 0.5, 0.6),

G+

6 = (0.75, 0.95, 1), G−

6 = (0.525, 0.675, 0.85),

G+

7 = (0.675, 0.85, 0.95), G−

7 = (0.525, 0.675, 0.85),

G+

8 = (0.65, 0.825, 0.9), G−

8 = (0.6, 0.75, 0.9),

G+

9 = (0.75, 0.95, 1), G−

9 = (0.625, 0.8, 0.95),

G+

10 = (0.625, 0.8, 0.95), G−

10 = (0.55, 0.725, 0.9),

G+

11 = (0.625, 0.8, 0.95), G−

11 = (0.575, 0.7, 0.85),

G+

12 = (0.7, 0.9, 1), G−

12 = (0.625, 0.8, 0.95),

G+

13 = (0.7, 0.9, 1), G−

13 = (0.45, 0.55, 0.7),

G+

14 = (0.65, 0.8, 0.9), G−

14 = (0.5, 0.625, 0.8),

G+

15 = (0.6, 0.775, 0.9), G−

15 = (0.4, 0.5, 0.6).

Then we can calculate the distance values d(Gi j , G+

j ) and d(Gi j , G−

j ) from Gi j (i = 1, 2, 3; j = 1, 2, . . . , 15) to G+

j
and G−

j respectively. Table 4 lists these distance values.
Table 5 shows the related weights of the 15 criteria employed by the experts.
From the Table 5, the average weights against the 15 criteria are calculated:

W1 = (0.45, 0.675, 0.85),

W2 = (0.5, 0.725, 925),

W3 = (0.35, 0.55, 0.775),

W4 = (0.325, 0.575, 0.725),
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Table 4
The distance values for the three airports on 15 criteria

A1 A2 A3
d(G1 j , G+

j ) d(G1 j , G−

j ) d(G2 j , G+

j ) d(G2 j , G−

j ) d(G3 j , G+

j ) d(G3 j , G−

j )

C1 0 0.2278 0.0433 0.1848 0.2278 0
C2 0.0866 0 0 0.0866 0 0.0866
C3 0.336 0 0.0777 0.2618 0 0.336
C4 0 0.3048 0.3048 0 0.2332 0.0777
C5 0.2189 0 0.0408 0.1904 0 0.2189
C6 0 0.2227 0.1164 0.109 0.2227 0
C7 0.1451 0 0.0777 0.0677 0 0.1451
C8 0.0520 0 0 0.052 0.0354 0.0433
C9 0.0408 0.0777 0.1164 0 0 0.1164
C10 0.0677 0 0.0408 0.0354 0 0.0677
C11 0.0866 0 0.0433 0.0433 0 0.0866
C12 0.0777 0 0 0.0777 0.0777 0
C13 0.2278 0.0777 0.3028 0 0 0.3028
C14 0 0.1451 0.0408 0.109 0.1451 0
C15 0 0.2618 0.0433 0.2189 0.2618 0

Table 5
The linguistic weights for 15 criteria

E1 E2 E3 E4

C1 M VH M H
C2 H H M VH
C3 M M H M
C4 L M VH M
C5 VH VH VH VH
C6 VH H VH VH
C7 H VH M H
C8 M H VH M
C9 M M H M
C10 L M H VH
C11 VH H VH M
C12 H H M L
C13 H M H H
C14 M H M H
C15 H VH H VH

W5 = (0.7, 1, 1),

W6 = (0.65, 0.925, 1),

W7 = (0.5, 0.725, 0.925),

W8 = (0.45, 0.675, 0.85),

W9 = (0.35, 0.55, 0.775),

W10 = (0.375, 0.625, 0.8),

W11 = (0.55, 0.8, 0.925),

W12 = (0.325, 0.55, 0.8),

W13 = (0.45, 0.65, 0.925),

W14 = (0.4, 0.6, 0.85)

and

W15 = (0.6, 0.85, 1).
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The weighted distance values of three airports are presented as follows.

D+

1 = (0.6251, 0.9316, 1.1766),

D+

2 = (0.5472, 0.8343, 1.0680),

D+

3 = (0.5794, 0.8701, 1.0628),

D−

1 = (0.6236, 0.9379, 1.1545),

D−

2 = (0.7168, 1.0579, 1.2884),

D−

3 = (0.6814, 1.0180, 1.2913);

thus

U D+
= (0.6251, 0.9316, 1.1766),

L D+
= (0.5472, 0.8343, 1.0680),

U D−
= (0.7168, 1.0579, 1.2884),

L D−
= (0.6236, 0.9379, 1.1545),

and

d(D+

1 , U D+) = 0, d(D+

1 , L D+) = 0.0954,

d(D+

2 , U D+) = 0.0954, d(D+

2 , L D+) = 0,

d(D+

3 , U D+) = 0.0792, d(D+

3 , L D+) = 0.0280,

d(D−

1 , U D−) = 0.1169, d(D−

1 , L D−) = 0,

d(D−

2 , U D−) = 0, d(D−

2 , L D−) = 0.1169,

d(D−

3 , U D−) = 0.0308, d(D−

3 , L D−) = 0.0974.

From these previous distance values, A+

i and A−

i (i = 1, 2, 3) can be calculated:

A+

1 = d(D+

1 , L D+) + d(D−

1 , U D−) = 0.0954 + 0.1169 = 0.2123,

A+

2 = d(D+

2 , L D+) + d(D−

2 , U D−) = 0 + 0 = 0,

A+

3 = d(D+

3 , L D+) + d(D−

3 , U D−) = 0.0280 + 0.0308 = 0.0588,

A−

1 = d(D+

1 , U D+) + d(D−

1 , L D−) = 0 + 0 = 0,

A−

2 = d(D+

2 , U D+) + d(D−

2 , L D−) = 0.0954 + 0.1169 = 0.2123

and

A−

3 = d(D+

3 , U D+) + d(D−

3 , L D−) = 0.0792 + 0.0974 = 0.1766.

Finally, the evaluated results about the operation performance of the three airports are presented as follows.

A∗

1 =
0

0 + 0.2123
= 0,

A∗

2 =
0.2123

0.2123 + 0
= 1

and

A∗

3 =
0.1766

01766 + 0.0588
= 0.7502.

Clearly, the ranking order is A2, A3 and A1 by comparing their closeness coefficients. Therefore, the best performance
is in A2.
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5. Conclusion

In this paper, we present a method for FMCGDM. With our method, TOPSIS is generalized under a fuzzy
environment to solve FMCGDM problems. In the generalized TOPSIS, finding the ideal solution and negative ideal
solution is easy, because we propose Up and Lo operations on fuzzy numbers to find the ideal solution and negative
ideal solution. The Up and Lo operators, satisfying the partial ordering relation on fuzzy numbers, can rank a set of
fuzzy numbers quickly. By Up and Lo operations, TOPSIS can be easily generalized in a fuzzy environment and then
FMCGDM problems are solved effectively and efficiently.
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