
Theoretical Computer Science 350 (2006) 325–344
www.elsevier.com/locate/tcs

On the expressive power of monadic least fixed point logic�

Nicole Schweikardt∗

Institut für Informatik, Humboldt-Universität Berlin, Unter den Linden 6, D-10099 Berlin, Germany

Abstract

Monadic least fixed point logic MLFP is a natural logic whose expressiveness lies between that of first-order logic FO and monadic
second-order logic MSO. In this paper, we take a closer look at the expressive power of MLFP. Our results are:

(1) MLFP can describe graph properties beyond any fixed level of the monadic second-order quantifier alternation hierarchy.
(2) On strings with built-in addition, MLFP can describe at least all languages that belong to the linear time complexity class

DLIN.
(3) Settling the question whether

addition-invariant MLFP
?= addition-invariant MSO on finite strings

or, equivalently, settling the question whether

MLFP
?= MSO on finite strings with addition

would solve open problems in complexity theory: “=” would imply that PH = PTIME whereas “ �=” would imply that
DLIN �= LINH.

Apart from this we give a self-contained proof of the previously known result that MLFP is strictly less expressive than MSO on the
class of finite graphs.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Finite model theory; Descriptive complexity theory; Fixed point logic; Monadic second-order logic; Linear time complexity classes

1. Introduction

A central topic in Finite Model Theory has always been the comparison of the expressive power of different logics on
finite structures. One of the main motivations for such studies is an interest in the expressive power of query languages

� Journal version of ICALP’04 paper [27]. Parts of this work were done while the author was supported by a fellowship within the Postdoc-
Programme of the German Academic Exchange Service (DAAD) in order to visit the Laboratory for Foundations of Computer Science, University
of Edinburgh, Scotland, U.K.

∗ Tel.: +49 30 2093 3086; fax: +49 2093 3081.
E-mail address: schweika@informatik.hu-berlin.de
URL: http://www.informatik.hu-berlin.de/∼schweika.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.10.025

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82409177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:schweika@informatik.hu-berlin.de
http://www.informatik.hu-berlin.de/~schweika

326 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

for relational databases or for semi-structured data such as XML-documents. Relational databases can be modeled
as finite relational structures, whereas XML-documents can be modeled as finite labeled trees. Since first-order logic
FO itself is too weak for expressing many interesting queries, various extensions of FO have been considered as query
languages.

When restricting attention to strings and labeled trees, monadic second-order logic MSO seems to be “just right”: it
has been proposed as a yardstick for expressiveness of XML query languages [8] and, due to its connection to finite
automata (cf., e.g., [30]), the model-checking problem for (Boolean and unary) MSO-queries on strings and labeled
trees can be solved with polynomial time data complexity (cf., e.g., [7]). On finite relational structures in general,
however, MSO can express complete problems for all levels of the polynomial time hierarchy [1], i.e., MSO can
express queries that are believed to be far too difficult to allow efficient model-checking.

The main focus of the present paper lies on monadic least fixed point logic MLFP, which is an extension of first-order
logic by a mechanism that allows to define unary relations by induction. Precisely, MLFP is obtained by restricting
the least fixed point logic FO(LFP) (cf., e.g., [18,6]) to formulas in which only unary relation variables are allowed.
The expressive power of MLFP lies between the expressive power of FO and the expressive power of MSO. On finite
relational structures in general, MLFP has the nice properties that (1) the model-checking problem can be solved with
polynomial time and linear space data complexity, and (2) MLFP is “on-spot” for the description of many important
problems. For example, the transitive closure of a binary relation, or the set of winning positions in games on finite
graphs (cf., e.g., [9] or [6, Exercise 8.1.10]) can be specified by MLFP-formulas. And on strings and labeled trees,
MLFP even has exactly the same expressiveness as MSO (with respect to Boolean and unary queries, cf. [30,8]). But
for all that, the logic MLFP has received surprisingly little attention in recent years. Considerably more attention has
already been paid to monadic fixed point extensions of propositional modal logic, which are used as languages for
hardware and process specification and verification. A particularly important example of such a logic is the modal
�-calculus (cf., e.g., [2]), which can be viewed as the modal analogue of MLFP. Monadic datalog, the monadic fixed
point extension of conjunctive queries (a subclass of FO), has recently been proposed as a database and XML query
language that has a good trade-off between the expressive strength, on the one hand, and the complexity of query
evaluation, on the other hand [8]. On relational structures in general, however, neither monadic datalog nor the modal
�-calculus can express all of FO, whereas all three logics are included in MLFP.

As already mentioned, the expressive power of MLFP ranges between that of FO and that of MSO. Dawar [3] has
shown that 3-colorability of finite graphs is not definable in infinitary logic L�∞�. Since all of MLFP can be expressed
in L�∞�, this implies that the (NP-complete) 3-colorability problem is definable in MSO (even, in existential monadic
second-order logic Mon�1

1), but not in MLFP. Grohe [15] exposed a polynomial time solvable graph problem that is
not MLFP-definable, but that is definable in FO(LFP) and, as a closer inspection shows, also in MSO. Both results
show that on finite graphs MLFP is strictly less expressive than MSO. The first main result of the present paper states
that, nevertheless, MLFP has a certain expressive strength, as it can define graph problems beyond any fixed level of
the monadic second-order quantifier alternation hierarchy:

Theorem 1.1. For each k�1, there is an MLFP-definable graph problem that does not belong to the kth level of the
monadic second-order quantifier alternation hierarchy.

When shifting attention from finite graphs to finite strings or labeled trees, the picture is entirely different: there,
MLFP, MSO, and Mon�1

1 have the same expressive power, namely, of expressing exactly the regular languages (cf.
[30]). To increase the expressive power of MLFP and MSO on the class of finite strings, one can allow formulas
to also use the ternary relation + which is interpreted as the graph of the addition function. For a logic L we write
L(+) to explicitly indicate that the addition predicate + may be used in L-formulas. In [21,22] Lynch has shown
that NTIME(n) ⊆ Mon�1

1(+) on the class of finite strings with built-in addition. I.e., every string-language decidable
by a nondeterministic multi-tape Turing machine with linear time bound is definable by a sentence in Mon�1

1(+).
Building upon this, one can show (cf. [24]) that MSO(+) = LINH, i.e., MSO(+) can define exactly those string-
languages that belong to the linear time hierarchy (which is the linear time analogue of Stockmeyer’s polynomial time
hierarchy). Lynch’s result was strengthened by Grandjean and Olive [13]: they showed that Mon�1

1(+) can even define
all string-languages that belong to the complexity class NLIN. The class NLIN and its deterministic version DLIN
are based on linear time random access machines and were introduced by Grandjean in a series of papers [10–12]. As
argued in [12], DLIN and NLIN can be seen as “the” adequate mathematical formalizations of linear time complexity.

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 327

For example, NLIN contains NTIME(n) and all 21 NP-complete problems listed by Karp in [19]. The class DLIN
contains all problems in DTIME(n), i.e. all problems decidable in linear time by a deterministic multi-tape Turing
machine. But DLIN also contains problems such as CHECKSORT (given two lists �1 = s1, . . , sn and �2 = t1, . . , tn
of strings, decide whether �2 is the lexicographically sorted version of �1) which are conjectured not to belong to
DTIME(n) (see [28]). In the present paper we show the following analogue of the result of [13]:

Theorem 1.2. All string-languages that belong to the linear time complexity class DLIN are definable in MLFP(+).

One area of research in Finite Model Theory considers extensions of logics which allow invariant uses of some
auxiliary relations. For example, order-invariant formulas may use a linear ordering of a given structure’s universe,
but they must not depend on the particular choice of linear ordering. This corresponds to the “real world” situation
where the physical representation of a graph or a database, stored in a computer, induces a linear order on the vertices
of the graph or the tuples in the database. But this particular order is hidden to the user, because one wants the user’s
queries to be independent of the particular physical representation of the data. Therefore, for formulating queries, the
user may be allowed to use the fact that some order is there, but he cannot make his queries depend on any particular
order, because he does not know which order the data comes with. Similarly, successor- or addition-invariant formulas
may use a successor-relation or an addition-relation on a structure’s universe, but must be independent of the particular
choice of successor- or addition-relation. Such kinds of invariance have been investigated with respect to first-order
logic, e.g., in [17,25,4]. In the present paper we consider addition-invariant formulas on finite strings and show that
both, the equivalence of addition-invariant MLFP and MSO, as well as a separation of addition-invariant MLFP from
MSO would solve open problems in complexity theory: Let PH denote Stockmeyer’s polynomial time hierarchy [29],
and let LINH be the linear time hierarchy (cf., e.g., [5]), i.e., the linear time analogue of PH.

Theorem 1.3. (a) If addition-invariant MLFP �= addition-invariant MSO on the class of finite strings, then DLIN �=
LINH.

(b) If addition-invariant MLFP = addition-invariant MSO on the class of finite strings, then PH = PTIME.

In other words, it is most likely that addition-invariant MLFP is strictly less expressive than addition-invariant MSO
on strings—but actually proving this can be expected to be rather difficult, since it would imply the separation of the
complexity class DLIN from the linear time hierarchy LINH.

The paper is structured as follows: Section 2 fixes the basic notations and gives an example of the present paper’s use
of MLFP-formulas. Theorem 1.1 is proved in Section 3. In Section 4, we give a self-contained proof of the previously
known (cf. [3]) result that MLFP is strictly less expressive than MSO on the class of finite graphs. Section 5 concentrates
on the proof of Theorem 1.2. Section 6 deals with the proof of Theorem 1.3. Some open questions are pointed out in
Section 7.

2. Preliminaries

For an alphabet A we write A+ to denote the set of all finite non-empty strings over A. For a set U we write 2U to
denote the power set of U , i.e., 2U := {X : X ⊆ U}. We use N to denote the set {0, 1, 2, . . } of natural numbers. For
every n ∈ N we write [n] for the set {0, . . , n−1}. The logarithm of n with respect to base 2 is denoted lg n.

A (relational) signature � is a finite set of relation symbols. Each relation symbol R ∈ � has a fixed arity ar(R).
A �-structure A consists of a set UA called the universe of A, and an interpretation RA ⊆ (UA)ar(R) of each relation
symbol R ∈ �. All structures considered in this paper are assumed to have a finite universe.

We assume that the reader is familiar with first-order logic FO, monadic second-order logic MSO, least fixed point
logic FO(LFP), and infinitary logic L�∞� (cf., e.g., the textbooks [6,18]). The kth level, Mon�1

k , of the monadic second-
order quantifier alternation hierarchy consists of all MSO-formulas that are in prenex normal form, having a prefix of
k alternating blocks of set quantifiers, starting with an existential block, and followed by a first-order formula.

We write ∃X FO to denote the class of Mon�1
1-formulas that have at most one existential set quantifier.

For a logic L we use L(�) to denote the class of all L-formulas of signature �. We write �(x1, . . , xk,X1, . . , X�)

to indicate that the free first-order variables of the formula � are x1, . . , xk and the free second-order variables are

328 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

X1, . . , X�. Sometimes we use x and X as abbreviations for sequences x1, . . , xk and X1, . . , X� of variables. A sentence
� of signature � is a formula that has no free variable.

Let � be a signature, let C be a class of �-structures, and let L be a logic. We say that a set L ⊆ C is L-definable
in C if there is a sentence � ∈ L(�) such that L = {A ∈ C : A � �}. Similarly, we say that a set L of �-structures is
L-definable, iff it is L-definable in the class of all finite �-structures.

We will mainly consider the monadic least fixed point logic MLFP, which is the restriction of least fixed point logic
FO(LFP), where fixed point operators are required to be unary. For the precise definition of MLFP we refer the reader
to the textbook [6] (MLFP is denoted FO(M-LFP) there). Simultaneous monadic least fixed point logic S-MLFP is the
extension of MLFP by operators that allow to compute the simultaneous least fixed point of several unary operators. In
other words: S-MLFP is obtained by restricting simultaneous least fixed point logic FO(S-LFP) to unary fixed point
relations. For the formal definition of FO(S-LFP) we, again, refer to [6]. The following example illustrates the present
paper’s use of S-MLFP-formulas.

Example 2.1. Let �<,+ be the signature that consists of a binary relation symbol < and a ternary relation symbol +.
For every n ∈ N let An be the �<,+-structure with universe [n] = {0, . . , n−1}, where < is interpreted by the natural
linear ordering and + is interpreted by the graph of the addition function, i.e., + consists of all triples (a, b, c) over [n]
where a+b = c. Consider the formulas

�S(x, S, P) := “x=0” ∨ “x=1” ∨
∃ x1∃x2

(
x1<x2 ∧ x2<x ∧S(x1) ∧ S(x2)

∧∀z
(
(x1<z∧z<x2)→P(z)

) ∧ “x−x2 = x2−x1+2”
)
,

�P (y, S, P) := ∃ x1∃x2

(
x1<x2 ∧ x2<y ∧S(x1) ∧ S(x2)

∧∀z
(
(x1<z∧z<x2)→P(z)

) ∧ “y−x2 < x2−x1+2”
)
.

Of course, the subformulas written in quotation marks “· · ·” can easily be resolved by proper FO(�<,+)-formulas. In
the structure An, the simultaneous least fixed point (S

(∞)

An
, P

(∞)

An
) of (�S, �P) is evaluated as follows: we start with the

0th stage, where S and P are interpreted by the sets S
(0)

An
= P

(0)

An
= ∅. Inductively, for every i ∈ N, the (i+1)st stage is

obtained via

S
(i+1)

An
:=

{
a ∈ [n] : An � �S

(
a, S

(i)

An
, P

(i)

An

)}
,

P
(i+1)

An
:=

{
b ∈ [n] : An � �P

(
b, S

(i)

An
, P

(i)

An

)}
.

In particular,

S
(1)

An
= {0, 1}, S

(2)

An
= {0, 1, 4}, S

(3)

An
= {0, 1, 4, 9}, S

(4)

An
= {0, 1, 4, 9, 16},

P
(1)

An
= ∅, P

(2)

An
= {2, 3}, P

(3)

An
= {2, 3, 5, 6, 7, 8} · · · .

At some stage i (with i�n), this process arrives at a fixed point, i.e., at a situation where S
(i)

An
= S

(i+1)

An
= S

(j)

An
and

P
(i)

An
= P

(i+1)

An
= P

(j)

An
, for every j > i. This particular tuple

(
S

(i)

An
, P

(i)

An

)
is called the simultaneous least fixed point(

S
(∞)

An
, P

(∞)

An

)
of (�S, �P) in An. It is not difficult to see that for our example formulas �S and �P we obtain that S

(∞)

An

is the set of all square numbers in [n], whereas P
(∞)

An
is the set of all non-square numbers in [n].

Now, [S-LFPx,S,y,P �S, �P]S(u) is an S-MLFP-formula that is satisfied by exactly those elements u in An’s universe

that belong to S
(∞)

An
, i.e., that are square numbers. Similarly, [S-LFPx,S,y,P �S, �P]P (u) is an S-MLFP-formula that is

satisfied by those elements u in An’s universe that belong to P
(∞)

An
, i.e., that are non-square numbers.

In the above example we have seen that, given the addition relation +, the set of square numbers is definable
in S-MLFP. It is known (cf., e.g., [16, Corollary 4.4]) that MLFP has the same expressive power as S-MLFP.

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 329

Since S-MLFP-definitions of certain properties or relations are sometimes easier to find and more convenient to
read than equivalent MLFP-definitions, we will often present S-MLFP-definitions instead of MLFP-definitions.

3. MLFP and the MSO quantifier alternation hierarchy

In this section, we show that MLFP can define graph problems beyond any fixed level of the monadic second-order
quantifier alternation hierarchy.

Let �graph be the signature that consists of a binary relation symbol E. We write Cgraphs for the class of all finite
directed graphs. A graph G = 〈V G, EG〉 is called undirected if the following is true: for every v ∈ V G, (v, v) �∈ EG,
and for every (v, w) ∈ EG, also (w, v) ∈ EG. We write Cugraphs to denote the class of all finite undirected graphs.
Let �grid := {S1, S2} be a signature consisting of two binary relation symbols. The grid of height m and width n is the
�grid-structure

[m, n] := 〈{1, . . , m} × {1, . . , n}, Sm,n
1 , S

m,n
2 〉 ,

where S
m,n
1 is the “vertical” successor relation consisting of all tuples

(
(i, j), (i+1, j)

)
in {1, . . , m} × {1, . . , n}, and

S
m,n
2 isthe“horizontal” successor relation consisting of all tuples

(
(i, j), (i, j+1)

)
.We defineCgrids := {[m, n] : m, n�1

}
to be the class of all finite grids. It was shown in [23] that the monadic second-order quantifier alternation hierarchy is
strict on the class of finite graphs and the class of finite grids. In the present paper we will use the following result:

Theorem 3.1 (Matz et al. [23]). For every k�1 there is a set Lk of finite grids such that Lk is definable in Mon�1
k but

not in Mon�1
k−1 (in the class Cgrids of finite grids).

Using the construction of [23] and the fact that MLFP is as expressive as S-MLFP, it is an easy (but tedious) exercise
to show the following

Corollary 3.2. For every k�1 the set Lk is definable in MLFP and in Mon�1
k , but not in Mon�1

k−1 (in the class Cgrids
of finite grids).

Proof (sketch). For every k�1 we inductively define functions fk : N → N via f1(m) := 2m and fk+1(m) :=
fk(m) · 2fk(m), for all m ∈ N.

For the set Lk :=
{
[m, fk(m)] : m�1

}
it was shown in [23] that there is a Mon�1

k-sentence but no Mon�1
k−1-

sentence that is satisfied by exactly those grids that belong to Lk . We will now point out that the sets Lk are definable
in MLFP.

Let us start with the set L1. Given a grid G = [m, n] one can check whether G’s width is f1(m) = 2m by writing
binary representations of length m of the numbers 0, 1, 2, . . , 2m−1 into successive columns of the grid. Precisely, the
column-numbering of a grid G = [m, n] is the uniquely defined subset C of G’s universe that satisfies the following
conditions:

(1) (i, 1) �∈ C, for all i�m, and
(2) for all j > 1 we have

• (i, j−1) ∈ C and (i, j) �∈ C, for all i�m, or
• ∑m

i=1 ci,j−1 · 2m−j + 1 = ∑m
i=1 ci,j · 2m−j , where, for all

(i′, j ′) ∈ {1, . . , m} × {1, . . , n}, ci′,j ′ := 1 if (i′, j ′) ∈ C and ci′,j ′ := 0 otherwise.

Obviously, a grid G belongs to L1 iff G’s rightmost column is the unique column that is completely contained in G’s
column-numbering.

To continue the proof of Corollary 3.2, we need the following:

Lemma 3.3. There is an MLFP-formula column-numbering(x) such that, for all grids G and all vertices x in G’s
universe, we have G � column-numbering(x) if, and only if, x belongs to the column numbering of G.

330 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

Proof. Since MLFP has the same expressive power as S-MLFP (cf., Section 2), we may define simultaneously,
by induction on the columns of the grid, the column-numbering C and its complement D by an S-MLFP-formula
column-numbering(x) of the form [S-LFPx,C,y,D�C, �D]C(x).

The formula �C(x, C, D) states that

• there is a vertex x0 in the same column as x such that the horizontal predecessor x′
0 of x0 belongs to D and all vertices

below x′
0 and in the same column as x′

0 belong to C, and either x=x0 or x is vertically above x0 and the horizontal
predecessor of x belongs to C.

The formula �D(y, C, D) states that

• y is in the leftmost column of the grid, or
• C(y′) is true for all vertices y′ in the column directly left to y’s column, or
• there is a vertex y0 in the same column as y such that the horizontal predecessor y′

0 of y0 belongs to D and all vertices
below y′

0 and in the same column as y′
0 belong to C, and either y is vertically below y0, or y is vertically above y0

and the horizontal predecessor of y belongs to D.

It is straightforward to formalize this by MLFP-formulas �C and �D that are positive in the set variables C and D, and
to check that the resulting formula

column-numbering(x) := [S-LFPx,C,y,D �C, �D]C(x)

has the desired property. This completes the proof of Lemma 3.3. �

Let us now continue with the proof of Corollary 3.2.
Using Lemma 3.3, one can easily formulate an MLFP-sentence �L1

that is satisfied by exactly those grids that belong
to L1: the formula �L1

states that the formula column-numbering(x) is true for all vertices in the rightmost column of
the grid, and that if the formula column-numbering(x) is true for all vertices of a column of the grid then this is the
grid’s rightmost column.

Let us now concentrate on the definition of the set L2. (The definition of Lk for k > 2 will be a straightforward
generalization of the construction for L2.)

Given a grid G = [m, n] one can check whether G’s width is

f2(m) := f1(m) · 2f1(m)

by writing binary representations of length f1(m) of the numbers 0, 1, 2, . . , 2f1(m)−1 into the first row of the grid.
Precisely, an f1-numbering of a grid G = [m, n] is a set Y1 of top-row vertices of G, satisfying the following conditions:

(1) (1, j) �∈ Y1, for all 1�j �f1(m), and
(2) for all 1�b�n/f1(m) − 1 we have

• (
1, f1(m) · (b−1) + j

) ∈ Y1 and
(
1, f1(m) · b + j

) �∈ Y1, for all 1�j �f1(m), or

• ∑f1(m)
j=1 yf1(m)·(b−1)+j · 2f1(m)−j + 1 = ∑f1(m)

j=1 yf1(m)·b+j · 2f1(m)−j , where, for all � ∈ {1, . . , n}, we define
y� := 1 if (1, �) ∈ Y1 and y� := 0 otherwise.

Using the formula column-numbering(x) of Lemma 3.3 it is not difficult to formulate, in analogy to the proof of
Lemma 3.3, an S-MLFP-formula f1-numbering(x) which expresses that x is a top-row vertex that belongs to the f1-
numbering of the underlying grid. Generalizing this construction and the definition of f1-numbering from f1 to fk in
the obvious way, it is straightforward to show the following:

Lemma 3.4. For every k�1 there is an MLFP-formula fk-numbering(x) such that, for all grids G and all vertices x
in the top row of G, we have

G � fk-numbering(x)

if, and only if, x belongs to the fk-numbering of G.

Using this together with Theorem 3.1, one easily obtains Corollary 3.2. �

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 331

Note that the above corollary deals with structures over the signature �grid that consists of two binary relation symbols.
In the remainder of this section we will transfer this to the classes Cgraphs and Cugraphs. To this end, we need a further
result of [23] which uses the notion of strong first-order reductions. The precise definition of this notion is of no
particular importance for the present paper—for completeness, it is given in Definition 3.5 below. What is important
is that a strong first-order reduction from a class C of �-structures to a class C′ of �′-structures is an injective mapping
� : C → C′ such that every structure A ∈ C can be interpreted in the structure �(A) and, vice versa, �(A) can be
interpreted in A.

Definition 3.5 (strong first-order reduction, Matz et al. [23]). Let n�1, and let C and C′ be classes of structures over
the relational signatures � and �′, respectively. A strong first-order reduction from C to C′ with rank n is an injective
mapping � : C → C′ such that

(1) For every structure A ∈ C, the universe of �(A) is a disjoint union of n copies of the universe of A. Precisely,
U�(A) = ⋃n

i=1

({i} × UA)
.

(2) There is an FO(�′)-formula �rep(x1, . . , xn) which describes the n-tuples of the form
(
(1, a), . . , (n, a)

)
, which serve

as representatives of elements a in UA. Precisely, for all A ∈ C, all a1, . . , an ∈ UA, and all i1, . . , in ∈ {1, . . , n},
we have

�(A) � �rep
(
(i1, a1), . . , (in, an)

) ⇐⇒ ij = j and aj = a1, for all j ∈ {1, . . , n}.
(3) For every relation symbol R ∈ � of arity r := ar(R), there is an FO(�′)-formula �R(x1, . . , xr) such that, for all

A ∈ C and all a1, . . , ar ∈ UA,

A � R(a1, . . , ar) ⇐⇒ �(A) � �R
(
(1, a1), . . , (1, ar)

)
.

(4) For every relation symbol R′ ∈ �′ of arity r ′ := ar(R′) and every tuple � = (�1, . . , �r ′) ∈ {1, . . , n}r ′
, there is an

FO(�)-formula �R′
� such that, for all A ∈ C and all a1, . . , ar ′ ∈ UA,

A � �R′
� (a1, . . , ar ′) ⇐⇒ �(A) � R′((�1, a1), . . , (�r ′ , ar ′)

)
.

Note that the formulas in items (2) and (3) allow to “simulate” a �-structure A in the �′-structure �(A) ∈ C′, whereas
the formulas from item 4. allow to “simulate” the �′-structure �(A) in the �-structure A.

The fundamental use of strong first-order reductions comes from the following result:

Theorem 3.6 (Matz et al. [23, Theorem 33]). Let C and C′ be classes of structures over the relational signatures � and
�′, respectively. Let � be a strong first-order reduction from C to C′. Let L be one of the logics Mon�1

k , for some k�0,
or the logic 1 L�∞�. Let the image �(C) := {�(A) : A ∈ C} of � be L-definable in C′. Then, the following is true for
every L ⊆ C:

L is L-definable in C ⇐⇒ �(L) is L-definable in C′.

In the present paper, the following strong first-order reductions will be used:

Proposition 3.7 (Matz et al. [23, Proposition 38]). (a) There exists a strong first-order reduction �1 from Cgrids to
Cgraphs, and the image �1(Cgrids) of �1 is Mon�1

2-definable and MLFP-definable in Cgraphs.
(b) There exists a strong first-order reduction �2 from Cgraphs to Cugraphs, and the image �2(Cgraphs) of �2 is FO-

definable in Cugraphs.

This directly allows to transfer Theorem 3.1 from finite grids to finite graphs and finite undirected graphs, respectively.
To also transfer Corollary 3.2 from Cgrids to Cgraphs and Cugraphs, we need the following easy lemma:

Lemma 3.8. Let C and C′ be classes of structures over the relational signatures � and �′, respectively. Let � be a
strong first-order reduction from C to C′. Every MLFP(�)-sentence 	 can be translated into an MLFP(�′)-sentence 	′
such that, for every A ∈ C, A � 	 ⇐⇒ �(A) � 	′.

1 The logic L�∞� is not explicitly mentioned in [23], but it is straightforward to see that the proof given there also works for L�∞�.

332 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

Proof. Let C and C′ be classes of structures over the signatures � and �′, respectively. Let � be a strong first-order
reduction from C to C′. By induction on the construction of the MLFP(�)-formulas 	 we define MLFP(�′)-formulas 	′
as follows:

• If 	 is an atomic formula of the form Xx or x = y then 	′ := 	.
• If 	 is an atomic formula of the form R(x1, . . , xr), then 	′ := �R(x1, . . , xr).
• If 	 is of the form 	1 ∧ 	2, then 	′ := 	′

1 ∧ 	′
2. Similarly, if 	 = 	1 ∨ 	2 (or 	 = ¬	1), then 	′ := 	′

1 ∨ 	′
2 (or

	′ := ¬	′
1), respectively).

• If 	 is of the form ∃x	1, then 	′ := ∃x
(
	′

1∧∃x2 · · · ∃xn�rep(x, x2, . . , xn)
)
.

I.e., quantification is relativized to elements that belong to the first disjoint copy of the original structure’s universe.
• If 	 is of the form [LFPx,X 	1](y), then

	′ := [LFPx,X 	′
1∧∃x2 · · · ∃xn�rep(x, x2, . . , xn)](y).

I.e., fixed points will only contain elements that belong to the first disjoint copy of the original structure’s universe.
Now let 	 be an arbitrary MLFP(�)-formula with free set variables X1, . . , Xt and free first-order variables x1, . . , xm.
It is straightforward to check that the following is true for all A ∈ C and all sets U1, . . , Ut ⊆ UA and all elements
a1, . . , am ∈ UA:

A � 	(U1, . . , Ut , a1, . . , am) ⇐⇒
�(A) � 	′({1} × U1, . . , {1} × Ut, (1, a1), . . , (1, am)

)
.

If 	 is a sentence, this in particular means that A � 	 if, and only if, �(A) � 	′. This completes the proof of
Lemma 3.8. �

Using this, it is not difficult to prove this section’s main result:

Theorem 3.9. For every k�2 there is a set Dk of finite directed graphs (respectively, a set Uk of finite undirected
graphs) such that Dk (respectively, Uk) is definable in MLFP and Mon�1

k , but not in Mon�1
k−1.

Proof. Let k�2, and let Lk be the set of grids from Corollary 3.2. I.e., Lk is Mon�1
k-definable and MLFP-definable,

but not Mon�1
k−1-definable in Cgrids. We use the strong first-order reduction �1 from Cgrids to Cgraphs obtained from

Proposition 3.7, and we choose Dk := �1(Lk). From Theorem 3.6 we conclude that Dk is Mon�1
k-definable, but not

Mon�1
k−1-definable in Cgraphs. To show that Dk is MLFP-definable, let 	k be an MLFP(�grid)-sentence that defines Lk

in Cgrids. Let 	′
k be the MLFP(�graph)-sentence obtained from 	k with Lemma 3.8. Note that for every directed graph

D ∈ Cgraphs we have that

D ∈ Dk ⇐⇒ D ∈ �(Cgrids) and D � 	′
k ⇐⇒ D �
̂1 ∧ 	′

k ,

where
̂1 is an MLFP(�graph)-sentence that defines the image �1(Cgrids) of �1.
Altogether, we have seen that Dk is a set of directed graphs which is definable in MLFP and in Mon�1

k , but not in
Mon�1

k−1.
To expose a similar set Uk of undirected graphs, we choose Uk := �2(Dk), where �2 is a strong first-order reduction

from Cgraphs to Cugraphs, obtained from Proposition 3.7. In a similar way as done above for Dk , we obtain that Uk is
definable in MLFP and in Mon�1

k , but not in Mon�1
k−1 (one just needs to replace Dk by Uk and Lk by Dk). This

completes the proof of Theorem 3.9. �

4. MLFP is less expressive than MSO on finite graphs

In [3], Dawar exposed a clever and intricate proof that 3-colorability of finite graphs cannot be expressed in L�∞�.
Since MLFP is less expressive than L�∞� and 3-colorability is easily definable in MSO, this implies that MLFP is less
expressive than MSO on finite graphs.

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 333

For the sake of completeness, this section gives an easy and relatively self-contained proof that MLFP is less
expressive than MSO on finite graphs. To this end, a graph representation of the satisfiability problem is shown to be
definable in MSO, but not in MLFP.

Let �P,N := {P, N} be a signature consisting of two binary relation symbols P and N. We identify every propositional
formula � in conjunctive normal form with at most three literals per clause (for short: � is a 3-CNF formula) with a
�P,N -structure A� as follows: The universe of A� consists of an element a�, for every clause � of �, and an element
ax , for every propositional variable x of �. The relations P A� and NA� indicate, which variables occur positively,
respectively, negated in which clauses. I.e.,

P A� := { (a�, ax) : variable x occurs unnegated in clause � },
NA� := { (a�, ax) : variable x occurs negated in clause � }.

We define the satisfiability problem 3-SATP,N as follows:

3-SATP,N := { A� : � is a satisfiable 3-CNF formula
}
.

The set of 3-SATP,N -instances is the set

C3-SATP,N
:= {A� : � is a 3-CNF formula}.

Recall from Section 2 that we write ∃X FO to denote the class of Mon�1
1-formulas that have at most one existential set

quantifier.

Lemma 4.1. 3-SATP,N is ∃X FO-definable in C3-SATP,N
.

Proof. Obviously, a 3-CNF formula � is satisfiable if, and only if, there exists a subset X of �’s set of propositional
variables, such that the following is true: in every clause � of � there is a variable x that occurs positively in � and
belongs to X, or there is a variable x that occurs negated in � and does not belong to X.

Clearly, a node b ∈ UA� represents a clause of � iff there exists a node a such that (b, a) ∈ P A� or (b, a) ∈ NA� .
Therefore, 3-SATP,N is defined in C3-SATP,N

by the ∃X FO-sentence

∃ X ∀ y
(∃ x P (y, x)∨N(y, x)

)→∃ x
(
P(y, x)∧X(x)

)∨(
N(y, x)∧¬X(x)

)
. �

We assume that the reader is familiar with the notion of first-order reductions (cf., e.g., [18]).

Lemma 4.2. 3-SATP,N is not L�∞�-definable in C3-SATP,N
.

Proof. It is well-known that 3-SATP,N is NP-complete with respect to first-order reductions (cf., e.g., [18, Proposition
7.17]). I.e., for every class C of finite structures and every problem L ⊆ C that belongs to the complexity class NP,
there is a first-order reduction from L ⊆ C to 3-SATP,N ⊆ C3-SATP,N

.
For the sake of contradiction let us now assume that 3-SATP,N is L�∞�-definable in C3-SATP,N

. Since L�∞� is closed
under first-order reductions, we then obtain that every problem in NP is L�∞�-definable. However, it is well-known that
e.g. the problem EVEN, consisting of all finite structures whose universe has even cardinality, is not L�∞�-definable
in the class of all finite structures (cf., e.g., [6, Example 3.3.13]). Since EVEN obviously belongs to NP, this yields a
contradiction. �

Representing 3-SATP,N -instances by finite graphs, we obtain this section’s main result:

Theorem 4.3. There is a set D of finite directed graphs and a set U of finite undirected graphs such that D and U are
definable in MSO (even in ∃X FO) but not in MLFP (even not in L�∞�).

Proof. We start with the construction of a set D of directed graphs that is ∃X FO-definable but not L�∞�-definable.
We choose D as a variant of 3-SATP,N where every 3-CNF formula � is represented by a directed graph G� rather

than a {P, N}-structure A�. The graph G� is defined as follows: The universe of G� consists of a vertex a�, for every
clause � of �, and two vertices bx and cx , for every propositional variable x of �. A vertex of the form bx is intended to

334 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

encode the literal “x”, whereas cx shall encode the literal “¬x”. The graph G� has the following edges: for every clause
� and every variable x that occurs positively (respectively, negated) in �, there is an edge from a� to bx (respectively, to
cx). Furthermore, for every variable x there is an edge from bx to bx (a self-loop), an edge from bx to cx , and an edge
from cx to bx .

Clearly, a vertex v of G� represents a literal “x” iff v has a self-loop; and v represents a literal “¬x” iff “∃w E(v, w)

∧E(w, w)∧E(w, v)∧¬ v=w”.
We choose

D := 3-SATE := { G� : � is a satisfiable 3-CNF formula } .

The set of 3-SATE-instances is the set C3-SATE
:= {G� : � is a 3-CNF formula}. It is straightforward to see that 3-SATE

is ∃X FO-definable in C3-SATE
(cf., Lemma 4.1) and that C3-SATE

is FO-definable in Cgraphs. Therefore, D := 3-SATE

is ∃X FO-definable in Cgraphs.
Similarly to the NP-completeness of 3-SATP,N one obtains that 3-SATE is NP-complete with respect to first-order

reductions. Therefore, the fact that 3-SATE is not L�∞�-definable in Cgraphs can be proved in the same way as Lemma 4.2.
Altogether, we obtain that the set D := 3-SATE of finite directed graphs is ∃X FO-definable but not L�∞�-definable

in Cgraphs.
For transfering this result to undirected graphs, we use the strong first-order reduction �2 from Cgraphs to Cugraphs

obtained from Proposition 3.7. We define U := �2(D). Since D is ∃X FO-definable, we obtain from Theorem 3.6
(for L := Mon�1

1) that U is Mon�1
1-definable (and a closer look at the construction shows that even ∃X FO suffices).

Furthermore, since D is not L�∞�-definable, Theorem 3.6 (for L := L�∞�) implies that also U is not L�∞�-definable.
This completes the proof of Theorem 4.3. �

5. MLFP and linear time complexity

We identify a string w = w0 · · · wn−1 of length |w| = n�1 over an alphabet A with a structure w in the usual way: we
choose �A to consist of the binary relation symbol < and a unary relation symbol Pa , for each letter a ∈ A. We choose w

to be the �A-structure 〈{0, . . , n−1}, <, (P w
a)a∈A〉, where < denotes the natural linear ordering of [n] := {0, . . , n−1}

and P w
a consists of all positions of w that carry the letter a.

In this section, we equip the structure w with an additional ternary addition relation +. I.e., we identify the string w

with the structure 〈w, +〉 := 〈[n], <, +, (P w
a)a∈A〉, where + consists of all triples (a, b, c) ∈ [n]3 with a + b = c.

We identify the set A+ of all non-empty strings over alphabet A with the set CA := {
w : w ∈ A+}

, respectively, with
the set CA,+ := {〈w, +〉 : w ∈ A+}

.
To give the precise definition of Grandjean’s linear time complexity class DLIN, we need the following notion of

random access machines, basically taken from [14].
A DLIN-RAM R is a random access machine that consists of two accumulators A and B, a special register M,

registers Ri , for every i ∈ N, and a program that is a finite sequence I(1), . . , I(r) of instructions, each of which is of
one of the following forms:

• A := 0 ,
• A := 1 ,
• A := M ,

• A := A + B ,
• A := RA ,
• RA := B ,

• M := A ,
• B := A ,

• IF A=B THEN I(i0) ELSE I(i1) ,
• HALT .

The meaning of most of these instructions is straightforward. The “IF A=B THEN I(i0) ELSE I(i1)” instruction
enforces to continue with program line i0, if the contents of registers A and B are identical, and to continue with line
i1 otherwise. If the accumulator A contains a number i, then the execution of the instruction A := RA copies the
content of register Ri into the accumulator A. Similarly, the execution of the instruction RA := B copies the content of
accumulator B into register Ri . We stipulate that the last instruction, I(r), is the instruction HALT.

The input to R is assumed to be present in the first registers of R at the beginning of the computation. Precisely, an
input to R is a function f : [m] → [m], for an arbitrary m ∈ N. The initial content of the special register M is the

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 335

number m, and for every i ∈ N, the initial content of register Ri is f (i) if i ∈ [m], and 0 otherwise. The accumulators
A and B are initialized to 0. The computation of R starts with instruction I(1) and finishes when it encounters a HALT
statement. We say that R accepts an input f, if the content of register R0 is non-zero when R reaches a HALT statement.

R recognizes a set F ⊆ {f : [m] → [m] : m ∈ N} in time O(m), if

(1) R accepts an input f if, and only if, f ∈ F , and
(2) there is a number d ∈ N such that R is d-bounded, i.e., for every m ∈ N and every f : [m] → [m] the following is

true: when started with input f, R performs less than d · m computation steps before reaching a HALT statement,
and throughout the computation, each register and each accumulator contains numbers of size < d · m.

To use DLIN-RAMs for recognizing string-languages, one represents strings w by functions fw as follows (cf. [13]).
W.l.o.g. we restrict attention to strings over the alphabet A := {1, 2}. For every n�1 we define �(n) := � 1

2 lg(n+1)�
and m(n) := �n/�(n)�. A string w over A = {1, 2} of length n can (uniquely) be decomposed into substrings w0, w1,
. . , wm(n)−1 such that

• w is the concatenation of the strings w0, . . , wm(n)−1 ,
• wi has length �(n), for every i < m(n)−1, and
• wm(n)−1 has length at most �(n) .

For each i ∈ [m(n)] let w
dy
i be the integer whose dyadic representation is wi . I.e., if wi = d0 · · · d�(n)−1 with

dj ∈ {1, 2}, then w
dy
i = ∑

j<�(n) dj ·2j . It is straightforward to see that w
dy
i < m(n). Now, w is represented by the

function fw : [m(n)] → [m(n)] with fw(i) := w
dy
i , for every i ∈ [m(n)].

Definition 5.1 (DLIN, Grandjean [12]). A string-language L over alphabet A = {1, 2} belongs to the complexity class
DLIN if, and only if, the set of its associated functions {fw : w ∈ L} is recognized by a DLIN-RAM in time O(m).

At first sight, the class DLIN may seem a bit artificial: a string w of length n is represented by a function fw of domain
[m(n)] where m(n) is of size �(n/lg n).A DLIN-RAM with input fw is allowed to perform only O(n/lg n) computation
steps, with register contents of size O(n/lg n). However, as argued in [10–12,14], DLIN is a very reasonable formaliza-
tion of the intuitive notion of “linear time complexity”. In particular, DLIN contains all string-languages recognizable
by a deterministic Turing machine in O(n) steps, and, in addition, also some problems (such as CHECKSORT, cf.,
Section 1) that are conjectured not to be solvable by Turing machines with time bound O(n).

Grandjean and Olive [13] showed that Mon�1
1(+) can define (at least) all string-languages that belong to the

nondeterministic version NLIN of DLIN. In the remainder of this section we show the following analogue of the result
of [13]:

Theorem 5.2 (DLIN ⊆ MLFP(+) on finite strings with built-in addition). For every finite alphabet A and every
string-language L ⊆ A+ in DLIN there is an MLFP(�A ∪ {+})-sentence �L such that, for every w ∈ A+ we
have w ∈ L iff 〈w, +〉 � �L.

The proof of [13]’s result on NLIN and Mon�1
1(+) uses, as an intermediate step, a characterization of the class NLIN

by a logic that existentially quantifies unary functions. There also exists an algebraic characterization of the class DLIN
via unary functions [14]. Unfortunately, this characterization is not suitable for being used as an intermediate step in
the proof of Theorem 5.2. What can be used for the proof of Theorem 5.2, however, is the following representation,
basically taken from [13], of a run of a d-bounded DLIN-RAM R. A run of R with input f : [m] → [m] is fully
described by 6 functions I, A, B, M, RA, R′

A : [d·m] → [d·m]:
I (t) = the number of the instruction performed in computation step t+1,
A(t) = content of the accumulator A directly before performing step t+1,
B(t) = content of the accumulator B directly before performing step t+1,
M(t) = content of the special register M directly before performing step t+1,
RA(t) = content of register RA(t) directly before performing step t+1,
R′

A(t) = content of register RA(t) directly after performing step t+1.

336 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

It is not difficult to give inductive definitions of these functions:

I (0) := 1 and

I (t+1) :=

⎧⎪⎪⎨
⎪⎪⎩

i0 if A(t) = B(t) and I(
I (t)

) = “IF A=B THEN I(i0) ELSE I(i1)”,

i1 if A(t) �= B(t) and I(
I (t)

) = “IF A=B THEN I(i0) ELSE I(i1)”,

I (t) if I(
I (t)

) = “HALT”,

I (t)+1 otherwise.

A(0) := 0 and A(t+1) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

j if I(
I (t)

) = “A := j” (with j ∈ {0, 1})
M(t) if I(

I (t)
) = “A := M”

A(t) + B(t) if I(
I (t)

) = “A := A + B”,
RA(t) if I(

I (t)
) = “A := RA”,

A(t) otherwise.

B(0) := 0 and B(t+1) :=
{

A(t) if I(
I (t)

) = “B := A”,
B(t) otherwise.

M(0) := m and M(t+1) :=
{

A(t) if I(
I (t)

) = “M := A”,
M(t) otherwise.

For defining the function RA, note that for i := A(t) the content of register Ri , directly before performing computation
step t+1, can be derived as follows: if there does not exist an s < t with A(s) = i, then Ri still contains its initial
value, i.e., the value 0 in case that i�m, and the value f (i) in case that i ∈ [m]. On the other hand, if s+1 is the largest
computation step � t before which the accumulator A had content i (i.e., A(s) = i), then, before performing step t+1,
Ri still contains the value it had after finishing computation step s+1. I.e., Ri contains the value R′

A(s). This leads to
the following inductive definition of RA:

RA(t) :=
⎧⎨
⎩

0 if (1.) there is no s < t with A(s) = A(t) and (2.) A(t)�m,

f
(
A(t)

)
if (1.) there is no s < t with A(s) = A(t) and (2.) A(t) < m,

R′
A(s) otherwise, where s := max {s : s < t and A(s) = A(t)}.

R′
A(t) :=

{
B(t) if I(

I (t)
) = “RA := B”,

RA(t) otherwise.

The flattening G̃ of a function G : [d·m] → [d·m] is the concatenation of the {0, 1}-strings G̃0, G̃1, . . , G̃dm−1,
where G̃i is the reverse binary representation of length l := �lg(d·m) + 1� of the number G(i). I.e., G̃i = b0b1 · · · bl−1
with bj ∈ {0, 1} and G(i) = ∑

j<l bj ·2j . It is straightforward to see that for every d ∈ N there is a c ∈ N such that the

following is true for every n ∈ N and every function G : [d·m(n)] → [d·m(n)]: The flattening G̃ of G is a {0, 1}-string
of length �c ·n. Consequently, G̃ can be represented by c subsets G̃(0), . . , G̃(c−1) of [n] as follows: For every p ∈ [n]
and � ∈ [c], the (�·n + p)-th position of G̃ carries the letter 1 if, and only if, p ∈ G̃(�).

We write G̃• for the complement of G̃, i.e., the {0, 1}-string obtained from G̃ by replacing every 0 by 1 and every 1
by 0. Similarly, for � ∈ [c], G̃•(�) denotes the complement of the set G̃(�).

Clearly, given a string w of length n and its functional representation fw : [m(n)] → [m(n)], the flattenings (and
their complements) of the functions I, A, B, M, RA, R′

A : [d·m(n)] → [d·m(n)] that describe the computation of R
on input fw, can be represented by a fixed number of subsets of [n]. Using the inductive definitions of the functions
I, A, B, M, RA, R′

A mentioned above, we can show the following:

Lemma 5.3. Let A := {1, 2}, let L ⊆ A+, let d ∈ N, let R be a d-bounded DLIN-RAM that recognizes the set
{fw : w ∈ L}, and let c ∈ N be such that, for every n�1, the flattening G̃ of every function G : [d·m(n)] → [d·m(n)]
is a {0, 1}-string of length �c·n. For every symbol S ∈ S := {

I, A, B, M, RA, R′
A, I •, A•, B•, M•, RA

•, R′
A

•} and
every � ∈ [c] let XS,� be a set variable. Let XS,c be the list of the set variables XS,� for all S ∈ S and all � ∈ [c].

For every S ∈ S and every � ∈ [c] there is an MLFP(�A ∪ {+})-formula �S,�(x, XS,c) such that the following is
true for every string w ∈ A+:

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 337

Let n be the length of w, let fw : [m(n)] → [m(n)] be the functional representation of w, and let I, A, B, M, RA, R′
A :

[d·m(n)] → [d·m(n)] be the functions that describe the computation of R on input fw. In the structure 〈w, +〉, the
simultaneous least fixed point of all the formulas �S,� (for all S ∈ S and � ∈ [c]) consists exactly of the sets(
S̃(�))

S∈S,�∈[c] that represent the flattenings, and their complements, of the functions I, A, B, M, RA, R′
A.

Some details on the proof of Lemma 5.3 are given below. An important tool for the proof of Lemma 5.3, also used
later in Section 6, is the following:

Lemma 5.4 (full arithmetic and counting in MLFP(+)).

(a) There are MLFP(+)-formulas

�<(x, y), �×(x, y, z), �Exp(x, y, z), �Bit(x, y), �Dy1
(x, y), �Dy2

(x, y),

such that for all n ∈ N and all a, b, c ∈ [n], 〈[n], +〉 � �<(a, b) (respectively, �×(a, b, c), �Exp(a, b, c),
�Bit(a, b), �Dy1

(a, b), �Dy2
(a, b)) if, and only if, a < b (resp., a × b = c, ab = c, the b-th bit in the binary

representation of a is 1, the b-th bit in the dyadic representation of a is 1, resp., 2).
(b) Let Y be a unary relation symbol. There is an MLFP(+)-formula �#(x, Y) such that for all n ∈ N, all a ∈ [n],

and all B ⊆ [n] we have that

〈[n], +〉 � �#(a, B) ⇐⇒ a = |B|.

Proof. (a) Clearly, one can choose �<(x, y) := ¬x=y ∧ ∃z x+z = y.
From Example 2.1, we know that there is an MLFP(<, +)-formula �Squares(x) that defines exactly the set of square

numbers. It is known (cf., e.g., [26]) that, given the addition relation and the set of square numbers, the multiplication
relation × is definable in first-order logic. Furthermore, it is well-known that having + and × available, first-order
logic can define the exponentiation function Exp and the Bit predicate Bit (cf., e.g., [18]).

The formulas �Dy1
(x, y) and �Dy2

(x, y) can easily be obtained by using the Bit predicate and the connection between
binary and dyadic representation of natural numbers (cf., e.g., [13, Section 5]).

(b) For simplicity we assume that n is a power of 2 and a multiple of lg n. The general case (for arbitrary natural
numbers n) can be treated in a similar way.

We identify every set B ⊆ [n] with a {0, 1}-string B = b0 · · · bn−1 of length n in the usual way via bi := 1 iff
i ∈ B. B is the concatenation of n/lg n substrings B1, . . , Bn/lg n, each of length lg n. For each such substring Bi there
is a (unique) number ai ∈ [n] such that Bi is the (reverse) binary representation of ai . From the Bit Sum Lemma (cf.
[18, Lemma 1.18]) one obtains an FO(<, Bit)-formula �BitSum(x, y) which expresses that y is the number of ones
in the (reverse) binary representation of x. For every i�n/lg n, let ci be the number of ones in the (reverse) binary
representation of ai , and let Ci be the (reverse) binary representation of length lg n of ci . Let C := C1 · · · Cn/lg n, and
let C ⊆ [n] be the subset of [n] that corresponds to the {0, 1}-string C.

Note that |B| is exactly the number of ones in the {0, 1}-string B which, in turn, is the sum of the numbers ci (for
i = 1, . . , n/lg n). We compute the sum of the ci by maintaining “running sums” as follows: let s1 := c1, and for every
i < n/lg n let si+1 := si + ci+1. Clearly, sn/lg n = |B|. Since each si is �n, it has a (reverse) binary representation Si

of length lg n. Let S := S1 · · · Sn/lg n, and let S ⊆ [n] be the subset of [n] that corresponds to the {0, 1}-string S.
Using the formula �BitSum(x, y), it is straightforward to construct an MLFP(<, Bit)-formula �C which, given a set

B, specifies the corresponding set C. Using this set C, it is not difficult to find an S-MLFP(<, Bit, +, ×)-formula �S

which inductively defines the set S as well as S’s complement. Finally, by construction of the set S, the number |B| of
elements in B is the number whose (reverse) binary representation is identical to the rightmost substring of length lg n

of S.
From (a) we know that the predicates <, Bit, × can be defined in MLFP(+). Altogether, this leads to an MLFP(+)-

formula �#(x, Y) with the desired properties.
This completes the proof of Lemma 5.4. �

Proof for Lemma 5.3 (sketch). For every S ∈ S = {I, A, B, M, RA, R′
A, I •, A•, B•, M•, RA

•, R′
A

•} let XS be a set
variable. Let XS be the list of the set variables XS , for all S ∈ S.

338 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

In what follows, we indicate how to construct, for every S ∈ S, a formula 	S(x, XS) that is positive in all set variables
in XS, such that the following is true for every string w ∈ A+: the simultaneous least fixed point of all the formulas
	S (for all S ∈ S) in the structure 〈[c·n], <, +, (P w

a)a∈A〉 consists exactly of the flattenings Ĩ , Ã, B̃, M̃, R̃A, R̃′
A and

their complements Ĩ •, Ã•, B̃•, M̃•, R̃A
•, R̃′

A
•.

Note that once having constructed the formulas 	S , it is straightforward to obtain the formulas �S,� for � ∈ [c]
whose existence is stated in Lemma 5.3.

Using the formulas from Lemma 5.4(a), it is not difficult to find formulas
m(m) and
l (l) which ensure that the
variables m and l are interpreted by the values m(n) and �lg(d·m(n)) + 1�, respectively.

For the construction of the formulas 	S(x, XS) we use the inductive definitions of the functions I, A, B, M, RA, R′
A

given above and the fact that we have available the arithmetic operations +, ×, Bit, etc. (cf., Lemma 5.4).
The formula 	I (x, XS) is of the form

∃ t ′
(
t ′ · l�x < (t ′+1) · l

) ∧ (
t ′ = 0 → x = 0

)
∧

⎛
⎝ t ′ > 0 → ∃ t t + 1 = t ′ ∧

∧
1� s � r

“I (t) �= s” ∨ 	I,s(t, t
′, x)

⎞
⎠ .

The subformula (t ′ = 0 → x = 0) is for the induction start I (0) := 1 which means for Ĩ that the positions 0, . . , l−1
of Ĩ are the reverse binary representation of the number 1, i.e., the string “100 · · · 00”.

The subformula “I (t) �= s” checks that at the positions p with t ·l�p < t ·l, Ĩ does not consist of the reverse
binary representation of the number s. For this we assume, by induction, that on these positions XI coincides with Ĩ

and XI • coincides with Ĩ •. We need both, XI and XI • , because we want a formula that is positive in the set variables
XS. Precisely, “I (t) �= s” can be chosen to be a formula of the form∨

j : Bit(s,j)

XI •(t ·l + j) ∨
∨

j : ¬Bit(s,j)

XI (t ·l + j) .

The subformula 	I,s(t, t
′, x) depends on the line I(s) of R’s program:

If I(s) = “IF A=B THEN I(i0) ELSE I(i1)”, then 	I,s(t, t
′, x) is of the form

⎛
⎝ “A(t) �= B(t)” ∨

∨
j : Bit(i0,j)

x = t ′ · l + j

⎞
⎠ ∧

⎛
⎝ “A(t) = B(t)” ∨

∨
j : Bit(i1,j)

x = t ′ · l + j

⎞
⎠ .

Here, “A(t) �= B(t)” can be checked via

∃y
(
t · l�y < (t+1) · l

) ∧ (
(XA(y)∧XB•(y)) ∨ (XA•(y)∧XB(y))

)
.

Similarly, “A(t) = B(t)” can be checked via

∀y
(
t · l�y < (t+1) · l

) → (
(XA(y)∧XB(y)) ∨ (XA•(y)∧XB•(y))

)
.

If I(s) = “HALT”, then 	I,s(t, t
′, x) is of the form “XI (x − l)”.

If I(s) is neither a HALT-statement nor an IF-statement, then 	I,s(t, t
′, x) is of the form

∃z ∃z′ z + 1 = z′ ∧ “I (t) = z” ∧ Bit(z′, x − t ·l) .

Here, “I (t) = z” can be checked by the formula

∀i
(

Bit(z, i)→(
i < l∧XI (t ·l + i)

)) ∧
(
(i < l∧¬Bit(z, i)

) → XI •(t ·l + i)
)

.

This completes the definition of the formula 	I (x, XS).

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 339

The formulas 	I • , 	A, 	A• , 	B , 	B• , 	M , 	M• , 	R′
A

, 	R′
A

• can be obtained in a similar way.

The formula 	RA
(x, XS) is of the form

∃ t
(
t · l�x < (t+1) · l

) ∧
(((∀ s s < t→“A(s) �= A(t)”

) ∧ 	init(t, x)
)

∨ (∃ s s < t ∧ “A(s) = A(t)” ∧ (∀ s′(s < s′ < t)→“A(s′) �= A(t)”
) ∧ 	lookup(s, t, x)

))
.

Here, 	init(t, x) is a formula that checks that i := A(t) < m and the (x− t ·l)-th bit in the (reverse) binary representation
of fw(i) is 1. The number fw(i) can be obtained from the input string w by using the formulas �Dy1

and �Dy2
from

Lemma 5.4.
The formula 	lookup(s, t, x) is of the form “XR′

A

(
s·l + (x − t ·l))”.

This completes the definition of the formula 	RA
. The formula 	RA

• can be obtained in a similar way.
It is straightforward (but tedious) to check that the formulas 	S(x, XS), for S ∈ S, have the desired properties.

Precisely, one can show that the sets obtained in the (2·t)-th stage of the simultaneous least fixed point process coincide
with the respective flattenings (at least) on all positions < t · l.

This completes the proof sketch for Lemma 5.3. �

Using Lemma 5.3, Lemma 5.4, and the fact that MLFP has the same expressive power as S-MLFP (cf., Section 2),
it is rather straightforward to find an MLFP(�A ∪ {+})-sentence �L which, for every string w ∈ A+, is satisfied by
〈w, +〉 if, and only if, R accepts input fw. This, finally, will complete the proof of Theorem 5.2:

Proof for Theorem 5.2 (sketch). Let A := {1, 2}, and let R be a d-bounded DLIN-RAM that recognizes the string-
language L ⊆ A+. The aim is to find an MLFP(�A ∪ {+})-sentence �L such that, for every w ∈ A+, we have
〈w, +〉 � �L ⇐⇒ w ∈ L ⇐⇒ R accepts input fw.

From Lemma 5.3 and the fact that MLFP is as expressive as S-MLFP we directly obtain MLFP(�A ∪ {+})-formulas

Ã(�) (x) and

R̃′
A

(�) (x), for � ∈ [c], which represent the flattenings of the functions A and R′
A as follows: If n is the

length of an input string w ∈ A+, and I, A, B, M, RA, R′
A : [d·m(n)] → [d·m(n)] are the functions that describe the

computation of R on input fw, then we have for each � ∈ [c] and every position a ∈ [n] that

〈w, +〉 �
Ã(�) (a) ⇐⇒ a ∈ Ã(�)

and

〈w, +〉 �

R̃′

A

(�) (a) ⇐⇒ a ∈ R̃′
A

(�)
.

Recall that R accepts input fw if, and only if, the content of register R0 is non-zero when R reaches a HALT statement.
The content of register R0 at the end of the computation can be obtained as follows: let t �0 be such that t+1 is the
largest computation step before which the accumulator A did contain the value 0. 2 Clearly, R′

A(t) is the content of
register R0 directly after performing step t+1, and this is still is the content of register R0 at the end of the computation
(because after step t+1, accumulator A never has the content 0 again, and hence there is no chance of changing the
value of register R0 ever again).

Therefore, the formula �L which checks whether R accepts fw, can be obtained as follows:

1. Use the formulas
Ã(�) (x), for � ∈ [c], to find the largest t < d·m(n), for which A(t) = 0.
The value m := m(n), as well as the value l := �lg(d·m) + 1� can be obtained by using the formulas from

Lemma 5.4 (a). Furthermore, A(t) = 0 if, and only if, Ã has the letter 0 at all positions p with t ·l�p < (t+1)·l.
This, in turn, can be checked by inspecting the set Ã(�), for a suitable � ∈ [c].

2. Use the formulas

R̃′

A

(�) (x), for � ∈ [c], to check whether R′
A(t) = 0.

This, of course, can be done in a similar way as checking whether A(t) = 0.

This completes the proof sketch for Theorem 5.2. �

2 Such a t exists, because at the beginning of the computation, i.e., before computation step 1, the accumulator A has the initial content 0.

340 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

6. Addition-invariant MLFP

In this section, we concentrate on addition invariant formulas, i.e., on formulas that may use an addition relation on
the underlying universe but that are independent of the particular choice of the addition relation.

The notion of “addition relation” is defined as follows: let U be a finite set, let n := |U |, and let ⊕ be a ternary
relation on U . ⊕ is called an addition relation on U if there is a linear ordering ©< of U such that U = {u0, . . , un−1}
with u0©< · · · ©< un−1 and ⊕ = {

(ui, uj , uk) : i + j = k and i, j, k ∈ {0, . . , n−1} }
.

We say that ⊕ is the particular addition relation that fits to the linear ordering ©< .

Definition 6.1 (addition-invariance). Let L be a logic, let � be a signature, and let ⊕ be a ternary relation symbol
that does not occur in �. An L(� ∪ {⊕})-formula �(x1, . . , xk) is called addition-invariant if the following is true
for all finite �-structures A: for any two addition relations ⊕1 and ⊕2 on UA and all a1, . . , ak ∈ UA we have
〈A, ⊕1〉 � �(a1, . . , ak) ⇐⇒ 〈A, ⊕2〉 � �(a1, . . , ak) .

Using Lemma 5.4, we can show

Lemma 6.2. On linearly ordered structures, addition-invariant MLFP can define the particular addition relation that
fits to the given linear ordering of the underlying structure.

Proof. Let U be a finite universe, let n := |U |, and let < be the given linear ordering of U . Let v0, . . , vn−1 be such
that U = {v0, . . , vn−1} and v0< · · · <vn−1. The aim is to find an addition-invariant MLFP(<, ⊕)-formula that defines
the addition relation

� := {
(vi, vj , vk) : i + j = k and i, j, k ∈ {0, . . , n−1} }

.

All we know is that we are given an addition relation ⊕ that fits to some linear ordering ©< of U . I.e., there are elements
u0©< · · · ©< un−1 such that U = {u0, . . , un−1} and

⊕ = {
(ui, uj , uk) : i + j = k and i, j, k ∈ {0, . . , n−1} }

.

From Lemma 5.4 we obtain an MLFP(⊕)-formula �#(x, Y) such that for all a ∈ U and all B ⊆ U we have that

〈U, ⊕〉 � �#(a, B) ⇐⇒ a = u|B| .

Let y be a first-order variable that does not occur in �#.
Let 	(x, y) be the MLFP(<, ⊕)-formula obtained from �# by replacing every atom of the form Yz with the atom
(z<y). It is not difficult to see that for all i, j ∈ [n] we have

〈U, <, ⊕〉 � 	(ui, vj) ⇐⇒ i = j .

I.e., the formula 	 allows to translate predicates from the ordering ©< to the ordering <. In particular, the addition �
can be defined by the MLFP(<, ⊕)-formula

��(x, y, z) := ∃x′ ∃y′ ∃z′ 	(x′, x) ∧ 	(y′, y) ∧ 	(z′, z) ∧ x′⊕y′ = z′ .

This completes the proof of Lemma 6.2. �

From Theorem 5.2 and Lemma 6.2 one directly obtains

Corollary 6.3 (DLIN ⊆ addition-invariant MLFP on the class of finite strings). For every finite alphabet A and every
string-language L ⊆ A+ in DLIN there is an addition-invariant MLFP-sentence � of signature �A ∪ {⊕} such that,
for every string w ∈ A+ and every addition relation ⊕ on w’s universe, w ∈ L iff 〈w, ⊕〉 � �.

Using this and the well-known result that the satisfiability problem for quantified Boolean formulas with k alternations
of quantifiers is complete for the kth level of the polynomial time hierarchy, we can show that both, the equivalence of
addition-invariant MLFP and MSO, as well as a separation of addition-invariant MLFP from MSO would solve open
problems in complexity theory:

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 341

Theorem 6.4. (a) If addition-invariant MLFP �= addition-invariant MSO on the class of finite strings, then DLIN �=
LINH.

(b) If addition-invariant MLFP = addition-invariant MSO on the class of finite strings, then PH = PTIME.

Proof. (a) It is known (cf. [24]) that

MSO(+) = LINH on the class CA,+ of finite strings with addition,

i.e., MSO(+) can define exactly those string languages that belong to the linear time hierarchy. This, together with
Lemma 6.2 and the fact that MSO can express all of MLFP, immediately implies that also

addition-invariant MSO = LINH on the class of finite strings .

From Corollary 6.3 we know that

DLIN ⊆ addition-invariant MLFP on the class of finite strings .

Therefore, if addition-invariant MLFP �= addition-invariant MSO on the class of finite strings, then DLIN�LINH.
(b) It is straightforward to see that every fixed addition-invariant MLFP-sentence can be evaluated in a finite string

in time polynomial in the size of the string.
In what follows we will show that for every level k there is a string-language Lk that is

(i) hard (with respect to PTIME-reductions) for the kth level �P
k of the polynomial time hierarchy, and

(ii) definable by an addition-invariant MSO-formula.

Now, if addition-invariant MLFP = addition-invariant MSO on the class of finite strings, then Lk is definable by an
addition-invariant MLFP-formula. But then, Lk is decidable in polynomial time. Since Lk is hard for �P

k , this then
implies that �P

k is contained in PTIME, for every k ∈ N, i.e., PH = PTIME.
For every k ∈ N, we will choose Lk to be a suitable encoding of the satisfiability problem for quantified Boolean

formulas with k alternations of quantifiers. For the precise definition we need some notation.
For every i�1 let Vi{x(i)

� ��1} be a set of Boolean variables. We write CNF(k) for the set of all Boolean formulas
over the variables V1 ∪ · · · ∪ Vk in conjunctive normal form. An assignment Ai to Vi is a mapping Ai : Vi → {0, 1}.
For a formula � ∈ CNF(k) we write ∃A1∀A2 · · · QkAk (� = 1) as an abbreviation for “there exists an assignment
A1 to V1 such that for all assignments A2 to V2 … such that under the assignments A1, . . , Ak the Boolean formula �
is satisfied”. From results of Stockmeyer [29] it follows that the problem

QBF-CNF(k) := {� ∈ CNF(k) : ∃A1∀A2 · · · QkAk (� = 1)}
is complete for the kth level �P

k of the polynomial time hierarchy.
For every � ∈ CNF(k) we define a string w� over the alphabet A := {C,V,p,n,-} in such a way that the

string-language

Lk := {w� : � ∈ QBF-CNF(k)}
is definable by an addition-invariant MSO formula and QBF-CNF(k) is polynomial time reducible to Lk (i.e., Lk is
�P

k -hard).
For the precise definition of w� let � = ∧n

j=1Cj be a formula in CNF(k), where the Cj are clauses, i.e., disjunctions
of unnegated or negated variables. W.l.o.g., no variable occurs both negated and unnegated in the same clause Cj .

For every i�k let Wi := W
(�)
i be the set of all Vi-variables that occur in �. W.l.o.g., Wi = {x(i)

1 , . . , x
(i)
si }, for some

si = s
(�)
i �0. For every j �n and i�k let u(�,j,i) be the {p,n,-}-string b1 · · · bsi such that, for every � ∈ {1, . . , si},

b� :=

⎧⎪⎨
⎪⎩
p if variable x

(i)
� occurs unnegated in clause Cj ,

n if variable x
(i)
� occurs negated in clause Cj ,

- if variable x
(i)
� does not occur in clause Cj at all.

We define

w(�,j) := V u(�,j,1) V u(�,j,2) · · · V u(�,j,k) V

342 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

and

w� := C w(�,1) C w(�,2) · · · C w(�,n) C.

It should be clear that the mapping f : CNF(k) → A+ with f (�) := w� (for every � ∈ CNF(k)) is a polynomial
time reduction from QBF-CNF(k) to the string-language Lk .

All that remains to show is that Lk is definable by an addition-invariant MSO-formula. First, let us construct an
MSO-formula 	k that is satisfied by a string w ∈ A+ if, and only if, there is a � ∈ CNF(k) such that w = w�. The
formula 	k has to check that

(1) The string starts and ends with the letter C, and between any two occurrences of the letter C (between which no
C occurs), there are exactly k+1 letters V, the first of which is directly right to the first C and the last of which is
directly left to the second C.

(2) For all positions x and y that carry the letter C, and for all i�k, the following is true: if x′ is the position that carries
the ith letter V right to x, and y′ is the position that carries the ith letter V right to y, then the number of positions
between x′ and the next occurrence of the letter V to the right of x′ is exactly the same as the number of positions
between y′ and the next occurrence of the letter V to the right of y′.

Using the formula �# from Lemma 5.4, this can easily be formalized by an addition-invariant MSO(�A ∪ {⊕})-
sentence 	k .

Next, we construct an MSO-sentence
k which, for every � ∈ CNF(k), is satisfied by the string w� if, and only if,

� ∈ QBF-CNF(k), i.e, ∃A1∀A2 · · · QkAk (� = 1). To this end, we represent an assignment Ai : W
(�)
i → {0, 1} by a

set Bi of positions of w� as follows: For all � with x
(i)
� ∈ W

(�)
i , the set Bi contains

• all {p,n,-}-positions of w� that are associated with the variable x
(i)
� ,

if Ai

(
x

(i)
�

) = 1,

• none of the {p,n,-}-positions of w� that are associated with the variable x
(i)
� ,

if Ai

(
x

(i)
�

) = 0.

Using Lemma 6.2 and Lemma 5.4, it is not difficult to find an MSO(�A ∪ {⊕})-formula �i (B) which ensures for an
underlying string w = w� and a set B of positions in w, that B represents an assignment Ai : W

(�)
i → {0, 1}. The

formula �i (B) just has to check that whenever x and y are positions that carry the ith occurrences of the letter V to the
left of a C, then the following is true: if x + z and y + z are the next positions to the right of x and y, respectively, that
carry the letter V, then we have for every u with 0 < u < z that x + u ∈ B ⇐⇒ y + u ∈ B.

It is straightforward to construct a formula �(B1, . . , Bk) which, provided that B1, . . , Bk represent assignments in the
way indicated above, expresses that B1, . . , Bk is a satisfying assignment for the Boolean formula �. The MSO-formula
� just needs to express that between any two occurrences x and x′ of the letter C there is an occurrence y of the letter
V such that to the right of y (but to the left of the next occurrence of the letter V) there is a position z such that the
following is true: position z either carries the letter p and z ∈ Bi (where i ∈ {1, . . , k} is such that y is the ith occurrence
of the letter V to the right of x), or position z carries the letter n and z �∈ Bi .

Now, we choose
k to be the MSO(�A ∪ {⊕})-sentence

k := ∃B1 ∀B2 · · · Qk Bk

k∧
i=1

�i (Bi) ∧ �(B1, . . , Bk) .

Here, Qk = ∃ if k is odd, and Qk = ∀ if k is even. It should be obvious that for every � ∈ CNF(k) we have that

w� �
k ⇐⇒ ∃A1∀A2 · · · QkAk (� = 1) .

Altogether, we obtain that the MSO(�A ∪ {⊕})-sentence

�k := 	k ∧
k

is an addition-invariant MSO-sentence that defines the �P
k -hard string-language Lk := {w� : � ∈ QBF-CNF(k)}. This

finally completes the proof of Theorem 6.4. �

N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344 343

Note that the above proof also shows the following:

Corollary 6.5. (a) If MLFP �= MSO on the class CA,+ := {〈w, +〉 : w ∈ A+}
of finite strings with addition, then

DLIN �= LINH.
(b) If MLFP = MSO on the class CA,+, then PH = PTIME.

7. Conclusion

The main results of the present paper are: (1) that MLFP can express graph properties beyond any fixed level
of the monadic second-order quantifier alternation hierarchy, (2) that addition-invariant MLFP can express at least
all string-problems that belong to the linear time complexity class DLIN, and (3) that settling the question whether
addition-invariant MLFP has the same expressive power as addition-invariant MSO on finite strings would solve open
problems in complexity theory.

Many interesting aspects of MLFP remain to be further investigated, for example:

• Is there a natural complexity class that is exactly captured by MLFP(+) on strings with built-in addition (analogous
to the known result that MSO(+) exactly captures the linear time hierarchy LINH)? A promising candidate might be
the time-space complexity class PTIME&LINSPACE of problems solvable by deterministic polynomial time, linear
space bounded Turing machines.

• Is there a hierarchy within MLFP with respect to the alternation of least and greatest fixed point quantifiers? I.e., does
MLFP have a hierarchy analogous to Bradfield’s modal �-calculus alternation hierarchy [2]? Note that every level
of this MLFP alternation hierarchy is closed under first-order quantification. Therefore, the alternation hierarchy
of MLFP might be viewed as a “deterministic” analogue of the closed monadic hierarchy of [1] rather than as an
analogue of the monadic second-order quantifier alternation hierarchy of [23].

• Investigate the parameterized complexity of the model checking problem for MLFP on various classes of finite
structures. E.g., is the model checking problem for MLFP fixed parameter tractable on the class of planar graphs?
Partial answers to this question have been obtained by Lindell [20].

• Do Theorem 3.9 and Corollary 3.2 still hold when replacing MLFP with the modal �-calculus?

Acknowledgements

I want to thank Martin Grohe for valuable discussions on the subject of this paper. Furthermore, I thank the anonymous
referees for their helpful comments. In particular, one referee’s remarks considerably simplified the presentation of
Section 4.

References

[1] M. Ajtai, R. Fagin, L. Stockmeyer, The closure of Monadic NP, J. Comput. System Sci. 60 (3) (2000) 660–716 (Journal version of STOC’98
paper).

[2] J. Bradfield, The modal �-calculus alternation hierarchy is strict, Theoret. Comput. Sci. 195 (2) (1998) 133–153 (Journal version of CONCUR’96
paper).

[3] A. Dawar, A restricted second order logic for finite structures, Inform. Comput. 143 (1998) 154–174 (Journal version of LCC’94 paper).
[4] A. Durand, C. Lautemann, M. More, Counting results in weak formalisms, Technical Report 1998-14, Université de Caen, France, 1998.
[5] A. Durand, M. More, Nonerasing, counting, and majority over the linear time hierarchy, Inform. and Comput. 174 (2002) 132–142.
[6] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, second ed., Springer, Berlin, 1999.
[7] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decompositions, J. ACM 49 (6) (2002) 716–752 (Journal version of ICDT’01 paper).
[8] G. Gottlob, C. Koch, Monadic datalog and the expressive power of web information extraction languages, J. ACM 51 (1) (2004) 74–113

(Journal version of PODS’02 paper).
[9] E. Grädel, Model checking games, in: Proc. of WOLLIC 02, Electronic Notes in Theoretical Computer Science, Vol. 67. Elsevier, Amsterdam,

2002.
[10] E. Grandjean, Invariance properties of RAMs and linear time, Comput. Complexity 4 (1994) 62–106.
[11] E. Grandjean, Linear time algorithms and NP-complete problems, SIAM J. Comput. 23 (3) (1994) 573–597.
[12] E. Grandjean, Sorting, linear time, and the satisfiability problem, Ann. Math. Artif. Intell. 16 (1996) 183–236.

344 N. Schweikardt / Theoretical Computer Science 350 (2006) 325 –344

[13] E. Grandjean, F. Olive, Monadic logical definability of nondeterministic linear time, Comput. Complexity 7 (1) (1998) 54–97 (Journal version
of CSL’94 paper).

[14] E. Grandjean, T. Schwentick, Machine-independent characterizations and complete problems for deterministic linear time, SIAM J. Comput.
32 (1) (2002) 196–230.

[15] M. Grohe, The structure of fixed-point logics, Ph.D. Thesis, Albert-Ludwigs Universität Freiburg, Germany, 1994.
[16] M. Grohe, N. Schweikardt, Comparing the succinctness of monadic query languages over finite trees, RAIRO Inf. Theor. Appl. 38 (2004)

343–373.
[17] M. Grohe, T. Schwentick, Locality of order-invariant first-order formulas, ACM Trans. Comput. Logic 1 (2000) 112–130 (Journal version of

MFCS’98 paper).
[18] N. Immerman, Descriptive Complexity, Springer, Berlin, 1999.
[19] R.M. Karp, Reducibility among combinatorial problems, in: IBM Symposium 1972, Complexity of Computers Computations, Plenum Press,

New York, 1972.
[20] S. Lindell, Linear-time algorithms for monadic logic, Short presentation at the 18th IEEE Symposium on Logic in Computer Science (LICS’03),

2003.
[21] J.F. Lynch, Complexity classes and theories of finite models, Math. Systems Theory 15 (1982) 127–144.
[22] J.F. Lynch, The quantifier structure of sentences that characterize nondeterministic time complexity, Comput. Complexity 2 (1992) 40–66.
[23] O. Matz, N. Schweikardt, W. Thomas, The monadic quantifier alternation hierarchy over grids and graphs, Inform. and Comput. 179 (2) (2002)

356–383.
[24] M. More, F. Olive, Rudimentary languages and second-order logic, Technical Report 1996-1, Université de Caen, France, 1996.
[25] B. Rossman, Successor-invariance in the finite, in: Proc. 18th IEEE Symp. on Logic in Computer Science (LICS’03), 2003.
[26] N. Schweikardt, Arithmetic, first-order logic, and counting quantifiers, ACM Trans. Comput. Logic 6(3) (2005) 634–671.
[27] N. Schweikardt, On the expressive power of monadic least fixed point logic, in: Proc. 31st Internat. Colloq. on Automata, Languages and

Programming (ICALP’04), Lecture Notes in Computer Science, vol. 3142, Springer, Berlin, 2004, pp.1123–1135.
[28] T. Schwentick, Descriptive complexity, lower bounds and linear time, in: Proc. 12th Internat. Workshop on Computer Science Logic (CSL’98),

Lecture Notes in Computer Science, Vol. 1584, Springer, Berlin, 1998, pp. 9–28 (Invited paper).
[29] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1) (1976) 1–22.
[30] W. Thomas, Languages, automata, and logic, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3, Springer, Berlin,

1996.

