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SUMMARY

Although membrane shape varies greatly throughout
the cell, the contribution of membrane curvature
to transmembrane protein targeting is unknown
because of the numerous sorting mechanisms that
take place concurrently in cells. To isolate the effect
of membrane shape, we used cell-sized giant unila-
mellar vesicles (GUVs) containing either the potas-
sium channel KvAP or the water channel AQP0 to
form membrane nanotubes with controlled radii.
Whereas the AQP0 concentrations in flat and curved
membranes were indistinguishable, KvAP was en-
riched in the tubes, with greater enrichment in more
highly curved membranes. Fluorescence recovery
after photobleaching measurements showed that
both proteins could freely diffuse through the neck
between the tube and GUV, and the effect of each
protein on membrane shape and stiffness was char-
acterized using a thermodynamic sorting model.
This study establishes the importance of membrane
shape for targeting transmembrane proteins and
provides a method for determining the effective
shape and flexibility of membrane proteins.

INTRODUCTION

The targeting of transmembrane proteins to specific cellular

regions is essential for cell function (Cobbold et al., 2003). For

example, neuronal information processing requires that specific

voltage-gated ion channels with distinct biophysical properties

are localized in distinct regions of the neuronal membrane (i.e.,

soma, dendrites, and axon) (Lai and Jan, 2006). Numerous

targeting mechanisms contribute to protein enrichment in traf-

ficking vesicles of the secretory pathway and lateral redistribu-

tion after delivery to the acceptor membrane. Much work has
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focused on specific protein-protein interactions, but manipu-

lating membrane properties has also been shown to alter target-

ing, suggesting the importance of membrane-based sorting

mechanisms (van Meer and Sprong, 2004). Membrane shape

is particularly compelling, because some membranes within

the cell (e.g., transport vesicles, neurites, and endocytotic pits)

are highly curved with radii as small as 20 nm (Nägerl et al.,

2008), and many trafficking events involve large changes in

membrane curvature (McMahon and Gallop, 2005). However,

efforts to study the effect of membrane shape on transmem-

brane protein distribution in vivo have been impeded by an

inability to control membrane curvature without simultaneously

affecting other targeting mechanisms (Hägerstrand et al.,

2006). Ab initio simulations (e.g., molecular dynamics) are also

challenging because the required large system size and long

simulation times are currently prohibitive (Callenberg et al.,

2012; Chandler et al., 2008). Thus, despite numerous proposals

(Markin, 1981; McMahon and Gallop, 2005), it is unknown

whether the distributions of typical transmembrane proteins

are sensitive to membrane shape.

To address this question, we used an in vitro system to isolate

the effects of membrane curvature. As shown in Figure 1A, the

relatively flat membrane of a giant unilamellar vesicle (GUV) is

connected to a highly curved nanotube. Using the micropipette

pressure to control the membrane tension, the radius of the

membrane tube, R, can be adjusted from 100 to 7 nm, which rea-

ches the highest membrane curvatures (c = 1/R) observed in

cells (McMahon and Gallop, 2005; Nägerl et al., 2008). Similar

in vitro approaches have previously been used to study the

effects of curvature on lipids and proteins whose function is to

sense or control membrane shape (e.g., BAR proteins, dynamin,

and reticulons) (Heinrich et al., 2010; Hsieh et al., 2012; Hu et al.,

2008; Parthasarathy et al., 2006; Sorre et al., 2009, 2012; Tian

and Baumgart, 2009).

Asmodel proteins we chose twowell-studied tetrameric chan-

nels of similar molecular mass: AQP0, a member of the major

intrinsic protein family (Gonen et al., 2005), and KvAP, a bacterial

member of the voltage-gated ion channel family (Jiang et al.,

2003). Both have previously been reconstituted into GUVs, and
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Figure 1. KvAP Is Enriched in Curved Membranes, whereas AQP0 Is Not

(A) Schematic of tube assay. A bead in an optical trap is used to pull a membrane tube from a GUV held by a micropipette. The pressure in the micropipette

controls the membrane tension and resultant tube radius, R, whereas the concentrations of lipid and protein in the tube are measured by confocal fluorescence

microscopy (see also Figure S1 and Table S1).

(B) Confocal image of a tube (radius R = 14 nm) pulled from aGUV containing reconstituted KvAP (GUV protein density, rGUV = 70 mm�2). Themembrane (red) was

marked with a fluorescent lipid (Texas Red DHPE), whereas the protein (green) was labeled with Alexa 488. Contrast has been enhanced, and green and red

intensities have been scaled tomatch in the GUV (which is thus yellow). The green color of the tube therefore reflects protein enrichment in the tube (relative to the

GUV). Scale bar, 5 mm.

(C) Images and intensity profiles of tubes pulled fromGUVs containing AQP0 (left, rGUV�100 mm�2) or KvAP (right, rGUV = 70 mm�2) for large (R�60 nm) and small

(R�20 nm) tube radii. Green and red intensities have been scaled to match in the GUV and corrected for the effects of the light polarization (PCF). The low protein

density causes large fluctuations in the green channel, which are smaller in the intensity profile due to the averaging along the tube. Scale bar, 2 mm.

(D) Box plots comparing the sorting ratio for tubes (R = 25 ± 10 nm) pulled fromGUVs containing a green fluorescent lipid (control), AQP0, or KvAP. The median is

represented with a line; the box represents the 25th to 75th percentiles; and error bars show the 5th–95th percentile. The average sorting ratios for the lipid control

(mean = 1.1, SD = 0.3, n = 7 GUVs) and AQP0 (mean = 1.1, SD = 0.2, n = 12) are similar, whereas KvAP is noticeably enriched in the tubes (mean = 3.5, SD = 1.7,

n = 41).

(E) Effect of theGUV composition on KvAP sorting. Confocal images of large (R = 75 nm) and small (R = 21 nm)membrane tubes extracted fromGUVs formed from

a different lipid mixture, POPC/POPG (9:1 by mass). Defects were more common with this lipid composition, and a second, smaller vesicle is nested inside the

main ‘‘GUV.’’ Scale bar, 3 mm.
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as channels their function is not directly related to membrane

shape. However, it has been proposed that membrane curvature

may modulate the distribution of Kv channels (McMahon and

Gallop, 2005), because some Kv channel types localize in very

curved regions of neuronal membranes (dendrites or axons)

(Lai and Jan, 2006), and the Kv voltage-sensing domain is

believed to distort the surrounding membrane (Bond and San-

som, 2007). In contrast, AQP0 is found in flat lens membranes

in vivo (Zampighi et al., 2002) and, when reconstituted in vitro,

can form flat, single-layered two-dimensional (2D) crystals

(Gonen et al., 2005).

RESULTS

Measuring Curvature-Induced Protein Sorting In Vitro
Membrane nanotubes were pulled from GUVs containing fluo-

rescently labeled protein (KvAP or AQP0-labeled with Alexa

488) and a fluorescent lipid (Texas Red DHPE or BODIPY-TR

Ceramide). Because the distribution of fluorescent lipids is

approximately uniform in our system (Sorre et al., 2009), the
Developm
enrichment of the proteins in the tube can be measured by

comparing their fluorescence to the fluorescence of lipids. In

Figure 1B, the lipid (red) and protein (green) fluorescence inten-

sities have been scaled to match at the GUV equator. If the

protein and lipid had equal affinities for the membrane tube,

the fluorescence intensities would be equal and the tube would

appear yellow. Instead, the tube is clearly green, indicating

that the protein-to-lipid ratio in the curved membrane tube is

greater than that in the flatter GUV membrane. This relative

protein enrichment can be quantified by the sorting ratio, S,

defined as

S=
PCFprotein

PCFlipid

3
Iproteintube =Ilipidtube

IproteinGUV =IlipidGUV

; (Equation 1)

where the polarization correction factors (PCFs) account for

fluorophore orientation (as described in the Supplemental Exper-

imental Procedures and Table S1 available online) and I
protein=lipid
tube=GUV

is the protein (or lipid) fluorescence intensity of the tube (or GUV)

(Sorre et al., 2009).
ental Cell 28, 212–218, January 27, 2014 ª2014 Elsevier Inc. 213



Figure 2. KvAP Enrichment as a Function of Tube Curvature

Sorting as a function of curvature, c = 1/R, for GUVs with high (red; mean =

1,705 mm�2, SD = 414 mm�2) and low (blue; mean = 162 mm�2, SD = 70 mm�2)

protein densities. Points are themean of binned sorting values, error bars are ±

SEM, and squares are the median (numerical values in Table S2). Solid lines

are fits of the sorting model (see Equation S26 in Supplemental Experimental

Procedures; Figure S2) to the median, and taking Aprot = 45 nm2, we obtain

kp = 38.5 kBT and cp = (1/25) nm�1.
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KvAP Is Strongly Enriched in Curved Membranes,
whereas AQP0 Is Not
Figure 1C shows images of membrane tubes formed from GUVs

containing AQP0 and KvAP, along with the resulting intensity

profiles normalized by the intensity at the GUV equator and cor-

rected by the PCF. For the larger tube formed from an AQP0-

containing GUV (R = 64 nm), the protein (green) and lipid (red)

fluorescence signals are similar (sorting ratio, S = 0.93 ± 0.10),

and thus the composition of the membrane tube is indistin-

guishable from that of the GUV. When the tube radius was

then reduced to R = 23 nm, the protein fluorescence (green)

decreased and the absolute signal was so low that fluctuations

in the number of fluorophores per voxel are clearly evident.

Nevertheless, when the protein fluorescence is averaged along

the entire length of the tube, the normalized intensity is again

similar to the lipid normalized intensity with a sorting ratio of

S = 1.1 ± 0.4. Thus, it appears that membrane curvature has

little effect on AQP0 concentration. This measurement was per-

formed for multiple GUVs and the sorting ratio measured for

membrane tubes with radii between 15 nm and 35 nm. To gauge

experimental precision, control experiments were also per-

formed using GUVs containing the green fluorescent lipid,

BODIPY-FL HPC, which was previously shown to be uniformly

distributed in the absence of the proximity of a demixing point

or interaction with proteins (Sorre et al., 2009). As shown in Fig-

ure 1D, the sorting ratio for AQP0 (mean = 1.1, SD = 0.2, n = 12)

was quite similar to that for the control experiment (mean = 1.1,

SD = 0.3, n = 7). Thus, the distribution of AQP0 does not appear

to be significantly influenced by membrane curvature.

In contrast, the distribution of KvAP appears to be sensitive to

membrane curvature. As shown in Figure 1C (right panels), the

protein was already enriched even in a large tube (R = 50 nm,

S = 1.6 ± 0.1), and this protein enrichment increased with mem-

brane tube curvature, reaching S = 4.0 ± 0.8 for R = 18 nm.

Repeating this experiment with multiple GUVs gave an average

sorting ratio of S = 3.5 (SD = 1.7, n = 41 GUVs) for tube radii
214 Developmental Cell 28, 212–218, January 27, 2014 ª2014 Elsevi
between 15 and 35 nm (Figure 1D), and KvAP enrichment was

also observed in membrane tubes extracted from GUVs formed

using different preparation protocols (Figure S1B). As discussed

below, the variability in protein enrichment in individual mem-

brane tubes may in part be due to the effect of protein density

on sorting. Thus, unlike AQP0, KvAP was measurably enriched

in curved membranes.

The sorting of lipids and peripheral membrane proteins can be

greatly altered when membrane components have nonideal in-

teractions (Sorre et al., 2009). In an effort to exclude such effects,

the Egg-PC/Egg-PA (9:1 by mass) composition was selected

because it showed no signs of phase separation or curvature-

induced lipid sorting (using fluorescent lipid probes) and has

comparable bulk properties (bending modulus, surface charge,

curvature stress) to membranes extracted from cells. However,

whereas 10%–20% of eukaryotic plasma membrane lipids typi-

cally have a negatively charged head group, phosphatidic acid

(PA) is usually a minor component (e.g., <2%) (van Meer et al.,

2008). To confirm that the curvature-induced sorting was not

due to any specific effects of PA, KvAP was reconstituted in

the fully synthetic lipid mixture POPC/POPG (9:1 by mass).

Like PA, PG is negatively charged at physiological pH, and bio-

physical studies show that it mixes well with PC lipids (Blosser

et al., 2013). As shown in Figure 1E, GUVs formed from POPC/

POPG lipids exhibited a significant, curvature-dependent enrich-

ment of KvAP (average sorting ratio = 3.7; SD = 2.3; n = 11; me-

dian radius = 32 nm), suggesting that the enrichment of KvAP is

not due to interactions with specific lipids but is rather due to the

direct coupling of membrane shape to protein distribution.

Protein density was previously shown to affect the curvature-

induced sorting of peripheral membrane proteins (Sorre et al.,

2012). To determine how protein density influenced KvAP sort-

ing, GUVs with a lower protein density were prepared by diluting

the small proteoliposomes with pure lipid liposomes. Figure 2

shows the enrichment of KvAP as a function of curvature for

GUV populations in two density ranges: approximately 150 pro-

teins/mm2 (corresponding to an area fraction of �1%) and

approximately 1,500 proteins/mm2 (respectively, �10%). Curva-

ture-dependent sorting is evident at both low and high density.

At high density, the total amount of protein that redistributed

(i.e., rtube � rGUV ) was greater, but the relative enrichment (i.e.,

rtube=rGUV ) was reduced. This result suggests the existence of

a mechanism that limits the total amount of protein that can

redistribute, as will be discussed in more detail below (see also

Figure S2).

Transmembrane Proteins Can Exchange between the
GUV and Tube
The shape of the neck joining the GUV to the tube resembles the

membrane at the base of neurites or cilia, where diffusion impair-

ment has been observed (Ashby et al., 2006; Caudron and

Barral, 2009). Although proteins, such as septins, play a crucial

role in cellular diffusion barriers, membrane geometry could

also contribute (Domanov et al., 2011). It is therefore important

to determine whether the neck impedes diffusion between the

GUV and the membrane tube, thereby preventing the protein

distribution from equilibrating in our experiments.

Several lines of evidence indicate that AQP0 and KvAP were

able to freely diffuse across the neck connecting the GUV to
er Inc.
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Figure 3. KvAP Can Freely Diffuse in and out of the Tube

(A) KvAP fluorescence recovery in the tube (R = 20 nm, L = 6 mm) after pho-

tobleaching the zone indicated by the white square. Right: images of the tube

before (top), 5 s after (middle), and 110 s after (bottom) photobleaching. Scale

bar, 6 mm.

(B) Intensity of KvAP fluorescence in the tube (relative to the GUV body and to

value before bleaching) as a function of time. Data were averaged over five

time points to reduce noise, and error bars are ± SEM. The solid line represents

a fit using InormðtÞ= IN3ð1� F3 expð�t=tÞÞ and t = 38 s. See Figure S3 for

additional data.
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the membrane tube. First, after pulling a tube from a GUV with a

low density of KvAP, the fluorescence intensity in the tube grad-

ually increased to a higher level, consistent with protein diffusing

into the tube (Figure S3A). Next, fluorescence recovery after

photobleaching (FRAP) experiments were used to systematically

determine if the membrane neck presented ameasurable barrier

to protein diffusion. As shown in Figure 3A, a tube was formed

from a GUV containing fluorescently labeled KvAP, and after

waiting 2 min for the tube composition to equilibrate, the fluoro-

phores in the tube were bleached by imaging at full laser power.

Fluorescence recovery in the tube was then monitored by imag-

ing at low laser power. The right panel of Figure 3A shows the

protein fluorescence in the tube before, 5 s after photobleaching,

and 110 s after photobleaching. The diffusion of proteins from

the GUV back into the membrane tube is clear, and fitting the

recovery curve (Figure 3B) with an exponential gives a relaxation

time of 38 s for this example. This time is shorter than the waiting

time (approximately 2 min) between tension increment and

measurement in the sorting experiments, suggesting that KvAP

and AQP0 densities in these experiments were at equilibrium.

Repeated FRAP experiments on GUVs containing AQP0 (Fig-

ure S3B) or KvAP confirmed that both proteins can cross the

tube neck. Although some bleaching occurred during recovery,

fitting the fluorescence recovery curves with a model of free

diffusion in the tube (Berk et al., 1992) yielded Dtube = 0.5 ±

0.3 mm2/s (mean ±SD, n = 9, R = 25 ± 10 nm) for KvAP andDtube =
Developm
1.1 ± 0.4 mm2/s (mean ± SD, n = 4, R = 50 ± 14 nm) for AQP0 (see

the Supplemental Experimental Procedures for more details).

For KvAP, both the diffusion coefficient and its reduction with

decreasing tube radius are in quantitative agreement with previ-

ous measurements of KvAP diffusion in tubes using single-parti-

cle tracking (Domanov et al., 2011) (Figure S3C). Thus, the

recovery matches free protein diffusion through the neck and

along the tube, and there is no detectable diffusion barrier at

the neck. Furthermore, the diffusion coefficients for KvAP and

AQP0 are consistent with the diffusion of single transmembrane

proteins in a confined geometry (Daniels and Turner, 2007),

arguing against the presence of large clusters in the membrane

(Domanov et al., 2011; Ramadurai et al., 2009). These observa-

tions establish that proteins can traverse the neck of the tube,

even for tube radii as small as 15 nm, and imply that the

enrichment described in the previous section paragraph is an

equilibrium phenomenon.

Protein Shape and Stiffness Can Account for Curvature-
Driven Sorting
Forming curved structures, such as transport vesicles, den-

drites, or the nanotubes used in these experiments, requires

energy to bend the membrane (Markin, 1981). This membrane

bending energy is then affected by transmembrane proteins

that change the unstressed shape or the stiffness of the mem-

brane. For example, the membrane bending energy of the

nanotube can be reduced by enriching proteins that soften the

membrane or bend the membrane outward, and/or by depleting

proteins that stiffen themembrane or bend it inward (Figure S2B).

At equilibrium, this reduction in membrane bending energy is

counterbalanced by the entropic cost of distributing proteins

nonuniformly. Thus, by modeling the membrane bending energy

and mixing entropy, it should be possible to relate the curvature-

driven sorting of AQP0 and KvAP to their effects on membrane

shape and stiffness.

Because of the complexity of protein-membrane interactions

and the large scale of the system, theoretical treatments have

typically used a continuum approach in which the membrane

is modeled as a thin (quasi-2D), fluid film in which proteins freely

diffuse (Leibler, 1986; Markin, 1981; Netz and Pincus, 1995). The

model presented here is based on the work of Markin (1981). The

protein mixing entropy is approximated by the Van der Waals

equation of state (Singh et al., 2012), whereas the membrane

bending energy is calculated using the elastic response of a

thin, cylindrical sheet,

Ubending =A3
k

2
3 ðc� c0Þ2; (Equation 2)

where A is the membrane area, k is the membrane bending

modulus, c is the curvature, and c0, the membrane spontaneous

curvature, describes the resting, unstressed shape of the

membrane.

Proteins then alter this bending energy by changing the shape

(c0) and stiffness (k) of the membrane (Markin, 1981; Netz and

Pincus, 1995). The effect of a protein on membrane shape is

described by the protein spontaneous curvature, cp, which cor-

responds to the curvature of an unstressed membrane contain-

ing a saturating density of the protein and reflects the orientation

of the membrane at the protein-lipid interface (Figure S2A).
ental Cell 28, 212–218, January 27, 2014 ª2014 Elsevier Inc. 215
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Similarly, the effect of a protein on membrane stiffness can be

described by the effective protein bending modulus, kp, which

incorporates both the intrinsic stiffness of the protein and its

effects on the surrounding membrane. As described in the Sup-

plemental Experimental Procedures, the protein distribution can

then be calculated by determining the membrane tube composi-

tion that minimizes the total free energy of the curved membrane

tube coupled to an essentially flat GUV.

In general, the resulting equations require a numerical, self-

consistent solution because the transfer of each molecule be-

tween flat and curved membranes alters the membrane bending

energy remaining to drive further transfers (Sorre et al., 2012).

However, the key features of the model can be understood by

considering several special cases. First, when the total protein

concentration is very low, the redistribution of proteins has a

negligible effect on the membrane bending energy. Sorting is

then only limited by the entropic penalty and the degree of

enrichment has a simple dependence on the protein size, shape,

and stiffness (Equation S28 in Supplemental Experimental Pro-

cedures; Figure S2C). In contrast, at higher protein concentra-

tions, even a modest (e.g., 2-fold) enrichment/depletion can

lower the membrane bending energy enough to limit further pro-

tein redistribution, and the protein distribution must be solved

self-consistently. This reduction of protein sorting at higher pro-

tein densities is evident both in a parametric solution of a mem-

brane containing a single protein species (Figure S2E) and an

approximate, power-series solution for the experimental system

(Figure S2F). Thus, the model predicts that transmembrane pro-

teins that cause larger changes to membrane shape or stiffness

will be more strongly enriched or depleted (Derganc, 2007),

whereas the relative enrichment/depletion (e.g., sorting ratio)

will decrease at higher protein concentrations.

In order to model the experiments, GUVs were assumed to

contain equal amounts of each protein insertion (i.e., cytosolic

domain facing into/out from the GUV). In general, the effects of

curvature on the two insertions do not cancel and so the total

protein concentration of the tube varies with curvature, as shown

in Figure S2D.

For AQP0, the lack of observable, curvature-driven sorting

(Figure 1D) places strong restrictions on how it influences the

membrane shape and stiffness (see the Supplemental Experi-

mental Procedures). First, the preferred shape of the membrane

surrounding AQP0 must be fairly flat (jcpj < 1/50 nm�1). This

result agrees well with the relatively uniform, cylindrical profile

of the AQP0-lipid interface, the ability of AQP0 to form flat crys-

talline arrays in the membrane junctions between lens fiber cells,

and the observation that among membrane proteins that can be

reconstituted to form single-layered crystals, AQP0 is unusual

because all the molecules are inserted in the same direction

(Gonen et al., 2005). The absence of strong curvature-driven

sorting also requires that AQP0 does not significantly change

the membrane stiffness (0.7 < kp/klipid < 1.3). This may seem sur-

prising because proteins are generally assumed to be stiffer than

lipid bilayers (Markin, 1981), but it is important to recall that kp
describes the total effect of AQP0 on the membrane stiffness

and proteinsmay disrupt the packing and thus soften the annular

lipids surrounding them (Fosnaric et al., 2006).

To perform a quantitative comparison of the model to the

experimental sorting measurements of KvAP, Equation S26
216 Developmental Cell 28, 212–218, January 27, 2014 ª2014 Elsevi
(see Supplemental Experimental Procedures) was minimized

numerically, and the protein shape, cp, and protein rigidity, kp,

were adjusted to simultaneously fit both the high and low protein

density data shown in Figure 2. The theoretical model accounts

well for the reduced sorting at the higher protein concentration,

and the best fit was obtained if KvAP caused a modest increase

in membrane rigidity (kp z1.5 3 klipid) but was nevertheless

enriched because it bends the membrane (jcpj z1/25 nm�1).

The fitted protein spontaneous curvature, jcpjz1/25 nm�1, cor-

responds to an average tilt at the protein-membrane interface

(Rp �4 nm) of �10�. Because the GUVs contained both protein

insertions, these experiments cannot be used to determine

whether KvAP bends the membrane toward or away from

the cell interior in vivo (see the Supplemental Experimental

Procedures and Figures S1C–S1E for discussion of orientation

effects). However, the magnitude of the deformation is consis-

tent with theoretical estimates based on the effects ofmembrane

state on Kv channel function (Reeves et al., 2008).

This simple model can simultaneously account for both the

measured curvature and density dependence of KvAP sorting

purely in terms of its effect on membrane shape and stiffness.

However, additional effects may be important for curvature-

driven sorting, especially in biological systems. While these ex-

periments were performed with lipids that mix well, the plasma

membrane has been shown to readily separate into inhomoge-

neous domains (Veatch et al., 2008), and such nonideal mixing

could greatly enhance curvature-driven sorting. Additionally,

the model assumes that proteins have a single, well-defined

conformation, but some membrane proteins undergo significant

conformational changes that would clearly modify their curva-

ture-dependent distributions (Reeves et al., 2008). Finally, the

elastic model of the membrane bending energy is only a rough

approximation for highly curved membranes (e.g., synaptic ves-

icles). The effects of nonideal mixing, multiple protein conforma-

tions, and nonlinear elasticity could be incorporated in a more

complicated treatment, but the present model describes the

central features of curvature-induced transmembrane protein

sorting and is consistent with the experimental data.

DISCUSSION

Despite numerous proposals that membrane shape might

directly modulate the distribution of transmembrane proteins

(Bozic et al., 2006;Markin, 1981), the role ofmembrane curvature

in transmembrane protein targeting has remained largely unex-

plored (McMahon and Gallop, 2005) because of the difficulties

in controlling membrane shape and the presence of multiple tar-

geting mechanisms in cells (Hägerstrand et al., 2006). Using an

in vitro approach, we have directly demonstrated thatmembrane

shape alone can modulate the distribution of polytopic, trans-

membrane proteins. Furthermore, this curvature-driven sorting

should be an equilibrium effect because FRAP measurements

showed that both proteins could freely exchange between

curved and flat membranes. Indeed, a simple thermodynamic

model of protein sorting based on the effect of the proteins on

membrane shape and stiffness (Markin, 1981) could account

for both the curvature and density dependence of sorting.

Proteins that control membrane shape are thought to use

specific mechanisms to sense and generate membrane
er Inc.
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deformations, such as the insertion of amphipathic helices (e.g.,

epsin) or hairpins (e.g., reticulons), and oligomerization into a

curved scaffold (e.g., dynamin) (McMahon and Gallop, 2005).

Such mechanisms may be important for proteins that deform

the membrane, but the distribution of a protein can be quite

sensitive to membrane shape without significantly altering the

energy needed to curve the membrane (Figure S2G). Indeed,

the thermodynamic model predicts that curvature-induced sort-

ing should occur unless a protein has both a minimal effect on

membrane stiffness and a very uniform transmembrane profile

(like AQP0). Thus, membrane curvature is likely to modulate

the distributions of many transmembrane proteins and should

also influence protein function (e.g., ion channel gating or recep-

tor activation) because changes to protein conformation will alter

the protein effective shape.

At present, one cannot readily predict the curvature sensitivity

of a specific transmembrane protein. However, even when the

detailed structure of a transmembrane protein is unknown, our

in vitro system provides a way to quantify the sensitivity of

specific proteins to membrane curvature and characterize the

protein’s effective shape and flexibility in the lipid bilayer. This in-

formation will be crucial for understanding how proteins interact

with the surrounding membrane and also provide a strong test

for future ab initio calculations.

In conclusion, this work demonstrates that the contribution of

membrane shape to targeting proteins during trafficking and

localization at the membrane needs to be taken into account

andmotivates future efforts to measure the effects of membrane

curvature on transmembrane protein activity.

EXPERIMENTAL PROCEDURES

Protein Reconstitution

KvAP and AQP0 were purified (Aimon et al., 2011; Berthaud et al., 2012),

labeled with Alexa 488 (green), and reconstituted in Egg-PC/Egg-PA (9:1 by

mass) GUVs as described previously (Aimon et al., 2011). The red fluorescent

lipids Texas Red DHPE or BODIPY-TR ceramide were included at 0.25% by

mole to allow membrane visualization, and the protein density of individual

GUVs ðrGUV Þ was measured using the green fluorescence intensity as

described in Aimon et al. (2011) (see the Supplemental Experimental Proce-

dures for further details).

Membrane Tube Extraction

Using the microscopy setup described in Sorre et al. (2012), a micropipette

was used to hold a GUV. A membrane tube was then extracted from the

GUV using a polystyrene bead trapped in an optical tweezer. The aspiration

pressure in the micropipette was used to control the tube radius, R, which

was measured by comparing the lipid fluorescence intensity of the mem-

brane tube to that of the GUV equator (see Figure S1 and Supplemental

Experimental Procedures for further details). After each change in tube

radius, the protein and lipid distributions were imaged with a confocal

microscope after waiting approximately 2 min for the tube composition to

equilibrate.

FRAP Experiments

FRAP measurements were performed using a Nikon AR-1 or a Nikon C1

confocal microscopes. A tube was formed from a GUV containing fluores-

cently labeled KvAP or AQP0 as described above. After measuring the initial

protein fluorescence, the fluorophores in the tube were bleached by imaging

at full laser power. The fluorescence recovery of the tube was then monitored

by imaging at low (approximately 5%) laser power, in an effort to limit photo-

bleaching during the recovery phase (see Figure S3 and the Supplemental

Experimental Procedures for more details).
Developm
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