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ABSTRACT

The problem of the existence of (orthogonal) bases and basic sequences in non-archimedean locally
convex spaces is studied. To this end we derive a characterization of compactoidity in terms of or-
thogonal sequences (Theorem 2.2).

INTRODUCTION

Throughout K denotes a non-archimedean non-trivially valued field which is
complete under the metric induced by the valuation | | : K — [0, oc). For fun-
damentals of locally convex spaces over K we refer to [9], [6].

In this paper all locally convex spaces are over K and assumed to be Haus-
dorfl. A sequence x|, x>,... in a locally convex space E is called «a (topological)
base of E if each x € E can be written uniquely as x = 307 | \,x, with ), € K.
If the coefficient functionals x — A, (n € N) are continuous then xj,x3,... is
called a Schauder base. As in the real or complex case one proves that every
base in a Fréchet space is Schauder. Clearly every locally convex space with a
(Schauder) base is (strictly) of countable type i.e. there is a countable set whose
K-linear hull is dense. Conversely, any infinite-dimensional Banach space of
countable type is known to be linearly homeomorphic to ¢y, hence it has a
Schauder base ([5], 3.16(i1)).
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It is still unknown whether a Fréchet space of countable type has a Schauder
base. For a partial result, see Theorem 3.5.

A sequence in a locally convex space is called a basic sequence if it is a
Schauder base of its closed linear span. This leads to the question as to whether
a Fréchet space has - at least — a basic sequence; a partial answer will be given
in Corollary 3.1.

In §1 we compare the notion of orthogonality of a sequence introduced by
N. De Grande-De Kimpe in [2] with the concept of basic sequence. In §2 we
characterize compactoidity in terms of orthogonal sequences and in §3 we ap-
ply this to obtain results on existence of basic sequences in certain locally
convex spaces and the non-archimedean counterpart of the Bessaga-Pelczynski
selection principle (Corollaries 3.2 and 3.3).

NOTATIONS AND TERMINOLOGY

For a set X in a K-vector space we denote by [X] its linear span, and by co X its
absolutely convex hull i.e. the smallest module over the ring {A € K : [A] < 1}
that contains X.

co is the K-Banach space of all sequences in K converging to 0, where for
x=(£&,&,...) € co we set [|x]| := max [€,]. coo is the subspace of ¢g consisting
of all sequences (£,&; . ..) such that £, = 0 for large n. Let E be a Hausdorff
locally convex space over K. By E* we denote its algebraic dual, by E’ its to-
pological dual. E is called dual-separating if for each x € E, x # 0 there exists
anf € E'such that f(x) # 0. Then the weak topology o(E, E') is Hausdorff. The
closure of a set X C E is written X. Instead of co X we write TO X.

The completion of E is denoted by E”. If 7 is the topology of E we denote the
topology on E” again by 7.

1. ORTHOGONAL AND BASIC SEQUENCES

Let p be a (non-archimedean) seminorm on a K-vector space E, let ¢ € (0, 1].
Recall that a sequence x1, x5, ... in E is called t-orthogonal with respect to p if
foreachn € Nand A, Az,..., A\, € K we have

(%) P(Z )\ixi) >t Jmax pAX;).

i=1

If t = 1 then x|, xa, . . . is called orthogonal with respect to p and (*) can be writ-
ten as

Definition 1.1. A sequence x,x;,... in a locally convex space E is called
‘orthogonal’ in E if the collection P of all continuous seminorms p for which
X1,X2,... is orthogonal with respect to p forms a base of continuous semi-
norms.
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Remark 1.2.

(i) A sequence is ‘orthogonal’ in E if and only if it is ‘orthogonal’ in its (al-
gebraic) linear span. This can be shown by straightforward arguments. (Let
X1,X2,... be ‘orthogonal’ in D := [x,x,,...], let P be a base of continuous
seminorms on D for which xi,x,,... are orthogonal. Let P* := {¢: ¢ contin-
uous seminorm on E, ¢|D € P}. To prove that P* is a base of continuous
seminorms on E, let g be a continuous seminorm on E. There is a p € P such
that ¢ <p on D. Then p extends to a continuous seminorm p on E, and
max(p,q) € P*, ¢ < max(p,q).) It enables us to speak about ‘orthogonal’ se-
quences without specifying a subspace.

(i1) A sequence x1,Xx3,... in E is ‘orthogonal’ if and only if there exists
a collection P of continuous seminorms generating the topology such that
X1, Xy, ... 1s orthogonal with respect to each p € P.

(iii) Let x1,x3,... € E be an ‘orthogonal’ sequence, let x, # 0 for each », let
P be as in Definition 1.1. If x € E can be expressed as 3. | \.x, with A, € K
then p(x) = max, p(\,x,) for each p € P. It follows that the ), are unique; in
particular the x;,x,,... are linearly independent. Also, if x|, x5,... is a topo-
logical base it is automatically a Schauder base.

Lemma 1.3. Let x),x,,... be alinearly independent sequence in a locally convex
space E, let D := [xy,x3,...]. For each n € N, let f,, € D* be given by f,(xn) =
Snm (m € N). Thenx =Y, fu(X)x, for each x € D, and x1,x,, . . . is ‘orthogonal’ if
and only if the maps x — f,(x)x, (x € D) are equicontinuous.

Proof. Let x1,x;3,... be ‘orthogonal’, let P be as in Definition 1.1. For each
n € N, put é,(x) = f,(x)x, (x € D). For each p € P we have p = max, p o §, and
the equicontinuity of {4, : n € N} follows. Conversely, assume {6, : n € N} is
equicontinuous. For each p € P put

p(x) = max p(fy(x))  (x€ D).

Then p < p* on D and X1, x2, ... is orthogonal with respect to p*. By equiconti-
nuity p* is continuous and the set {p* : p € P} is a base of continuous semi-
norms on D.

Proposition 1.4. Each ‘orthogonal’ sequence of non-zero vectors is a basic se-
quence.

Proof. Let x;, x>, ... be ‘orthogonal’ in a locally convex space E. To prove the
statement we may assume that E is complete. Let D, f,,, 6, be as in Lemma 1.3.
Each £, extends uniquely to an £, € (D)’; put é,(x) = f,(x)x, (n € N, x € D).
By Remark 1.2 (iii) it suffices to prove that x = "> | 8,(x) for each x € D. By
Lemma 1.3 the set {6, :n € N} is equicontinuous, hence so is {8, :n € N}.
Since lim, _, o 8,(x) = O for all x € D we have lim, _, », 6,(x) = 0 for all x € D.
By completeness and equicontinuity the formula Tx = Y20 | §,(x) defines a

continuous linear map 7 : D — D. But T is the identity on D, henceon D. [
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Corollary 1.5. Let x),xa2,... be an ‘orthogonal’ sequence in a locally convex
space E, let x, # 0 for each n, let E = [x|,x3,...]. Then x\,x,,... is a Schauder
base of E.

Remark 1.6. The converse of Proposition 1.4 does not hold in general. In fact,
let @ € K, 0<|al <1 and let E := ¢g. Set x,:=(l,a,0%,...,a""1,0,0,...)
(neN).

It is easily seen that x|, x3, ... is a Schauder base of ¢ but t-orthogonal (with
respect to the norm) for no 7 € (0, 1} and therefore not ‘orthogonal’ (see 2.3).
However:

Proposition 1.7. In a Fréchet space every basic sequence is ‘orthogonal’; every
Schauder base is an ‘orthogonal’ base.

Proof. We need only to prove the first statement. Let xj, x;,... be a basic se-
quence, let D := [x1,x,,...], let f, € D' be such that f,(xy,) = &pun (m,n € N).
Then x =37, fu(x)x, for each x € D, so the maps x — f,(x)x, (x € D) are
pointwise bounded. But D is Fréchet, hence barrelled and so the above maps
are equicontinuous. By Lemma 1.3 the sequence xi, xa, ... is ‘orthogonal’. [J

Remark 1.8. The second conclusion of the proposition holds for ¢*-barrelled
spaces, see [4].

2. A CHARACTERIZATION OF COMPACTOIDS

Recall that a subset X of a locally convex space E is called a compactoid if for
each zero neighbourhood U in E there exists a finite set F C E such that
XCcU+cofF.

From [7] we quote the following result.

Theorem 2.1. Let X be a bounded set in a normed space E = (E,|| ||) over K.
Then X is a compactoid if and only if for each t € (0, 1], each t-orthogonal se-
quence in X (with respect to || ||) tends to 0.

Actually, in [7] it was supposed that E is a Banach space, but trivially the result
holds for general normed spaces.

In this note we prove the following generalization.

Theorem 2.2. Let X be a bounded set in a locally convex space E over K. Then X is
a compactoid if and only if each ‘orthogonal’ sequence in X tends to 0.

First, we prove that this is, indeed, a generalization of Theorem 2.1.

Proposition 2.3. Lef x1,x,, ... be a sequence in a normed space (E,|| ||) over K.
Then xy1,x3, . .. is ‘orthogonal’ in the sense of Definition 1.1 if and only if, for some
t € (0,1, it is t-orthogonal with respect to || ||.
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Proof. Let x, x3,... be ‘orthogonal’. Let P be as in Definition 1.1. Then there is
a p € P for which || || < p. By continuity of p we have p < ¢|| || for some con-
stant ¢ > 1. Then, foreachn € Nand \(,..., \, € K we have

‘ Ei:Apn

i=1
showing that x;, x, ... is ¢~'-orthogonal with respect to || ||.

Conversely, suppose that x|, x,... is t-orthogonal with respect to || || for
some ¢ € (0, 1]. To show ‘orthogonality’ we may suppose x,, # 0 for each n. Then
the x;,x,,... are linearly independent. For all n € N and X,..., )\, € K we
have

n
>clp (Z /\,-x,) = ¢! max p(Ax;) > ¢! 112?; [ Aixill,

<i<
=1 1<i<n

j§2,¥Xf

i=1

IA

max HApﬂ“ S fJ
1<i<n

ji:,Mxi

So, for each x € D := [x1,x2,...], x = 3_7_, Aix;, we have

[lx]] < B(x) < 7]l

where p(x) := max;<j<,]||Axi||. We see that p is a norm on D defining the
topology and that x|, x,, ... is orthogonal with respect to p. Now use Remark
1.2¢). O

For the proof of Theorem 2.2 we need the following easy observations. Let p be
a seminorm on a K-vector space E. Let m, : E — E, := E/Ker p be the quotient
map. The formula p(7,(x)) = p(x) defines a norm p on E,. Propositions 2.4 and
2.5 are well-known.

Proposition 2.4. Let t € (0,1], let x1,x2,. .. be a sequence in E. Then x1,x, ... is
t-orthogonal with respect to p if and only if m,(x1), m,(x2), . . . is t-orthogonal with
respect to p.

Proposition 2.5. Let E be a locally convex space over K, let P be a base of con-
tinuous seminorms, let X C E. Then X is a compactoid if and only if w,(X) is a
compactoid in E, for each p € P.

Proposition 2.6. Let x;, xa,. .. be a sequence in a locally convex space E over K
and suppose there is a base P of continuous seminorms and a map p +— 1, of P into
(0, 1] such that, for eachp € P, x1,x2, ... is ty-orthogonal with respect to p. Then
X1,X2,...is an ‘orthogonal’ sequence in E.

Proof. Let D := [x;,x3,...]. Foreachp € P,n € Nand A,..., A\, € K we have

n
p (Z A,x,») >t lrgflgxnp()\,x,-).

i=1
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If 377, Aix; = 0 then p(Xix;) = O for all i, so the formula

”(Z A) = e PO

i=1

defines a seminorm p on D for whichp <p < t;‘p. Then xi, x5, ... is orthogo-
nal with respect to p, and since {p : p € P} induces the topology of D the ‘or-
thogonality’ of x1, x;, . . . follows after applying Remark 1.2 (i). [

Proof of Theorem 2.2. Suppose X is a compactoid, and let x;,x3, ... be an ‘or-
thogonal’ sequence in X. Let p be a continuous seminorm on E for which
X), X2, - . . is orthogonal with respect to p. It suffices to prove that p(x,) — 0. By
Proposition 2.5 the set m,(X) is a compactoid in E, and by Proposition 2.4,
Tp(X1), Tp(x2), ... is orthogonal with respect to p. By Theorem 2.1 we have
pmp(xs)) — Oi.e. p(xn) — 0.

Conversely, let X be bounded and let each ‘orthogonal’ sequence in X tend to
0. Suppose X is not a compactoid; we derive a contradiction.

By Proposition 2.5 there is a continuous seminorm p on E such that 7,(X) is
not a compactoid in E,. By Theorem 2.1 there exists a sequence xj,x2,...in X
such that, for some ¢, € (0,1], m,(x1),7y(x2),... is t,-orthogonal in E, but
P(mp(xn)) =+ 0,i.e. x(,x2,... is t,-orthogonal with respect to p (Proposition 2.4)
and p(x,) - 0. Without loss, assume p(x,) > a > 0 for all n.

Now let P be the collection of all continuous seminorms on E that are > p.
Then P is a base of continuous seminorms. Let ¢ € P. By boundedness of X we
have M := sup, ¢(x,) < 0.

Forne N, Aj,..., A\, € K we have

g3l ax) 2 p(i Axi) > 1, max M| p(x:) > o max [\l
> t,aM ™ max | Ailg(x:) > ,aM (37| dixi).
!

We see that xi, Xy, . . . is f,aM ~!-orthogonal with respect to g.
By Proposition 2.6 the sequence x;, x2, . . . is ‘orthogonal’ so by assumption,
x, — O conflicting p(x,) > a.

Combining Theorem 2.2 and Propositions 1.4 and 1.7 we obtain the following.

Corollary 2.7. A bounded subset X of a Fréchet space is a compactoid if and only
if each basic sequence in X tends to 0.

Remark 2.8. The above corollary cannot be extended to non-complete spaces.
In fact, let x;, x3, . . . be as in Remark 1.6. Clearly x;, x5, . .. is Cauchy in cgg so
X = {x1,x,...} is a compactoid. But the basic sequence x;, x3,... does not
converge to (.

192



3. APPLICATIONS

A direct consequence of Theorem 2.2 is the following.

Corollary 3.1. Let E be a locally convex space in which not every bounded set is a
compactoid. Then E has an ‘orthogonal’ basic sequence.

The next two results are non-archimedean translations of the Bessaga-Pelc-
zynski Selection Principle (see [1], p. 42).

Corollary 3.2. Let (E,7) be a polar locally convex space. Let x1,x,,... be a
sequence in E such that x,, — 0 weakly but x, — 0. Then X1,X2,... contains an
‘orthogonal’ basic subsequence.

Proof. By weak convergence the set {x;,x»,...} is 7-bounded ([6], 7.7). If
X1,X2, ... had no ‘orthogonal’ subsequence then {xi, x3,...} would be a com-
pactoid by Theorem 2.2, so 7 = o(E,E’) on {xi,x;,...} (6], 5.12) whence
xn, — 0, a contradiction. [J

Corollary 3.3. Let (E, ) be a metrizable locally convex space. Then the following
are equivalent.

(o) (E,7)" is dual-separating.

(B) Let x1,x, ... be a bounded sequence for which x, — 0 weakly but x, = 0.
Then xy, xa, . . . contains an ‘orthogonal’ basic subsequence.

Proof. To prove (o) = () we may assume that (E,7) is complete. Suppose
X1,X72,... has no ‘orthogonal’ subsequence; we derive a contradiction. By
boundedness and Theorem 2.2 the set {x;,x3,...} is a compactoid hence so is
A =To{x,x2,...}. Ais metrizable, absolutely convex, complete and compac-
toid. By (), o(E, E’) is Hausdorff, so according to [8], 3.2 the topologies 7 and
o(E, E') coincide on 4 and therefore x,, - 0, a contradiction.

To prove (8) = (), let a € (E,7)", a#0 and suppose f(a) =0 for all
f € ((E,n)"); we derive a contradiction. By metrizability there exist

X1,X2,... € E with x, > a. Then xi,x,,... is Cauchy hence {x1,x2,...} 1is
. T

compactoid. As x, — 0 weakly and x, - 0 we have by (3) that x;,x;,...

contains an ‘orthogonal’ subsequence y1, s, . ... From Theorem 2.2 we obtain

Vn ~ 0. But also Vn L asoa=0,acontradiction. O

Remark 3.4. (i) A locally convex space E is called an O.P. (Orlicz-Pettis) space
if each weakly convergent sequence is convergent. It is shown in [3] that if K is
spherically complete or E is of countable type, E is an O.P.-space. Obviously,
Corollary 3.2 is of interest only for non-O.P. spaces (such as £°° over a non-
spherically complete X).

(ii) For polar metrizable spaces {E, 7) condition (a) of Corollary 3.3 is sat-
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isfied. In such spaces weakly bounded sets are bounded. Hence, in (3) one may
drop the condition that x|, x», ... be bounded.

(iti) If (E, 7) is a normable space one may also drop boundedness of xi, xa, . ..
in (8). In fact, if x(, x2, ... is unbounded one can select A\j, Ay, ... € K, |\, <1
for all n, such that A\;x;, A2x2,. .. is bounded and not norm-convergent to 0.

About the existence of Schauder bases in Fréchet spaces of countable type we
have the following partial result.

Theorem 3.5. Let E be a metrizable locally convex space of finite type (i.e. for
each continuous seminorm p the space E /Ker p is finite-dimensional). Then E has
an ‘orthogonal’ Schauder base.

Proof. We may assume dim E = oco. Let p; < p; < -+ - be seminorms defining
the topology 7. (Observe that 7 = ¢(E, E').) There exist linearly independent

el,... e, such that E =Kerp; @ [ey,...,e,]. By the same token there exist
linearly independent e, 1 1,. . ., e, such that Kerp; = Kerp: @ [e,, 11, .., en],
etc.

For each & the formula

ik
> Nei > max{pi(hie)) 1 1 < i <m}

i=1

defines 2 norm on [ey, . . ., ey, |, equivalent to p. It can by a standard procedure
be extended to a seminorm g¢; on E that is equivalent to p; on E. Then ¢y, ¢, . ..
induce 7 and the sequence e, e, ... is ‘orthogonal’. By Proposition 1.4 it is
an orthogonal base of [ej,es,...]. To see that [ej,es,...] = E, let f € E' and
f(en) =0 for all n. Then |f|<px for some k so f=0 on Kerp; +
ler,. .. e, ] = E.Thus e, es,.. ] is (weakly) dense in E. [

Remark 3.6. Let E be a Fréchet space of countable type with defining semi-
norms pi,ps2,.... The maps n,: E — E,f (see the preamble to 2.4) yield a
homeomorphism of £ into [], E,. Each E,, is either finite-dimensional or lin-
early homeomorphic to ¢g. Thus E is linearly homeomorphic to a closed sub-
space of c}’. It is easy to see that ¢}’ has an ‘orthogonal’ base. Thus the question
‘does every Fréchet space of countable type have an ‘orthogonal’ base? is
equivalent to ‘If a Fréchet space has an ‘orthogonal’ base then do closed sub-
spaces have also an ‘orthogonal’ base?’
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