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SUMMARY

DNA methylation in mammals is highly dynamic
during germ cell and preimplantation development
but is relatively static during the development of
somatic tissues. 5-hydroxymethylcytosine (5hmC),
created by oxidation of 5-methylcytosine (5mC) by
Tet proteins and most abundant in the brain, is
thought to be an intermediary toward 5mC demethy-
lation. We investigated patterns of 5mC and 5hmC
during neurogenesis in the embryonic mouse brain.
5hmC levels increase during neuronal differentiation.
In neuronal cells, 5hmC is not enriched at enhancers
but associates preferentially with gene bodies of
activated neuronal function-related genes. Within
these genes, gain of 5hmC is often accompanied
by loss of H3K27me3. Enrichment of 5hmC is not
associatedwith substantial DNA demethylation, sug-
gesting that 5hmC is a stable epigenetic mark. Func-
tional perturbation of the H3K27 methyltransferase
Ezh2 or of Tet2 and Tet3 leads to defects in neuronal
differentiation, suggesting that formation of 5hmC
and loss of H3K27me3 cooperate to promote brain
development.
INTRODUCTION

Methylation of cytosine at CpG sequences is an epigenetic

modification linked to gene regulation and developmental

processes (Suzuki and Bird, 2008). It has been assumed that

patterns of 5mC display a certain level of plasticity during devel-

opment (Bernstein et al., 2007; Mohn and Schübeler, 2009). This

model proposes that 5mC needs to be rapidly removed by DNA

demethylation processes at certain developmental stages.

Mechanisms of active DNA demethylation have remained

controversial, however (Ooi and Bestor, 2008; Wu and Zhang,

2010). Tet protein-mediated oxidation of 5mC resulting in the
C

formation of 5hmC is a plausible intermediate step in a replica-

tion-independent DNA demethylation pathway (Guo et al.,

2011; Tahiliani et al., 2009; Wu and Zhang, 2010). To address

the potential biological significance of a putative C / 5mC /

5hmC / C methylation-demethylation pathway, analysis of

5mC and 5hmC at two temporal stages in development or in

two linearly related cell types becomes essential. 5hmC is partic-

ularly abundant in mammalian brain tissue (Jin et al., 2011b;

Kriaucionis and Heintz, 2009; Münzel et al., 2010; Szulwach

et al., 2011; Szwagierczak et al., 2010). In this study, we investi-

gated the in vivo patterns of 5mC and 5hmC at the develop-

mental transition of neural progenitor cells (NPCs) from self-

renewal to differentiation, comparing global changes of the two

modified cytosines between NPCs and daughter neurons. We

used a dual reporter strategy by generating transgenic mice in

which NPCs are labeled with GFP expressed from the nestin

promoter and differentiated neurons are labeled with RFP ex-

pressed from the doublecortin promoter. The use of a differenti-

ation reporter in conjunction with a progenitor cell-specific

promoter helps alleviate the problem of ‘‘carryover’’ of GFP

from a primitive cell to progeny, thus allowing effective copurifi-

cation of NPCs and daughter neurons from the brain (Wang et al.,

2011). Wemapped the distribution of cytosine modifications and

several key histone methylation marks during this important

developmental step and studied the role of Tet proteins and

the Polycomb complex in this in vivo system.
RESULTS

5hmC Increases during Neuronal Differentiation and
Associates with Genes Important for Neuron Function
Our data revealed a dynamic change of 5hmC during neurogen-

esis. First, immunostaining showed a noticeable increase of

5hmC level in association with neuronal differentiation. NPCs in

the ventricular zone (VZ) and young neurons in the intermediate

zone (IZ) of the cortex contain lower levels of 5hmC, whereas

maturing neurons in the cortical plate (CP) are enriched with

5hmC (Figure 1A). The higher cell density in the forming cortical

plate gives an apparent minor increase for staining of 5mC
ell Reports 3, 291–300, February 21, 2013 ª2013 The Authors 291

mailto:gpfeifer@coh.org
mailto:qlu@coh.org
http://dx.doi.org/10.1016/j.celrep.2013.01.011
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2013.01.011&domain=pdf


Figure 1. Global Changes of 5hmC during Neuronal Differentiation

(A) Immunohistochemistry staining of mouse brain from the start of neurogenesis (E11.5) to a peak stage of neurogenesis (E15.5) with 5hmC or 5mC antibody.

5hmC level in the cortex increases with neuronal differentiation, whereas 5mC level shows little change. VZ, ventricular zone; IZ, intermediate zone; CP, cortical

plate; Scale bars represent 100 mm.

(B) Costaining of E15.5 mouse brain with 5hmC and 5mC antibodies. CP, cortical plate. Scale bars represent 100 mm.

(C) LC-MS/MSquantification of 5hmdC and 5mdC in neural progenitor cells and neurons. Levels of 5mdCand 5hmdC are represented relative to dG levels in each

cell type. Error bars represent SD.

(legend continued on next page)
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as well, but in the case of 5hmC, the difference is much stronger

(and consistent in multiple sections). 5mC levels did not show an

obvious reduction as might be anticipated if 5hmC acts as an

intermediate leading to substantial DNA demethylation (Fig-

ure 1A). In the CP, 5mC appeared to be present in smaller

speckles, most likely indicating pericentromeric heterochro-

matin, whereas 5hmC was distributed throughout nuclei as

a euchromatic mark (Figure 1B). Second, liquid chromatography

tandem mass spectrometry (LC-MS/MS) quantification of cyto-

sine modifications in NPCs and neurons isolated using the dual

reporter approach indicated a doubling of 5hmC levels in

neurons in comparison to NPCs (p < 0.0001, t test), whereas

5mC levels remain unchanged (p = 0.22, t test) (Figure 1C). Third,

we performed antibody-based 5hmC immunoprecipitation

(hMeDIP) combined with mouse whole-genome tiling array anal-

ysis to examine the gene-specific distribution of 5hmC during

neurogenesis. We did not see a bias of hMeDIP toward CA-con-

taining repeat sequences as was previously suggested (Matar-

ese et al., 2011) (Figure S1A), and 5hmC profiling by hMeDIP

or by T4 glycosyltransferase-based 5hmC enrichment (Song

et al., 2011) gave similar data (Figures S1B and S1C). For several

DNA regions, hMeDIP patterns were also confirmed by Tet-as-

sisted bisulfite (TAB) sequencing (Figure 1F; see also Figure 3A),

which is able to distinguish between 5hmC and 5mC (Yu et al.,

2012).

In light of previous reports showing enrichment of 5hmC at

enhancers in embryonic stem cells (ESCs) (Yu et al., 2012), we

analyzed the 5hmC pattern at p300 binding sites previously

mapped in mouse forebrain at embryonic day 11.5 (Visel et al.,

2009). It was shown that p300 binding accurately predicts

enhancers in vivo (Visel et al., 2009). In contrast to ESCs, cortical

NPCs and neurons show an absence of 5hmC at p300 sites

(Figures 1D–1F and S1D). However, sequences adjacent to

p300 sites are characterized by 5hmC occupancy, which

becomes enhanced during differentiation. The absence of

5hmC at p300 sites was confirmed by TAB sequencing for two

p300 binding sites, an intragenic site in the Elk3 gene and

a site located upstream of the Sox5 promoter (Figures 1F and

S1D). As expected, p300 sites are associated with an increased

CpG density in comparison to surrounding areas (Figure S1E).

The hMeDIP data revealed enrichment of 5hmC at promoters

and gene bodies (Figure S1F). We observed an increase of 5hmC
(D) 5hmC is depleted at enhancers (p300 sites) genome-wide. The composite pr

shown. The location of p300 sites was previously determined in mouse embryon

(E) Representative snapshot of missing 5hmC at a p300 binding site in the Elk3 gen

(F) TAB sequencing of the intragenic Elk3 p300 binding site and flanking region in

The percentage of unconverted cytosines (5hmC) after TAB sequencing is indica

unmethylated CpGs. CpGs with undefined methylation status were marked with

(G) Snapshots of 5hmC and 5mC profiles in NPC and differentiating neurons in a r

Nav2.

(H) Proportion of 5hmC-enriched areas in genomic compartments during ne

compartments was determined as the total length of 5hmC-enriched sequences

(I) Composite profiles of 5hmC and 5mC patterns in genes characterized by 5hmC

5-hmC-enriched genes were identified by a sliding window approach (see Exper

5mC in NPCs for genes with 5hmC enrichment detected in NPCs. The black dotte

enrichment in NPCs. The red solid lines reflect average levels of 5hmC or 5mC in n

average levels of 5hmC or 5mC in neurons for genes without 5hmC enrichment

See also Tables S1 and S2 and Figure S1.

C

signal, mostly in intragenic regions, during neuronal differentia-

tion (Figures 1G–1I) but little change of 5mC (Figure 1I). Levels

of 5hmC are clearly dependent on 5mC because sequences

that are lacking 5hmC also have very low levels of 5mC (dotted

lines in Figure 1I). The data also indicate that the profiles of

5mC and 5hmC are similar toward the 30 ends of genes but

show distinctly opposite trends near promoters (Figure 1I).

We found that 5hmC levels at promoters or intragenic regions

are differentially correlated with CpG density and gene activity.

Genes with highest intragenic CpG density are enriched with

5hmC in the gene body (Figures S2A and S2B) whereas genes

with moderate or low CpG density at the promoter and low tran-

scriptional activity are characterized by frequent accumulation of

5hmC near the promoter (Figures S2C and S2D).

We inspected the genes strongly enriched with intragenic

5hmC. The intragenic 5hmC-rich genes included 2,782 genes

and 3,879 genes in NPC and in neurons, respectively; 1,988

genes were common to both (Figure S2E; Table S1). Intragenic

5hmC-enriched genes are associated with higher transcript

levels than the rest of the genes, a trend that becomes more

obvious in neurons (Figure S2F). This group of genes shows

strong enrichment in genes expressing in brain (Figure S2G)

and includes many genes critical for neuronal differentiation,

migration, or axon guidance, for example, Nav2 (Figure 1G)

and Robo1, Dab1, Dclk1, Tbr1, Sox5, Bcl11b, Satb2, Myt1l,

Wnt7b, Cdk5r1, Rab3a, and Efna3 (Tables S1 and S2;

Figure S2H).

Changes of 5hmC Are Negatively Correlated with
Changes of H3K27me3
To evaluate whether and how 5hmC dynamics may work in

concert with chromatin modifications during neurogenesis, we

profiled H3K4me3, H3K36me3, and H3K27me3 histone marks.

Recently, a negative crosstalk between H3K27me3 and 5mC

was described where loss of 5mC caused by Dnmt3a knockout

resulted in accumulation of H3K27me3 (Wu et al., 2010). Our

heatmaps and composite profiles show that the 5mC mark did

not change significantly with gain and loss of intragenic

H3K27me3 during neuronal differentiation (Figure 2). We thus

hypothesized that a negative association exists for H3K27me3

and 5hmC, and this was evident when sorting genes by changes

of intragenic H3K27me3 during neuronal differentiation; loss of
ofiles of 5hmC at p300 sites and their flanking areas from �5 kb to +5 kb are

ic forebrain (Visel et al., 2009).

e. The locations of regions E and N analyzed by TAB sequencing are indicated.

NPCs, neurons, and nonglycosylated control with DNA from neurons (Tet1-C).

ted. Black circles represent hydroxymethylated CpGs; open circles represent

blue color.

epresentative genomic region encompassing the neuronal differentiation gene

uronal differentiation. The percentage of 5hmC-covered areas in genomic

in the compartment divided by the total length of the compartment.

enrichment or lack of 5hmC enrichment in gene body and in promoter regions.

imental Procedures). The black solid lines indicate average levels of 5hmC or

d lines show average levels of 5hmC or 5mC in NPCs for genes without 5hmC

eurons for genes with 5hmC enrichment in neurons. The red dotted lines show

in neurons.
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H3K27me3 is associated with gain of 5hmC in gene bodies (Fig-

ure 2A). Composite profiles of the 15% of genes with the most

intensive loss of intragenic H3K27me3 during differentiation de-

tected a strong increase of intragenic 5hmC (Figure 2B).

Conversely, gain of intragenic H3K27me3 is linked to a loss of

5hmC in gene bodies.

Differential Expression of Many Genes during Neural
Development Is Characterized by Epigenetic Switches
Associated with H3K27me3, H3K4me3, H3K36me3, and
5hmC
Loss of H3K27me3 and gain of intragenic 5hmC appear to be

features of many genes that become activated and are impor-

tant for the progression of neuronal differentiation. Composite

profiles for the most activated and repressed genes during

neuronal differentiation showed that gene activation is often

linked to decrease of H3K27me3 in gene bodies and promoters,

gain of H3K4me3 at promoters, and gain of intragenic 5hmC

(Figure 2C). Many neuronal differentiation regulators including

Sox5, Bcl11b, Wnt7b, Ank3, Mir124a, and Myt1l undergo an

epigenetic switch, which is characterized by a loss or reduction

of promoter bivalent status due to decrease of H3K27me3

occupation at promoters (Table S1). On the other hand, gene

repression is associated with increase of H3K27me3 at the

TSS, decrease of H3K4me3 levels at promoters and loss of

H3K36me3 in gene bodies (Figure 2C). Accumulation of the

H3K27me3 mark is mainly linked to silencing of genes respon-

sible for maintaining an undifferentiated state such as Sox2,

Pax6, Smad3, Rest, Jag1, Wwtr1, Prdm16, Nr2e1, Hes1,

Notch1, Ccnd1, Rhoci, and Bmp7 (Table S3). Analysis of genes

gaining intragenic 5hmC indicated a link to neuronal differentia-

tion and axonogenesis (Table S3). In addition, transcriptional

analysis revealed that accumulation of intragenic 5hmC

together with loss of H3K27me3 is associated with the most

significant gene activation during neuronal differentiation

(Figure 2D).
Figure 2. Gain of Intragenic 5hmC Is Associated with Loss of H3K27m

(A) Heatmap analysis of 5mC, 5hmC, and histone methylation marks. The heatma

was generated for genes larger than 2 kb and represents a region containing the ge

contains information about expression in NPCs, expression in neurons, intragen

differentiation, histone modifications, 5hmC and 5mC patterns for the analyzed c

(neurons versus NPC). All analyzed genes were sorted by intragenic H3K27me3 c

and red specifies an increase or high level of a mark. The top 15% of genes with

state of H3K27me3 changes, and top 15% of the genes with highest gain of intr

(B) Composite profiles of the 5hmCmark in the top 15% of genes with greatest los

changes, and top 15% of the genes with highest gain of intragenic H3K27me3 dur

levels in undifferentiated cells and red color represents 5hmC in neurons. Yellow

(C) Epigenetic changes associated with differential expression of genes marked b

gene body and/or promoters and belong to the top 25% activated or top 25%

generated for promoter regions (�5 kb to TSS to +5 kb) and entire genes (�5 kb

epigenetic marks in NPCs for genes, which are activated during neuronal differe

genes, which are activated during differentiation. Black solid lines indicate the

differentiation. Black dotted lines reflect the status of epigenetic marks in neuron

(D) Gain of intragenic 5hmC and loss of H3K27me3 characterizes genes activated

were plotted for six groups of genes: genes that gained intragenic 5hmC duri

H3K27me3 at the TSS and its adjacent intragenic region (�0.5 kb < TSS < 4.5 kb) a

intragenic region and did not gain intragenic 5hmC, genes that gained intragenic

genes that gained intragenic 5hmC with simultaneous gain of H3K27me3 at prom

See also Tables S1 and S3 and Figure S2.

C

Gene Activation Is Associated with an Increase of 5hmC
in Gene Bodies but No Evidence for Substantial DNA
Demethylation
To evaluate if 5hmC accumulation is associated with demethyla-

tion of cytosines, we performed bisulfite sequencing analysis on

11 regions that were abundant with 5hmC and apparently lost

some 5mC during neuronal differentiation (Figures 3 and S3).

Bisulfite sequencing cannot distinguish between 5mC and

5hmC but distinguishes both modified cytosines from cytosine

(Huang et al., 2010; Jin et al., 2010). We did not see a substantial

conversion of 5mC or 5hmC into C in 10 out 11 examined

regions, where nine regions are located in genes (Nav2, Sox5,

Bcl11b,Wnt7b, Ank3, Pde2a, Prex1, and Uchl1), which become

activated during neuronal differentiation. Most (8/11) of the

analyzed DNA regions indicated no change of unconverted cyto-

sine or minimal loss, below 5% of the total analyzed CpGs, and

two fragments were associated with increase of modified cyto-

sine between 3%–4% (Figure 3C). In order to determine the

exact frequency of 5hmC at selected loci, we performed TAB

sequencing of five intragenic regions located in the Sox5,

Nav2, Uchl1, Pde2a, and Elk3 genes (Figures 1E, N region, and

3A). This data indicated that 5hmC frequency is indeed doubling

at some intragenic regions and reaches up to 20% of all CpGs in

the analyzed regions and 25% of modified cytosines (5hmC level

according to TAB sequencing divided by number of all modified

cytosines detected by regular bisulfite sequencing). This data

indicated that the rise of 5hmC can have a significant impact

on sequence-specific 5mC levels during neuronal differentiation

and also suggests substantial stability of this modification in the

genome.

Polycomb and Tet Proteins Regulate the Normal
Progression of Neuronal Differentiation in the Cortex
We next explored the functional significance of the dynamics of

5hmC and histone marks in relation to the developmental switch

of neuronal differentiation. We targeted Tet proteins and the
e3 during Neuronal Differentiation

p for chromatin modifications and their changes during neuronal differentiation

ne body and the surrounding area (�5 kb to [gene body] to +5 kb). The heatmap

ic CpG density, promoter CpG density, expression changes during neuronal

ell type, and changes of these epigenetic marks during neuronal differentiation

hanges. Green color indicates a low level or loss, black represents no change,

the greatest loss of intragenic H3K27me3, 15% of genes with an intermediate

agenic H3K27me3 during neuronal differentiation are indicated on the right.

s of intragenic H3K27me3, 15% of genes with intermediate state of H3K27me3

ing neuronal differentiation (from top to bottom). The black line indicates 5hmC

indicates 5hmC signal below zero.

y 5hmC. This analysis was done for genes, which have 5hmC enrichment in the

repressed genes during neuronal differentiation. Composite profiles were

to TSS to gene body to TES plus 5 kb). Red solid lines indicate the status of

ntiation. Red dotted lines reflect the status of epigenetic marks in neurons for

status of epigenetic marks in NPCs for genes, which are repressed during

s for genes, which are repressed during differentiation.

during neuronal differentiation. Gene expression levels in NPCs and in neurons

ng neuronal differentiation, genes that lost intragenic 5hmC, genes that lost

nd did not gain 5hmC, genes that gained H3K27me3 at the TSS and its adjacent

5hmC and lost H3K27me3 at the TSS and its adjacent intragenic region, and

oters. P values for significant differences between groups (t test) are shown.
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Figure 3. 5hmC Gain Is Not Linked to DNA Demethylation

(A) Detection of 5hmC changes and changes of unmodified cytosines during neuronal differentiation by single-base resolution analysis. Four intragenic regions

were analyzed by TAB sequencing and regular bisulfite sequencing in NPCs and neurons. Snapshots indicate patterns of 5hmC and 5mC in NPCs and neurons in

the analyzed regions and surrounding areas. The analyzed regions and percentage of unconverted cytosines after TAB sequencing and bisulfite sequencing are

shown. TAB data for specific 5hmC sites are framed and contain a control of 5mC/5hmC conversion by Tet1 (Tet1-C). Tet1-C is unglycosylatedDNA from neurons

after TAB sequencing. Black circles represent methylated or hydroxymethylated CpGs; open circles represent unmethylated CpGs. CpGs with undefined

methylation status were marked with green color.

(B) Bisulfite sequencing analysis of two DNA regions located in the Sox5 and Bcl11b genes, which become activated during neuronal differentiation. Snapshots

indicate changes of epigenetic profiles associated with gene activation. The analyzed regions and percentage of unconverted cytosines after bisulfite sequencing

are indicated. Black circles represent methylated or hydroxymethylated CpGs; open circles represent unmethylated CpGs. CpGs with undefined methylation

status were marked with green color.

(C) Summary of bisulfite sequencing for 11 DNA regions in NPCs and neurons. For each gene, the percentage of unconverted cytosines (5mC and 5hmC) is

indicated.

See also Figure S3.
Ezh2 subunit of the Polycomb complex. In situ hybridization

showed that Tet3 followed by Tet2 are the Tet genes most highly

expressed in the cortex (Figure S4A). Their expression levels

were upregulated during neuronal differentiation (Figures S4A

and S4B) in parallel with the increase of 5hmC levels (Figure 1A).

Expression of Ezh2 is reduced (RNA in situ based on http://

genepaint.org and Figure S4B) during neurogenesis. We thus

asked whether overexpression of Tet (Figure S4C) or inhibition

of Ezh2 might be necessary for neuronal differentiation to
296 Cell Reports 3, 291–300, February 21, 2013 ª2013 The Authors
proceed. RNA interference (RNAi) of Ezh2 in the cortex via in

utero electroporation-mediated expression of an shRNA (Figures

S4E and S4F) caused more cortical cells to translocate from the

VZ into the IZ and CP (Figure 4A), an indication of differentiation

of the affected NPCs (Murai et al., 2010; Qiu et al., 2008). This

was supported by the observation that cells having moved into

the CP were positive for neuronal marker b-III-tubulin but lacked

dividing cell marker Ki67 (Figure 4B). Consistent with the

observed cell distribution, quantification of acutely dissociated

http://genepaint.org
http://genepaint.org


Figure 4. Functional Analyses of Ezh2, Tet2, and Tet3 in the Embryonic Cortex

(A) DNA plasmids (shEzh2, Tet2, and Tet3 cDNAs; all carry an ubiquitin promoter-GFP expression cassette for visualization of the transfected cells) were

introduced into the cortex at E13.5 via in utero electroporation. The brains were collected at E15.5 for analysis. Distributions (percentage) of transfected cells in

different radial regions of the cortex were scored. Scale bar represents 100 mm. Error bars represent SD. CP, cortical plate; IZ, intermediate zone; VZ-SVZ,

ventricular-subventricular zone.

(B) Immunostaining of the brains electroporated with shEzh2 for bIII-tubulin or Ki67 expression.

(C) Cortical cells derived from E15.5 brains (electroporated at E13.5) were plated on poly-D-lysine-coated coverslips for 2 hr, fixed, and stained for bIII-tubulin.

Arrows indicate examples of positive cells. Percentage of bIII-tubulin positive green cells was scored. Error bars represent SD.

(D) Expression plasmids carrying Ezh2 cDNA were electroporated at E13.5 and the transfected brains were analyzed at E16.5 and E17.5. Percentage of cells

remaining in the non-CP area (including the IZ and VZ) was scored. Error bars represent SD.

(E) Immunostaining of the brains electroporated with Ezh2 for nestin, bIII-tubulin and incorporated BrdU with a 30 min pulse labeling.

(F) shRNAs of Tet3 and Tet2 were coelectroporated at E13.5 and the transfected brains were analyzed at E16.5 and E17.5. White arrows indicate the clusters of

cells in the cortex.

(G) Immunostaining of the brains electroporated with shRNAs of Tet3 and Tet2 for nestin or bIII-tubulin.

See also Figure S4.
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cells derived from electroporated cortices showed an increase of

b-III-tubulin positive cells in the shEzh2-expressing population

(Figure 4C). Overexpression of Tet3 and Tet2 caused a similar

but less pronounced trend of early neuronal differentiation and

induced a stronger effect when combined with knockdown of

Ezh2 (Figures 4A and S4C). We next asked whether prolonged

expression of Ezh2 (Figure S4D) or inhibition of Tet2 and Tet3

by shRNA (Figures S4E and S4F) might prevent differentiation.

We found that, in contrast to the progression of neuronal differ-

entiation in GFP control cells, for which differentiated progeny

have progressively moved into the CP (Qiu et al., 2008), overex-

pression of Ezh2 caused many cells to remain in the VZ and IZ

(Figure 4D). Ezh2-expressing cells were positive for nestin but

negative for b-III-tubulin and some cells could incorporate

BrdU (Figure 4E), suggesting that expression of Ezh2 could block

differentiation. Reduction of Tet gene expression via coelectro-

poration of shRNAs directed against Tet3 and Tet2 (Ito et al.,

2010) did not cause an overall shift of cell distribution as in the

case of Ezh2 overexpression, but revealed a distinct effect (Fig-

ure 4F). Knockdown of Tet3 and Tet2 often (8/16 brains) led to

abnormal accumulation of cell clusters along the radial axis in

the IZ and VZ, whereas GFP control cells (Figure 4D) rarely

(1/14 brains) produced such a phenomenon (p = 0.017; Fisher’s

exact test, two-tailed). Clustered cells did not express neuronal

marker b-III-tubulin and some of the cells showed expression

of nestin in their processes (Figure 4G), suggesting a defect in

the progression of differentiation.

DISCUSSION

Taken together, our data suggest that formation of 5hmC along

gene bodies is associated with gene activation during neuronal

differentiation. The purpose of intragenic 5mC oxidation remains

unclear. One possibility is that 5hmC is more strongly antago-

nizing Polycomb-mediated repression and H3K27me3 forma-

tion than 5mC, thus allowing efficient gene activation to occur

and to be maintained. We find that many activated genes func-

tioning in neuronal differentiation lose the Polycomb mark near

promoters and in gene bodies concomitant with a gain of

5hmC. However, it is unlikely that the two processes are always

directly linked, because loss of H3K27me3 is commonly

observed at promoters and just downstream of the TSS whereas

gain of 5hmC occurs along the entire gene body length. In

agreement with this model, our functional data suggest that Pol-

ycomb and Tet proteins may act in sequence in regulation of

neurogenesis. Loss of function of Ezh2 promoted neuronal

differentiation, whereas gain of function of Ezh2 did the oppo-

site, indicating a role of Ezh2 in guiding NPCs’ decision to either

self-renew or differentiate. Loss of function or gain of function of

Tets did not swing the fate choice of NPCs, but appeared to

affect the ability of NPCs to complete the differentiation process.

Furthermore, in agreement with the functional data, we

observed that prominent changes of H3K27me3 and 5hmC

marks in relation to neuronal differentiation occurred in cell

fate determinants or neuronal function-related genes, respec-

tively. Thus collectively, our data suggest that Polycomb func-

tions to regulate the switch of NPCs from expansion to differen-

tiation, whereas Tet proteins are involved in maintaining the
298 Cell Reports 3, 291–300, February 21, 2013 ª2013 The Authors
proper progression of the differentiation process after its

initiation.

Our data indicate that 5hmC patterns in neuronal cells are

dissimilar to those in ESCs that are associated with high levels

of Tet1 and Tet2 and low levels of Tet3 (Koh et al., 2011). Accord-

ing to TAB sequencing data for ESCs, 5hmC is abundant at

enhancers (p300 sites) and underrepresented in gene bodies

(Yu et al., 2012). In contrast, cortical NPCs and neurons at

E15.5 are characterized by low levels of 5hmC at p300 sites

and by enrichment of 5hmC in gene bodies. These facts may

suggest that Tet1 may play a prominent role in 5hmC formation

at enhancers in ESCs, whereas Tet3 activity may be associated

with intragenic 5hmC deposition during neuronal development.

This information also suggests that cortical NPCs and neurons

are able to maintain their enhancers unmethylated by mecha-

nisms other than 5mC oxidation or that 5hmC turnover is more

rapid at neuronal enhancers.

5hmC is thought to be an intermediate in enzyme-catalyzed

active DNA demethylation. However, we could not substantiate

a primary role of 5hmC in demethylation during neurogenesis.

It is possible that 5hmC may slowly be converted to cytosine

over time during the maturation of neurons; nevertheless, it

appears that 5hmC is a rather stable epigenetic mark, as previ-

ously suggested from studies of early embryo development

and tumorigenesis, in which passive, replication-dependent

loss of 5hmC was observed (Gu et al., 2011; Inoue and Zhang,

2011; Iqbal et al., 2011; Jin et al., 2011a). 5hmC may be recog-

nized by specific proteins, or, alternatively, it may represent

a negative signal that interferes with protein complexes that

bind to either 5mC, such as methyl-CpG binding proteins (Jin

et al., 2010), or to CpG-rich DNA regions in general, such as

the Polycomb complex. However, one publication reported

that MBD3, one MBD family member, binds to 5hmC (Yildirim

et al., 2011). Moreover, a very recent publication has suggested

that the methyl-CpG binding protein MeCP2, an abundant

protein in the brain, can in fact bind to 5hmC and accumulates

in gene bodies (Mellén et al., 2012), where it may organize

a nuclease-sensitive chromatin structure in active genes. What-

ever the exact mechanism, formation of 5hmC along gene

bodies appears to be an important signal that is linked to

increased expression of genes critical for the neuronal differen-

tiation process. Defects in this pathway or even subtle aberra-

tions could manifest themselves in neurodevelopmental or

neurological disorders.

EXPERIMENTAL PROCEDURES

Purification of Neural Progenitors and Differentiating Neurons

Animal procedures were approved by the Institutional Animal Care and Use

Committee (IACUC). Purification of E15.5 cortical NPCs and neurons using a

double reporter strategy and characterization of the purified cells were re-

ported previously (Wang et al., 2011). Briefly, we bred heterozygous Nestin-

GFP mice with homozygous DCX-RFP mice to yield both GFP/RFP double-

positive and RFP single-positive littermate embryos, which were used for

isolating GFP+RFP� cells (NPCs) and RFP+ cells (neurons), respectively.

Immunohistochemistry

The immunohistochemistry staining was done as described previously (Jin

et al., 2011a; Qiu et al., 2008). Each antibody staining was performed on

multiple brain sections and the experiment was repeated one or more times.



We used the following primary antibodies: anti-5hmC (Active Motif, #39769,

1:1,000); anti-5mC (Diagenode, #BI-MECY-0100; 1:200); anti-nestin rat-401

(Developmental Studies Hybridoma Bank, 1:100); anti-bIII tubulin (Sigma-

Aldrich, #T 8660, 1:400); anti-bromodeoxyuridine (BrdU) (Sigma-Aldrich,

#B2531, 1:500); anti-Ki67 (BD PharMingen; #550609; 1:20).

RNA In Situ Hybridization and Western Blot

For RNA in situ hybridization, digoxigenin-labeled cDNAs were synthesized

from linearized pBluescript constructs containing C-terminal fragments of

Tet1, Tet2, and Tet3 cDNAs and hybridized to embryonic forebrain coronal

sections with further detection by an anti-digoxigenin AP (alkaline phospha-

tase) approach. For western blot, transfected HEK cells or purified cortical

cells were lysed in 23 SDS sample buffer, sonicated and boiled. Proteins

were separated by SDS gel electrophoresis, transferred to PVDF membranes

and incubated with Ezh2 (#39934, Active Motif), a-tubulin (T6199, Sigma-

Aldrich), and rabbit anti-Tet3 antibody raised against an N-terminal 102 amino

acid peptide of mouse CXXC-Tet3 fused to GST.

Electroporation and Phenotype Analysis

In utero electroporation-mediated functional assays and acutely dissociated

cell assays were performed as previously described (Qiu et al., 2008). For over-

expression, cDNAs encoding full-length Ezh2, Tet2, and CXXC-Tet3 were

cloned into a CAG promoter plasmid.

shRNA Efficiency Screening

shRNAs were expressed under control of a mouse U6 promoter in pNUTS

vector additionally containing EGFP expressed from the ubiquitin promoter.

Candidate shRNAs were tested with targets cloned in psi-CHECK vector in

transfected HEK293 cells, using a dual luciferase reporter assay (Promega,

E1910). The sequences of shRNA for Tet transcripts were previously described

by Ito et al. (2010). The shRNA for Ezh2 (Open Biosystems) had the following

sequence: 50-TTGAGTACTGTGGGCAATTTATTCAAGAGATAAATTGCCCAC

AGTACTCAA.

LC-MS/MS Quantification of 5hmdC and 5mdC in Genomic DNA

Global 5hmdC and 5mdC levels were measured by LC-MS/MS using stable

isotope-labeled internal standards as described previously (Jin et al., 2011a).

Profiling of Methylated and Hydroxymethylated Cytosines

For analysis of 5mC, the methylated CpG island recovery assay (MIRA) was

used as described previously (Rauch et al., 2006). Immunoprecipitated and

input DNA were 50-end- phosphorylated and blunt-ended with END-It DNA

end-repair kit (Epicenter Biotechnologies) with further generation of over-

hanging A ends by Klenow Exo- (New England BioLabs) and DNA ligation

with an overhanging ‘‘T’’ linker (50-GCGGTGACCCGGGAGATCTGAATTCT,

50-GAATTCAGATC) with T4 ligase (New England BioLabs). The genome ampli-

fication procedure was done as previously described (Hahn et al., 2008). For

hMeDIP, linker ligated DNA was immunoprecipitated with 5hmC antibody

(#39769, Active Motif; Carlsbad, CA).

After genome amplification, DNA obtained after MIRA or hMeDIP were

hybridized versus input DNA on Mouse ChIP-chip 2.1M whole-genome tiling

arrays and for additional biological replicates on tiling arrays of mouse chr7

(NimbleGen). For 5hmC profiling by a glycosylation-based method (Song

et al., 2011), we used the Hydroxymethyl Collector Kit (Active Motif) according

to the manufacturer’s protocol. DNA was amplified and hybridized onto tiling

arrays of mouse chr7 (NimbleGen).

Sequencing of Modified Cytosines

TAB conversion was performed by using the 5hmC TAB-Seq Kit (Wisegene)

with two rounds of Tet1 oxidation. Bisulfite conversion of TAB-treated and

untreated DNA was performed by using the EZ DNA methylation-Gold kit

(Zymo Research) according to the manufacturer’s instructions. PCR products

were cloned by using CloneJet PCR cloning kit (ThermoScientific). The effi-

ciency of Tet1 conversion was validated by TAB sequencing of DNA from

neurons without glycosylation (Tet1-C in Figures 1F and 3A).
C

Chromatin Immunoprecipitation

The chromatin immunoprecipitation (ChIP) protocol was described previously

(Hahn et al., 2008). The following antibodies were used: anti-H3K4me3 (39159,

Active Motif), anti-H3K36me3 (ab9050, Abcam), and anti-H3K27me3 (07-449,

Millipore). For obtaining the H3K4me3 profile, the H3K4me3 antibodies were

preblocked with an H3K9me3 peptide (Abcam). After genome amplification,

immunoprecipitated DNA was hybridized versus input DNA on Mouse ChIP-

chip 2.1Mwhole genome tiling arrays (NimbleGen) and for additional biological

replicates on chr7 tiling arrays.

Bioinformatics Analyses of Profiling Data

All analyses were performed using R statistical language, except gene

ontology analysis, which was performed using DAVID annotation tools. The

heatmaps were generated with Java Treeview v2.0. Refseq genes were down-

loaded from the UCSC mm9 annotation database (UCSC Genome Browser,

Santa Cruz, CA). A detailed description of individual bioinformatics analyses

can be found in the Extended Experimental Procedures.
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