
Free Radical Biology & Medicine 52 (2012) 1236–1241

Contents lists available at SciVerse ScienceDirect

Free Radical Biology & Medicine

j ourna l homepage: www.e lsev ie r .com/ locate / f reeradb iomed
Original Contribution

Calorie restriction increases cerebral mitochondrial respiratory capacity in a
NO •-mediated mechanism: Impact on neuronal survival

Fernanda M. Cerqueira a, Fernanda M. Cunha b, Francisco R.M. Laurindo c, Alicia J. Kowaltowski a,⁎
a Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
b Escola de Artes, Ciências, e Humanindades, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
c Faculdade de Medicina, Instituto do Coração, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
Abbreviations: AL, ad libitum; CR, calorie restriction;
synthase; L-NAME, N5-[imino(nitroamino)methyl]-L-orn
drochloride; nNOS, neuronal nitric oxide synthase; N
SNAP, S-nitroso-N-acetyl-L,L-penicillamine.
⁎ Corresponding author. Fax: +55 11 38155579.

E-mail address: alicia@iq.usp.br (A.J. Kowaltowski).

0891-5849 © 2012 Elsevier Inc.
doi:10.1016/j.freeradbiomed.2012.01.011

Open access under the Els
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 July 2011
Revised 11 January 2012
Accepted 15 January 2012
Available online 28 January 2012

Keywords:
Caloric restriction
nitric oxide synthase
mitochondrial biogenesis
aging
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological
decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO•-
stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content.
CR increased eNOS and nNOS and the content of mitochondrial proteins (cytochrome c oxidase, citrate
synthase, andmitofusin) in the brain. Furthermore, we established an in vitro system to study the neurolog-
ical effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced
nNOS expression and increased levels of nitrite (a NO• product). CR serum also enhanced the levels of cyto-
chrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects
were inhibited by L-NAME andmimicked by the NO• donor SNAP. Furthermore, both CR sera and SNAPwere
capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial bio-
genesis in a NO•-mediated manner, resulting in enhanced reserve respiratory capacity and improved sur-
vival in neurons.

© 2012 Elsevier Inc. Open access under the Elsevier OA license.
Aging is characterized by progressive loss of function and increased
incidence of diseases, often involving the brain. Interestingly, many
age-associated neurological diseases have been related to lower mi-
tochondrial respiratory capacity. Indeed, aging involves a limitation
of mitochondrial function and decrease in mitochondrial mass in
many tissues (reviewed in [1]).

Calorie restriction (CR), or the limitation of ingested calories with-
out malnutrition, increases the life span in a variety of laboratory an-
imals and prevents age-related disease, including neurological deficits,
brain atrophy, and cognitive losses [2]. Interestingly, recent data dem-
onstrate that CR increases mitochondrial biogenesis in many tissues,
promoting enhanced respiratory capacity [3,4]. Indeed, mitochondrial
function is central to life-span extension by CR [5,6], and increased re-
spiratory rates are associated with extended life span [7,8].

Mitochondrial biogenesis is controlled by PGC1-α, a transcriptional
coactivator [9–11]. PGC1-α in turn is regulated by nitric oxide (NO•)
[9–12]. Prior reports have demonstrated that endothelial nitric oxide
synthase (eNOS) is a source ofNO• involved inmitochondrial biogenesis
promoted by dietary restriction [4,10]. Indeed, Nisoli et al. [10] found
eNOS, endothelial nitric oxide
ithine, methyl ester, monohy-
O•, nitric oxide; NO2

−, nitrite;

evier OA license.
that much of the increase in mitochondrial biogenesis induced by diet
was absent in eNOS knockout animals, although the effect was not
completely abrogated. Because NO• is diffusible, it is reasonable to be-
lieve that other sources of thismessengermay be involved in the signal-
ing events leading to mitochondrial biogenesis in CR.

In the brain, the effects of CR on mitochondrial mass still remain to
be uncovered. Nisoli and co-authors [10] found that mitochondrial
markers increase with every-other-day feeding, a dietary interven-
tion that bears some similarity to CR but also has significant differ-
ences and yet undetermined effects on the neurological effects of
aging [13,14]. This article addresses the effects of CR on brain mito-
chondrial biogenesis in vitro and in vivo, studies the role of NO• sig-
naling in this process, and measures the impact of CR- and NO•-
induced mitochondrial biogenesis on neuronal survival.

Materials and methods

In vivo calorie restriction

All experiments were conducted in strict agreement with the
National Institutes of Health guidelines for humane treatment of ani-
mals and were reviewed and approved by the local animal care and
use committee. Female, 4-week-old Swiss mice were separated into
two groups: AL, fed ad libitum with an AIN-93-M diet prepared by
Rhoster (Campinas, Brazil), and CR, fed with 60% of the same diet sup-
plementedwithmicronutrients to reach the vitamin andmineral levels
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consumed by AL animals [13]. CR feedings were adjusted weekly by
weight based on AL food consumption measured 1 week earlier. Food
was offered to CR mice every day at 6:00 PM. The animals were lodged
five individuals per cage and given water ad libitum. After 6 months of
dietary intervention, the mice were sacrificed after 12 h fasting and the
collected forebrains were stored at −80 °C.
In vitro calorie restriction

The sera for studies using cultured cerebella granular neurons
were obtained as described by de Cabo et al. [15]. Briefly, male 8-
week-old Sprague–Dawley rats were subjected to CR or AL feedings
as described above. The animals were lodged three individuals per
cage and given free access to water. At 34 weeks, the rats were sacri-
ficed after 12 h fasting. The blood obtained was allowed to clot for
20–30 min at 25 °C and centrifuged for 20 min at 300 g. The clear su-
pernatants were then collected and stored at −20 °C. All sera were
thawed and heat inactivated at 56 °C for 30 min before use in cell cul-
ture experiments.
Primary cultures of cerebellar granule neurons

Cerebella from 7-day-old male Sprague–Dawley rats were finely
minced and pooled in PBS supplemented with 20 mM glucose and
0.0005% (v/v) trypsin. The tissues were incubated for 40 min at 37 °C.
Subsequently, soybean trypsin inhibitor (Sigma; 0.1%) was added
and the cells were dispersed manually with a 1-ml pipette (adapted
from [16]). The supernatant was centrifuged (300 g, 5 min) and cells
were suspended in DMEM–F12 (Gibco; 25 mM glucose) with 25 mM
Hepes and 2% B27 serum (Gibco). The cells were plated over polyly-
sine in 24-well plates for the viability assays (5×104 cells/well);
1×107 cells were plated in 75-cm2

flasks for Western blots and re-
spiratory determinations. The cultures were maintained at 37 °C in
a humidified atmosphere containing 5% CO2. After 24 h, 1 μM 1-β-
D-arabinofuranosylcytosine (Ara-C; Merck) was added to the culture
medium to inhibit glia growth. Ara-C was removed after 48 h. On the
seventh culture day, B27 serum was substituted for 10% AL or CR rat
serum. In some experiments, 10 nM SNAP or 50 μM L-NAME was
added at this same time point. As a control, an equal quantity of the
solvent dimethyl sulfoxide (DMSO; 0.001%) was used when neces-
sary. Medium was changed every 3 days and SNAP or L-NAME was
replaced.
Viability assays

Viable cells were counted from the 7th day on (when rat sera were
introduced) for 12 days by photographing with a Snap HQ Roper
Scientific camera coupled to a Photometrics Cool microscope using
the 20× objective and a bright field. Five regions from each well
were chosen randomly and photographed and then analyzed using
ImageJ software. There were no detectable differences between the
regions in the same well. Data were collected at least in triplicate,
and all experiments were repeated at least three times with different
preparations.
NO2
− measurements

NO2
−, a marker of NO• level [16], was measured using a NO• ana-

lyzer (Model 208A; Sievers Instruments, Boulder, CO, USA) according
to the manufacturer's protocols through the detection of chemilumi-
nescence in the presence of potassium iodide and acetic acid [17].
NO2

− levels from the AL and CR serum-containing culture media in
the absence of cells were subtracted from all measurements.
Respiratory rate measurements

Oxygen consumption was measured in cells (106 ml−1) suspended
in PBS with 10 mM glucose using a computer-interfaced Oroboros
oxygen electrode, at 37 °C, with continuous stirring. The basal oxygen
consumptionwas followed for 3 min, followed by 3 min in the presence
of 0.5 μg ml−1 oligomycin and 3 min in the presence of 2 μM Carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP).

Citrate synthase activity

Brain and cell samples were homogenized in lysis buffer (50 mM
sodium phosphate, pH 7.4, 10% glycerol, 1% octylphenol ethoxylate,
10 mM sodium orthovanadate, 10 mM sodium fluoride, 10 mM sodium
pyrophosphate, supplemented with Sigma protease inhibitor mixture).
After 30 min over ice, the lysates were centrifuged (13,000 g, 20 min,
4 °C), and the resulting supernatants were collected. Total protein
(20 μg) was incubated at 37 °C for 5 min in 20 mM Tris–HCl, pH 8.0,
0.42 mM acetyl-coenzyme A, and 0.1 mM5,5′-dithiobis(2-nitrobenzoic
acid). The reactionwas initiated by the addition of 0.5 mMoxaloacetate,
and the reduction of 5′,5′-dithiobis(2-nitrobenzoic acid) by citrate
synthase was measured spectrophotometrically for 5 min at 412 nm
(extinction coefficient=13.6 mM−1 cm−1). Activities are expressed
as nmol of citrate min−1 mg−1 protein.

Western blots

Total proteins from brain or neuron lysates were diluted in
Laemmli sample buffer (100 mM Tris–HCl, 2% w/v SDS, 10% v/v glyc-
erol, 0.1% bromophenol blue) containing 100 mM dithiothreitol,
with the exception of eNOS and phospho-eNOS Western blots,
which were performed without the reducing agent. After heating at
90 °C for 5 min, proteins were separated by SDS–PAGE and trans-
ferred onto nitrocellulose membranes. After membranes were
blocked with 5% bovine serum albumin, the detection of individual
proteins was carried out by blotting with specific primary antibodies
against eNOS (Sigma; 1:3000), phospho-eNOSSer1177 (Cell Signaling;
C9C3 clone, 1:1000), nNOS (Abcam; 1:2,000), cytochrome c oxidase
(Sigma; 1:2000), mitofusin-1 (Santa Cruz; H65 clone, 1:2000), and
γ-actin (Sigma; 1:2000). Chemiluminescence detection using a
secondary peroxidase-linked anti-rabbit (Calbiochem; 1:10,000)
or anti-sheep IgG (Calbiochem; 1:13,000) and a detection system
from Pierce KLP (Rockford, IL, USA) was performed. Signals were
quantified by densitometry using Image J (NIH software), and the
detected proteins were normalized either to γ-actin or to the non-
phosphorylated titer of the same protein.

Data analysis

Data shown represent means±SEM or representative blots of at
least three equal repetitions. Statistical comparisons were conducted
using ANOVA or log-rank Mantel–Cox tests (for survival curves) and
GraphPad Prism software.

Results

Brain mitochondrial biogenesis and NO•-generating enzymes are strongly
increased by CR

Mice subjected to a CR diet for 6 months are well documented to
present more favorable markers of overall health than animals fed
AL (reviewed in [18]). In addition, we found that the detection of cy-
tochrome c oxidase, an inner mitochondrial membrane component of
the electron transport chain, was strikingly increased (approximately
seven times) in the brains of CR animals (Fig. 1A). The activity of cit-
rate synthase, a mitochondrial matrix enzyme that is part of the
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Fig. 1. CR increases brain mitochondrial biogenesis. (A) Cytochrome c oxidase expression, (B) citrate synthase activity, and (C) mitofusin-1 expression in AL and CR mouse brains.
Averages±SEM are depicted under representative blots. *pb0.01 vs AL.
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tricarboxylic acid cycle and is commonly used as a marker for mito-
chondrial mass [19], was increased by about 20% in CR brain lysates
(Fig. 1B). Finally, mitofusin-1, an outer mitochondrial membrane pro-
tein involved in mitochondrial fusion [20], controlling morphology
and dynamics, was enhanced more than 10 times in CR brains com-
pared to AL (Fig. 1C). Overall, these experiments indicate that there
is a large increase in mitochondrial mass in the brains of CR animals.

Mitochondrial biogenesis is a process stimulated by NO• generated
by nitric oxide synthases (NOSs). We thus measured the levels of
nNOS and eNOS. Fig. 2 shows that both nNOS and eNOS levels are
strongly increased in the brains of CR animals and that eNOS also
presented a higher rate of phosphorylation. Overall, the higher ex-
pression of NOSs in the brains of CR animals is compatible with en-
hanced mitochondrial biogenesis observed in Fig. 1, although a cause/
effect relationship cannot be directly established in this model.

CR serum stimulates NO• signaling in primary cultured neurons

To establish an in vitro system in which the effects of CR could be
studied on neurological tissue, we collected sera from CR and AL ani-
mals and cultured primary cerebellar granule neurons in the presence
of these sera. We found that incubation with CR serum was sufficient
to induce many changes in cultured neurons observed in the brains of
CR mice. After 24 h incubation with CR serum, nNOS expression was
P-eNOSSer1177
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Fig. 2. CR enhances brain eNOS and nNOS. (A) Phospho-eNOSSer1177/eNOS and (B) nNOS
from AL and CR mouse brains. Averages±SEM of the phosphorylated over total protein
ratios are depicted under representative blots. *pb0.001 vs AL.
very significantly incremented (Fig. 3A). The functional activation of
nNOS was confirmed by measuring NO2

− accumulated in the culture
medium (Fig. 3B), which was significantly increased in CR versus AL
serum. We could not detect eNOS in cultured neuronal lysates.

CR serum stimulates mitochondrial biogenesis in primary cultured
neurons

To verify if increased NO• signaling induced by CR serum was ac-
companied by enhanced mitochondrial biogenesis, we measured the
levels of cytochrome c oxidase and citrate synthase activity. Both
were largely enhanced in CR cultures compared to cells incubated in
AL serum (Figs. 4A and B).

To evaluate the functional result of increases in mitochondrial en-
zymes, we measured cellular respiration (Fig. 4C). Baseline respirato-
ry rates in neurons incubated in CR serum were significantly higher
than in cells incubated in AL serum. This increase was not due to
uncoupling between electron transport and oxidative phosphoryla-
tion, because respiration in the presence of the ATP synthase inhibitor
oligomycin, dependent only on the proton leak, was similar in both
groups. On the other hand, maximal respiratory rates obtained in
the presence of the respiratory uncoupler FCCP were increased by
CR serum, indicating that CR increases the amount of functional
AL serum CR serum
0.0

0.2

0.4

0.6

*B

 N
O

2- 
(µ

m
ol

es
) 

/ 1
06  c

el
ls

AL serum CR serum
0

2

4

6 A *

nN
O

S
 / 

ac
tin

nNOS 

γ-actin

Fig. 3. CR serum increases nNOS in cerebellar neurons, enhancing nitrite release.
Neurons were cultured with 10% AL or CR sera for 24 h. (A) Cell lysates were used
to measure nNOS expression. Averages±SEM of the phosphorylated over total pro-
tein ratios are depicted under a representative blot. (B) Culture medium NO2
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Fig. 4. CR serum increases mitochondrial biogenesis and reserve respiratory capacity in cerebellar neurons. Cells were incubated as described for Fig. 3. Cell lysates were used to
measure (A) cytochrome c oxidase expression and (B) citrate synthase activity. (C) Respiration was measured in suspended neurons. Oligomycin (0.5 μg ml−1) and FCCP (2 μM)
were sequentially added. *pb0.05 vs AL. #pb0.05 vs basal respiration.
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respiratory chain, leading to enhanced reserve respiratory capacity
[21–23]. Respiratory rates in the presence of FCCP normalized to
rates in the presence of oligomycin (a cellular measurement similar
to respiratory control ratio, which quantifies mitochondrial coupling)
were 4.00±0.41 (CR) versus 2.20±0.06 (AL). This indicates that CR
serum increases both mitochondrial activity and coupling in neurons.

To verify if the increase in mitochondrial biogenesis was related to
enhanced NO• signaling, we measured cytochrome c oxidase expres-
sion in the presence of the NOS inhibitor L-NAME (Fig. 5). We found
that, although L-NAME had little effect on cytochrome c oxidase con-
tents in cells cultured in AL sera, it completely reversed the enhanced
detection of this mitochondrial respiratory complex promoted by CR
serum.
NO• promotes mitochondrial biogenesis and increased respiratory
capacity

To further test the hypothesis that enhanced mitochondrial bio-
genesis and stimulated NO• production observed in CR serum were
mechanistically linked, we verified if increasing NO• levels in neuro-
nal cultures using a NO• donor, SNAP, was sufficient to enhance mito-
chondrial biogenesis (Fig. 6).
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Fig. 5. Mitochondrial biogenesis promoted by CR serum is dependent on NOS. Cells
were incubated as described for Fig. 3 in the presence or absence of L-NAME, as de-
scribed under Materials and methods. Cell lysates were used to measure cytochrome
c oxidase expression. *pb0.05 vs AL.
Various titrations were tested (results not shown), and a low dose
of SNAP (10 nM) was chosen, leading to an estimated NO• release rate
of 30 pmol min−1 [24]. At these concentrations, SNAP promoted, in
24 h, a significant increment in cytochrome c oxidase expression
and citrate synthase activity (Figs. 6A and B), similar to that promoted
by CR serum. In addition, SNAP induced an increase in basal and
FCCP-stimulated cellular respiratory rates, as well as oligomycin-
inhibited respiration (Fig. 6C). FCCP/oligomycin ratios were 2.20±
0.06 (DMSO) versus 1.90±0.19 (SNAP), indicating that mitochondrial
coupling was unaffected by SNAP.

CR serum and NO• enhance neuronal survival

Neurodegeneration is an important consequence of aging, and CR
is well established as preventing this process in vivo [2,25]. We tested
if the protective effects of CR on neurons could be reproduced in our
in vitro model by following neuronal survival over time in CR and AL
sera (Fig. 7). We found that CR serum alone was capable of signifi-
cantly extending the in vitro survival of cultured neurons (p=0.02
versus AL).

Next, we questioned if the enhanced survival of these neurons was
related to enhanced NO• signaling promoted by CR serum. Previous
studies have indicated that CR increases NO• [4], but a direct correla-
tion with survival has not been established in vivo or in vitro. We
found that treating neuronal cultures with the same low concentra-
tions of SNAP that increased mitochondrial biogenesis promotes
enhanced survival in vitro (Fig. 7, pb0.0001 for both AL+SNAP
and CR+SNAP versus AL) and similar survival times in CR and AL
serum-incubated cells (p=0.519).

Discussion

Aging promotes significant impairments in neurological function
associated with neuronal loss. Interestingly, cognitive loss associated
with aging is prevented by CR, as demonstrated in many animal
models (reviewed in [2,25]).

Some authors have proposed that a critical predictor of neuronal
survival in aging is reserve respiratory capacity, or the ability to en-
hance mitochondrial oxidative phosphorylation in response to a
heightened energy demand [21,22]. Indeed, larger reserve respirato-
ry capacity enhances survival under damaging conditions in many
cellular models (reviewed in [21,23]). Interestingly, CR enhances mi-
tochondrial biogenesis [3,4], leading to higher reserve respiratory
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Fig. 6. NO• increases mitochondrial biogenesis and reserve respiratory capacity in cerebellar neurons to levels similar to those of CR. Cells were incubated as described for Fig. 3 in AL
serum with 0.001% DMSO or 10 nM SNAP dissolved in the same quantity of DMSO. Cell lysates were used to measure (A) cytochrome c oxidase expression and (B) citrate synthase
activity. (C) Respiration was measured in suspended neurons. Oligomycin (0.5 μg ml−1) and FCCP (2 μM) were sequentially added. *pb0.05 vs DMSO. #pb0.05 vs basal respiration.
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capacity in insulin-sensitive tissues. Furthermore, mitochondrial
biogenesis has been shown to be enhanced in the brains of animals
on a restrictive diet in which food was offered every other day [10].

Mitochondrial biogenesis is induced by the activation of a NO•-
sensitive pathway [9] downstream of the activation of eNOS. Indeed,
eNOS phosphorylation is increased in CR [4] and the effects of dietary
restriction on mitochondrial biogenesis are largely abrogated in eNOS
knockout animals [10].

Based on the importance of reserve respiratory capacity in aging
brains [26] and the ability of CR to enhance NO•-mediated mitochon-
drial biogenesis in many tissues [4], we investigated if CR promoted
NO•-mediated mitochondrial biogenesis in the brain, and if this en-
hanced survival. This investigation is important because NO• can be
deleterious in the brain even at low, physiological, levels [27].

We found that mice on a CR diet had strikingly higher levels of
mitochondrial markers in their brains (Fig. 1), in addition to highly
increased phosphorylation of eNOS (Fig. 2). Interestingly, we also
found that nNOS was more highly expressed in CR animals (Fig. 2).
nNOS is the main source of cerebral NO• [28] and has not, to our
knowledge, been previously shown to be activated by CR. Because
NO• is diffusible, it is expected that it can lead to the activation of mi-
tochondrial biogenesis regardless of its source. However, in whole
forebrains of animals kept on a CR diet, it is not possible to establish
if nNOS is also a source of mitochondrial biogenesis-inducing NO•,
nor to determine a relationship between CR, NO•, mitochondrial bio-
genesis, and neuronal survival.

To do so, we established an in vitro model testing the effects of
sera isolated from animals on AL and CR diets on primary cultured
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neurons. This model is based on previous studies pioneered by de
Cabo's group studying the effects of serum from CR animals on cul-
tured cells [15,29]. This in vitro model is interesting, because it dem-
onstrates that hormonal changes in sera can induce effects of CR
independent of glucose levels, which are high in cell culture media.
We found that CR serum has profound effects on cultured neurons.
Survival of the cells in culture, a measure that correlates with neuro-
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involving neurodegeneration (reviewed in [36]). In many of these
circumstances, NO• was associated with mitochondrial fission [37].
However, NO• concentrations 4–5 orders of magnitude higher than
those used in this study were necessary to promote mitochondrial
fragmentation in cortical neurons [38] or damage cerebellar granule
neurons [39]. Thus, it seems reasonable to suggest that low doses of
NO• are neuroprotective, whereas high concentrations, leading to
oxidative and nitrosative stress, are damaging. In neurons, NO• is
also implicated as a signalingmolecule in neuromodulation, synaptic
plasticity, and other fundamental neurological processes (reviewed
in [40]).

SNAP and other NO• donors have been previously shown to induce
mitochondrial biogenesis in other tissues [41]. Indeed, we found that
low SNAP concentrations capable of increasing neuronal survival also
promoted enhanced mitochondrial biogenesis in a manner similar to
incubation with CR serum (Fig. 7). Respiration was faster under basal
conditions and also in the presence of the uncoupler FCCP, indicating
higher maximal respiratory rates. Recently, the importance of this
reserve respiratory capacity has been recognized as a predictor of
survival under conditions of cellular stress [21,22], allowing enhanced
oxidative phosphorylation under conditions that require superior
energy demand. In this sense, our demonstration that CR increases
neuronal NO• signaling and mitochondrial biogenesis, resulting in
longer survival, provides insight into mechanisms involved in the
prevention of neurodegeneration by CR.
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