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Using Galerkin’s method and deriving a priori estimates, we prove
global and local existence for 2D and 3D slip problems respectively.
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local existence in 2D and 3D cases. Compatibility conditions for
initial states play a significant role in the estimates.
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1. Introduction

Let Ω be a bounded smooth domain in R
d (d = 2,3), and fix T > 0. We suppose that the boundary

Γ = ∂Ω consists of two nonempty open components Γ0 and Γ1, that is, Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅.
We are concerned with the non-stationary incompressible Navier–Stokes equations in Ω:

{
u′ + (u · ∇)u − ν�u + ∇p = f in Ω × (0, T ), (1.1)

div u = 0 in Ω × (0, T ), (1.2)
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with the initial condition

u = u0 in Ω × {0}. (1.3)

Here, ν , u, p, and f denote a viscosity constant, velocity field, pressure, and external force respec-
tively; u′ means the time derivative ∂u

∂t .
As for the boundary condition, we impose the adhesive b.c. on Γ0:

u = 0 on Γ0. (1.4)

On the other hand, we consider one of the following nonlinear b.c. on Γ1:

un = 0, |στ | � g, στ · uτ + g|uτ | = 0, on Γ1, (1.5)

which is called the slip boundary condition of friction type (SBCF), and

uτ = 0, |σn| � g, σnun + g|un| = 0, on Γ1, (1.6)

which is called the leak boundary condition of friction type (LBCF). Here, n is the outer unit normal
vector defined on Γ , and we write un := u ·n and uτ := u − unn. The stress tensor T = (Tij)i, j=1,...,d is

given by Tij = −pδi j +ν(
∂ui
∂x j

+ ∂u j
∂xi

), δi j being Kronecker delta. We define the stress vector σ = σ(u, p)

as σ = Tn, and write σn := σ ·n and στ := σ −σnn. One can easily see that σn = σn(u, p) may depend
on p, whereas στ = στ (u) does not.

The function g , given on Γ1 and assumed to be strictly positive, is called a modulus of friction. Its
physical meaning is the threshold of the tangential (resp. normal) stress. In fact, if |στ | < g (resp.
|σn| < g) then (1.5) (resp. (1.6)) implies uτ = 0 (resp. un = 0), namely, no slip (resp. leak) occurs;
otherwise non-trivial slip (resp. leak) can take place. We notice that if we make g = 0 formally, (1.5)
and (1.6) reduce to the usual slip and leak b.c. respectively. In summary, SBCF and LBCF are non-
linearized slip and leak b.c. obtained from introduction of some friction law on the stress.

It should be also noted that the second and third conditions of (1.5) (resp. (1.6)) are equivalently
rewritten, with the notation of subdifferential, as

στ ∈ −g∂|uτ | (
resp. σn ∈ −g∂|un|

)
.

Although we will not pursue this matter further, one can refer to [3,17] for the Navier–Stokes equa-
tions with general subdifferential b.c. See also [4], which considers the motion of a Bingham fluid
under b.c. with nonlocal friction against slip.

SBCF and LBCF are first introduced in [6,9] for the stationary Stokes and Navier–Stokes equations,
where existence and uniqueness of weak solutions are established. Generalized SBCF is considered
in [19,20]. The H2–H1 regularity for the Stokes equations is proved in [28]. In terms of numerical
analysis, [2,13,14,22–25] deal with finite element methods for SBCF or LBCF. Applications of SBCF and
LBCF to realistic problems, together with numerical simulations, are found in [15,29].

For non-stationary cases, [7,8] study the time-dependent Stokes equations without external forces
under SBCF and LBCF, using a nonlinear semigroup theory. The solvability of nonlinear problems is
discussed in [21] for SBCF, and in [1] for a variant of LBCF. They use the Stokes operator associated
with the linear slip or leak b.c., and do not take into account a compatibility condition at t = 0.

The purpose of this paper is to prove existence and uniqueness of a strong solution for (1.1)–(1.4)
with (1.5) or (1.6). We employ the class of solutions of Ladyzhenskaya type (see [18]), searching (u, p)

such that {
u ∈ L∞(

0, T ; H1(Ω)d), u′ ∈ L∞(
0, T ; L2(Ω)d) ∩ L2(0, T ; H1(Ω)d),

p ∈ L∞(
0, T ; L2(Ω)

)
.
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There are several reasons we focus on this strong solution. First, from a viewpoint of numerical
analysis, we would like to construct solutions in a class where uniqueness and regularity are assured
also for 3D case. Second, we desire an L∞-estimate with respect to time for p, which may not be
obtained for weak solutions of Leray–Hopf type (cf. [30, Proposition III.1.1]). Third, in LBCF, it is not
straightforward to deduce a weak solution because of (1.7) below. Similar difficulty already comes up
in the linear leak b.c. (see [26]).

The rest of this paper is organized as follows. Basic symbols, notation, and function spaces are
given in Section 2.

In Section 3, we investigate the problem with SBCF. The weak formulation is given by a variational
inequality, to which we prove uniqueness of solutions. To show existence, we consider a regularized
problem, approximate it by Galerkin’s method, and derive a priori estimates which allow us to pass on
the limit to deduce the desired strong solution. Using the compatibility condition that u0 must satisfy
SBCF, we can adapt u0 to the regularized problem, which makes an essential point in the estimate.

Section 4 is devoted to a study of the problem with LBCF. There are two major differences from
SBCF. First, as was pointed out in the stationary case [6, Remark 3.2], we cannot obtain the uniqueness
of an additive constant for p if no leak occurs, namely, un = 0 on Γ1. Second, under LBCF, the quantity∫

Ω

{
(u · ∇)v · v

}
dx = 1

2

∫
Γ

un|v|2 ds (if div u = 0) (1.7)

need not vanish because un can be non-zero. This fact affects our a priori estimates badly, and we can
extract a solution only when the initial leak ‖u0n‖L2(Γ1) is small enough. Incidentally, if we use the so-

called Bernoulli pressure p + 1
2 |u|2 instead of standard p, the mathematical difficulty arising from (1.7)

is resolved; nevertheless the leak b.c. involving the Bernoulli pressure is known to cause an unphysical
effect in numerical simulations (see [12, p. 338]). Thereby we employ the usual formulation.

Finally, in Section 5 we conclude this paper with some remarks on higher regularity.

2. Preliminaries

Throughout the present paper, the domain Ω is supposed to be as smooth as required. For the
precise regularity of Ω which is sufficient to deduce our main theorems, see Remarks 3.3 and 4.3. We
shall denote by C various generic positive constants depending only on Ω , unless otherwise stated.
When we need to specify dependence on a particular parameter, we write as C = C( f , g, u0), and
so on.

We use the Lebesgue space L p(Ω) (1 � p � ∞), and the Sobolev space Hr(Ω) = {φ ∈ L2(Ω) |
‖φ‖2

Hr(Ω) = ∑
|α|�r ‖∂αφ‖2

L2(Ω)
< ∞} for a nonnegative integer r, where H0(Ω) means L2(Ω).

Hs(Ω) is also defined for a non-integer s > 0 (e.g. [10, Definition 1.2]). We put L2
0(Ω) = {q ∈ L2(Ω)

| ∫
Ω

q dx = 0}. For spaces of vector-valued functions, we write L p(Ω)d , and so on.
The Lebesgue and Sobolev spaces on the boundary Γ , Γ0, or Γ1, are also used. H0(Γ1) means

L2(Γ1), and we put L2
0(Γ1) = {η ∈ L2(Γ1) | ∫

Γ1
ηds = 0}, where ds denotes the surface measure. For

a positive function g on Γ1, the weighted Lebesgue spaces L1
g(Γ1) and L∞

1/g(Γ1) are defined by the
norms

‖η‖L1
g (Γ1) =

∫
Γ1

g|η|ds and ‖η‖L∞
1/g (Γ1) = ess. sup

Γ1

|η|
g

,

respectively. The dual space of L1
g(Γ1) is L∞

1/g(Γ1) (see [6, Lemma 2.1]).

The usual trace operator φ �→ φ|Γ is defined from H1(Ω) onto H1/2(Γ ). The restrictions φ|Γ0 ,
φ|Γ1 of φ|Γ , are also considered, and we simply write φ to indicate them when there is no fear of
confusion. In particular, ηn and ητ means (η · n)|Γ and (η − (η · n)n)|Γ respectively, for η ∈ H1/2(Γ )d .
Note that ‖ηn‖H1/2(Γ ) � C‖η‖H1/2(Γ )d and ‖ητ ‖H1/2(Γ )d � C‖η‖H1/2(Γ )d because n is smooth on Γ .
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The inner product of L2(Ω)d is simplified as (·,·), while other inner products and norms are writ-
ten with clear subscripts, e.g., (·,·)L2(Γ1) or ‖ · ‖H1(Ω)d . For a Banach space X , we denote its dual space
by X ′ and the dual product between X ′ and X by 〈·,·〉X . Moreover, we employ the standard notation
of Bochner spaces such as L2(0, T ; X), H1(0, T ; X).

For function spaces corresponding to a velocity and pressure, we introduce closed subspaces of
H1(Ω)d or L2(Ω) as follows:

V = {
v ∈ H1(Ω)d

∣∣ v = 0 on Γ0
}
, V̊ = {

v ∈ H1(Ω)d
∣∣ v = 0 on Γ

}
,

Vn = {v ∈ V | vn = 0 on Γ1}, Vτ = {v ∈ V | vτ = 0 on Γ1},
Q = L2(Ω), Q̊ = L2

0(Ω).

To indicate a divergence-free space, we set H1
σ (Ω)d = {v ∈ H1(Ω)d | div v = 0}. We use the notation

Vσ = V ∩ H1
σ (Ω)d , V̊σ = V̊ ∩ H1

σ (Ω)d , Vn,σ = Vn ∩ H1
σ (Ω)d , and Vτ ,σ = Vτ ∩ H1

σ (Ω)d .
Let us define bilinear forms a0, b, and a trilinear form a1 by

a0(u, v) = ν

2

d∑
i, j=1

∫
Ω

(
∂ui

∂u j
+ ∂u j

∂ui

)(
∂vi

∂x j
+ ∂v j

∂xi

)
dx

(
u, v ∈ H1(Ω)d),

a1(u, v, w) =
∫
Ω

{
(u · ∇)v

} · w dx
(
u, v, w ∈ H1(Ω)d),

b(v,q) = −
∫
Ω

div vq dx
(

v ∈ H1(Ω)d,q ∈ L2(Ω)
)
.

The bilinear forms a0,b are continuous, and from Korn’s inequality [16, Lemma 6.2] there exists a
constant α > 0 such that

a0(v, v) � α‖v‖2
H1(Ω)d (∀v ∈ V ). (2.1)

Concerning the trilinear term a1, we obtain the following two lemmas.

Lemma 2.1.

(i) When d = 2, for all u, v, w ∈ H1(Ω)d it holds that

∣∣a1(u, v, w)
∣∣ � C‖u‖1/2

L2(Ω)d‖u‖1/2
H1(Ω)d‖v‖H1(Ω)d‖w‖1/2

L2(Ω)d‖w‖1/2
H1(Ω)d . (2.2)

(ii) When d = 2 or d = 3, for all u, v, w ∈ H1(Ω)d it holds that

∣∣a1(u, v, w)
∣∣ � C‖u‖1/4

L2(Ω)d‖u‖3/4
H1(Ω)d‖v‖H1(Ω)d‖w‖1/4

L2(Ω)d‖w‖3/4
H1(Ω)d . (2.3)

Remark 2.1. In particular, we see from (2.3) that

∣∣a1(u, v, w)
∣∣ � C‖u‖H1(Ω)d‖v‖H1(Ω)d‖w‖H1(Ω)d . (2.4)

Proof of Lemma 2.1. These are well-known classical results; see e.g. [18,30]. �
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Lemma 2.2.

(i) For all u ∈ Vn,σ and v ∈ H1(Ω)d, a1(u, v, v) = 0.
(ii) For all u ∈ Vτ ,σ and v ∈ H1(Ω)d, a1(u, v, v) = 1

2

∫
Γ1

un|v|2 ds, and

∣∣a1(u, v, v)
∣∣ � γ1‖un‖L2(Γ1)‖v‖2

H1(Ω)d , (2.5)

where γ1 is a constant depending only on Ω .

Proof. By integration by parts, we have

a1(u, v, w) + a1(u, w, v) = −
∫
Ω

div u(v · w)dx +
∫
Γ

un(v · w)ds,

from which the conclusion of (i) and the first assertion of (ii) follow. Combining Hölder’s inequal-
ity with the continuity of the trace operator H1(Ω) → L4(Γ1) (see [27, Theorem II.6.2]), we ob-
tain (2.5). �
Remark 2.2. Whether γ1 is small or not, especially when compared to α in (2.1), is a very crucial
point in our a priori estimates for LBCF (see Proposition 4.1). This is why we distinguish γ1 from
other constants C and do not combine γ1 with them. As Lemma 2.2(i) shows, this problem does not
happen when we consider SBCF.

The following, which are readily obtainable consequences of standard trace and (solenoidal) exten-
sion theorems ([10, Theorems I.1.5–6, Lemma I.2.2], see also [16, Section 5.3]), are frequently used in
subsequent arguments.

Lemma 2.3.

(i) For v ∈ Vn, it holds that ‖vτ ‖H1/2(Γ1)d � C‖v‖H1(Ω)d .

(ii) For η ∈ H1/2(Γ1)
d satisfying ηn = 0 on Γ1 , there exists v ∈ Vn,σ such that vτ = η on Γ1 and

‖v‖H1(Ω)d � C‖η‖H1/2(Γ1)d .

Lemma 2.4.

(i) For v ∈ Vτ , it holds that ‖vn‖H1/2(Γ1) � C‖v‖H1(Ω)d .

(ii) For η ∈ H1/2(Γ1) (resp. η ∈ H1/2(Γ1) ∩ L2
0(Γ1)), there exists v ∈ Vτ (resp. v ∈ Vτ ,σ ) such that vn = η

on Γ1 and ‖v‖H1(Ω)d � C‖η‖H1/2(Γ1) .

The definition of σ(u, p) given in Section 1 becomes ambiguous when (u, p) has only lower regu-
larity, say u ∈ H1(Ω)d , p ∈ L2(Ω). Thus we propose a redefinition of it, based on the following Green
formula:

(−ν�u + ∇p, v) +
∫
Γ

σ (u, p) · v ds = a0(u, v) + b(v, p) (if div u = 0).

Definition 2.1. Let u(t) ∈ Vσ , p(t) ∈ Q , u′(t) ∈ L2(Ω)d , f (t) ∈ L2(Ω)d . If (1.1) holds in the distribution
sense for a.e. t ∈ (0, T ), that is,

(
u′, v

) + a0(u, v) + a1(u, u, v) + b(v, p) = ( f , v) (∀v ∈ V̊ ), (2.6)
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then we define σ = σ(u, p) ∈ (H1/2(Γ1)
d)′ by

〈σ , v〉H1/2(Γ1)d = a0(u, v) + b(v, p) − 〈F , v〉V (∀v ∈ V ), (2.7)

where F (t) ∈ V ′ is given by 〈F , v〉V = ( f , v) − (u′, v) − a1(u, u, v).

The above σ is well-defined by virtue of the trace and extension theorem. It coincides with the
previous definition when (u, p) is sufficiently smooth. In addition, by Lemmas 2.3 and 2.4, στ =
σ − (σ · n)n ∈ (H1/2(Γ1)

d)′ and σn = σ · n ∈ H1/2(Γ1)
′ are characterized by

{ 〈στ ,ηn〉H1/2(Γ1)d = 0
(∀η ∈ H1/2(Γ1)

)
,

〈στ , vτ 〉H1/2(Γ1)d = a0(u, v) + b(v, p) − 〈F , v〉Vn (∀v ∈ Vn),

and

〈σn, vn〉H1/2(Γ1) = a0(u, v) + b(v, p) − 〈F , v〉Vτ (∀v ∈ Vτ ),

respectively. By Lemma 2.3(ii), στ actually does not depend on p.

3. Navier–Stokes problem with SBCF

3.1. Weak formulations

Throughout this section, we assume f ∈ L2(Ω × (0, T ))d , u0 ∈ Vn,σ , and g ∈ L2(Γ1 × (0, T )) with
g > 0. Further regularity assumptions on these data will be given before Theorem 3.2. In addition, we
introduce

jτ (t;η) =
∫
Γ1

g(t)|η|ds
(
η ∈ L2(Γ1)

d), (3.1)

which is just written as j(η), to simplify notation, until the end of this section. j is obviously nonneg-
ative, positively homogeneous, and Lipschitz continuous for a.e. t ∈ (0, T ). A primal weak formulation
of (1.1)–(1.4) with (1.5) is as follows:

Problem PDE-SBCF. For a.e. t ∈ (0, T ), find (u(t), p(t)) ∈ Vn × Q̊ such that u′(t) ∈ L2(Ω)d , u(0) = u0,
στ is well-defined in the sense of Definition 2.1, |στ | � g a.e. on Γ1, and στ ·uτ + g|uτ | = 0 a.e. on Γ1.

Throughout this section, we refer to Problem PDE-SBCF just as Problem PDE. Similar abbreviation
will be made for other problems.

One can easily find that a classical solution of (1.1)–(1.4) with (1.5) solves Problem PDE, and that
a sufficiently smooth solution of Problem PDE is a classical solution. As the next theorem shows,
Problem PDE is equivalent to the following variational inequality problem.

Problem VIσ -SBCF. For a.e. t ∈ (0, T ), find u(t) ∈ Vn,σ such that u′(t) ∈ L2(Ω)d , u(0) = u0, and

(
u′, v − u

) + a0(u, v − u) + a1(u, u, v − u) + j(vτ ) − j(uτ )� ( f , v − u) (3.2)

for all v ∈ Vn,σ . Here j = jτ (t; ·) is defined in (3.1).

Theorem 3.1. Problems PDE and VIσ are equivalent.
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Proof. Let (u, p) solve Problem PDE. Then, for v ∈ Vn it follows that(
u′, v

) + a0(u, v) + a1(u, u, v) + b(v, p) − (στ , vτ )L2(Γ1)d = ( f , v). (3.3)

Using this equation together with |στ | � g and στ · uτ + g|uτ | = 0, we have

(
u′, v − u

) + a0(u, v − u) + a1(u, u, v − u) + j(vτ ) − j(uτ ) − ( f , v − u)

= −(στ , vτ − uτ )L2(Γ1)d + j(vτ ) − j(uτ )

=
∫
Γ1

(
g|vτ | − στ vτ

)
ds � 0,

for all v ∈ Vn,σ . Hence u is a solution of Problem VIσ .
Next, let u be a solution of Problem VIσ . Taking u ± v as a test function in (3.2), with arbitrary

v ∈ V̊σ , we find that (
u′, v

) + a0(u, v) + a1(u, u, v) = ( f , v) (∀v ∈ V̊σ ). (3.4)

By a standard theory (see [30, Propositions I.1.1 and I.1.2]), there exists unique p ∈ Q̊ such that (2.6)
holds. Therefore, στ ∈ (H1/2(Γ1)

d)′ is well-defined, and thus(
u′, v

) + a0(u, v) + a1(u, u, v) + b(v, p) − 〈στ , vτ 〉H1/2(Γ1)d = ( f , v) (∀v ∈ Vn).

Combining this equation with (3.2), we obtain

−〈στ , vτ − uτ 〉H1/2(Γ1)d �
∫
Γ1

g
(|vτ | − |uτ |)ds (∀v ∈ Vn,σ ), (3.5)

and as a result of triangle inequality, |〈στ , vτ 〉H1/2(Γ1)d | � ∫
Γ1

g|vτ |ds for v ∈ Vn,σ . In view of

Lemma 2.3(ii), this implies that for η ∈ H1/2(Γ1)
d

∣∣〈στ ,η〉H1/2(Γ1)d

∣∣ = ∣∣〈στ ,ητ 〉H1/2(Γ1)d

∣∣ � ‖ητ ‖L1
g (Γ1)d � ‖η‖L1

g (Γ1)d .

By a density argument, we can extend στ to an element of (L1
g(Γ )d)′ such that

∣∣〈στ ,η〉L1
g (Γ1)d

∣∣ � ‖η‖L1
g (Γ1)d

(∀η ∈ L1
g(Γ1)

d).
Since (L1

g(Γ1)
d)′ = L∞

1/g(Γ1)
d , we conclude |στ | � g . Then στ · uτ + g|uτ | = 0 follows from (3.5) with

v = 0. Hence (u, p) is a solution of Problem PDE. �
3.2. Main theorem. Proof of uniqueness

We are now in a position to state our main theorem. We assume:

(S1) f ∈ H1(0, T ; L2(Ω)d).
(S2) g ∈ H1(0, T ; L2(Γ1)) with g(0) ∈ H1(Γ1).
(S3) u0 ∈ H2(Ω)d ∩ Vn,σ , and SBCF is satisfied at t = 0, namely,

∣∣στ (u0)
∣∣ � g(0) and στ (u0) · u0τ + g(0)|u0τ | = 0 a.e. on Γ1.



T. Kashiwabara / J. Differential Equations 254 (2013) 756–778 763
Note that στ (u0) can be defined in a usual sense because u0 ∈ H2(Ω)d .

Theorem 3.2. Under (S1)–(S3), when d = 2 there exists a unique solution u of Problem VIσ such that

u ∈ L∞(0, T ; Vn,σ ), u′ ∈ L∞(
0, T ; L2(Ω)d) ∩ L2(0, T ; Vn,σ ).

When d = 3, the same conclusion holds on some smaller time interval (0, T ′).

We call the solution in the above theorem a strong solution of Problem VIσ . First we prove the
uniqueness of a strong solution. The existence will be proved in Section 3.4 after some additional
preparations.

Proposition 3.1. If u1 and u2 are strong solutions of Problem VIσ , then u1 = u2 .

Proof. Taking v = u2 and v = u1 in (3.2) for u1 and that for u2 respectively, and adding the resulting
two inequalities, for a.e. t ∈ (0, T ) we obtain

(
u′

1 − u′
2, u1 − u2

) + a0(u1 − u2, u1 − u2)

� a1(u1, u1, u2 − u1) + a1(u2, u2, u1 − u2)

= −a1(u1 − u2, u2, u1 − u2) − a1(u2, u1 − u2, u1 − u2). (3.6)

We deduce from (2.3), together with Young’s inequality, that

∣∣a1(u1 − u2, u2, u1 − u2)
∣∣ � C‖u1 − u2‖1/2

L2(Ω)d‖u1 − u2‖3/2
H1(Ω)d‖u2‖H1(Ω)d

� α

2
‖u1 − u2‖2

H1(Ω)d + C‖u2‖2
H1(Ω)d‖u1 − u2‖2

L2(Ω)d ,

∣∣a1(u2, u1 − u2, u1 − u2)
∣∣ � C‖u2‖H1(Ω)d‖u1 − u2‖7/4

H1(Ω)d‖u1 − u2‖1/4
L2(Ω)d

� α

2
‖u1 − u2‖2

H1(Ω)d + C‖u2‖8
H1(Ω)d‖u1 − u2‖2

L2(Ω)d .

Combining (2.1) and these estimates with (3.6), we have

d

dt
‖u1 − u2‖2

L2(Ω)d � C
(‖u2‖2

H1(Ω)d + ‖u2‖8
H1(Ω)d

)‖u1 − u2‖2
L2(Ω)d .

By Gronwall’s inequality, we conclude

∥∥u1(t) − u2(t)
∥∥2

L2(Ω)d � e
∫ t

0 C(‖u2‖2
H1(Ω)d

+‖u2‖8
H1(Ω)d

)dt∥∥u1(0) − u2(0)
∥∥2

L2(Ω)d = 0,

since u1(0) = u2(0) = u0. (Note that
∫ t

0 (‖u2‖2
H1(Ω)d + ‖u2‖8

H1(Ω)d )dt remains finite because u ∈
L∞(0, T ; H1(Ω)d).) Thus u1(t) = u2(t). �
Remark 3.1. In the case of SBCF here, the last term of (3.6) vanishes, according to Lemma 2.2(i). We
did not use that fact because we would like to make our proof of uniqueness remain unchanged when
we deal with LBCF.

Concerning the associated pressure, we find:
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Proposition 3.2. Under the assumptions of Theorem 3.2, let u be the strong solution of Problem VIσ , and p be
the associated pressure obtained in the proof of Theorem 3.1. Then p ∈ L∞(0, T ; Q̊ ).

Proof. For a.e. t ∈ (0, T ), the well-known inf–sup condition (see [10, I.(5.14)]), together with (3.3),
(2.4), and |στ | � g a.e. on Γ1, yields

‖p‖L2(Ω) � sup
v∈V̊

b(v, p)

‖v‖H1(Ω)d

�
∥∥u′∥∥

L2(Ω)d + C‖u‖H1(Ω)d + C‖u‖2
H1(Ω)d + C‖g‖L2(Γ1) + ‖ f ‖L2(Ω)d .

Since RHS is bounded uniformly in t , p is in L∞(0, T ; Q̊ ). �
3.3. Regularized problem

To prove the solvability of Problem VIσ , we consider a regularized variational inequality, which is
shown to be equivalent to a variational equation.

Before stating those problems in detail, for fixed ε > 0 we introduce

jε(η) =
∫
Γ1

gρε(η)ds
(
η ∈ L2(Γ1)

d),
where ρε is a regularization of | · | having the following properties:

(a) ρε ∈ C2(Rd) is a nonnegative convex function.
(b) It holds that

∣∣ρε(z) − |z|∣∣ � ε
(∀z ∈R

d). (3.7)

(c) If αε denotes ∇ρε , then

∣∣αε(z)
∣∣ � 1 and αε(z) · z � 0

(∀z ∈R
d). (3.8)

In particular, as a result of the convexity, the Hessian of ρε , denoted by βε , is semi-positive definite,
that is,

tyβε(z)y � 0
(∀y, z ∈ R

d), (3.9)

where ty means the transpose of y. Such ρε does exist; for example, ρε(z) = √|z|2 + ε2 enjoys all of
(a)–(c) above.

Remark 3.2. One could use the Moreau–Yoshida approximation of | · | as ρε , which is considered
in [28], but it is only in C1(Rd), not in C2(Rd).

Since ρε is differentiable, the functional jε is Gâteaux differentiable, with its derivative D jε(η) ∈
(H1/2(Γ1)

d)′ computed by

〈
D jε(η), ξ

〉
H1/2(Γ1)d =

∫
Γ1

gαε(η) · ξ ds
(
η, ξ ∈ H1/2(Γ1)

d).
We are ready to state the regularized problems mentioned above.
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Problem VIεσ -SBCF. For a.e. t ∈ (0, T ), find uε(t) ∈ Vn,σ such that u′
ε(t) ∈ L2(Ω)d , uε(0) = uε

0 and

(
u′

ε, v − uε

) + a0(uε, v − uε) + a1(uε, uε, v − uε) + jε(vτ ) − jε(uετ )

� ( f , v − uε) (∀v ∈ Vn,σ ). (3.10)

Problem VEε
σ -SBCF. For a.e. t ∈ (0, T ), find uε(t) ∈ Vn,σ such that u′

ε(t) ∈ L2(Ω)d , uε(0) = uε
0 and

(
u′

ε, v
) + a0(uε, v) + a1(uε, uε, v) +

∫
Γ1

gαε(uετ ) · vτ ds = ( f , v) (∀v ∈ Vn,σ ). (3.11)

Here, uε
0 is a perturbation of the original initial velocity u0. The way one obtains uε

0 from u0 is
described later. By an elementary observation (e.g. [5, Section 3.3] or [28, Lemma 3.3]), we see that:

Proposition 3.3. Problems VIεσ and VEε
σ are equivalent.

Now we focus on the construction of a perturbed initial velocity uε
0. Since u0 ∈ H2(Ω)d satis-

fies SBCF by (S3), it follows from the Green formula a0(u0, v) = (−ν�u0, v) + ∫
Γ1

στ (u0) · vτ ds, for
v ∈ Vn,σ , that

a0(u0, v − u0) +
∫
Γ1

g(0)|vτ |ds −
∫
Γ1

g(0)|u0τ |ds � (−ν�u0, v − u0). (3.12)

Here we consider the regularized problem: find uε
0 ∈ Vn,σ such that

a0
(
uε

0, v − uε
0

) +
∫
Γ1

g(0)ρε(vτ )ds −
∫
Γ1

g(0)ρε

(
uε

0τ

)
ds �

(−ν�u0, v − uε
0

)
(∀v ∈ Vn,σ ), (3.13)

which is equivalent to (cf. Proposition 3.3)

a0
(
uε

0, v
) +

∫
Γ1

g(0)αε

(
uε

0τ

) · vτ ds = (−ν�u0, v) (∀v ∈ Vn,σ ). (3.14)

By a standard theory of elliptic variational inequalities [11], (3.13) admits a unique solution uε
0, which

is the perturbation of u0 in question. With this setting, we find:

Lemma 3.1.

(i) When ε → 0, uε
0 → u0 strongly in H1(Ω)d.

(ii) uε
0 ∈ H2(Ω)d and

∥∥uε
0

∥∥
H2(Ω)d � C

(‖ν�u0‖ + ∥∥g(0)
∥∥

H1(Γ1)

)
. (3.15)

Proof. (i) Taking v = u0 in (3.13) and v = uε
0 in (3.12), adding the resulting two inequalities, applying

Korn’s inequality, and using (3.7), we conclude
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α
∥∥uε

0 − u0
∥∥2

H1(Ω)d �
∫
Γ1

g(0)
(∣∣uε

0

∣∣ − ρε

(
uε

0

))
ds +

∫
Γ1

g(0)
(
ρε(u0) − |u0|

)
ds

� 2ε

∫
Γ1

g(0)ds → 0 (ε → 0).

(ii) Since g(0) ∈ H1(Γ1) by (S2), we can directly apply the regularity result [28, Lemma 5.2] to the
elliptic variational inequality (3.13), and obtain (3.15). Though our ρε and αε are different from those
of [28], it makes no difference in the proof of that lemma. �
Remark 3.3.

(i) As a result of (i) above, for sufficiently small ε > 0 we have

∥∥uε
0

∥∥
L2(Ω)d � 2‖u0‖L2(Ω)d and

∥∥uε
0

∥∥
H1(Ω)d � 2‖u0‖H1(Ω)d . (3.16)

(ii) Concerning the regularity of the domain, [28] assumes that Γ0 and Γ1 are class of C2 and C4

respectively, which is sufficient for our theory as well.

Remark 3.4. In [28], dealing with the stationary problem, the author stated that g ∈ H1/2(Γ1) was
enough to derive u ∈ H2(Ω)d and p ∈ H1(Ω). However, it turned out that his proof presented there
worked only for g ∈ H1(Γ1); see the errata by the same author. This is why we have assumed g(0) ∈
H1(Γ1) in (S2), not g(0) ∈ H1/2(Γ1).

3.4. Proof of existence

Due to Proposition 3.3, we concentrate on solving Problem VEε
σ . In doing so, we construct ap-

proximate solutions by Galerkin’s method. Since Vn,σ ⊂ H1(Ω)d is separable, there exist members
w1, w2, . . . ∈ Vn,σ , linear independent to each other, such that

⋃∞
m=1 span{wk}m

k=1 ⊂ Vn,σ dense in
H1(Ω)d . Here ε is fixed, and thus we may assume w1 = uε

0.

Problem VEε,m
σ -SBCF. Find ck ∈ C2([0, T ]) (k = 1, . . . ,m) such that um ∈ Vn,σ defined by um =∑m

k=1 ck(t)wk satisfies um(0) = uε
0 and

(
u′

m, wk
) + a0(um, wk) + a1(um, um, wk) +

∫
Γ1

gαε(umτ ) · wkτ ds = ( f , wk) (k = 1, . . . ,m).

(3.17)

Since αε ∈ C1(Rd)d , the system of ordinal differential equations (3.17) admits unique solutions
ck ∈ C2([0, T̃ ]) (k = 1, . . . ,m) for some T̃ � T . The a priori estimate below shows T̃ can be taken
as T , so that we write T instead of T̃ from the beginning.

Proposition 3.4. Let (S1)–(S3) be valid and ε be small enough so that (3.16) holds.

(i) When d = 2, um ∈ L∞(0, T ; Vn,σ ) and u′
m ∈ L∞(0, T ; L2(Ω)d) ∩ L2(0, T ; Vn,σ ) are bounded indepen-

dently of m and ε .
(ii) When d = 3, the same conclusion holds for some smaller interval (0, T ′), which can be taken indepen-

dently of m and ε .
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Proof. Due to space limitations, we simply write ‖u‖L2 ,‖g‖L2 ,‖ f ‖L2 , . . . instead of ‖u‖L2(Ω)d ,

‖g‖L2(Γ1),‖ f ‖L2(Ω)d , . . . and so on.
(i) Multiplying (3.17) by ck(t), and adding the resulting equations for k = 1, . . . ,m, we obtain

(
u′

m, um
) + a0(um, um) +

∫
Γ1

gαε(umτ ) · umτ ds = ( f , um),

where we have used Lemma 2.2(i). It follows from (2.1) and (3.8) that

1

2

d

dt
‖um‖2

L2 + α‖um‖2
H1 � ( f , um) � ‖ f ‖L2‖um‖H1 �

α

2
‖um‖2

H1 + 1

2α
‖ f ‖2

L2 ,

which gives

d

dt
‖um‖2

L2 + α‖um‖2
H1 � C‖ f ‖2

L2 . (3.18)

Consequently, for 0 � t � T ,

∥∥um(t)
∥∥2

L2 + α

T∫
0

‖um‖2
H1 dt �

∥∥uε
0

∥∥2
L2 + C

T∫
0

‖ f ‖2
L2 dt. (3.19)

From (3.16), we find that ‖um‖L∞(0,T ;L2) and ‖um‖L2(0,T ;Vn,σ ) are bounded by C( f , u0) independently
of m and ε .

Next, we differentiate (3.17) with respect to t , which is possible because ck(t)’s are in C2([0, T ]),
to deduce

(
u′′

m, wk
) + a0

(
u′

m, wk
) + a1

(
u′

m, um, wk
) + a1

(
um, u′

m, wk
)

+
∫
Γ1

g′αε(umτ ) · wkτ ds +
∫
Γ1

g tu′
mτ βε(umτ )wkτ ds

= (
f ′, wk

)
(k = 1, . . . ,m).

Multiplying this by c′
k(t), and adding the resulting equations, we obtain

(
u′′

m, u′
m

) + a0
(
u′

m, u′
m

) + a1
(
u′

m, um, u′
m

) +
∫
Γ1

g′αε(umτ ) · u′
mτ ds +

∫
Γ1

gt u′
mτ βε(umτ )u′

mτ ds

= (
f ′, u′

m

)
, (3.20)

where we have again used Lemma 2.2(i). Here,

a1
(
u′

m, um, u′
m

)
� C

∥∥u′
m

∥∥
L2‖um‖H1

∥∥u′
m

∥∥
H1

(
by (2.2)

)
� α ∥∥u′

m

∥∥2
H1 + C‖um‖2

H1

∥∥u′
m

∥∥2
L2 , (3.21)
6
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∣∣∣∣
∫
Γ1

g′αε(umτ ) · u′
mτ ds

∣∣∣∣ � ∥∥g′∥∥
L2

∥∥u′
mτ

∥∥
L2(Γ1)d

(
by (3.8)

)
� C

∥∥g′∥∥
L2

∥∥u′
m

∥∥
H1

(
by Lemma 2.3(i)

)
� α

6

∥∥u′
m

∥∥2
H1 + C

∥∥g′∥∥2
L2 ,

∫
Γ1

g tu′
mτ βε(umτ )u′

mτ ds � 0
(
by g > 0 and (3.9)

)
,

∣∣( f ′, u′
m

)∣∣ � ∥∥ f ′∥∥
L2

∥∥u′
m

∥∥
H1 �

α

6

∥∥u′
m

∥∥2
H1 + C

∥∥ f ′∥∥2
L2 .

Collecting these estimates, it follows from (3.20) that for 0 � t � T

d

dt

∥∥u′
m

∥∥2
L2 + α

∥∥u′
m

∥∥2
H1 � C

(∥∥ f ′∥∥2
L2 + ∥∥g′∥∥2

L2

) + C‖um‖2
H1

∥∥u′
m

∥∥2
L2 . (3.22)

If the second term of LHS is neglected, Gronwall’s inequality leads to

∥∥u′
m(t)

∥∥2
L2 �

(∥∥u′
m(0)

∥∥2
L2 + C

T∫
0

(∥∥ f ′∥∥2
L2 + ∥∥g′∥∥2

L2

)
dt

)
e

C
∫ T

0 ‖um‖2
H1 dt

. (3.23)

Provided that ‖u′
m(0)‖2

L2 is bounded independently of m and ε , estimate (3.23) gives the boundedness
of ‖u′

m‖L∞(0,T ;L2) because we already know that of ‖um‖L2(0,T ;Vn,σ ) due to (3.19). Then, by (3.18) and
(3.19) we have

α
∥∥um(t)

∥∥2
H1 � C‖ f ‖2

L2 + ∥∥u′
m

∥∥
L2‖um‖L2 � C( f , g, u0),

which implies ‖um‖L∞(0,T ;Vn,σ ) is bounded. Finally, integrating (3.22), we see that ‖u′
m‖L2(0,T ;Vn,σ ) is

also bounded.
To show the boundedness of ‖u′

m(0)‖2
L2 , we multiply (3.17) by c′

k(t), add the resulting equations,
and make t = 0, arriving at

∥∥u′
m(0)

∥∥2
L2 + a0

(
uε

0, u′
m(0)

) + a1
(
uε

0, uε
0, u′

m(0)
) +

∫
Γ1

g(0)αε

(
uε

0τ

) · u′
mτ (0)ds

= (
f (0), u′

m(0)
)
. (3.24)

From the construction of uε
0, especially (3.14), we have

∣∣∣∣a0
(
uε

0, u′
m(0)

) +
∫
Γ1

g(0)αε

(
uε

0τ

) · u′
mτ (0)ds

∣∣∣∣ = ∣∣(−ν�u0, u′
m(0)

)∣∣
� C‖u0‖H2

∥∥u′
m(0)

∥∥
L2 . (3.25)

Furthermore, by Schwarz’s inequality, Sobolev’s inequality and (3.15),
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∣∣a1
(
uε

0, uε
0, u′

m(0)
)∣∣ � C

∥∥uε
0

∥∥
L∞

∥∥uε
0

∥∥
H1

∥∥u′
m(0)

∥∥
L2 � C

∥∥uε
0

∥∥2
H2

∥∥u′
m(0)

∥∥
L2

� C
(‖u0‖H2 + ∥∥g(0)

∥∥
H1

)2∥∥u′
m(0)

∥∥
L2 .

Combining these estimates with (3.24), we obtain

∥∥u′
m(0)

∥∥
L2 �

∥∥ f (0)
∥∥

L2 + C‖u0‖H2 + C
(‖u0‖H2 + ∥∥g(0)

∥∥
H1

)2
,

which proves the boundedness of ‖u′
m(0)‖2

L2 . This completes the proof of (i).
(ii) The discussion before (3.21) and the observation for ‖u′

m(0)‖L2 are the same as (i). What
changes from the case d = 2 is that when d = 3, instead of (3.21), we only have (by (2.3) and Young’s
inequality)

∣∣a1
(
u′

m, um, u′
m

)∣∣ � C
∥∥u′

m

∥∥1/2
L2 ‖um‖H1

∥∥u′
m

∥∥3/2
H1

� γ ‖um‖H1

∥∥u′
m

∥∥2
H1 + C‖um‖H1

∥∥u′
m

∥∥2
L2 ,

for a constant γ > 0 which can be arbitrarily small. We choose γ satisfying γ ‖u0‖H1 � α
24 , and

from (3.16) we obtain γ ‖uε
0‖H1 � α

12 . Let T ′ > 0, which may depend on m, ε at this stage, be the
maximum value of t such that γ ‖um(t)‖H1 � α

6 . If γ ‖um(t)‖H1 < α
6 for all 0 � t � T , we set T ′ = T .

Since γ ‖um(0)‖H1 < α
6 and um(t) is continuous with respect to t , such T ′ does exist, and furthermore

if T ′ < T then γ ‖um(t)‖H1 = α
6 .

Therefore, in place of (3.22) we obtain

d

dt

∥∥u′
m

∥∥2
L2 + α

∥∥u′
m

∥∥2
H1 � C

(∥∥ f ′∥∥2
L2 + ∥∥g′∥∥2

L2

) + C‖um‖H1

∥∥u′
m

∥∥2
L2

(
0 � t � T ′),

which leads to the boundedness of ‖u′
m‖L2(0,T ′;Vn,σ ) and ‖u′

m‖L∞(0,T ′;L2) , together with
‖um‖L∞(0,T ′;Vn,σ ) .

Finally, let us prove that T ′ is bounded from below independently of m and ε . In fact, if T ′ < T
then we see that

α

12γ
�

∥∥um
(
T ′)∥∥

H1 − ∥∥um(0)
∥∥

H1 �
∥∥um

(
T ′) − um(0)

∥∥
H1 =

∥∥∥∥∥
T ′∫

0

u′
m(t)dt

∥∥∥∥∥
H1

�
T ′∫

0

∥∥u′
m(t)

∥∥
H1 dt �

√
T ′∥∥u′

m

∥∥
L2(0,T ′;Vn,σ )

.

Since we already know ‖u′
m‖L2(0,T ′;Vn,σ ) is bounded, we obtain the lower bound for T ′ . This completes

the proof of Proposition 3.4. �
Remark 3.5.

(i) A naive computation gives, by (3.8),∣∣∣∣
∫
Γ1

g(0)αε

(
uε

0τ

) · u′
mτ (0)ds

∣∣∣∣ � ∥∥g(0)
∥∥

L2(Γ1)

∥∥u′
mτ (0)

∥∥
L2(Γ1)d ,

but ‖u′
mτ (0)‖L2(Γ1)d cannot be bounded by ‖u′

m(0)‖L2(Ω)d in general. Therefore, the perturbation
of u0, which is based on the compatibility condition in (S3), is essential in deriving (3.25).



770 T. Kashiwabara / J. Differential Equations 254 (2013) 756–778
(ii) If d = 3 and f , g , u0 are sufficiently small, we can prove γ ‖um(t)‖H1(Ω)d � α
6 for all 0 � t � T ,

and consequently the existence of a global solution.

As a final step for our proof of the existence, we discuss passing to the limits m → ∞ and ε → 0.
The proof below is valid for both d = 2,3, except that when d = 3 we have to replace T with T ′ given
in Proposition 3.4.

Proposition 3.5.

(i) Under the assumptions of Proposition 3.4, there exists a solution uε of Problem VIεσ such that all of
‖uε‖L∞(0,T ;Vn,σ ) , ‖u′

ε‖L2(0,T ;Vn,σ ) , and ‖u′
ε‖L∞(0,T ;L2(Ω)d) are bounded independently of ε .

(ii) There exists a strong solution of Problem VIσ .

Proof. (i) As a consequence of Proposition 3.4, we can extract a subsequence of {um}∞m=1, denoted by
the same symbol, such that

um ⇀ uε weakly-∗ in L∞(0, T ; Vn,σ ),

u′
m ⇀ u′

ε weakly in L2(0, T ; Vn,σ ) and weakly-∗ in L∞(
0, T ; L2(Ω)d),

for some uε ∈ L∞(0, T ; Vn,σ ), u′
ε ∈ L2(0, T ; Vn,σ )∩ L∞(0, T ; L2(Ω)d). The norms of uε and u′

ε in those
spaces are uniformly bounded in ε .

Let us prove uε solves Problem VIεσ . By Proposition 3.3, it suffices to show uε solves Problem VEε
σ .

For φ ∈ C∞
0 (0, T ), it follows from (3.17) that

T∫
0

φ(t)

{(
u′

m, wk
) + a0(um, wk) + a1(um, um, wk) +

∫
Γ1

gαε(umτ ) · wkτ ds − ( f , wk)

}
dt = 0

(k = 1, . . . ,m). (3.26)

By standard compactness results (see [30, Theorem III.2.1], [27, Theorem II.6.2]), um → uε strongly in
L2(0, T ; L4(Ω)d) and umτ → uετ strongly in L2(Γ1 × (0, T ))d . In particular, umτ → uετ a.e. on Γ1 ×
(0, T ), and thus the continuity of αε(z) yields αε(umτ ) → αε(uετ ) a.e. From Lebesgue’s convergence
theorem combined with a density argument, we see that (3.26) holds, with um and wk replaced by
uε and arbitrary v ∈ Vn,σ respectively. Hence (3.11) holds for a.e. t , which implies that uε solves
Problem VEε

σ .
(ii) As a result of (i), we can extract a subsequence of {uε}ε↓0, denoted by the same symbol, such

that

uε ⇀ u weakly-∗ in L∞(0, T ; Vn,σ ),

u′
ε ⇀ u′ weakly in L2(0, T ; Vn,σ ) and weakly-∗ in L∞(

0, T ; L2(Ω)d),
for some u ∈ L∞(0, T ; Vn,σ ), u′ ∈ L2(0, T ; Vn,σ ) ∩ L∞(0, T ; L2(Ω)d). As before, one sees that uε → u
strongly in L2(0, T ; L4(Ω)d) and uετ → uτ strongly in L2(Γ1 × (0, T )). In addition, uε ⇀ u weakly in
L2(0, T ; Vn,σ ), and thus it follows that

∫ T
0 a0(u, u)dt � limε→0

∫ T
0 a0(uε , uε)dt .

Let ṽ ∈ L2(0, T ; Vn,σ ) be arbitrary. We take v = ṽ(t) in (3.10) and integrate the resulting equation
over (0, T ) to deduce
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T∫
0

{(
u′

ε, ṽ − uε

) + a0(uε, ṽ − uε) + a1(uε, uε, ṽ − uε)

+ jε(ṽτ ) − jε(uετ ) − ( f , ṽ − uε)
}

dt � 0. (3.27)

In view of (3.7), together with triangle inequality and Lipschitz continuity of j, we have
∫ T

0 jε(ṽτ )dt →∫ T
0 j(ṽτ )dt and

∫ T
0 jε(uετ )dt → ∫ T

0 j(uτ )dt when ε → 0. Therefore, taking the lower limit, we see
that (3.27), with uε replaced by u, holds. Then, a technique using the Lebesgue differentiation theo-
rem (see [5, p. 57]) enables us to conclude that u satisfies (3.2) at a.e. t .

For the initial condition, Lemma 3.1(i) leads to u(0) = limε→0 uε(0) = limε→0 uε
0 = u0. Hence u is

a strong solution of Problem VIσ . �
Propositions 3.1 and 3.5(ii) complete the proof of Theorem 3.2.

4. Navier–Stokes problem with LBCF

4.1. Weak formulations

Throughout this section, we assume f ∈ L2(Ω × (0, T ))d , u0 ∈ Vτ ,σ , and g ∈ L2(Γ1 × (0, T )) with
g > 0. Further regularity assumptions on these data will be given before Theorem 4.2. As in SBCF, we
introduce

jn(t;η) =
∫
Γ1

g(t)|η|ds
(
η ∈ L2(Γ1)

)
, (4.1)

which is simply written as j(η) until the end of this section (note that η is scalar). A primal weak
formulation of (1.1)–(1.4) with (1.6) is as follows:

Problem PDE-LBCF. For a.e. t ∈ (0, T ), find (u(t), p(t)) ∈ Vτ × Q such that u′(t) ∈ L2(Ω)d , u(0) = u0,
σn is well-defined in the sense of Definition 2.1, |σn| � g a.e. on Γ1, and σnun + g|un| = 0 a.e. on Γ1.

Throughout this section, we refer to Problem PDE-LBCF just as Problem PDE. Similar abbreviation
will be made for other problems. Next, as in SBCF, we propose a variational inequality problem:

Problem VIσ -LBCF. For a.e. t ∈ (0, T ), find u(t) ∈ Vτ ,σ such that u′(t) ∈ L2(Ω)d , u(0) = u0 and

(
u′, v − u

) + a0(u, v − u) + a1(u, u, v − u) + j(vn) − j(un) � ( f , v − u) (4.2)

for all v ∈ Vτ ,σ . Here j = jn(t; ·) is defined in (4.1).

Unlike the case of SBCF, Problem VIσ is not exactly equivalent to Problem PDE, as is shown in the
following theorem.

Theorem 4.1.

(i) If (u, p) solves Problem PDE, then u solves Problem VIσ .
(ii) If u solves Problem VIσ , then there exists at least one p such that (u, p) solves Problem PDE. If another p∗

satisfies the same condition, then for a.e. t ∈ (0, T ) there exists a unique δ(t) ∈R such that

p(t) = p∗(t) + δ(t) and σn
(
u(t), p(t)

) = σn
(
u(t), p∗(t)

) − δ(t). (4.3)



772 T. Kashiwabara / J. Differential Equations 254 (2013) 756–778
(iii) In (ii), if we assume furthermore un(t) �= 0, then δ(t) = 0. Namely, the associated pressure is uniquely
determined.

Proof. (i) This can be proved by the same way as Theorem 3.1.
(ii) For a.e. t ∈ (0, T ) and v ∈ V̊σ , it follows from (4.2) that (u′, v) + a0(u, v) + a1(u, u, v) = ( f , v),

and thus there exists unique p̊ ∈ Q̊ such that

(
u′, v

) + a0(u, v) + a1(u, u, v) + b(v, p̊) = ( f , v) (∀v ∈ V̊ ).

According to Definition 2.1, σ̊n = σn(u, p̊) is well-defined, so that

(
u′, v

) + a0(u, v) + b(v, p̊) + a1(u, u, v) − 〈σ̊n, vn〉H1/2(Γ1) = ( f , v) (∀v ∈ Vτ ).

Substituting this equation into (4.2), we obtain −〈σ̊n, vn − un〉H1/2(Γ1) � j(vn) − j(un) for all v ∈ Vτ ,σ .
It follows from Lemma 2.4(ii) that

∣∣〈σ̊n, η〉H1/2(Γ1)

∣∣ � ∫
Γ1

g|η|ds
(∀η ∈ H1/2(Γ1) ∩ L2

0(Γ1)
)
.

The Hahn–Banach theorem allows us to extend σ̊n to a linear functional σn : L1
g(Γ1) → R satisfying

the same inequality as above for all η ∈ L1
g(Γ1). Therefore, σn ∈ L∞

1/g(Γ1) and |σn| � g . In addition,
σnun + g|un| = 0 follows.

Since σ̊n − σn vanishes on H1/2(Γ1) ∩ L2
0(Γ1), there exists a constant δ(t) such that σ̊n − σn = δ(t).

Now, by setting p(t) = p̊(t) + δ(t), it follows that σn given above actually equals σn(u(t), p(t)) and
that (u(t), p(t)) solves Problem PDE. Relation (4.3) can be verified by a similar argument.

(iii) Since
∫
Γ1

un ds = ∫
Ω

div u dx = 0, the assumption un(t) �= 0 implies that there exist subsets
A+, A− of Γ1 with positive d − 1 dimensional Lebesgue measure satisfying un(t) > 0 on A+ and
un(t) < 0 on A− . Because |σn| � g and σnun + g|un| = 0 on Γ1, σn = −g(t) on A+ and σn = g(t)
on A− . Hence δ(t) in (4.3) cannot be other than zero. �
Remark 4.1. Since |σn| � g , δ(t) is no more than 2g(t) nor less than −2g(t).

4.2. Main theorem

Let us state our main theorems for the case of LBCF. As in SBCF, some compatibility condition is
necessary; it is rather complicated because normal stress at t = 0 involves a pressure at t = 0, which
is not given as a data. The precise description is as follows: we say that LBCF is satisfied at t = 0 if
u0 ∈ H2(Ω)d ∩ Vτ ,σ and there exists p0 ∈ H1(Ω) such that

∣∣σn(u0, p0)
∣∣ � g(0) and σn(u0, p0)u0n + g(0)|u0n| = 0 a.e. on Γ1. (4.4)

We remark that a similar compatibility condition appears in nonlinear semigroup approaches (see
[7,8]).

Furthermore, in order to overcome a difficulty arising from (1.7), we need no-leak condition at
t = 0, that is, u0n = 0 on Γ1. In view of (4.4), this is automatically satisfied if |σn(u0, p0)| < g(0)

on Γ1. Examining our proof of the a priori estimates carefully, one finds that this assumption can be
weaken to the condition that ‖u0n‖L2(Γ1) is sufficiently small.

Including what we have discussed above, we assume the following:

(L1) f ∈ H1(0, T ; L2(Ω)d).
(L2) g ∈ H1(0, T ; L2(Γ1)) with g(0) ∈ H1(Γ1).
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(L3) u0 ∈ H2(Ω)d ∩ Vτ ,σ , and LBCF is satisfied at t = 0.
(L4) u0n = 0 a.e. on Γ1.

Theorem 4.2. Under (L1)–(L4) above, there exists a unique solution u of Problem VIσ on some interval (0, T ′),
with T ′ � T , such that

u ∈ L∞(
0, T ′; Vτ ,σ

)
, u′ ∈ L∞(

0, T ′; L2(Ω)d) ∩ L2(0, T ′; Vτ ,σ

)
.

The uniqueness can be proved by the same way as Proposition 3.1. We can also obtain p ∈
L∞(0, T ′; L2(Ω)) by a similar manner to Proposition 3.2, using the rather infamous inf–sup condi-
tion (see [28, Lemma 2.2])

C‖p‖L2(Ω) � sup
v∈Vτ

b(v, p)

‖v‖H1(Ω)d

(∀p ∈ L2(Ω)
)
.

The rest of this section is devoted to the proof of the existence. To state regularized problems, for
fixed ε > 0 we introduce

jε(η) =
∫
Γ1

gρε(η)ds
(
η ∈ L2(Γ1)

)
,

where ρε is a function satisfying properties (a)–(c) for the case d = 1, considered at the beginning of
Section 3.3. We use the notation introduced there such as αε = dρ/dz and βε = d2ρ/dz2.

Now let us state the regularized problems.

Problem VIεσ -LBCF. For a.e. t ∈ (0, T ), find uε(t) ∈ Vτ ,σ such that u′
ε(t) ∈ L2(Ω)d , uε(0) = uε

0 and

(
u′

ε, v − uε

) + a0(uε, v − uε) + a1(uε, uε, v − uε) + jε(vn) − jε(uεn)

� ( f , v − uε) (∀v ∈ Vτ ,σ ).

Problem VEε
σ -LBCF. For a.e. t ∈ (0, T ), find uε(t) ∈ Vτ ,σ such that u′

ε(t) ∈ L2(Ω)d , uε(0) = uε
0 and

(
u′

ε, v
) + a0(uε, v) + a1(uε, uε, v) +

∫
Γ1

gαε(uεn)vn ds = ( f , v) (∀v ∈ Vτ ,σ ).

As in Proposition 3.3, Problems VIεσ and VEε
σ are equivalent. The construction of the perturbed

initial velocity uε
0 is similar to that of SBCF. In fact, since LBCF holds at t = 0 by (L3), the Green

formula leads to

a0(u0, v − u0) +
∫
Γ1

g(0)|vn|ds −
∫
Γ1

g(0)|u0n|ds � (−ν�u0 + ∇p0, v − u0),

for v ∈ Vτ ,σ . Consider the regularized problem: find uε
0 ∈ Vτ ,σ such that

a0
(
uε

0, v − uε
0

) +
∫
Γ1

g(0)ρε(vn)ds −
∫
Γ1

g(0)ρε

(
uε

0n

)
ds

�
(−ν�u0 + ∇p0, v − uε

0

)
(∀v ∈ Vτ ,σ ), (4.5)
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which is equivalent to (cf. Proposition 3.3)

a0
(
uε

0, v
) +

∫
Γ1

g(0)αε

(
uε

0n

)
vn ds = (−ν�u0 + ∇p0, v) (∀v ∈ Vτ ,σ ). (4.6)

The elliptic variational inequality (4.5) admits a unique solution uε
0, which is the perturbation of u0

in question. With this setting, we find:

Lemma 4.1.

(i) When ε → 0, uε
0 → u0 strongly in H1(Ω)d. In particular, it follows that uε

0 → 0 in L2(Γ1).
(ii) uε

0 ∈ H2(Ω)d and

∥∥uε
0

∥∥
H2(Ω)d � C

(‖ν�u0 + ∇p0‖L2(Ω)d + ∥∥g(0)
∥∥

H1(Γ1)

)
. (4.7)

Proof. (i) is proved by the same way as Lemma 3.1(i). Since g(0) ∈ H1(Γ1) by (L3), (ii) is a direct
consequence of [28, Lemma 4.1]. �
Remark 4.2. By (i) and (L4), for sufficiently small ε > 0 we have

∥∥uε
0

∥∥
L2(Ω)d � 2‖u0‖L2(Ω)d ,

∥∥uε
0

∥∥
H1(Ω)d � 2‖u0‖H1(Ω)d ,

∥∥uε
0n

∥∥
L2(Γ1)

� α

8γ1
, (4.8)

where α and γ1 are the constants in (2.1) and (2.5) respectively.

Remark 4.3. As in SBCF, if Γ0 is C2 and Γ1 is C4, then we can apply Lemma 4.1 of [28]. On the other
hand, g(0) ∈ H1/2(Γ1), stated in [28], is actually insufficient to deduce the H2–H1 regularity (see the
errata of [28]).

To solve Problem VEε
σ , we construct approximate solutions by Galerkin’s method. Since Vτ ,σ ⊂

H1(Ω)d is separable, there exist w1, w2, . . . ∈ Vτ ,σ , linear independent to each other, such that⋃∞
m=1 span{wk}m

k=1 ⊂ Vτ ,σ dense in H1(Ω)d . Here we may assume w1 = uε
0.

Problem VEε,m
σ -LBCF. Find ck ∈ C2([0, T ]) (k = 1, . . . ,m) such that um ∈ Vτ ,σ defined by um =∑m

k=1 ck(t)wk satisfies um(0) = uε
0 and

(
u′

m, wk
) + a0(um, wk) + a1(um, um, wk) +

∫
Γ1

gαε(umn)wkn ds = ( f , wk) (k = 1, . . . ,m). (4.9)

Since αε ∈ C1(R), there exist unique solutions ck ∈ C2([0, T̃ ]) (k = 1, . . . ,m) for some T̃ , which
may depend on m and ε at this stage.

Proposition 4.1. Assume (L1)–(L4), and let ε > 0 be sufficiently small so that (4.8) holds. Then there exists
some interval (0, T ′) such that um ∈ L∞(0, T ′; Vτ ,σ ) and u′

m ∈ L∞(0, T ′; L2(Ω)d)∩ L2(0, T ′; Vτ ,σ ) are uni-
formly bounded with respect to m and ε . Here, T ′ is independent of m and ε .

Proof. Due to space limitations, we sometimes simply write ‖u‖L2 ,‖g‖L2 , . . . , instead of ‖u‖L2(Ω)2 ,

‖g‖L2(Γ ), . . . , when there is no fear of confusion.

1
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First we consider the case d = 2. Multiplying (4.9) by ck(t) for k = 1, . . . ,m, adding them, and
using (2.1), (2.5) and (3.8), we obtain

1

2

d

dt
‖um‖2

L2 + (
α − γ1‖umn‖L2(Γ1)

)‖um‖2
H1 � ( f , um). (4.10)

Since ‖umn(t)‖L2(Γ1) is continuous with respect to t and (4.8) holds, there exists a maximum value

T1 ∈ (0, T̃ ] of t such that γ1‖umn(t)‖L2(Γ1) � α
4 . If this inequality holds for all 0 � t � T̃ , we take

T1 = T̃ . Noting |( f , um)| � α
4 ‖um‖2

H1 + 1
α ‖ f ‖2

L2 , we find from (4.10) that

d

dt
‖um‖2

L2 + α‖um‖2
H1 � C‖ f ‖2

L2 (0 � t � T1).

Hence um ∈ L∞(0, T1; L2) ∩ L2(0, T1; Vτ ,σ ) is uniformly bounded in m and ε .
Next, differentiating (4.9), multiplying the resulting equation by c′

k(t), and adding them, we obtain

(
u′′

m, u′
m

) + a0
(
u′

m, u′
m

) + a1
(
u′

m, um, u′
m

) + a1
(
um, u′

m, u′
m

)
+

∫
Γ1

g′αε(umn)u′
mn ds +

∫
Γ1

gβε(umn)
∣∣u′

mn

∣∣2
ds

= (
f ′, u′

m

)
. (4.11)

Here, we estimate each term in (4.11) as follows:

∣∣a1
(
u′

m, um, u′
m

)∣∣ � C
∥∥u′

m

∥∥
L2‖um‖H1

∥∥u′
m

∥∥
L2

� α

12

∥∥u′
m

∥∥2
H1 + C‖um‖2

H1

∥∥u′
m

∥∥
L2 , (4.12)

∣∣a1
(
um, u′

m, u′
m

)∣∣ � γ1‖umn‖L2(Γ1)

∥∥u′
m

∥∥2
H1 �

α

4

∥∥u′
m

∥∥2
H1 ,∣∣∣∣

∫
Γ1

g′αε(umn)u′
mn ds

∣∣∣∣ � C
∥∥g′∥∥

L2

∥∥u′
m

∥∥
H1 �

α

12

∥∥u′
m

∥∥2
H1 + C

∥∥g′∥∥2
L2 ,

∫
Γ1

gβε(umn)
∣∣u′

mn

∣∣2
ds � 0,

∣∣( f ′, u′
m

)∣∣� α

12

∥∥u′
m

∥∥2
H1 + C

∥∥ f ′∥∥2
L2 .

Collecting these estimates, we derive from (4.11) that for 0 � t � T1

d

dt

∥∥u′
m

∥∥
L2 + α

∥∥u′
m

∥∥2
H1 � C

(∥∥ f ′∥∥2
L2 + ∥∥g′∥∥2

L2

) + C‖um‖2
H1

∥∥u′
m

∥∥2
L2 . (4.13)

Combining the technique used in Proposition 3.4 with (4.6) and (4.7), we observe that ‖u′
m‖L∞(0,T1;L2) ,

‖u′
m‖L2(0,T ;Vτ ,σ ) , and ‖um‖L∞(0,T1;Vτ ,σ ) are bounded by C( f , g, u0, p0).
1
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It remains to show that T1 is bounded from below independently of m, ε . If γ1‖umn(T1)‖L2(Γ1) <

α/4 and thus T1 = T̃ , we can extend um(t) beyond t = T̃ and repeat the above discussion until we
reach either

max
0�t�T

γ1
∥∥umn(t)

∥∥
L2(Γ1)

� α/4 or γ1
∥∥umn(T1)

∥∥
L2(Γ1)

= α/4.

In the former case T1 = T . In the latter case, we have

α

8γ1
�

∥∥umn(T1)
∥∥

L2(Γ1)
− ∥∥umn(0)

∥∥
L2(Γ1)

�
∥∥umn(T1) − umn(0)

∥∥
L2(Γ1)

�
T1∫

0

∥∥u′
mn(t)

∥∥
L2(Γ1)

dt � C

T1∫
0

∥∥u′
m

∥∥
H1(Ω)d dt � C

√
T1

∥∥u′
m

∥∥
L2(0,T1;Vτ ,σ )

.

Hence T1 is bounded from below, and we complete the proof for d = 2.
Second let us consider the case d = 3. What changes from d = 2 is that (4.12) is replaced with

∣∣a1
(
u′

m, um, u′
m

)∣∣ � C
∥∥u′

m

∥∥1/2
L2 ‖um‖H1

∥∥u′
m

∥∥3/2
H1

� γ2‖um‖H1

∥∥u′
m

∥∥2
H1 + C‖um‖H1

∥∥u′
m

∥∥2
L2 ,

where γ2 can be arbitrarily small. We choose γ2 satisfying γ2‖u0‖H1 � α
48 , so that γ2‖uε

0‖H1 � α
24 by

virtue (4.8). Let T2 be the maximum value of t ∈ (0, T̃ ] such that γ2‖um(t)‖H1 � α
12 . If this inequality

holds for all t ∈ (0, T̃ ], we set T2 = T̃ . Such T2 does exist, and if T2 < T̃ then γ2‖um(T2)‖H1 = α
12 .

Therefore, setting T ′ = min(T1, T2), instead of (4.13) we get

d

dt

∥∥u′
m

∥∥
L2 + α

∥∥u′
m

∥∥2
H1 � C

(∥∥ f ′∥∥2
L2 + ∥∥g′∥∥2

L2

) + C‖um‖H1

∥∥u′
m

∥∥2
L2

(
0 � t � T ′).

As a consequence, we observe that ‖u′
m‖L2(0,T ′;Vτ ,σ ) , ‖u′

m‖L∞(0,T ′;L2) , and ‖um‖L∞(0,T ′;Vτ ,σ ) are
bounded by C( f , g, u0, p0).

Now, if T1 < T̃ or T2 < T̃ then T ′ are bounded from below as follows:

α

12γ1
�

∥∥umn
(
T ′)∥∥

L2(Γ1)
− ∥∥umn(0)

∥∥
L2(Γ1)

�
T ′∫

0

∥∥u′
mn

∥∥
L2(Γ1)

dt

� C

T ′∫
0

∥∥u′
m

∥∥
H1 dt � C

√
T1

∥∥u′
m

∥∥
L2(0,T ′;Vτ ,σ )

,

α

24γ2
�

∥∥um
(
T ′)∥∥

H1 − ∥∥um(0)
∥∥

H1 �
T ′∫

0

∥∥u′
m

∥∥
H1 dt �

√
T ′∥∥u′

m

∥∥
L2(0,T ′;Vτ ,σ )

.

When T1 = T̃ and T2 = T̃ , we can extend um(t) beyond t = T̃ and repeat the above discussion. This
completes the proof of Proposition 4.1. �

The last step of the proof, i.e. passing to the limits m → ∞ and ε → 0, proceeds in the same way
as Proposition 3.5, with n replaced by τ and vice versa. This proves that a solution of Problem VIσ
exists, which, combined with the uniqueness result, completes the proof of Theorem 4.2.
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Remark 4.4. At first glance one may think Theorem 4.2, where we get only a time-local solution in
spite of a smallness assumption on u0 even if d = 2, is too poor. However, in view of the fact that we
obtain only time-local solutions in 2D case under the linear leak b.c. (see [12, Theorem 6] or [26]),
such limitations cannot be avoided to some extent.

Remark 4.5. Under additional smallness assumptions on the data f , g, u0, p0, we can derive global
existence results for both d = 2 and d = 3.

5. Concluding remarks

By the discussion presented above, we have established the existence and uniqueness, while we
did not get in touch with higher regularity, such as u ∈ L∞(0, T ; H2(Ω)d), p ∈ L∞(0, T ; H1(Ω)). This
is because some regularity results for the elliptic cases are not available. For instance, Problem VIσ -
SBCF is rewritten as

a0(u, v − u) + jτ (t; vτ ) − jτ (t; uτ ) � ( f , v − u) − (
u′, v − u

) − a1(u, u, v − u)

=: 〈F (t), v − u
〉
Vn,σ

(∀v ∈ Vn,σ ),

with F (t) ∈ L p(Ω)d for some p < 2. If we prove this elliptic variational inequality has a unique solu-
tion in W 2,p(Ω)d when p < 2, then a technique similar to [30, Theorems III.3.6 and III.3.8] allows us
to deduce u(t) ∈ H2(Ω)d . Thereby, we need to extend the regularity theory of [28] to cases p �= 2.
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