Orthogonal sequences in non-archimedean locally convex spaces

by N. De Grande-De Kimpe ${ }^{1}$, J. Kakol ${ }^{2}$, C. Perez-Garcia ${ }^{3}$ and W. Schikhof ${ }^{4}$
${ }^{1}$ Departement Wiskunde, Vrije Universiteit Brussel, Brussels, Belgium
${ }^{2}$ Faculty of Mathematics and Informatics, A. Mickiewicz University, Poznan, Poland e-mail: kakol@amu.edu.pl
${ }^{3}$ Departamento de Matemáticas, Universidad de Cantabria, Santander, Spain
t-mail: perezmc a matesco. unican.es
${ }^{4}$ Katholieke Universiteit Nijmegen, Vakgroep Wiskunde, Toernooiveld, 6525 ED Nijmegen, The Netherlands
e-mail: schikhof(ascikun.nl

Communicated by Prof. T.A. Springer at the meeting of January 31, 2000

Abstract

The problem of the existence of (orthogonal) bases and basic sequences in non-archimedean locally convex spaces is studied. To this end we derive a characterization of compactoidity in terms of orthogonal sequences (Theorem 2.2).

INTRODUCTION

Throughout K denotes a non-archimedean non-trivially valued field which is complete under the metric induced by the valuation $\|: K \rightarrow[0, \infty)$. For fundamentals of locally convex spaces over K we refer to [9], [6].

In this paper all locally convex spaces are over K and assumed to be Hausdorff. A sequence x_{1}, x_{2}, \ldots in a locally convex space E is called a (topological) base of E if each $x \in E$ can be written uniquely as $x=\sum_{n-1}^{\infty} \lambda_{n} x_{n}$ with $\lambda_{n} \in K$. If the coefficient functionals $x \mapsto \lambda_{n}(n \in \mathbb{N})$ are continuous then x_{1}, x_{2}, \ldots is called a Schauder base. As in the real or complex case one proves that every base in a Fréchet space is Schauder. Clearly every locally convex space with a (Schauder) base is (strictly) of countable type i.e. there is a countable set whose K-linear hull is dense. Conversely, any infinite-dimensional Banach space of countable type is known to be linearly homeomorphic to c_{0}, hence it has a Schauder base ([5], 3.16(ii)).

It is still unknown whether a Frechet space of countable type has a Schauder base. For a partial result, see Theorem 3.5.

A sequence in a locally convex space is called a basic sequence if it is a Schauder base of its closed linear span. This leads to the question as to whether a Fréchet space has - at least - a basic sequence; a partial answer will be given in Corollary 3.1.

In $\S 1$ we compare the notion of orthogonality of a sequence introduced by N. De Grande-De Kimpe in [2] with the concept of basic sequence. In $\S 2$ we characterize compactoidity in terms of orthogonal sequences and in $\S 3$ we apply this to obtain results on existence of basic sequences in certain locally convex spaces and the non-archimedean counterpart of the Bessaga-Pelczynski selection principle (Corollaries 3.2 and 3.3).

NOTATIONS AND TERMINOLOGY

For a set X in a K-vector space we denote by $\llbracket X \rrbracket$ its linear span, and by co X its absolutely convex hull i.e. the smallest module over the ring $\{\lambda \in K:|\lambda| \leq 1\}$ that contains X.
c_{0} is the K-Banach space of all sequences in K converging to 0 , where for $x=\left(\xi_{1}, \xi_{2}, \ldots\right) \in c_{0}$ we set $\|x\|:=\max \left|\xi_{n}\right| \cdot c_{00}$ is the subspace of c_{0} consisting of all sequences $\left(\xi_{1}, \xi_{2} \ldots\right)$ such that $\xi_{n}=0$ for large n. Let E be a Hausdorff locally convex space over K. By E^{*} we denote its algebraic dual, by E^{\prime} its topological dual. E is called dual-separating if for each $x \in E, x \neq 0$ there exists an $f \in E^{\prime}$ such that $f(x) \neq 0$. Then the weak topology $\sigma\left(E, E^{\prime}\right)$ is Hausdorff. The closure of a set $X \subset E$ is written \bar{X}. Instead of $\overline{\operatorname{co} X}$ we write $\overline{c o} X$.

The completion of E is denoted by E^{\wedge}. If τ is the topology of E we denote the topology on E^{\wedge} again by τ.

1. ORTHOGONAL AND BASIC SEQUENCES

Let p be a (non-archimedean) seminorm on a K-vector space E, let $t \in(0,1]$. Recall that a sequence x_{1}, x_{2}, \ldots in E is called t-orthogonal with respect to p if for each $n \in \mathbb{N}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in K$ we have

$$
\begin{equation*}
p\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \geq t \max _{1 \leq i \leq n} p\left(\lambda_{i} x_{i}\right) \tag{*}
\end{equation*}
$$

If $t=1$ then x_{1}, x_{2}, \ldots is called orthogonal with respect to p and (*) can be written as

$$
p\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)=\max _{1 \leq i \leq n} p\left(\lambda_{i} x_{i}\right)
$$

Definition 1.1. A sequence x_{1}, x_{2}, \ldots in a locally convex space E is called 'orthogonal' in E if the collection \mathcal{P} of all continuous seminorms p for which x_{1}, x_{2}, \ldots is orthogonal with respect to p forms a base of continuous semi- . norms.

Remark 1.2.

(i) A sequence is 'orthogonal' in E if and only if it is 'orthogonal' in its (algebraic) linear span. This can be shown by straightforward arguments. (Let x_{1}, x_{2}, \ldots be 'orthogonal' in $D:=\llbracket x_{1}, x_{2}, \ldots \rrbracket$, let \mathcal{P} be a base of continuous seminorms on D for which x_{1}, x_{2}, \ldots are orthogonal. Let $\mathcal{P}^{*}:=\{t: t$ continuous seminorm on $E, t \mid D \in \mathcal{P}\}$. To prove that \mathcal{P}^{*} is a base of continuous seminorms on E, let q be a continuous seminorm on E. There is a $p \in \mathcal{P}$ such that $q \leq p$ on D. Then p extends to a continuous seminorm \tilde{p} on E, and $\max (\widetilde{p}, q) \in \mathcal{P}^{*}, q \leq \max (\widetilde{p}, q)$.) It enables us to speak about 'orthogonal' sequences without specifying a subspace.
(ii) A sequence x_{1}, x_{2}, \ldots in E is 'orthogonal' if and only if there exists a collection \mathcal{P} of continuous seminorms generating the topology such that x_{1}, x_{2}, \ldots is orthogonal with respect to each $p \in \mathcal{P}$.
(iii) Let $x_{1}, x_{2}, \ldots \in E$ be an 'orthogonal' sequence, let $x_{n} \neq 0$ for each n, let \mathcal{P} be as in Definition 1.1. If $x \in E$ can be expressed as $\sum_{n=1}^{\infty} \lambda_{n} x_{n}$ with $\lambda_{n} \in K$ then $p(x)=\max _{n} p\left(\lambda_{n} x_{n}\right)$ for each $p \in \mathcal{P}$. It follows that the λ_{n} are unique; in particular the x_{1}, x_{2}, \ldots are linearly independent. Also, if x_{1}, x_{2}, \ldots is a topological base it is automatically a Schauder base.

Lemma 1.3. Let x_{1}, x_{2}, \ldots be a linearly independent sequence in a locally convex space E, let $D:=\llbracket x_{1}, x_{2}, \ldots \rrbracket$. For each $n \in \mathbb{N}$, let $f_{n} \in D^{*}$ be given by $f_{n}\left(x_{m}\right)=$ $\delta_{n m}(m \in \mathbb{N})$. Then $x=\sum_{n} f_{n}(x) x_{n}$ for each $x \in D$, and x_{1}, x_{2}, \ldots is 'orthogonal' if and only if the maps $x \mapsto f_{n}(x) x_{n}(x \in D)$ are equicontinuous.

Proof. Let x_{1}, x_{2}, \ldots be 'orthogonal', let \mathcal{P} be as in Definition 1.1. For each $n \in \mathbb{N}$, put $\delta_{n}(x)=f_{n}(x) x_{n}(x \in D)$. For each $p \in \mathcal{P}$ we have $p=\max _{n} p \circ \delta_{n}$ and the equicontinuity of $\left\{\delta_{n}: n \in \mathbb{N}\right\}$ follows. Conversely, assume $\left\{\delta_{n}: n \in \mathbb{N}\right\}$ is equicontinuous. For each $p \in \mathcal{P}$ put

$$
p^{*}(x)=\max _{n} p\left(f_{n}(x) x_{n}\right) \quad(x \in D)
$$

Then $p \leq p^{*}$ on D and x_{1}, x_{2}, \ldots is orthogonal with respect to p^{*}. By equicontinuity p^{*} is continuous and the set $\left\{p^{*}: p \in \mathcal{P}\right\}$ is a base of continuous seminorms on D.

Proposition 1.4. Each 'orthogonal' sequence of non-zero vectors is a basic sequence.

Proof. Let x_{1}, x_{2}, \ldots be 'orthogonal' in a locally convex space E. To prove the statement we may assume that E is complete. Let D, f_{n}, δ_{n} be as in Lemma 1.3. Each f_{n} extends uniquely to an $\bar{f}_{n} \in(\bar{D})^{\prime}$; put $\bar{\delta}_{n}(x)=\bar{f}_{n}(x) x_{n}(n \in \mathbb{N}, x \in \bar{D})$. By Remark 1.2 (iii) it suffices to prove that $x=\sum_{n=1}^{\infty} \bar{\delta}_{n}(x)$ for each $x \in \bar{D}$. By Lemma 1.3 the set $\left\{\delta_{n}: n \in \mathbb{N}\right\}$ is equicontinuous, hence so is $\left\{\bar{\delta}_{n}: n \in \mathbb{N}\right\}$. Since $\lim _{n \rightarrow \infty} \delta_{n}(x)=0$ for all $x \in D$ we have $\lim _{n \rightarrow \infty} \bar{\delta}_{n}(x)=0$ for all $x \in \bar{D}$. By completeness and equicontinuity the formula $T x=\sum_{n=1}^{\infty} \bar{\delta}_{n}(x)$ defines a continuous linear map $T: \bar{D} \rightarrow \bar{D}$. But T is the identity on D, hence on \bar{D}.

Corollary 1.5. Let x_{1}, x_{2}, \ldots be an 'orthogonal' sequence in a locally convex space E, let $x_{n} \neq 0$ for each n, let $E=\llbracket x_{1}, x_{2}, \ldots \rrbracket$. Then x_{1}, x_{2}, \ldots is a Schauder base of E.

Remark 1.6. The converse of Proposition 1.4 does not hold in general. In fact, let $\alpha \in K, 0<|\alpha|<1$ and let $E:=c_{00}$. Set $x_{n}:=\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, 0,0, \ldots\right)$ $(n \in \mathbb{N})$.

It is easily seen that x_{1}, x_{2}, \ldots is a Schauder base of c_{00} but t-orthogonal (with respect to the norm) for no $t \in(0,1]$ and therefore not 'orthogonal' (see 2.3). However:

Proposition 1.7. In a Fréchet space every basic sequence is orthogonal'; every Schauder base is an 'orthogonal' base.

Proof. We need only to prove the first statement. Let x_{1}, x_{2}, \ldots be a basic sequence, let $D:-\overline{\left[x_{1}, x_{2}, \ldots\right]}$, let $f_{n} \in D^{\prime}$ be such that $f_{n}\left(x_{m}\right)=\delta_{m n}(m, n \in \mathbb{N})$. Then $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ for each $x \in D$, so the maps $x \mapsto f_{n}(x) x_{n}(x \in D)$ are pointwise bounded. But D is Fréchet, hence barrelled and so the above maps are equicontinuous. By Lemma 1.3 the sequence x_{1}, x_{2}, \ldots is 'orthogonal'.

Remark 1.8. The second conclusion of the proposition holds for ℓ^{∞}-barrelled spaces, see [4].

2. A CHARACTERIZATION OF COMPACTOIDS

Recall that a subset X of a locally convex space E is called a compactoid if for each zero neighbourhood U in E there exists a finite set $F \subset E$ such that $X \subset U+\operatorname{co} F$.

From [7] we quote the following result.
Theorem 2.1. Let X be a bounded set in a normed space $E=(E,\| \|)$ over K. Then X is a compactoid if and only if for each $t \in(0,1]$, each t-orthogonal sequence in X (with respect to $\|\|$) tends to 0 .

Actually, in [7] it was supposed that E is a Banach space, but trivially the result holds for general normed spaces.

In this note we prove the following generalization.
Theorem 2.2. Let X be a bounded set in a locally convex space E over K. Then X is a compactoid if and only if each 'orthogonal' sequence in X tends to 0 .

First, we prove that this is, indeed, a generalization of Theorem 2.1.
Proposition 2.3. Let x_{1}, x_{2}, \ldots be a sequence in a normed space $(E,\| \|)$ over K. Then x_{1}, x_{2}, \ldots is 'orthogonal' in the sense of Definition 1.1 if and only if, for some $t \in(0,1]$, it is t-orthogonal with respect to \| \|.

Proof. Let x_{1}, x_{2}, \ldots be 'orthogonal'. Let \mathcal{P} be as in Definition 1.1. Then there is a $p \in \mathcal{P}$ for which $\|\| \leq p$. By continuity of p we have $p \leq c\| \|$ for some constant $c \geq 1$. Then, for each $n \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{n} \in K$ we have

$$
\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \geq c^{-1} p\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)=c^{-1} \max _{1 \leq i \leq n} p\left(\lambda_{i} x_{i}\right) \geq c^{-1} \max _{1 \leq i \leq n}\left\|\lambda_{i} x_{i}\right\|,
$$

showing that x_{1}, x_{2}, \ldots is c^{-1}-orthogonal with respect to $\|\|$.
Conversely, suppose that x_{1}, x_{2}, \ldots is t-orthogonal with respect to $\|\|$ for some $t \in(0,1]$. To show 'orthogonality' we may suppose $x_{n} \neq 0$ for each n. Then the x_{1}, x_{2}, \ldots are linearly independent. For all $n \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{n} \in K$ we have

$$
\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \leq \max _{1 \leq i \leq n}\left\|\lambda_{i} x_{i}\right\| \leq t^{-1}\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| .
$$

So, for each $x \in D:=\llbracket x_{1}, x_{2}, \ldots \rrbracket, x=\sum_{i=1}^{n} \lambda_{i} x_{i}$, we have

$$
\|x\| \leq \widetilde{p}(x) \leq t^{-1}\|x\|,
$$

where $\tilde{p}(x):=\max _{1 \leq i \leq n}\left\|\lambda_{i} x_{i}\right\|$. We see that \tilde{p} is a norm on D defining the topology and that x_{1}, x_{2}, \ldots is orthogonal with respect to \widetilde{p}. Now use Remark 1.2 (i).

For the proof of Theorem 2.2 we need the following easy observations. Let p be a seminorm on a K-vector space E. Let $\pi_{p}: E \rightarrow E_{p}:=E / \operatorname{Ker} p$ be the quotient map. The formula $\bar{p}\left(\pi_{p}(x)\right)=p(x)$ defincs a norm \bar{p} on E_{p}. Propositions 2.4 and 2.5 are well-known.

Proposition 2.4. Let $t \in(0,1]$, let x_{1}, x_{2}, \ldots be a sequence in E. Then x_{1}, x_{2}, \ldots is t-orthogonal with respect to p if and only if $\pi_{p}\left(x_{1}\right), \pi_{p}\left(x_{2}\right), \ldots$ is t-orthogonal with respect to \bar{p}.

Proposition 2.5. Let E be a locally convex space over K, let \mathcal{P} be a base of continuous seminorms, let $X \subset E$. Then X is a compactoid if and only if $\pi_{p}(X)$ is a compactoid in E_{p} for each $p \in \mathcal{P}$.

Proposition 2.6. Let x_{1}, x_{2}, \ldots be a sequence in a locally convex space E over K and suppose there is a base \mathcal{P} of continuous seminorms and a map $p \mapsto t_{p}$ of \mathcal{P} into $(0,1]$ such that, for each $p \in \mathcal{P}, x_{1}, x_{2}, \ldots$ is t_{p}-orthogonal with respect to p. Then x_{1}, x_{2}, \ldots is an 'orthogonal' sequence in E.

Proof. Let $D:=\left[x_{1}, x_{2}, \ldots \rrbracket\right.$. For each $p \in \mathcal{P}, n \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{n} \in K$ we have

$$
p\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \geq t_{p} \max _{1 \leq i \leq n} p\left(\lambda_{i} x_{i}\right) .
$$

If $\sum_{i=1}^{n} \lambda_{i} x_{i}=0$ then $p\left(\lambda_{i} x_{i}\right)=0$ for all i, so the formula

$$
\tilde{p}\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)=\max _{1 \leq i \leq n} p\left(\lambda_{i} x_{i}\right)
$$

defines a seminorm \tilde{p} on D for which $p \leq \widetilde{p} \leq t_{p}^{-1} p$. Then x_{1}, x_{2}, \ldots is orthogonal with respect to \tilde{p}, and since $\{\tilde{p}: p \in \mathcal{P}\}$ induces the topology of D the 'orthogonality' of x_{1}, x_{2}, \ldots follows after applying Remark 1.2 (i).

Proof of Theorem 2.2. Suppose X is a compactoid, and let x_{1}, x_{2}, \ldots be an 'orthogonal' sequence in X. Let p be a continuous seminorm on E for which x_{1}, x_{2}, \ldots is orthogonal with respect to p. It suffices to prove that $p\left(x_{n}\right) \rightarrow 0$. By Proposition 2.5 the set $\pi_{p}(X)$ is a compactoid in E_{p} and by Proposition 2.4, $\pi_{p}\left(x_{1}\right), \pi_{p}\left(x_{2}\right), \ldots$ is orthogonal with respect to \bar{p}. By Theorem 2.1 we have $\bar{p}\left(\pi_{p}\left(x_{n}\right)\right) \rightarrow 0$ i.e. $p\left(x_{n}\right) \rightarrow 0$.

Conversely, let X be bounded and let each 'orthogonal' sequence in X tend to 0 . Suppose X is not a compactoid; we derive a contradiction.

By Proposition 2.5 there is a continuous seminorm p on E such that $\pi_{p}(X)$ is not a compactoid in E_{p}. By Theorem 2.1 there exists a sequence x_{1}, x_{2}, \ldots in X such that, for some $t_{p} \in(0,1], \pi_{p}\left(x_{1}\right), \pi_{p}\left(x_{2}\right), \ldots$ is t_{p}-orthogonal in E_{p} but $\bar{p}\left(\pi_{p}\left(x_{n}\right)\right) \nrightarrow 0$, i.e. x_{1}, x_{2}, \ldots is t_{p}-orthogonal with respect to p (Proposition 2.4) and $p\left(x_{n}\right) \nrightarrow 0$. Without loss, assume $p\left(x_{n}\right) \geq \alpha>0$ for all n.

Now let \mathcal{P} be the collection of all continuous seminorms on E that are $\geq p$. Then \mathcal{P} is a base of continuous seminorms. Let $q \in \mathcal{P}$. By boundedness of X we have $M:=\sup _{n} q\left(x_{n}\right)<\infty$.

For $n \in \mathbb{N}, \lambda_{1}, \ldots, \lambda_{n} \in K$ we have

$$
\begin{aligned}
& q\left(\sum_{i-1}^{n} \lambda_{i} x_{i}\right) \geq p\left(\sum_{i-1}^{n} \lambda_{i} x_{i}\right) \geq t_{p} \max _{i}\left|\lambda_{i}\right| p\left(x_{i}\right) \geq t_{p} \alpha \max _{i}\left|\lambda_{i}\right| \\
& \geq t_{p} \alpha M^{-1} \max _{i}\left|\lambda_{i}\right| q\left(x_{i}\right) \geq t_{p} \alpha M^{-1} q\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)
\end{aligned}
$$

We see that x_{1}, x_{2}, \ldots is $t_{p} \alpha M^{-1}$-orthogonal with respect to q.
By Proposition 2.6 the sequence x_{1}, x_{2}, \ldots is 'orthogonal' so by assumption, $x_{n} \rightarrow 0$ conflicting $p\left(x_{n}\right) \geq \alpha$.

Combining Theorem 2.2 and Propositions 1.4 and 1.7 we obtain the following.

Corollary 2.7. A bounded subset X of a Fréchet space is a compactoid if and only if each basic sequence in X tends to 0 .

Remark 2.8. The above corollary cannot be extended to non-complete spaces. In fact, let x_{1}, x_{2}, \ldots be as in Remark 1.6. Clearly x_{1}, x_{2}, \ldots is Cauchy in c_{00} so $X:=\left\{x_{1}, x_{2}, \ldots\right\}$ is a compactoid. But the basic sequence x_{1}, x_{2}, \ldots does not converge to 0 .

3. APPLICATIONS

A direct consequence of Theorem 2.2 is the following.

Corollary 3.1. Let E be a locally convex space in which not every bounded set is a compactoid. Then E has an 'orthogonal' basic sequence.

The next two results are non-archimedean translations of the Bessaga-Pelczynski Selection Principle (see [1], p. 42).

Corollary 3.2. Let (E, τ) be a polar locally convex space. Let x_{1}, x_{2}, \ldots be a sequence in E such that $x_{n} \rightarrow 0$ weakly but $x_{n} \xrightarrow{\tau} 0$. Then x_{1}, x_{2}, \ldots contains an 'orthogonal' basic subsequence.

Proof. By weak convergence the set $\left\{x_{1}, x_{2}, \ldots\right\}$ is τ-bounded ([6], 7.7). If x_{1}, x_{2}, \ldots had no 'orthogonal' subsequence then $\left\{x_{1}, x_{2}, \ldots\right\}$ would be a compactoid by Theorem 2.2 , so $\tau=\sigma\left(E, E^{\prime}\right)$ on $\left\{x_{1}, x_{2}, \ldots\right\}$ ([6], 5.12) whence $x_{n} \xrightarrow{\tau} 0$, a contradiction.

Corollary 3.3. Let (E, τ) be a metrizable locally convex space. Then the following are equivalent.
$(\alpha)(E, \tau)^{\wedge}$ is dual-separating.
(β) Let x_{1}, x_{2}, \ldots be a bounded sequence for which $x_{n} \rightarrow 0$ weakly but $x_{n} \stackrel{\tau}{\rightarrow} 0$.
Then x_{1}, x_{2}, \ldots contains an 'orthogonal' basic subsequence.
Proof. To prove $(\alpha) \Rightarrow(\beta)$ we may assume that (E, τ) is complete. Suppose x_{1}, x_{2}, \ldots has no 'orthogonal' subsequence; we derive a contradiction. By boundedness and Theorem 2.2 the set $\left\{x_{1}, x_{2}, \ldots\right\}$ is a compactoid hence so is $A=\overline{\mathrm{co}}\left\{x_{1}, x_{2}, \ldots\right\} . A$ is metrizable, absolutely convex, complete and compactoid. By (α), $\sigma\left(E, E^{\prime}\right.$) is Hausdorff, so according to [8], 3.2 the topologies τ and $\sigma\left(E, E^{\prime}\right)$ coincide on A and therefore $x_{n} \xrightarrow{\tau} 0$, a contradiction.

To prove $(\beta) \Rightarrow(\alpha)$, let $a \in(E, \tau)^{\wedge}, a \neq 0$ and suppose $f(a)=0$ for all $f \in\left((E, \tau)^{\wedge}\right)^{\prime}$; we derive a contradiction. By metrizability there exist $x_{1}, x_{2}, \ldots \in E$ with $x_{n} \xrightarrow{\tau} a$. Then x_{1}, x_{2}, \ldots is Cauchy hence $\left\{x_{1}, x_{2}, \ldots\right\}$ is compactoid. As $x_{n} \rightarrow 0$ weakly and $x_{n} \xrightarrow{\tau} 0$ we have by (β) that x_{1}, x_{2}, \ldots contains an 'orthogonal' subsequence y_{1}, y_{2}, \ldots. From Theorem 2.2 we obtain $y_{n} \xrightarrow{\tau} 0$. But also $y_{n} \xrightarrow{\tau} a$ so $a=0$, a contradiction.

Remark 3.4. (i) A locally convex space E is called an O.P. (Orlicz-Pettis) space if each weakly convergent sequence is convergent. It is shown in [3] that if K is spherically complete or E is of countable type, E is an O.P.-space. Obviously, Corollary 3.2 is of interest only for non-O.P. spaces (such as ℓ^{∞} over a nonspherically complete K).
(ii) For polar metrizable spaces (E, τ) condition (α) of Corollary 3.3 is sat-
isfied. In such spaces weakly bounded sets are bounded. Hence, in (β) one may drop the condition that x_{1}, x_{2}, \ldots be bounded.
(iii) If (E, τ) is a normable space one may also drop boundedness of x_{1}, x_{2}, \ldots in (β). In fact, if x_{1}, x_{2}, \ldots is unbounded one can select $\lambda_{1}, \lambda_{2}, \ldots \in K,\left|\lambda_{n}\right| \leq 1$ for all n, such that $\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots$ is bounded and not norm-convergent to 0 .

About the existence of Schauder bases in Fréchet spaces of countable type we have the following partial result.

Theorem 3.5. Let E be a metrizable locally convex space of finite type (i.e. for each continuous seminorm p the space $E / \operatorname{Ker} p$ is finite-dimensional). Then E has an 'orthogonal' Schauder base.

Proof. We may assume $\operatorname{dim} E=\infty$. Let $p_{1} \leq p_{2} \leq \cdots$ be seminorms defining the topology τ. (Observe that $\tau=\sigma\left(E, E^{\prime}\right)$.) There exist linearly independent $e_{1}, \ldots, e_{n_{1}}$ such that $E=\operatorname{Ker} p_{1} \oplus \llbracket e_{1}, \ldots, e_{n_{1}} \rrbracket$. By the same token there exist linearly independent $e_{n_{1}+1}, \ldots, e_{n_{2}}$ such that $\operatorname{Ker} p_{1}=\operatorname{Ker} p_{2} \oplus \llbracket e_{n_{1}+1}, \ldots, e_{n_{2}} \rrbracket$, etc.

For each k the formula

$$
\sum_{i=1}^{n_{k}} \lambda_{i} e_{i} \mapsto \max \left\{p_{k}\left(\lambda_{i} e_{i}\right): 1 \leq i \leq n_{k}\right\}
$$

defines a norm on $\llbracket e_{1}, \ldots, e_{n_{k}} \rrbracket$, equivalent to p_{k}. It can by a standard procedure be extended to a seminorm q_{k} on E that is equivalent to p_{k} on E. Then q_{1}, q_{2}, \ldots induce τ and the sequence e_{1}, e_{2}, \ldots is 'orthogonal'. By Proposition 1.4 it is an orthogonal base of $\overline{\llbracket e_{1}, e_{2}, \ldots \rrbracket}$. To see that $\overline{\llbracket e_{1}, e_{2}, \ldots \rrbracket}=E$, let $f \in E^{\prime}$ and $f\left(e_{n}\right)=0$ for all n. Then $|f| \leq p_{k}$ for some k so $f=0$ on $\operatorname{Ker} p_{k}+$ $\llbracket e_{1}, \ldots, e_{n_{k}} \rrbracket=E$. Thus $\llbracket e_{1}, e_{2}, \ldots \rrbracket$ is (weakly) dense in E.

Remark 3.6. Let E be a Fréchet space of countable type with defining seminorms p_{1}, p_{2}, \ldots. The maps $\pi_{n}: E \rightarrow E_{p_{n}}^{\wedge}$ (see the preamble to 2.4) yield a homeomorphism of E into $\prod_{n} E_{p_{n}}^{\wedge}$. Each $E_{p_{n}}^{\wedge}$ is either finite-dimensional or linearly homeomorphic to c_{0}. Thus E is linearly homeomorphic to a closed subspace of $c_{0}^{\mathbb{N}}$. It is easy to see that $c_{0}^{\mathbb{N}}$ has an 'orthogonal' base. Thus the question 'does every Fréchet space of countable type have an 'orthogonal' base?' is equivalent to 'If a Fréchet space has an 'orthogonal' base then do closed subspaces have also an 'orthogonal' base?'

REFERENCES

1. Diestel, J. - Sequences and series in Banach spaces. Graduate Texts in Mathematics 92, Springer-Verlag, New York (1984).
2. De Grande-De Kimpe, N. - On the structure of locally K-convex spaces with a Schauder base. Indag. Math. 34, 396-406 (1972).
3. Perez-Garcia, C. and W.H. Schikhof - The Orlicz-Pettis property in p-adic analysis. Collect. Math. 43, 225-233 (1992).
4. Perez-Garcia, C. and W.H. Schikhof - p-Adic barrelledness and spaces of countable type. Indian J. pure appl. Math. 29, 1099-1109 (1998).
5. Rooij, A.C.M. van - Non-Archimedean Functional Analysis. Marcel Dekker, New York (1978).
6. Schikhof, W.H. - Locally convex spaces over nonspherically complete valued fields. Bull. Soc. Math. Belg. Ser. B, 187-224 (1986).
7. Schikhof, W.H. - p-Adic nonconvex compactoids. Indag. Math. 51, 339-342 (1989).
8. Schikhof, W.H. - Topological stability of p-adic compactoids under continuous injections, Report 8644. Department of Mathematics, University of Nijmegen, The Netherlands (1986).
9. Tiel, J. van - Espaces localement K-convexes. Indag. Math. 27, 249-289 (1965).
(Received November 1999)
