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It is shown that the distribution of the number of regions r in the random orientable embedding 
of the graph with one vertex and q loops is approximately proportional to the unsigned Stirling 
numbers of the first kind s(2q, r) where r has different parity from q. This approximation is 
strong enough to imply that both the limiting mean and variance of this distribution differ from 
In 2q by small known constants. The paper concludes with a result on the unimodality of some 
recursively defined sequences and also some conjectures regarding region distributions of 

arbitrary graphs. 

0. Introduction 

In a previous article [15] the author pointed out that the characters of the 
symmetric group contained a wealth of information regarding the distributions of 
the genera of orientable embeddings of certain classes of graphs. This approach 
was used by Gross, Robbins and Tucker [5] where they applied the recursion on 
the requisite character sums, obtained by Jackson [8], to show that the genus 
distribution of the bouquet of circles is strongly unimodal. In this paper we focus 
on the distribution of the number of regions in these embeddings of the bouquet. 
Some new bounds for the characters of the symmetric group are derived and 
these are used to show that the region distribution of the bouquet is asymptoti- 
cally proportional to the (unsigned) Stirling numbers of the first kind. This 
approximation is strong enough to yield the results that the limiting mean and 
variance of the region distribution of the bouquet with q edges are both 
approximately In 2q. 

In Section 1 we describe the region distribution of the orientable embeddings of 
all graphs on q edges. The relevance of the Stirling numbers is explained and they 
are used to obtain the mean and variance of this overall distribution. The region 
counts of the embeddings of the bouquet are converted into character sums in 
Section 2. The relevant characters are then bounded and these bounds are used to 
demonstrate the affinity between the region distribution of the bouquet on q 

loops and the region distribution of all the graphs on q edges. A variety of 
lemmas and bounds for the Stirling numbers are derived in Section 3. Finally, 
some afterthoughts and conjectures are discussed in Section 4. 
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1. Why Stirling numbers? 

The word graph will be used here to denote what is commonly called a 
pseudograph; in other words, loops and multiple edges are allowed. All 
embeddings discussed here are assumed to be 2-cell and orientable. Otherwise, 
the graph theoretical terminology here agrees with that of [7,18]. 

The permutations of the set {1,2,3, . . . , n} will usually be described by means 
of their disjoint cycle decomposition. The set underlying one of these disjoint 
cycles is called an orbit. The number of orbits of the permutation P is denoted by 
IIPII, and the composition of permutations is to be read from left to right. 

It is by now well known to graph theorists that orientable embeddings can be 
described by a variety of combinatorial structures. The method used here is the 
one that underlies the work of [2,14,15,17] and others. 

Let G be an arbitrary graph. Convert it to a digraph D by replacing each edge 
of G with a pair of oppositely directed arcs for D. Let S be the set of arcs of D 
and let Q be the product of all transpositions that associate arcs with their 
inverses. Then IlQll is the number of edges of G. Suppose now that G is 
embedded on the oriented surface S, (the sphere with g handles). The orientation 
of S, defines a permutation P on S, each of whose cycles consists of the set of arcs 
emanating from one vertex, cyclically ordered by the orientation of S,. Again it is 
clear that lIPI is the number of vertices of G. It is also easily verified that the 
regions of the embedding are in a natural one-to-one correspondence with the 
orbits of the product QP. Consequently IlQPll equals the number of the regions 
of the embedding. 

Example 1.1. Let G = K4 be embedded in the plane as in Fig. la. The result- 
ing D is shown in Fig. lb. Then Q = (12)(3 4)(5 6)(7 8)(9 a)(b c), P = 
(2 c a)(1 5 3)(6 9 8)(b 4 7), and QP = (1 c 4)(2 5 9)(3 7 6)(8 b a). 

If we now consider graphs as edge-labelled with q = IE(G)I distinct labels, we 
may assume Q to be the fixed point free involution (12)(3 4) . . . (2q - 12q). As 
G varies over all embedded edge-labelled graphs, the associated permutation P 
varies over all the elements of the symmetric group S,+ If a smaller class of 

Fig.1 
b 
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graphs is to be studied, the range of P should be modified accordingly. For 
example, the embeddings of cubic graphs correspond to the (conjugacy) class of 
all permutations in &, whose orbits consists of 3-cycles. 

The unsigned Stirling numbers of the first kind s(n, k) are defined as the 
coefficients of 

(x + n - l),,, =X(X + 1)(x + 2) + . . (x + n - 1) = i s(n, k)xk. 
k=O 

For the sake of simplicity we shall refer to them as simply the Stirling numbers. 
They are known to satisfy the following equations [l, p. 2141. 

s(n,k)=s(n-l,k-l)+(n-l)s(n-l,k) 

s(n, 0) = ~(0, k) = 0 ~(0, 0) = 1. 
(1.1) 

except 

It is known [l, p. 2341 that the number of permutations in S, that have exactly k 
orbits is s(n, k). This yields the following result. 

Proposition 1.2. The total number of orientable embeddings of graphs on q edges 
with r regions is s(2q, r). 

Proof. Fix Q = (12)(3 4) * * - (2q - 129). Then the map P-, QP is a bijection of 
S,. Since in examining all the embeddings of all graphs on q edges P varies over 
all the elements of S,, it follows that the corresponding QP also varies over all 
the elements of &,,. Thus the number of P’s for which llQP[] = r is s(2q, r). Cl 

For each positive integer q let Y4 be the discrete random variable such that 

Pr[Y, = r] = proportion of orientable embeddings of graphs on q 

edges with r regions 

= s(2q, r)l(2q)! 

We shall refer to Y4 as the random variable describing the region distribution for 
all graphs on q edges. For each positive integer n set 

Proposition 1.3. Let Y, be the random variable describing the region distribution 
for the embeddings of all graphs on q edges. Then 

u(y,) = L&r, 

a’(Y,) = Ha - &(2). 
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Proof. By Lemma 3.5, 

Jw9) = (2q)! r=l 
--L 3 rs(2q, I) = zf2q. 

Similarly, by the same lemma, 

a’(yJ = (2q)! r=, 
12 r%(2q, r) - $(Y,) 

= H&r + HZ9 - &(2) - H$ = H2q - s;&). q 

2. The region distribution for the bouquet 

Let Bq denote the graph with a single vertex and q loops. We shall refer to it as 
the bouquet on q loops. As was observed in [5], if the embeddings of the 
bouquet are analyzed in the same manner as was described in Section 1, then we 
are lead to the consideration of products of the form QP where 

Q = (12)(3 4) - . - (2q - 12q), 

and P is an arbitrary cyclic permutation in S,. The specific choice of Q is clearly 
immaterial and so the problem of describing IjQPll for a random cyclic P can be 
symmetrized by considering all products QP where Q is an arbitrary fixed point 
free involution and P is an arbitrary cyclic permutation, both in &. It is now 
necessary to digress to a discussion of the conjugacy classes of S,. This discussion 
is of necessity incomplete and the reader is referred to [6,9,11] for more details. 

The conjugacy class of a permutation depends solely on the sizes of its orbits. 
Specifically, let P be a permutation of n symbols with the disjoint cycle 
decomposition 

where k = II PII and each ui is a cyclic permutation of Ai symbols. We may assume 
without loss of generality that Ai =Z A2 < - - . S &. If P’ is another permutation of 
the same 12 symbols with the corresponding sequence A; 6 A; < - * * s A;., then P 
and P’ are conjugate elements of S,, if and only if k = k’ and Ai = A,! for each 
1 G i < k. Since each such monotone sequence constitutes a partition of the 
integer n, it follows that the conjugacy classes of S,, are in a l-l correspondence 
with the partitions of the integer n. We shall henceforth denote a class of S,, by 
C, where A.=(A,sA,s** - S &) and cf==, & = n, and we abbreviate this with 
the notation A 1 it. There is an alternate description of such partitions A. Let aj 
denote the number of indices i such that Ai = j. Then A is also denoted by 
(l”‘, 2”‘, . . . ) rP), where those terms whose indices are zero are usually 
omitted. For example 

(2~2~3~363~5) and (22,33,5) 
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denote the same conjugacy class of S,,. Using this latter notation, if A = 
(l”‘, 2”‘, . . . ) n”) we define llA[l = EYE1 ai. If C, is the corresponding class then 
it is clear that 

lIPI = I)111 whenever P E CA. 

The following formula is attributed to Cauchy: 

Of particular significance here are the conjugacy classes of S, corresponding to 
the following partitions of 2q: 

(2q) q transpositions, 

(2q) cyclic permutations, 
(li, 2q - i) i singletons and one cycle of length 2q - i, 

(19 the identity permutation. 
If C, and C,, C, are three conjugacy classes of S, then it is known that two 
elements of C, can be expressed as products 

gh with gECP, heC, (2.2) 

in the same number of ways. This fact can be expressed as the formal sum 

where c,,,,~ denotes the number of ways an arbitrary element of C, can be 
expressed as a product in (2.2). The coefficient c~,,~ is also called the class 
multiplication coefficient. It is known that 

where xE denotes the value that the character of S,, corresponding to C, assumes 
on the class C,,. 

Lemma 2.1. Let b(q, r) denote the number of embeddings of the bouquet B, on q 
edges that have r regions. Then 

2q-1 $37--i) 1’,zq--i)x~l’,2q--i) 

m r) =$ ,,;z( ,zo x(2 ) ;;&ej ) ICd 

Proof. Let Q = (12)(3 4) - . - (2q - 12q) be the permutation of the arcs of B, 
that exchanges each arc with its inverse. The possible rotations of these arcs vary 
over all the cyclic permutations in the class C,,,. Any such rotation P yields an 
embedding with r regions exactly when llQPl[ = r. Observe [16] that x& # 0 only 
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when A = (li, 2q - i) for some i E (0, 1, . . . , 2q - l}. Hence, if we set 

A(i, q, A) = “’ ) 
(~~24-i)x~~~--i)x~1~,2q--i) 

&q--i) 

then 

It is known [6,8,9,11] that if A = (l”‘, 2”*, .), then 

X{;&$7-i) = i = 0, 1, 2, . . ,2q-1 
(2.3) 

xp’.24-i) = 
(l’, Ix_ ( y., ‘)( ;)( ;) * * * wYz+i4+i6+-~ , , 

Since (l’, 2q - i) and (124-‘-1, i + 1) are conjugate classes it follows from a well 

known relation [6, p. 2061 that 

.#‘.29-i) = (_l)ll”llxy‘-‘-‘* i+o* 

Consequently, 

A(i, q, A) = t-1) llAll+~+1A(2q - i - 1, q, A). 

Substituting this into the expression derived in Lemma 2.1 now yields b(q, I) = 0 
when r and q have the same parity. On the other hand, if r and q have different 
parities, then 

Wq, r) =i llA~z (I$W, 4, A)) ICAI. 
r 

AC2q 

(2.4) 

For every even positive integer n and odd integer m such that 0 <m < n, set 

= (n - l)(n - 3) * - . (n -m) 
l.3...m . 
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It is easily verified that for odd i 

Substituting this and the evaluations from (2.3) into (2.4) now yields 

l- 

where 

E = ;_l)l+q,2(q”,,-‘$lq-l,q+l) if q is odd 

if q is even. 
od 

We now proceed to obtain bounds on ~~~~~~~~~~ which will in turn yield estimates 
on b(q, r). The derivation of these bounds relies heavily on the Murnaghan- 
Nakayama recursion formula [(9, p. 60)]. This formula is restated here in its full 
generality without an explanation of its terms: 

X; = C (-l)‘;$\“t_ 
(2.6) 

i,i (I &=k 

Theorem 2.2. For every class A = (AI S&S * - * S It,) of S,,, and i = 

0, 1, 2, . . . ) n - 1, 

Proof. It is convenient at this point to extend the definition of ~i”~“-~) to 
arbitrary integers i. We set, by fiat, 

xY@ = 0 ifi<Oorian. 

If llA.ll > 1, let A{i) = (A2 c A3 =z. . * =S A,). We now show that 

X~l’,n-i) = XCl:;-Al-i) _ (_I)Alx$;A1,n-i). 
(2.7) 

If A1 6 i, n - i - 1, then this follows immediately from the Murnaghan- 
Nakayama formula. If A, < i but A, >n - i - 1, then i 5 II -AI and so 
X,l’,n-At-i) = 0. In this case, however, formula (2.6) reduces to 

X~l’.n-i) = (_I)A1-lx$;+i,, 

which agrees with (2.7). If A, > i but A, < n - i - 1 then J&~*““-~) = 0. In this case 
formula (2.6) reduces to 

xil’,n-i) = &;;-A,-i) 
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which agrees with (2.7). Finally, if A, > i, n - i - 1 then 24 2 n + 1. Since 
il,Gil,G*** cA,andA,+A,+** - + A, = n it follows that r = 1, so that reduction 
(2.7) does not apply here. 

It follows from (2.7) that 

Let Z be an arbitrary subset of { 1,2, . . . , r - l} and let f denote its relative 
complement { 1,2, . . . , r - l} - I. Let o(Z) = xiclili. Then r - 1 applications of 
the above process result in 

Ix~l’,~-Ol s T 1~~::J*‘).n-4-91~ 

However, 

X&O(‘),n--o(i)--i) = 
1 

(_,)i-O if i - u(Z) E (0, 1, . . . , n - l}, o 
otherwise. 

Since 1 G A1 G A2 G * - . =S Ar it follows that for each Z E { 1, 2, . . . , r - 1) 

a(Z) 2 111. 

Consequently i - a(Z) 3 0 entails i 2 IZI and so there are no more than 

&(‘,‘) 

subsets Z such that i - a(Z) E (0, 1, . . . , n - l}. The theorem now follows 
(2.8). 0 

W-9 

from 

The above bound will be used to demonstrate the affinity between counters 
b(q, r) and the Stirling numbers. 

Theorem 2.3. There exists a function P: Z++ R such that IP(r)l s r2, and 

b(q, r) = “‘244’r) [1 I Pf)] 

whenever 1 s r s (2q)“5, and r $ q(mod 2). 
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Proof. Let /3 = [(2q)“‘]. We first examine the portion 2 S j s /3/4 of summation 
(2.5). In these considerations i = 2j - 1 or 2j, depending on its parity. By 
Theorem 2.2, since i G b/2, 

If we now set for odd values of i: 

then 

Wq - /3/2) , 1 @i-2 _ (i - l)(i - Wq - i) 
$i (/3-i+1)(/3-i+2)ia /3’ ’ 

It can be similarly shown that @i-2 > & for even i as well. Consequently 

_l)j(x~*j-1p29-2j+l) _ x~14J4-2j)) 

j=2 

odd 

~ $ . Ixx1’824-3’l + IxY*2q-4)l ~ 3p . 3cl +4c) 1 

(2q - 1)(2q - 3) 4 (2q - 1)(2q - 3) (2q. 

1.3 

As for the segment of (2.5) corresponding to j > /I/4, we first note that for 
any i, 

Ix$l’.24--i)l c r-1 s 28. 

Let y denote the odd member of the pair {[p/2], [/I/2] + l}, and set 6 = 
(y + 1)/2. Since in this segment of (2.5), y c 2j - 1 G q - 1, it follows that 

Hence the absolute value of this segment is bounded above, for large q, by 

q*2fl.(26)! 1 

(2q - y)b. 26 * 6! -%I$ 

by Stirling’s formula. 
To bound the contribution of j = 1 we first observe that by (2.3) 
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Now, if r>2, then 

c 
IlAll=r 

(;‘) ‘G’ = ,,& (4’) 1”‘. ,,!?g. a2! . . . 

it24 h2q 

29 = 
cc > 

(2q - 2)! 29 
,,A,,_ 2 lal-2 * (a, - 2)! * 2”‘. a,! . . * = ( 1 2 ,,,,:-2 ICp’ 
1b2q pczq-2 

where C, varies over classes of S,,_,. Consequently, by Lemma 3.3, 

A similar argument allows us to conclude that if C,, now varies over the classes of 

S2q-2, then 

,,z a2’cA = (“2”) c 
r llPll=‘-1 

lC,l = (22”)42q - 2, r - 1) 

r+3 
++q, r) 

by Lemma 3.4. Consequently, bearing in mind that CII1,,=, IC,l =s(2q, r), the 
above calculations can be summarized as saying that there are numbers A,, B,, C, 

such that 

and 

ol, r) 
wq, r) = - 

( 

I+ 4 
-+ B, + c, . 

4 2q - 1 > 

Thus, since 

( 2r2 r+3 

-F+- 4 > 
+l+‘i” 

2q - 1 2¶ 29 4 
forr>2, 

the theorem is proved for r -- > 2. When r = 1 the theorem is proved directly by 

noting first that when )(A11 = 1 we have 

x 
(1*'-',24-2j+l) _ p24-2j) = -2 

and so by (2.5) 

1 
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However, the terms of the internal sum above alternate in sign and decrease in 
absolute values and hence it is easily seen that 

and the proof of the theorem is concluded. Cl 

The following lemma deals with the values of b(q, r) where r > (2q)“5. First, 
however, a definition is needed. A sequence uk of nonnegative real numbers is 
said to be strongly unimodaf (logarithmically convex) if 

UZ ~u~-iu~+~ for all k. 

It is well known [l, p. 2701 that every strongly unimodal sequence is unimodal, 
that is to say, there exist integers a, b (with a possibly &CQ) such that 

. ..<U._2<U,_1<U,=U,+~=---=Ub>Ub+l>ub+2””- 

Lemma 2.4. Let j be a fixed integer and /3 = [(2q)‘“]. Then 

(2q)’ 
5 (2q - l)! ,=fi 

3 b(q, r) = 0. 

Proof. We appeal here to the results of Gross et al. [5] which are based on those 
of D.M. Jackson [8]. The authors of [5] define g,,,(q) to be the number of 
embeddings of B, in the orientable surface of genus m. It follows from the 
Euler-PoincarC formula that 

W r) = gcl+q-,)/2(q). 

In the same paper it is shown that the sequence {g,,,(~)}~=i is strongly unimodal 
and hence it follows that the sequence {b(q, r)}, where r has different parity 
from 4, is also strongly unimodal. This also follows from Lemma 4.4 and 
[8, Lemma 6.lii]. 

We next show that the mode of this sequence occurs at some integer r4 < /I. 
Observe that by Theorem 2.2 

2(2q, B) 
b(q,@=--(l+$)6 

242q, B) 

4 . 

Let y = y(q) be the unique value of r [3] such that 

+I, Y) = max M2q, r)). 
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It is known that ] y - In 2q) < 1 and hence, by Theorem 2.2 and Lemma 3.8, 

>S&, Y) b(q, Y)- 
1 _p’ ( > ,Sc%? Y) ~ & - 1Y 

4 4 &I 4 

2 b(q, p) for large q. 

Since the sequence {b(q, r)}z 1 is unimodal for r + q(mod 2) it follows that 

b(q, /3) 2 b(q, r) whenever p G r. 

Consequently, by Lemma 3.8, 

(2q)’ O s FE (2q - l)! r>p 
2 b(q, r) C lil,m_ (FTT;, b(q, 6) = 0. 0 

For each positive integer q let X, be the discrete random variable such that 

Pr[X, = r] = b(q, r)l(2q - l)! 

we shall say that X, describes the region distribution of the bouquet B,. The mean 
and standard deviation of X, are denoted by pcL4 and a4 respectively. Recall that 

C(2) = lim,,, &(2) = c;=* (W). 

Theorem 2.5. Let X, be the random variable describing the region distribution of 

the bouquet B,. Then 

lim (uz - Z& + c(2)) = 0. 
q-m 

Proof. Let Mt’ denote the jth moment of X,, i.e. 

Then ~1~ = MF) and uz = Mf) - 11:. NOW, for j = 1, 2 and p = [(2q)“5] 

(2q y 1), $ r’bh 4 = 
*r 1 

&$ rjs(2q,r)[l++]. 
.r 1 

However, 
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and, by Lemma 3.8, 

YE (2q)! r>p 
A- c r’s(2q, r) = 0. 

Also 

_ ’ rip(r)@, r) 2 

OS!E(2q)! r=l q =I 
rf9 

c:E(2q)!q.=I 
?- 2 rj+*s(2q, r) S lim 4 lnj+*(2q) = 0. 

9-m q 

Consequently 

r=l 5 2q :z ’ rjb(q, r) - (2q l)! (2q)l 2 .r z 1 r’42q, r) - 1 = 0. 

rf9 

As for the tail sum, Lemma 4.4 yields 

’ O c (2q - l)! r>_B 
c r%(q, r) s (2ry):), c b(q, r)+ 0. 

. r>p 

Thus we may now conclude that 

lim Mv’ 
9-m 

- & 2 rjs(2q, r) 1 = 0. 
.r 1 

IS9 

In view of Lemma 3.6, case j = 1 yields 

lim (p, - Z&) = 0, 
9-m 

and case j = 2 yields 

lim (Mf’ - H2q - EZ$ + c(2)) = 0. 
9-m 

Since 2, = Mf’ - pz it follows that 

lim (4 - Hz9 + c(2)) = 0. Cl 
9-m 

3. About Stirling numbers 

As the title implies, this chapter consists of a variety of propositions about the 
unsigned Stirling numbers of the first kind. 

Lemma 3.1. s*(n, k) 3 s(n, k - l)s(n, k + l)k(n - k + l)/(k - l)(n - k) for 1 < 
k <n. 
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Proof. See [l, pp. 270-2711. Cl 

Lemma 3.2. 
sh k) a2(n-k+1) 

s(n, k - 1) n(k-1) ’ 

Proof. By descending induction on k. Since s(n, n - 1) = (l), the lemma holds 

for k = n. Assuming the lemma to hold when k is replaced by k + 1, note that by 
Lemma 3.1 

sh k) ~ s(n, k + 1) k(n - k + 1) 

* (k - l)(n - k) s 

2[n - (k + 1) + l] k(n -k + 1) 

s(n, k - 1) s(n, k) n[(k + 1) - l] . (k - l)(n - k) 

Jn-k+l) ,, 
n(k-1) * 

Lemma 3.3. i s(n - 2, 
0 

k - 2) c (2k2/9) s(n, k) for n 2 4, s <k s n/2 + 1. 

Proof. We first settle the extreme case k =n/2+ 1, i.e., n = 2k -2. Two 
applications of (1.1) yield 

s(n, k) = s(n - 2, k - 2) + (2n - 3)s(n - 2, k - 1) 

+ (n - l)(n - 2)s(n - 2, k), 

and hence 

(3.1) 

s(2k - 2, k) 1 - k - 
= 1 + 

s(2k 4, 1) 
- 

(““2- 2)s(2k (‘“, ‘) (4k 7) 4, k 2) s(2k - 4, k - 2) - - 

+ (2k 3)(2k 4) s(2k 

- 4, 

k) - - s(2k - 4, k - 2) 1 . 
But, by Lemma 3.2, 

s(2k -4, k-l)> 2 2k-4-k+l+l 1 . =- 

s(2k - 4, k - 2) 2k - 4 k-l-l k-2 

and 

s(2k - 4, k) s(2k - 4, k) s(2k - 4, k - 1) 

= s(2k - 4, k - 2) s(2k - 4, k - 1) ‘s(2k - 4, k - 2) 

2 1 k-3 ~ +2k-4-k+l ‘-= 

2k - 4 k-l k-2 (k-l)(k-2)” 
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Hence, 

71 

s(2k - 2, k) 2 

5 (2k - - s(2k 2)(2k 3) - 4, k - 2) 

+ (2k - 3)(2k - 4) 

k-3 

(k - l)(k - 2)’ 1 
a 1);2k 

9 
(k - - 3) 1+4+4(k-3) 1 S2k2* k_l 

The other extreme case k = 3 follows from two applications of Lemma 3.2: 

2 * 32 r(n, 3) s(n, 2) gs(n, 3) = 2. - * -.s(n, 1) 
s(n, 2) S(&l) 

- 2(n -2) 
- 

,2 _..- . * - 2(n 1) . - 
2n n 

(n I)! 

2 (;)(n - 3)! = (‘I)s(n - 2, 1). 

The Lemma is now proved by induction on n. The case n = 4 is easily verified 
and so we assume that the lemma holds when n is replaced by n - 1. The case 
n = 2k - 2 was considered above and hence we may assume that n L 2k - 1. It 
follows that n - 1~ 2(k - 1) - 2 and n - 1~ 2k - 2, and hence by (1.1) and the 
induction hypothesis, 

(;)s(n - 2, k - 2) = (;)[s(n - 3, k - 3) + (n - 3)s(n - 3, k - 2)J 

+ (n - 3)( a ; I)-’ $(n - 1, k)] 

+s(n-l,k-l)+(n-I)+-l,k)] 

2k2 

=?+7 k)* q 

Lemma 3.4. 
0 

; s(n - 2, k - 1) s i(k + 3)s(n, k) for n 24 and 2=sksn/2+1. 
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Proof. It follows from (1 .l) and Lemma 3.2 that 

s(n, k) 

(I)s(n - 2, k - 1) 

+ (2n - 3) 
s(n - 2, k - 1) 

s(n-2, k-l) 

+ (n - l)(n - 2) 
s(n - 2, k) 

s(n - 2, k - 1) 1 
r+[Zn-4+(n-2)(n-2). 

2(n - k - 1) 

0 

(n - 2)(k - 1) 1 
2 

4(n - 2)(n - 2) = ~ 4 
n(n - l)(k - 1) k + 3’ 

q 

Lemma 3.5. Let IV, = CzE1 ks(n, k). Then 

N(l) 
L=fj 
n! n 

Proof. It follows from the recursion (1.1) that 

N(l) -_~3!x+l=...=H 
n! (n-l)! n n* 

It follows similarly that 

n! (n-l)! n n 

Lemma 3.6. Let 

a, (‘) = $ $: (2k)js(n, 2k), b!?’ = 2 r!: (2k - l)js(n, 2k - 1). 

Then 

(i) Iim [a:” - H,] = lim [bi” - H,] = 0 
n-m n--r- 

(ii) lim [up’ - H,, - ~2, + f(2)] = lim [bL2’ - H,, - HG + f(2)] = 0. 
n-m II-m 
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Proof. It follows from the recursion (1.1) that 

Consequently, we have 

@) _ b;l’ = 
n 

and 

lim (a, (1) _ b;l’) = 0. 
n-m 

Since u$‘) + bi’) = 2H,,, the limits of part (i) are established. 
It also follows from recursion (1.1) that 

a:*) = L 1 + 262’?,’ + (n - l)~$?~ + bi211] 
n[ 

bL2) = i [I + 2~$‘?~ + ai2!, + (n - l)bk2?l], 

and so, here too, 

lim [ai2) - bL2’] = 0 
?I-- 

and consequently, since a, (2) + bi2’ = 2[H,, + H2, + 1;,(2)], 

lim [aL2) - H, - Hz + c(2)] = li+li [bL2’ - H,, - Hz + c(2)] = 0. 0 
n+- 

Lemma 3.7. For each integer i 2 0 and each real number E > 0 there is an integer 

q(E) such that 

-$ k$l k’s(n, k) G (1 + &)1&z for n 3 n;(e). 

Proof. Set 

It follows from (1.1) that 
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and consequently, by the telescoping sum technique, 

The lemma is clearly valid for i = 0 and so we proceed by induction on i. If we 
choose 2 > E > 0, then we have for n 2 nj(E/3), j = 0, 1, . . . , i - 1 

f;(n)41+~2~~(~)(l+f)lnj(m-1, 
<1+(1+$$(;)$ !$Y 

I 0 m-2 

However, the function lnjxlx is concave downwards and attains a maximum value 
of (j/e)’ at x = ej, and so 

1+ 2 E~l+I’*&+(f)’ 
m=2 m 2 x 

E lnj+‘n 
< 1+- - ( > 3 j+l 

fornsnj, j=O, 1,. . . ,i-1. 

Thus, 

< 
( ) 

1 + $ ln’n + (i - 1)2 In’-‘n 

< (1 + c)ln’n for n 2 ni(s). 0 

Lemma 3.8. For each integer j 3 0, 

lim “‘,(n, {n”‘}) = 0. 
.--n! 

Proof. Rather than derive this limit from the estimates of s(n, k) given in [12], it 
is actually easier to modify their proof so as to obtain an upper bound that yields 
this limit. 

We remind the reader that s(n, k) is in fact the coefficient of ,zk in the 
polynomial (2 + n - l),,, = ~(2 + 1) . . * (z + n - 1). Consequently, by the Res- 
idue Theorem, 

I (z + n - 1)~ dz 

k+l , 

C Z 

where C is a circle of radius R centered at the origin. Setting z = Re”, we have 
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where 

F(B) = 
T(Reie + n)T(R) -iktl 

n-l ReiO + h 

T(R + n)r(Reie)eike = e I-I ,,=i R+h ’ 

Since 

I I Reie+ h < 1 

R+h - 

it follows that IF(O)1 s 1 and so 

Consequently, 

T(R + n) 
‘h k, c RkqR) . 

If we now choose k = {n’“} and R = [kiln k], then 

$h k) yp 
II’ I'(R + n) ~ n'(R + n - l)o--l) 

Rk 
Rk 

However, it is easily verified that the logarithm of the last term diverges to --m as 
n becomes large. Hence 

lim “‘,(n, {n”5}) = 0. 
,-+mn! 

•i 

4. Afterthoughts and conjectures 

It would be interesting to know where the mode and the median of the random 
variable X, describing the embeddings of the bouquet B, occur. It is known [3] 
that the mode of the random variable Y, associated with the Stirling numbers 
s(n, k) occurs within one unit of k = Ha = In 2q. It would seem that the same 
holds for the median of Y,. Consequently we conjecture the following for 
large q. 

Conjecture 4.1. The mode of the random variable X, associated with the 
bouquet B, occurs within one unit of H%. 

Conjecture 4.2. The median of X, differs from H3 by at most one unit. 
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The genus distributions of the ladders and other narrow graphs [4] not- 
withstanding, the author believes that the behavior of the bouquet is typical. For 
each graph G let X, be the random variable describing its embeddings. Then the 
following is conjectured. 

Conjecture 4.3. For almost all graphs G, p(Xc) and a”(X,) are close to HZq and 
& - 1;(2) respectively, and the mode and the median of X, are close to H%. 

Robert Rieper [13] has shown that if G is the dipole on n edges, i.e., the 
multigraph consisting of q edges joining two vertices, then X, = Y, where Y, is 
the random variable describing the region distribution of all graphs on q edges. 

The following lemma and its proof are generalizations of Theorem 4.1 of [5] 
and its proof. They are included here for the sake of completeness and because of 
some implications which will be pointed out below. 

Lemma 4.4. Let fn,k 2 0, n, k E Z satisfy the recursion 

fn,k= cn,,fn-,,k--l + hrfil,k for n >no, 

where c,,, and d,,, are nonnegative reals, r is a positive integer and no is some fixed 

integer. If relations A-D below hold for all n s no then these relations hold for 

all n: 

A(n, k,j): fn,kfn-j,k~fn.k+lfn-j.k-l 

Bh k,j):f,,,f,-j,,~fn,k-lfn-j,k+l 

I 

j = 0, 1, 2, . . . , r. 
C(n, kjj): fn,kfn-j,k-1 *fn./c-lfn-j,k 

Dh kj): fn,kfn--j,k--l afn.k+lfn-j.k--2 

Proof. By induction on It, the values n s no providing the anchor. We thus 
assume that A-D hold whenever n is replaced by any smaller value. As this will 
not give rise to any ambiguities, we abbreviate c,,, and d,,, to c and d 

respectively. We first dispose of A(n, k, 0). By A(n - r, k - 1, 0), A(n - 1, k, 0), 

C(n - 1, k, r - l), and D(n - 1, k, r - 1): 

fn,kf,,-o,k= c2f;-r,k--l + d2fh+ Wfn--l,kfn-w-l 

=2fn--r.kfn--r,~--2 + d2fn--l.k+A-l,k--l 

+cdfn--l,k--lfn--r.k+cdfn--r,k--2fn--l,k+l 

= (cfn-r./c+ dfn--l,/c+l )(cfn-,,k--2+dfn--l,k--l) 

=fn,k+lfn,k-1. 

Having verified A(n, k, 0) we note that it is logically equivalent to B(n, k, 0). 

Relation C(n, k, 0) is trivial, and D(n, k, 0) follows from A(n, k - 1, 0) and 
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A(n, k, 0) as follows: 

fn.k-1 > fn.k >fn.k+l 

fn.k--2 fn.k-1 fn,k . 

It may therefore be assumed that j > 0. We now verify A(n, k, j), where j > 0. By 
C(n--j,k,r-j)andA(n-l,k,j-1) 

fn,kfn-j,k= Cfn-j,kfn--r,k-1 + dfn-I.kfn-j,k 

3 Cfn-j,k-lfn-r,k + dfn--l,k+lfn--j,k--l 

=fn,k+lfn-j.k-1. 

Similarly, B(n, k, j) follows from D(n -j, k, r -j) and B(n - 1, k, j - l), 
C(n, k, j) follows from A(n -j, k - 1, T -j) and C(n - 1, k, j - l), and D(n, k, j) 
followsfromB(n-j,k-l,r-j)andD(n-l,k,j-1). Cl 

Let s(n, k, d) denote the number of permutations of n symbols with k orbits 
each of which has length at least d. Then s(n, k, 1) = s(n, k) and s(n, k, 2) is the 
number of derangements with k orbits. It is known that [l, p. 2571 that 

s(n, k, 4 = (n - l)(~+(n - d, k - 1, d) + (n - l)s(n - 1, k, d). 

Consequently we have 

Corollary 4.5. For fixed n and d the sequence s(n, k, d) is strongly unimodal. 

Proof. This follows easily from the previous lemma with n, = d. Note that 
relation A(n, k, 0) is tantamount to strong unimodality. Cl 

The bound obtained in Theorem 2.2 is an improvement on the one that appears 
in Lemma 2.3 of [16]. The author believes that it can be further improved as 
follows. 

Conjecture 4.6. If A = (& s AZ < - - - s A,) and r 3 2, then 

with quality holding only when A = (1”). 
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