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Abstract
Bottcher, M. and U. Knauer, Endomorphism spectra of graphs, Discrete Mathematics 109
(1992) 45-57.

In this paper we give an account of the different ways to define homomorphisms of graphs. This
leads to six classes of endomorphisms for each graph. which as scts always form a chain by
inclusion. The endomorphism spectrum is defined as a six-tuple containing the cardinalities of
these six sets, and the endomorphism type is a number between 0 and 31 indicating which
classes coincide. The well-known constructions by Hedrlin and Pultr (1965) and by Hell (1979)
of graphs with a prescribed endomorphism monoid always give graphs of endomorphism type 0
mod 2.

After the basic definitions in Section 1, we discuss some properties of the endomorphism
classes in Section 2. Section 3 contains what is known about existence of certain endomorphism
types, Secticn 4 gives a list of graphs with given endomorphism type, except for some cases
where none have been found so far. Finally we formulate some problems connected with
concepts presented here.

The graphs considered are finite and undirected without multiple edges and
loops although all these restrictions are not essential as far as the definitions of
endomorphism classes go. Only the colorgrapas mentioned in the proof of 2.3
may have locps and have dirccted edges which are called arcs. The vertex set
V(X) of a graph X is aiso denoted just by X, and the edge set is denoted by
E(X). If x, x’ € X are adjacent denote the edge connecting x and x’ by {x, x'}
and write {x, x'} € E(X).

This paper mainly contains definitions and many examples. Most of these are
found and computed by a coniputer program. This, as usual, raises the problem
of veri“cation. So we are dealing with ‘Mathematischer Zoologie’ as E. Hecke
phrased it in 1937 (cited after C.A. Kaloujnine, R. Poschel, EIK 22 (1980) 5-24).
As justification for writing this paper we take the rich algebraic structure which is
put on a graph by its endomorphism classes and the numerous questions
coinected with these concepts.
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1. Definitions and first exampies

Following each definition, we give an example of a homomorphism belonging
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indicated by arrows. Vertices without starting arrow are fixed. Let X and Y be

graphs, f: X — Y a mapping. In the examples one always has X =Y.

i.1. The mapping f is called an (ordinary) homomorphism if {x, x'} € E(X)

implies {f{x), f(x")} € E(Y).
Symbol: f e Hom(X, Y). Example:

[ ]
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f(x')} € E(Y) implies the existence of preimages %, x', i.e., f(X)=f(x)
f(x)=f(x"), such that {x, x'} € E(X).
Symbol: f e HHom(X, Y). Example:
——l
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{f(x), f(x")} € E(Y) implies that for every preimage ¥ € X of f(x) there exists a
preimage k'€ X of f(x'), such that {x,x'} € E(X) and analogously for every
preimage of f(x').
Symbol: f e LHom(X, Y). Example:
—
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{f(x), f(x')} € E(Y) implies that there exists a preimage X € X of f(x) which is

adjacent to every preimage of f(x'), and analogously for preimages of f(x').
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Symbol: fe QHom(X, Y). Example:

—

N
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1.5. The homomorphism f is called a strong homomorphism if {f(x), f(x")} €
E(Y), implies that any preimage of f(x) is adjacent to any preimage of f(x’).
Symbol: f e SHom(X, Y). Example:
X

~—y

1.6. The homomorphism f is called an isomorphism if f is bijective and f~' is a
homomorphism.
Symbol: f e Iso(X, Y).

If X=Y we speak of endomorphisms with the respective epitheta, or of
automorphisms, and write End X D HEnd X 5 LEndx 5 QEnd X oSEnd X o
Aut X, where the inclusions of the sets are indicated.

Comments 1.7. Ordinary homomorphisms are used everywhere and are mostly
called homomorphisms.

Halfstrong hemomorphisms were called full homomorphisms by Hell [4] and by
Sabidussi [15] and partially adjacent homomorphism by Antohe and Olaru [2].

Surjective locally strong homomorphisms appear in Pultr and Trnkova [14].

Quasi-strong homomorphisms have, as far as we know, not yet appeared in
literature.

Strong homomorphisms were probably first considered by K. Culik [3] under
the name of homomorphisms and later on used by many authors (cf. for example
[6, 11]).

The names selected here are mildly suggestive, and the notation gives an
alphabetic order (except for Aut).

Before we go into details, we repeat some standard terminology and notation.

The complete graph on n vertices is denoted by K, for any natural number
r=1.

The totaily disconnected graph on n vertices has no edges, it is denoted by K,

The circuit on n vertices is denoted by C,.

The path on n vertices is denoted by P,.

Let X, Y be graphs with V(X)NV(Y)=0.
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The union X UY is just the set theoretic union of X and Y.
The join X + Y is the graph with vertex set V(X) U V(Y) and edge set

E(X +Y)=E(X)UE(Y)U{{x,y}|xeX,yeY}.

From [7] we recall the definition of the generalized lexicographic product,
sometimes called X-join (cf. [16]), X[(Y:)cex] oOf the graph X with the graphs
(Y, )<ex which is defined by

V(X[(Yx)xexl)) = {(X, Y I X € Xx’ Y € X\r}
and

{Cx, yo), (", y2)} € E(X[(Yo)xex])
if and only if {x, x'} € E(X) or x =x' and {y,. y;} € E(Y,).

So far End X, SEnd X and Aut X have been studied separately and in their
relations to each other, their properties w.r.t. to graph operations specially the
join and the lexicographic product, and in the special case where Aut X =1. In
this case X is called asymmetric.

The following definitions are used. According to [6] the graph X is called
S-unretractive (or, more precisely, S — A-unretractive) if SEnd X = Aut X, and
unretractive (or, more precisely, E — A-retractive) if End X = Aut X. The graph
X is called E — S-unretractive if End X =SEnd X. Graphs with End X =1 are
called rigid, [17]. This concept can easily be extended to the other classes of
endomorphisms mentioned. Perminov [12] calls C — B-rigid what would be called
here C — B-unretractive, where B, C < End X.

Nowakowski and Rival [10] call a graph X retract rigid if it has no nontrivial
idempotent endomorphism. The same notion is called a retract-free graph by
Bang—Jensen, Hell, and MacGillivray {this Vol.).

Remark 1.8. A finite graph is retract rigid if and only if it is unretractive.

Proof. Assume that X has no nontrivial idempotent endomorphisms. Take
f € End X and let f’ be its idempotent power, which exists since X and hence also
End X is finite. By assumption f'=id, and thus f € AutX. The converse is
obvious. O

2. Some basic properties

It is well known that SEnd X forms a monoid with respect to composition of
mappings, and, as always, End X is a monoid and Aut X a group.

Proposition 2.1. HEnd X, LEnd X, QEnd X do not form monoids.
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Proof. Select X and g € QEnd X as indicated. Then gZe HEnd X \LEnd X. Take
f as indicated. Then f e HEnd X \LEnd X but fg ¢ HEnd X:

— i
.
2,
g

-

Propssition 2.2. Idempotent endomorphisms are elements of HEnd.
Proof. Obvious. [

Now we recall the standard construction of the Cayley color graph for a given
monoid. Let M be a monoid. The Cayley colorgraph F(M) of M has V(F(M)) =
M and edges are constructed as follows. Take a set C < M\1 of generating
elements of M and represent M by say left translations by elements of C acting on
M. That means we draw an edge of color ¢ leading from a to b, a, b € M if ca = b.
This way F(M) becomes a directed graph with colored edges. Any endomorphism
of F(M) which preserves directions and colors will be called a color
endomorphism.

Note that aisc the other classes of endomorphisms can be defined anaiogously
for color endomorphisms, paying special attention to the symimetry in the
definitions of local and quasistrong endomorphisms.

Lemma 2.3. Let M be a monoid. All color preserving endomorphisms of F(M)
are halfstrong.

Proof. Let f be a color endomorphism of F(M). Assume that the edge
(f(a), f(b)) has color ¢ for a,be M, ceC. Set f~'(a)={a,,...,a,}, a=a,,
and f7'(b)={b,,..., b}, b=b,. From every a;, i=1,...,n there starts
exactly one edge of color ¢ and they all end in some vertex of {b,, ..., b,,}. For,
if (a;, d) would be an edge of color c withd ¢ {b,, . .., b,,}, then (f(a;), f(d)) =
(a, f(d)) # (a, b) would be an edge of color ¢ which is impossible since in 4, as in
every vertex, there starts exactly one edge of each color. 0O

Lemma 2.4. Let M be a monoid, which has a right zero x, i.e., Mx = x, and is not
right solvable, i.e., there exist e, c € M such that e ¢ cM. Then there exists a color
endomorphism of F(M) which is not locally strong.

Proof. As x is a right zero, the constant mapping c,:F(M)— {x} c F(M) is a
color endomorphism. By hypothesis, there does not end an edge of color c at e.
Therefore, for e € c;'(x) there does not exist a vertex m € F(M) with color c.
Thus, c, is not locally strong. U1
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The following result is remarkable as every monoid is the halfstrong endmorph-
ism monoid of a suitable graph, although in general halfstrong endomorphisms
of a graph do not form a monoid.

Proposition 2.5. For every monoid M there exists a graph X such that M = End X.

Proof (Sketch). Hedrlin and Pultr [13] (cf. also Hell [S]) proved that for every
monoid M there exists a graph X with End X = M. Both proofs first consider the
color graph F(M). It is quite straight forward to see that M is isomorphic to the
monoid of color endomorphisms of F(M) which in turn is half-strong by Lemma
2.3. The proofs in [13] and [S] consist in getting rid of colors and directions, but
thereby preserving the monoid which will then be the endomorphism monoid of
the resulting graph (which is going to be much bigger than the colorgraph). These
constructions replace directed colored edges by graphs which reflect different
colors by their inner structure and by the property to be mutually rigid. In this
way the constructed graphs admit only such endomorphisms which formerly
preserved colors and directions. The replacements do not touch the property of
the endomorphisms to be halfstrong. The details for the construction by Hell [5]
are worked out in [1]. O

Remark 2.6. The graphs with given monoid constructed by Hedrlin and Pultr [13]
or Hell [S] do not have the property that all endomorphisms are locally strong.

Proof. Use Lemma 2.4 and argue asin 2.5. 0O

Proposition 2.7. If SEnd X is not a group, then SEnd X centains two idempotent
elements different from the identity which are right identities to each other.

Proof. Using Lemma 1.1 of [9], we know that N(x,) = N(x,) for x,, x, € X and
f € SEnd X such that f(x,) =f{x,) #x,. Here N(y)={x| {x,y} € E(X)}, yeX.

Define
g:X—X byg(x)=g(x;)=f(x;) and
gx)=x forx+#x,, x5;
h:X—X byh(x)=h{x;)=x,,
h(x)=x for x#x,, x,.

Then obviously, g, h e SEnd X and g°=g, h>=h, gn=g, hg=h. 0O

Remark 2.8. Proposition 2.7 shows that not every monoid can be the strong
endomorphism monoid of a graph. It was shown in [9] that monoids of strong
endomorphisms are always von Neumann regular monoids. Moreover, in 3.8 of
[9] it was shown that SEnd X cannot have 2 or an odd number of elements
<29, except for 27, unless SEnd X = Aut X.
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3. The endomorphism type of a graph

For a more systematic treatment of different endomorphisms we define the
endomorphism spectrum and the endomorphism type of a graph.
For the graph X consider the sequence

End X o HEnd X 5 LEnd X 5 QEnd X > SEnd X o Aut X.
With this sequence associate the sequence of respective cardinalities
Endospec X
=(|End X|, |[HEnd X|, |LEnd X|, |QEnd X|, [SEnd X|, |Aut X|)

and call this 6-tuple the endospectrum or endomorphism spectrum of X. Secondly,
associate with the above sequence a 5-tuple (s, 5., 53, 54, §5) with

5;€{0,1}, i=1,...,5, wherel stands # and O stands for =

at the respective position in ihe above sequence, i.e., s, =1 indicates that
|End X|# |[HEnd X| etc.

The integer ¥;_, 52! is called the endotype or endomorphism type of X and
is denoted by Endotype X.

In principle there are 32 possibilities, i.e., endoiype 0 up to endotype 31.
Endotype 0 describes unretractive graphs. Enotype 0 up to 15 describe S-
unretractive graphs. Endotype 16 describes E — S-unretractive graphs which are
not unretractive (cf. [6, 7, 9, 11]). Endotype 31 describes graphs for which all 6
sets are different.

Before analyzing the endotypes of graphs in some more detail, we consider all
endotypes with respect to whether or not Aut X =1.

Remark 3.1. (4.13 of [6]). Let X be a graph. If Aut X =1, then SEnd X =1.

The preceding remark shows that for endotypes i6 up to 31 we always have
Aut X #1, since SEnd X # Aut X in these cases. We also know that there exist
rigid graphs and unretractive graphs which are not rigid (see for example [7] and
many more places). So we add for endotypes 0 to 15 an additional a denoting
asymmetry, i.e., Aut X =1. It can be proved that endotypes 1 and i7 do not
exist.

Proposition 3.2. Let X be a graph such that End X # HEnd X. Then HEnd X #
SEnd X.

Proof. Take f € End X \HEnd X. Then there exists {f(x), f(x")} € E(X) but for
all ¥, ' with f(¥)=f(x) and f(x')=f(x') one has {¥ x'}¢ E(X). From
finiteness of End X we get an idempotent power f* of f, i.e., (f')*ef’, and from
2.2 we know that f* € HEnd X. In particular, since {f'(x), f'(x')} € E(x) we have
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that f(x) and fi(x’) are fixed under f*, and thus they are adjacent preimages.
Moreover, f* ¢ SEnd X, since not all preimages are adjacent: {x, x'} ¢ E(X). O

Remark 3.3. If it could be proved that End X #+ HEnd X also implies that
HEnd X # QEnd X, then endotypes 9 and 25 would not be possible.

4. Graphs with given endotyp=2s

For two monoids M(X) and M(Y) acting on X and Y respectively—as for
example End X acts on X—define the sum of monoids

MX)+M(Y)={g+h|geM(X), he M(Y)}
actingon X U Y by (g + h)(x) =g(x) and (g + h)(y)=h(y) forxe X, yeY.
It is almost trivial to see that for two graphs X and Y we have
End( X +Y)=End X +End Y
if and only if
f(X)cX and f(Y)cY forall feEnd(X +Y).

This condition may be hard to verify for given graphs. But if we know that
End(X+Y)=End X +EndY for graphs X and Y, such that, for exampie,
End X =HEnd X and End Y #HEnd Y, then End(X + Y)#* HEnd(X + Y). This
observation may be helpful in constructing new graphs with a certain endotype,
using joins and boolean addition of endotypes.

Boolean addition of endotypes means, in the dual representation,

S1r---r85) (s, ...,8)=(s1+5,...,55+F85%)
with0+0=0and 1+0=0+1=1+1=1 in every component. We shall say that
the join is additive with respect to the endotype if

Endotype(X + Y) = Endotype X + Endotype Y
and superadditive, if

Endotype(X + Y) > Endotype X + Endotype Y.

An analysis of the different endomorphism classes shows that join and union of
graphs are always additive or superadditive and, moreover, one has

QEnd(X + Y)#SEnd(X +Y) or SEnd(X + Y)#Aut(X +Y)

if and only if the corresponding is true for X or Y; analogously for the union of
graphs. The corresponding result is obviously not true for the other three
inequalities.

Next we give a table of graphs without loops ordered according to endotypes.
The graphs with endospectra up to 9 vertices were found using a computer
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program. The endomorphism spectrum of the graphs constructed by joins were
also computed by a computer program. Since by 3.2 graphs with endotypes 1 and
17 do not exist, there is no way to construct graphs of endotypes 2, 3, 4, 5, 8, 9,
and 16 using boolean addition. So far graphs of endotype 9 and 25 have not been
found, nor graphs of endotypes 5a, 8a, 9a and 13a.

Table 4.1. In the following table we abbreviate the endomorphism classes by
their first letters. Graphs are given by constructions, the usual pictures or, if there
are too many edges, we give the upper triangle of the adjacency matrix, lines
written consecutively, always starting with the element right next to the diagonal
element.

Al piaces where we give a join, say 8 + 6, this indicates that the join is between
the smallest graphs of endotype 8 and endotype 6 given before in the list unless
stated differently. If the join is superadditive, we write 8+ 6 in italics. The

cardinalities of the respective endomorphism sets always refer to the first graph
given in the iast column.

Endo Explicit form and cardinality
Type of the classes Graph
Oa E = H = L =Q=8=A There exist 10 rigid Graphs
with 8 vertices (cf. e.g. [7])
0 2 2 2 2 2 2 K>, K,, Copy1rn<1
E = H # L =Q=8S=A {5
2a 101 101 1 1 1 1
2 6 6 2 2 2 2 K,UK,
E # H # L =Q=S=A -
3a 75 71 1 i 1 1
3 44 36 2 2 2 2 PIK,, K;, K, K,]
E = H = L #Q=8=A
4a 37 37 37 1 1 1 10100101, 1001001, 100019, 10000,
1100, 100, 10, 1
4 16 16 16 8 8 8 K>;UK,
E # H = L #Q=8=A v
5a ? %
5 184 168 168 8 8 8

E = H # L #Q=S8=A
6a 387 387 13 1 1

6 80 80 32 8 8 8  K,UK,UK,4+2

—
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Endo Explicit form ard cardinality

ype of the classes Graph

E # H # L #Q=8S=A
7

Ta 123 121 1 1 1 ,4a+3a
7 252 200 32 2 2 2 PsUK,, 443
Sa ?
8 36 36 36 36 12 12
E # H = L =Q#S=A
9a 1 ?
9 #1 9
E = H # L =Q+#S =A
10a 153 153 25 25 1 1 000110, 01011, 1110
000, 11,1
10 16 16 8 8 2 2 P,8+2
E # H # L =Q#S =A
11a 117 97 11 11 1 1
1 80 64 12 12 2 2 P,UK,,8+3
E = H = L #£Q=+#S=A
12a 73 73 73 25 1 1 0111010, 011101, 61111, 0110,
011,11,0
12 194 194 194 50 2 2 0111010, 011101, 01111, 0110,
011,11,0,8+4
E # H = L #Q=#S =A
13a ?
13 73152 71712 71712 288 96 96 8+5
E = H # L #Q+#S =A
14a 163 163 13 7 1 1
14 540 540 96 36 12 12 K;UP,8+6
E # H # L #Q#S =A
15a 759 615 n 7 1 1 o
15 144 136 44 28 4 4 P,UK,,8+7
16 E = H = L =Q=S +#A
4 4 4 4 4 2 K., K,, C4, K, \K,

n=3,keEK,)
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Endo Explicit form and cardinality
Type of the classes Graph
18 E = H # L =Q=S8S+#A
32 32 8 8 8 4 KUK,
19 E # H # L =Q=S8 %A
24 20 6 6 6 2 P,UK, 16+3,16 +2
20 E = H = L #Q=S8S=+A
240 240 240 48 48 16 11100011, 1010000, 110000, 10000,
1100, 111, 11, 1,
16(=Cs[K>, K,, K,, K, Ky])
+4(=(K, + (K, UK3))
21 E # H = L # Q=S8 #A )
5888 5376 5376 256 256 32 16(= C,[Ka, K, Ky, K,, K\])+5
22 E = H # L #Q=S+#A
48 48 32 20 20 4 P,UK,,16+6
23 E # H # L #Q=S=#A ~
234 194 32 6 6 4 P{K,, K,, K,, K,, K,],
16+7,16+4+3,16+4+2
24 E = H = L =Q#S #A
68 68 68 68 20 4 11010111, 1100010, 110101, 11001,
1100, 110,10, 1
25 E # h = L = S # ?
26 E = H # L =Q#S+#A B
60 60 14 14 6 2 PlK,, K,.K,,K|], 16 +8
27 E # H # L =Q#S #A _
94 86 40 40 6 2 PJK,, K., K,, K|]
16+ 11, 16 + 10
28 E = H = L #Q#S #A
76 76 76 28 4 2 11001111, 1100010, 110101, 11001,
1100, 110, 10,1
29 E # H = L #Q#S #A
254816 253728 253728 544 160 32 24+5
30 E = H # L #Q#S8S #A
276 276 66 36 4 2 0111000, 011100, 01110, 0111,
001, 11,0,
16 + 12
31 E # H # L #Q#S #A )
316 252 112 40 8 4 P(K, K,, K, K, K\],

16+ 15, i6 + 14
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h

Comments 4.2. All graphs in the table which are not joins are, as far as we know,
minimal w.r.t. the number of vertices (first criterion), the number of edges
(second criterion), an |End| (third criterion).

The endoptypes 13, 21 and 29 so far exist only as the given joins.

If we admit graphs with loops then we have

Qo with endotype 8a, Endospec =(2,2,2,2,1,1)

with endotype 25, Endospec = (12, 10, 10, 10, 4, 2).

Note, that the values in the endospectrum of the join under endotype 21 are
the products of the respective values of the two summands. The same is true for
the join given under endotype 20. This is not the case for the first three values in
the endospectum of the joins of endotypes 13 and 29.

S. Some open problems

S.1. Do there exist graphs of endotypes 9 or 25?7 Do there exist asymmetric
graphs of endoptyes 5, 8 or 13?

§5.2. Under which conditions do the sets HEnd X, LEnd X, QEnd X form
monoids?

5.3. Under which conditions coincide idempotent endomorphisms (retractions)
with the classes LEnd\Aut, QEnd\Aut, SEnd\Aut? Note that idempotent
endomorphisms always belong to HEnd (cf. [8]).

S.4. Find conditions on X for various unretractivities of X.

5.5. Which monoids are isomorphic to LEnd X, QEnd X or SEnd X for a
suitable graph X?
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