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1. INTRODUCTION AND MAIN RESULTS

Consider the second-order systems

i(t) =VF(t,u(t)) ae.te[0,T]

u(0) —u(r) =(0) —u(T) =0, (1)

where T > 0 and F: [0, T] X R" — R satisfies the following assumption:

(A) F(t,x) is measurable in ¢ for each x € RY and continuously
differentiable in x for a.e. t €[0,T], and there exist a € C(R", R"),
b € LX0,T; R") such that

|F(t,x)| +|VF(t,x)| < a(lx])b(t)

forall x € RN and a.e. t € [0, T1.
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The corresponding functional ¢ on H} given by

o(u) = ngT|i¢(t)|2 dr + fOTF(t,u(t))dt

is a continuously differentiable and weakly lower semicontinuous on H}
(see [1]), where

Hj = {u:[0,T] - R"|u is absolutely continuous,
u(0) = u(T) and it € L2(0,T; RV)}

is a Hilbert space with a norm defined by

T , - , 1/2
llull = ([O lu(1)] dt+f0 ()| dt)

for u € Hj.

It has been proved by the least action principle that problem (1) has at
least one solution which minimizes ¢ on H; (see [1-8]). Specifically, [1, 2]
consider problem (1) with convex potential and y-subadditive potential,
respectively. In this paper we consider problem (1) with a potential which
is the sum of a subconvex function and a subquadratic function by the
least action principle. The main results are the following.

A function G: RY — R is called to be (A, w)-subconvex if

G(AMx +y)) < w(G(x) +G(y))

for some A, w >0 and all x,y € RY. A function G: RN — R is called
v-subadditive if it is (1, y)-subconvex. A function G: RY — R is called
subadditive if it is 1-subadditive. The convex function and the +y-subad-
ditive function are special subconvex functions. There are subconvex
functions which are neither convex nor y-subadditive. For example, let

G(x) = el + 4501In(1 + [x|?).

Then G is (1/2,1)-subconvex and neither convex nor y-subadditive.

THEOREM 1.  Assume that F = F, + F,, where F, and F, satisfy assump-
tion (A) and the following conditions:

() F,(t,-) is (A, w)-subconvex with X > 1/2 and u < 2X* for a.e.
t €[0,T], and there exist 0 < a < 1, f,g € L*0,T; R™) such that

[VE,(t, x) | < f(£)Ix" + g(¢)
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for a.e. t €[0,T] and all x € R";
(i)

- 4o as|x| > .

1 1 .7 T
— | F(t,Ax)dt + | F,(t,x)dt
mza[ﬂfo (1, Ax) dr + [TFy(1, )

Then problem (1) has at least one solution which minimizes ¢ on Hj.

COROLLARY 1. Assume that F = F, + F,, where F, and F, satisfy
assumption (A) and the following conditions:

(i)  Fy(¢, ) is subadditive for a.e. t € [0, T, and there exist 0 < a <
1, f,g € LXO, T; R") such that

[VE,(t,x)[ < f(1)Ix1" + (1)

for a.e.t €[0,T] and all x € R";
(iv)

T
F(t,x)dt » +» as|x| — .
|x|2a 0

Then problem (1) has at least one solution which minimizes ¢ on Hj.

COROLLARY 2. Assume that F satisfies assumption (A) and the following
conditions:

(V) F(t,-) is (X, w)-subconvex with A > 1/2 and n < 2\* for a.e.
te[0,T]

(vi)
T
fF(t,x)dt—> +o0  as|x| - .
0

Then problem (1) has at least one solution which minimizes ¢ on Hj.

Remark 1. Theorem 1 in [2] is a special case of Corollary 1 correspond-
ing to @ = 0 and Theorem 1 in [3] corresponds to the case F, = 0. There
are functions F(z, x) satisfying our Corollary 1 and not satisfying the
results in [1-8]. For example, let @« = 1/2 and

Fi(t,x) =3 +sin lx|*, Fy(t,x) = (%T - t)|x|3/2 + (h(1), x),
where h € L0, T; RY). Then F, is subadditive, VF, is sublinear, F = F,

+ F, is not convex, not y-subadditive, not periodic, and not a.e. uniformly
coercive, and VF is not sublinear.
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THEOREM 2. Assume that F = F, + F,, where F, and F, satisfy assump-
tion (A) and the following conditions:
(vii) Fy(z,-) is (A, p)-subconvex for a.e. t € [0, T] satisfying
Fi(t,x) = (h(1),x) + (1)

for ae. t €[0,T], all x € R", and some y € L0, T; R), h € L(0,T; R")
with [{h(t)dt = 0, and there exist g € LM0,T; R*) and C, € R such that

[VE,(t, x)| < g(1)

for a.e.t €[0,T] and all x € R", and
T
Agumsz

for all x € R".

(viii)
1 T T
—f F,(t, Ax) dt+fF2(t,x) dt > +o as|x| - o,
m 7o 0

Then problem (1) has at least one solution which minimizes ¢ on Hj.

COROLLARY 3. Assume that F satisfies assumption (A) and the following
conditions:

(ix) F(z,-) is (A, p)-subconvex for a.e. t € [0, T] satisfying
F(t,x) = (h(t),x) + y(1)

for ae.t €[0,T), all x € RY, and some y € L0, T; R), h € L*(0,T; R")
with [fh(t)dt = 0;

)

T
fF(t,x)dt—> +0o gs|x| > .
0

Then problem (1) has at least one solution which minimizes ¢ on Hj.

Remark 2. Theorem 2 slightly generalizes Theorem 2 of [2]. Corollary 3
is an extension of Theorem 1.7 in [1], for the assumption of the later
implies (ix) with A = w = 1/2 and A(t) = VF(¢, ), y(¢t) = 0, where X is a
minimum of the real function defined by

T
x> fo F(t,x)dt.
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There are functions F(¢, x) satisfying our Theorem 2 and not satisfying the
results in [1-8]. For example, let

Fy(t,x) = t(e"" +450In(1 + |xI*))  Fy(t,x) = (h(1),x),

where h € L}0, T; R") with [{h(¢) dt = 0. Then F; is (1/2, 1)-subconvex,
F is not convex, not y-subadditive, not periodic, and not a.e. uniformly
coercive, and VF is not sublinear.

THEOREM 3.  Assume that F = F, + F,, where F, and F, satisfy assump-
tion (A) and the following conditions:

xi) Fy(¢,-) is (A, w)-subconvex for a.e. t € [0, T] satisfying
Fy(t,x) > (h(t),x) + v(1)

for ae. t €[0,T], all x € R", and some y € L}0,T; R), h € L*(0,T; R")
with [J h(t)dt = 0, and there exist 0 < a < 1, f, g € L*0,T; R") such that

[VE,(t,x)[ < f(1)Ix1" + (1)

for a.e.t €[0,T] and all x € R";
(xii)
1 .7
jf Fy(t,x)dt > +% as|x| - o,
|x]°* /o
Then problem 1 has at least one solution which minimizes ¢ on Hj.

Remark 3. Theorem 3 is an extension of Theorem 1 in [3] from F; = 0
to general F,; it is an extension of Theorem 1.5 of [1], too. There are
functions F(¢, x) satisfying our Theorem 3 and not satisfying the results in
[1-8]. For example, let

Fy(t,x) = t(e"" +450In(1 + |x]*))

Fy(t,x) = (gr— t)|x|3/2 + (h(1),x),

where h € L}0,T; RV). Then F, is (1/2,1)-subconvex, VF, is sublinear,
F = F, + F, is not convex, not y-subadditive, not periodic, and not a.e.
uniformly coercive, and VF is not sublinear.



232 WU AND TANG
2. PROOFS OF THEOREMS
For u € H, let u = (1/T)[{u(t) dt and & = u(t) — u. Then one has

Sobolev’s inequality ||zl < Cllull;> for all u € H} and some C > 0 (see
Proposition 1.3 in [1]).

Proof of Theorem 1. Let B = log,,(2w). Then B < 2. For |x| > 1 there
exists a positive integer n such that
n —1<log,,lx| <n.
Then one has |x|? > @A)" " Yf =Q2u)"~* and |x| < (2)1)". Hence we

have

Fy(t,x) < 2,uF1(t, zx—/\) < < (Z,u)"Fl(t, (;CT) < 2ulx|Payb(t)

for a.e. 1 €[0,7] and all |x| > 1 by (i) and assumption (A), where a, =
max, _, ., a(s). Moreover one obtains

Fy(t,x) < (2plx|? + 1)a,b(r) (2)

forae. t €[0,T]and all x € R", where 8 < 2.
It follows from (i) and Sobolev’s inequality that

[ lRGu) - Bm] a

T r1 _ - -
/0 /O (VF,(t,u + sti(t)), (¢)) dsdt
Sfo fof(t)|b7 + sii(t)| I'LZ(t)IdsdtJrfo /Og(t)li'[(t)ldsdt
< 2(1@° + G Y@l [f(1) de + 1 g () ds

1 T 2
< 4—Czllﬁlli + 4C2|L7|2“(f0 7(1) dt)

~a T ~ T
et [Cf(e) de + Nl [ g (e) d
0 0
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for all u € H7. Hence we have

JTE(t u(0)) = Ey(e,0)] di
0

.02 2 - 1 -
< llallzz + Cl(lul o lallit + |Iu||L2)

(3)

for all u € H} and some positive constant C,. Moreover, by (2) and (3) we
have

1 1 .7 T
=12 — ~
o(u) = Sl + ;fOFl(t,/\u) dr — [O Fy(t, —ii(t)) dt

+ ["Fy(tm) de+ ['[Fy(t,u(1)) = Fy(r,m)] dr

v

1. - T e ]
Jlallie — (2ul@? + 1)/0 aob(t) dt — Cllulli#* — C,llall 2

1
+ —fTFl(t, i) di + fTFz(t, i) dt — C,lal*
o 0

v

1.5 - B et 1 .
ZHMHLZ = Gyllullz = Cyllullzz ™ — Cyllulle — C4

P N _ T _ B
+ |l { [ufoFl(t'/\u) dt+fOF2(t,u) dt} Cl}

|l7|2a
for all u € H;, which implies that
p(u) = +o
as ||u|| — o« by (ii) because a < 1, 8 < 2, and the norm || - || given by

1/2
—12 -2
lull = (1l + lliel )

is an equivalent norm on H%. By Theorem 1.1 and Corollary 1.1 in [1] we
complete our proof.

Proof of Theorem 2. Let (u,) be a minimizing sequence of ¢. It follows
from (vii) and Sobolev’s inequality that

o(uy) = i 2 + fOT(h(t),uk(t))dHfoTy(t)dt
T _ T rl _ ~ ~
+f0F2(t,uk) dt+f0 fO(VFZ(t,uk+suk(t)),uk(t))dsdt

- ~ T
> Slliglize — W@l [ [n(e) | di
0
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T ~ T
+fo y(t) di — llukllocf0 g(t)dt + C,

- 12 .
> glliglli: = Cylliglle = Co

for all k& and some constants C,, C,, which implies that (if,) is bounded.
Hence we have ||, |l.. bounded by Sobolev’s inequality. On the other hand,
in a way similar to the proof of Theorem 1, one has

fOT[FZ(t,u(t)) — F,(t,u)] dt

for all u € H} and some positive constant C,, which implies that

-2 .
< allidlize + Cy(lall 2 + 1)

1 1 .7 _ T -
M@zgmw$+pﬁﬂmm@m—ﬁm@—wu»m

+/TF2(t,ﬁk)dt + /T[Fz(t,u(t)) — Fy(t,u,)]dt

\%

1. - T ;
iz - a(nu,{um)]o b(t)dt — Cyllizll,2 — C,

1 T T
+ — F,(t, \u dt + F,(t,u dt
M/O (¢, ATy /02< ‘)

for all positive integers k and some positive constant C;. It follows from
(viii) and the boundedness of (&,) that (&,) is bounded. Hence ¢ has a
bounded minimizing sequence (u,). Now Theorem 2 follows from Theo-
rem 1.1 and Corollary 1.1 in [1].

Proof of Theorem 3. From (xi), (3), and Sobolev’s inequality it follows
that

1
@W)zjwm+éﬂmgﬂu»m+éﬁuya

+fOTF2(t,ﬁ) dt + fOT[Fz(t,u(t)) — Fy(t,u)] dt

\%

1 T T w
Znuniz—nunwfo |h(t)|dt+f0 y(1) di — Cyllil|g

. T _ —\2a
—QMM+AQm@m—QM2

v

1.5 -l .
ZHu”LZ = Cyllullz ™ — Cy(llull 2 + 1)

1

|2a

+ Iﬁlz"[ fOTFZ(t,ﬁ) dt — C,

7
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for all u € H} and some positive constants C,, Cq. As per the proof of
Theorem 1, ¢ is coercive by (xii), which completes the proof.
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