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Let k& be an algebraically closed field. Let A be a finite-dimensional
k-algebra. We may assume that A = kQ /I, where Q is a finite connected
quiver and 7 is an admissible ideal of the path algebra kQ; see [5]. The
nature of our problem allows us to assume without loss of generality that
Q has no oriented cycles.

Consider the category of the finite dimensional left 4-modules, mod ,.
For each indecomposable non-projective A4-module X, the Auslander—
Reiten translate 7,X is an indecomposable non-injective module. The
Auslander—Reiten quiver I';, has as vertices representatives of the iso-
classes of finite dimensional indecomposable 4-modules, and there are as
many arrows from X to Y in I, as dim, rad,(X,Y)/rad}(X,Y). A
connected component & of I', is said to be preprojective if & has no
oriented cycles and each module X in & has only finitely many predeces-
sors in the path order of . Several classes of algebras have preprojective
components, such as algebras with the separation condition (in particular,
tree algebras) [2] and hereditary algebras [9]. A general criterion for the
existence of preprojective components was recently established [4].

Given a preprojective component & of I';, the modules on £ can be
easily determined. Starting with the simple projective modules and using
the additivity of the dimension function on Auslander—Reiten sequences,
the classes dim X in the Grothendieck group K,(A) of modules X € %
are obtained; the module X is the unique indecomposable with class
dim X. This knitting procedure has been used since at least 1977 (see [5]).
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The purpose of this work is to give an algorithmic procedure to construct
all preprojective components in I',. Indeed, we do the following.

(a) We describe an algorithm which decides whether or not a given
simple projective module P; belongs to a preprojective component; in fact,
we show that if by starting with P, it is possible to use the knitting
procedure to construct N(dim, 4) new modules (where N(dim, A4) is a
certain number depending only on dim, A4), then P, lies in a preprojective
component of I',;

(b) if P, belongs to a preprojective component &, by applying the
procedure (a), we get two functionals f,g: K,(A4) — R such that an
indecomposable module X belongs to & if and only if one of the
following holds: (i) f(dim X) > 0 or (i) f(dim X) = 0 and g(dim X) < 0.

For the proof of the above statements we show some results on the
growth of (dim, Hom(7;'X,Y)), which are interesting by themselves.
Indeed, for a wild connected hereditary algebra B = kA and two indecom-
posable B-modules X and Y such that X is preprojective and Y is regular
or preinjective, we prove that

t
dim, Hom(75'X,Y) > [?}

for t > 3d, where d is the number of vertices of A.

This work was done during a visit of the second author to UNAM in
Mexico. We acknowledge the support of the Consejo Nacional de Ciencia
y Tecnologia and Polish Scientific Grant 1221 /2 /91.

1. DIMENSION OF MODULES IN PREPROJECTIVE
COMPONENTS

1.1 Let A = kQ/I be as in the Introduction. We assume that the set of
vertices of Q is Q, ={1,...,n}. For each vertex i € Q,, we have the
simple module S; with S,(i) = k and S,(j) = 0 for j # i. The projective
cover of §; is denoted by P, and its injective envelope by ;.

Given a module X € mod,, its class dim X € K,(A) = Z" has ith
coordinate dim, Hom ,(P;,, X). Since the global dimension gldim A4 is

finite, we get a bilinear form
(=, =4: Ky(A) X Ky(A) = Z,{dim X,dim Y )
= Y (-1)" dim, Ext}(X,Y).
s=0
Let X be a module in a preprojective component & of I',. Then
Ext’(X, X) =0 for s > 1 and dim, End (X) = 1. Also there is a quo-
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tient B of A such that X is a faithful B-module. Then gldim B < 2 and
pdimz X < 1. Hence if Y is an indecomposable A-module with dim X =
dimY, then Y is a B-module and 1 = {(dim X, dim Y)z. Thus
Hom ,(X,Y) = 0. Similarly, Hom ,(Y, X) # 0, which implies that X and Y
are isomorphic. See [3, 9].

1.2. Following [6], we say that the module X € mod, is directing
provided there do not exist indecomposable direct summands X, X, of X
and an indecomposable nonprojective module Y such that X; < 7,Y and
Y < X, (we write Y < Z for two indecomposable modules Y, Z if there is

a chain of non-zero maps Y=Y, - Y, - Y, » -+ = Y, = Z). In partic-
ular, an indecomposable module X is directing if and only if there is no
chain of non-zero, non-isomorphisms X — X, —» -+ = X, = X.

For an indecomposable projective module P;, the radical rad P; satisfies
P,/rad P, = S,. In [6] (see also [11]), it is shown that the following asser-
tions are equivalent:

(a) P, is directing,

4

(b) rad P, is directing,

l

(c) each indecomposable direct summand of rad P, is directing.

L

1.3. Given i € Q,, consider the quotient A’ of A formed as the full
subcategory of A with vertices j such that there is no path from j to i in
QO (Note: There is a trivial path from i to i.).

The following is an inductive criterion for the existence of preprojective
components in I,.

THEOREM [4].  There is a preprojective component in T, if and only if for
each vertex i € Q,, one of the following conditions is satisfied:

(@) there is a preprojective component ' of T, such that no indecom-
posable direct summand of rad P, belongs to #';

(b) rad P, is a directing A'-module and each indecomposable direct

summand of rad P; has only finitely many predecessors in mod i, all of them
directing.
1.4. Let # be a component of I',. Let . be a full subquiver in #. We
say that
(1) .~ is a section if .7 is path-closed in Z; if X €.%, then 7, X &.%;
each X €.% is directing.
(i) &7 is a m-complete section (m € N U {}) if:
(a) .Z is a section;

(b) & admits only finitely many precessors in I',, all of them
directing;
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(©)if X—>Y is an arrow in T, X €.%, and Y ¢€.%, then Y is
non-projective and 7,Y €.%;

(d)if X€.7,0 <[ <m,and Y is a predecessor of 7,'X such that
Y =1, or Y is a direct summand of rad P, then Y is proper predecessor of
.

Remarks. (1) Let ¥ be a m-complete section in . Then we get a full
subquiver 7,'.% of & formed by the modules {r;'X: X €.%} for any
0 </ < m. The quiver 7, is a (m — I)-complete section in Z.

Let k(%) be the mesh-category of #; see [5, 8]. Consider any two
modules X,Y in # predecessors of 7,”%, then Hom ,(X,Y) =
k(ZXX,Y).

(2) Let & be an infinite preprojective component of T',. Consider the
modules 7;°'P; such that P, €%, 7,°P, is non-injective for all s > 0, and s
is minimal such that 7, P, is no predecessor in & of an injective or a
projective module. Then the full subquiver . of & formed by all modules
7,% P, is a maximal «-complete section in #. Almost every module in %

belongs to U, (7,-%.
1.5. The main purpose of this section is to show the following

THEOREM. Let . be a connected component of a m-complete section in
a component & of T,. Assume that . is not of Dynkin type. Then for every
3n<t<m+1and X €., we have

t
[—} < dim, 7;'X.

n2

Let us show the useful consequence.

COROLLARY. Let &7 be a connected component of a m-complete section
in a component % of 1, and assume that ¥ is not of Dynkin type. Let M be
the maximal of all dim,Y, where Y =1, or Y is a direct summand of a
rad 'Pj, for some j € Q,. Suppose m + 1> Mn*. Then 7 is w-complete
section.

Proof. Let X €.%. Since . is a m-complete section, 7,”X is non-
injective. Therefore 7, "X is a well-defined and dim, 7~ " *DX > [(m
+1)/n*] > M. Hence 7,"*"X is not isomorphic to I, or to a direct
summand of rad P; for some j € Q). Thus & is a (m + 1)-complete
section.

Since [(m + 2)/n*] > M, we may continue inductively to get that . is a
co-complete section. i
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1.6. We shall reduce the proof of (1.5) to the case of preprojective
components of tilted algebras. We recall that for a given module X €
mod 4, the support of X is supp X = {i € Q,: X(i) # 0}.

LEMMA. Let % be a component of 1, and . be a connected component
of a m-complete section in & which is not of Dynkin type. Let X, ..., X, be
the modules in . and B be the full subcategory of A in the vertices of
U< supp X,. Then

(a) There is a preprojective component €' of Ty containing . More-
over & is a m-complete section in &'.

(b) The module &/_, X, is a B-tilting module.

(c) The modules 7;'X, for X €% and 0 <1 <m + 1 are B-modules
and 73'X = 7;'X.

(d) Let ¢, (resp. dbg) be the Coxeter matrix of A (resp. B), then for any
XeZ 0<l<m+ 1, we have

dim 7,'X = (dim X) ¢’

Proof. Clearly, .% is formed by B-modules. Since % is a m-complete
section, the modules 7;'X with X €. and 0 </ <m + 1 are also
B-modules and 7,'X = 7, 'X. This shows (c).

By the definition of B, %’ contains all the indecomposable projective
B-modules P/, 1 <j < m. To show that & is a slice in B (in the sense of
[9, 4.2]), it is enough to observe that GB{L ,X; is a sincere B-module. This
proves (a) and (b).

Let X €% and 0 <! <m. Then Homy(r;'~'X, B) = 0 implies that
i dim 7,'X < 1. Moreover, since 73'X has no injective predecessors in
Iy, then dim 7' ~'X = (dim 75/ X) ¢ '; see [9, 2.4]. Therefore (d) follows
by induction. i

1.7. For the proof of (1.5) we need some results on the growth of
dim, Homz(73°X,Y) in the case B is a hereditary algebra.

We recall that a connected algebra B = kA is of tame representation-
infinite type if A is a quiver of Euclidean type; B is of wild type if either A
contains a quiver of the form -:. with at least 3 arrows or A contains

properly a convex subquiver of Euclidean type.

PROPOSITION.  Let B = kA be a representation-infinite, connected heredi-
tary algebra and A, = {1,...,d}. Let X and Y be indecomposable B-modules.
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Assume that X is preprojective and Y is preinjective (resp., preinjective or
regular) if B is tame (resp., B is wild). Then

dim, Hom(7,'X,Y) >

t
?], fort > 3d.

Proof. We shall divide the proof in several steps:

(1) For any two vertices i,j € A,, we show that dim, 73'P.(j) >
4t/d*], for t > d.

(a) We consider first the case where A is of Euclidean type. Let
Ty ,9; be the non-homogeneous tubular components of If; let
X 1“’ , XV be the modules in the mouth of the tube .7. Then X5_(n; —
1)=d—2and i dim X =z (1 <i <), where z is a sincere vector
generatlng the space {v € Q" (dim X(’) v)p=0,1<i<s, i<j<n}
Let m be the least common multiple of ny,...,n, Then

(dim X, dim 73" P,) = (dim 7, X", dim P,);
= (dim X, dim P)p.

Hence dim ;" P, = dim P, + az for some a € Z. Therefore for any ¢t € N,
we write t = mc + e with ¢ > 0 and 0 < e < m. We get

dim 7;'P;, = (dim P,) ;" = acz + dim 75°P; > acz.

L

Hence a > 0; moreover, we have the following bounds for m:

Aoftype A, ;:m < |3 (d—l)] < 3d?%;
Aoftype D, ,: m <2(d — 3);
A of type E;: m = 3;
Aoftypef*:7:m=4;
Aoftypeflg:m=6

Therefore dim, 73'P,(j) > [t/m] > 4[t/d*].
(b) We consider the case where A is of the form a b with s > 3
arrows. The inverse of the Coxeter matrix of B is

-1 _ -1 )
s _[ s sz—l}'
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Then for (a,, b,) = dim P,, we write (a,,b,) = dim 73'P,. We get induc-
tively b, > a,; b, > s'" ' and a, > (s — 1)s’ for ¢ > 1. Similarly, for (¢, d)
= dim P,, we write (¢,,d,) = dim7;'P,, and we get d, > ¢,; d, > s' and
¢, > (s — Ds'"~! for ¢t > 1. Certainly, s'~? > [t/2], for t > 2.

(¢) In the general case, we may assume that B = B'[R] is a
one-point extension of the representation-infinite hereditary algebra B'.
By induction hypothesis dim, 75!P,(j) > 4[t/(d — 1)*] for any two vertices
of the quiver A’ of B’ and for ¢ > d — 1. Let w the extension vertex of B,
that is, rad P, = R. Consider the preprojective component & (resp. &#') of
B (resp., B'). Then & (resp., #’') is a standard component of the form
NA? (resp., NA’P), For any set S of vertices of &, we denote by k(%)/S
the quotient category of the mesh category k(%) by the ideal generated by
all paths factorizing through some vertex in S.

Let i, j be any two vertices in A’. Let S, be the 7-orbit {r;'P,: t > 0},
then k()/S, = k(£'). Hence

dim,7'P,(j) = dim; Hom(P,, 73'P,) > dim, Homy.( P, 75'P,)

|24+

= — | = — |

(d _ 1)2 d2

for t > d. Let i be in X|. Let S, be the set of vertices {r3'P,: t > 1}, then

K(P)/Sy(X,Y) = k(2'XX,Y) for X,Y e and k(#)/S,(P, Y)=
k(2 (13'R,Y), for Y € 2'. Hence

dim,7;'P,( ®) > dim, Hom.(75'R, 75'P))

t—1 t
= dim, Hom ,. R,T‘,’“Pi >4 —— 24[—},
k B( B ) |:(d—1)2:|

for t > d.
Similarly, we get dim,75'P, (i) > 4[t/d’], for any i € A,. This finishes
the proof of our first claim.

(2) Let X be a preprojective B-module and Y be a preinjective
B-module. Let ¢ > d and assume X = 75"P; and Y = 741;. Then

t+m+gq

: - L Cimid
dim, Hom(73'X,Y) = dim;, Hom (7, """ 9P, I,) > 4 7

t
24?,

applying (1).
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(3) For the rest of the proof we may assume that B is wild.
Let Y be an indecomposable regular B-module. We show that there is
an integer 1 < s < 2d and an exact sequence

0->Y »1Y>C—->0

of B-modules where Y’ (resp., C) is a direct sum of regular (resp.,
preinjective) B-modules. Indeed, assume first that Y is a simple regular
module. As in [1, (1.1)] we obtain an exact sequence

0->Y->mY>C—-0

where 1 <5 < 2d and C is a direct sum of preinjective modules. Assume
now that 0 - Y’ - Y — Y” — 0 is an exact sequence with Y’ and Y”
regular B-modules. By induction hypothesis, there is an exact sequence

0->R->1Y" >C~—-0

for some 1 < s < 2d, where R (resp., C) is a direct sum of regular (resp.,
preinjective) modules. We complete the exact and commutative diagram
0 0
3 2
0->mY > E - R -0

I ! l

0->73Y" >7Y > 1YY" -0

S — O«
S — O«

where E is a regular module. This shows claim (3).

(4) Let X be a preprojective and Y be a regular B-module. By (3), we
may construct a sequence

0—Y — 1Y — C — 0
where 1 <s <2d and Y’ (resp., C) is a direct sum of regular (resp.,

preinjective) modules. Let ¢ > 3d. For t' =t —s > d, we get an exact
sequence

HomB(T;)’t,X’ TéY) d HOmB(TEt’X’C) — Eth(TEl’X, Y/) — 0.

From (2), we get that

dim, Hom(75'X,Y) = dim, Homy(75' "X, 1Y) > 4[

This completes the proof of the proposition. [
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1.8. Proof of the Theorem 1.5. Clearly, by (1.6) we may assume that A is
a tilted algebra and .% is a m-complete section not of Dynkin type in the
preprojective component € of I',. Moreover, if X,..., X, are the mod-
ules in ., then ®/_ X, is a tilting module.

Let B = kA be a hereditary algebra and ;7 be a tilting module with
A = Endg(T). The functor 3 = Hom (T, —) (resp., 3" = Exty(T,-)) in-
duces an equivalence between the full subcategories Z(T) = {X:
Exth(T, X) = 0} of mod, and %(T) = {M: Tor{'(T, M) = 0} of mod,,
(resp., AT) = {X: Homy(T, X) = 0} and x(T) = {M: T ® M = 0}). We
may choose T such that . is formed by the modules 2Q,, x € A,
where Q. (resp., P,) is the indecomposable injective (resp., projective)
B-module associated with x. Observe that 7,'30Q = 3'P, and 7,20, =
St for 1 <t < m. See [9, 4.1].

Since % has only finitely many predecessors in I';, there is at least one
preinjective summand 7; of 7. Then N = 7,7, € #(T) and I, = 3'N is an
indecomposable injective 4-module.

Taking X =3Q, in &% and 3n<t<m+1, we get using (1.7)
dim, 77X > dim, Hom ,(7;'X, I;) = dim, Hom y(7;'*'P,, N) > [(t — 1)/
n?]. The result follows. [

1.9. Remark. In some cases the lower bounds given in (1.5) may be
improved. Namely, let B = kA be a wild hereditary connected algebra with
d =|A,l. Then there are constants 0 < a, 1 < u such that for any projec-
tive P and ¢ > 0, we have

dim, 73'P > ap™.

Moreover, the constant u may be chosen independent of A.

Proof. Consider ¢ = ¢, the Coxeter matrix of B. Since B is wild, the
spectral radius p = p(¢p) > 1 [10]. There is a vector y* with positive
coordinates such that y*¢ = py™ [7, 12]. Hence

(dim, 75 P)y*1 > ((dim P) ™", y*), = pXdim P, y*), = p'y* (i) > 0.

Therefore, dim, 73'P; > p'y*(i)/ly*|, where [y™| = X,y y (/).
As in [7, 4.3], we have that for any j € A,

1
p~ <yT(i)/y*(j) and d—pdﬁy*(i)/ly*l-

Finally, we recall that since B is wild, p > w, where w is the largest root
of the polynomial x' +x” —x7 —x% — x> —x* — x> + x + 1; approxi-
mately u = 1.1762; see [13]. 1
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2. WHEN DOES A MODULE BELONG TO A GIVEN
PREPROJECTIVE COMPONENT?

2.1. Let % be an infinite preprojective component of the
Auslander—Reiten quiver I'; of the algebra 4 = kQ/I. The purpose of
this section is to prove the following:

PROPOSITION.  There are functionals f, g: K,(A) = R such that an inde-
composable module X belongs to & if and only if one of the following two
conditions holds

@ f(dim X) > 0
(i) f(dim X) = 0 and g(dim X) < 0.

In fact, we will explicitly construct f and g.

2.2. For the proof of the proposition, we consider a section . of # as in
(1.4, (2)), that is, . a maximal -complete section in L. Let .7,,...,.% be
the connected components of .%. As in Lemma 1.6, we consider the full
subcategory B of A in the vertices of U , . . supp X.

LEMMA. The algebra B = 11/_B, is a coproduct of tilded algebras
B,,...,B,, such that for 1 <i <r,.% is a slice in a preprojective component
P, of Ty. Moreover, B; = kA,;/J; for a path-closed subquiver A; of Q,
l<i<r.

Proof. For each 1 <i <r, let s(i) = supp#; = U y 5 supp X. Ob-
serve that B; = End (&, ;) P) is a tilted algebra having slice .%; in a
preprojective component. For 1 <i, j<r, i+, the algebra B;; =
End (&, ;05 P)™ is also a tilted algebra with slice 4 11.%. Let
H = kA be a hereditary algebra with a tilting module ,7 such that
B;; = End (T). Then A® =%11.% and H = H, 11 H, with H, = kA, a
connected hereditary algebra such that A =57, i = 1,2. Hence B;; =
B;11 B; and B = L1;_B

Let B,=kA,/J;anda =a, > a, » - > a, > a,., = b and a, b ver-
tices in A; (that is, a, b € s(i)). Assume that ¢ = a, & s(i). Then P, is a
predecessor of some X, €.% with X,(a) # 0 and I, is a successor of
some X, €.% with X,(b) # 0. Since Hom ,(P,, ) # 0 and . is a maxi-
mal co-complete section, there is some Z €. such that Z(c) # 0. Assume
Z €%, Since ¢ & s(i), then j # i. But then ¢ € supp I, N supp Z C s(i)
N s(j), which contradicts that B;; = B; L1 B;. |

2.3. Keep the notation as in (2.1) and (2.2) above. Let T(",..., T\ be
the vertices of .%; and T = &/, T(". Then H, = End (T(”) is a repre-

L
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sentation-infinite connected hereditary algebra; write H; = kA; where
A, =" is a quiver not of Dynkin type. Consider the isometry

0;: Ko(B;) » Ky(H,;),dim X
~ (dim, Hom,, (7", X ) — dim, Ext}(T,", X)) .

Moreover, let 1 < p; be the spectral radius of the Coxeter matrix d)B
Let y; be a vector with positive coordinates such that y, ¢, = p; Ty~
The following is a slight modification of [7, (2.2)].

LEMMA. Let X be an indecomposable B-module. Then X belongs to 2, if
and only if {y;”, o(dim X))y < 0.

Proof.  The tilting module 7" defines a torsion theory (#,.7) in mody .
Observe that the indecomposable torsion-free modules (thus in &) belong
to the preprojective component &, of I';. Moreover, the modules of the
form Hom B(T(" X)with X e 9N, are the vertices of the preprojective
component % of ',

If X ez, we dlstlngulsh two possibilities. If X € .7, then o,(dim X) =
dim Hom (T(’) X) and Homy (T(’) X) € €. Hence [7, (2.2)] 1mplles that
(o ,O'(dlm X)»u, <0.If X € 7, then O'(dlm X) = —dim Ext}, (T(’) X)
and Ext} (T(’) X) ¢ #,. In this case, (y;, o,(dim X)>H =
-y, dlm Ext} (T(‘) X)>H < 0. For the converse assume that
(y;, o(dim X))H <0.If X €%, trivially X € 2. Otherwise X €9 and
Hom i(T(’) X) € &, applying [7, (2.2)]. Therefore X ez. 1

2.4. Proof of (2.1). Let J be a direct sum of all injective modules
I. e 2. We define f: K,(A) = Z, dim X — {dim X, dim J ),.

Consider By,...,B, as in (22) and let &;: K (B;) = K,(A) be the
canonical inclusion, i = 1,...,r. We define

.
g: Ky(A) - R,dim X — Z(aiafl(yf),dim X>A.
i=1

First assume that X is an indecomposable in 2. If X(j) # 0 for some
I; € 2, then

f(dim X) = ) dim, Hom,(X, ;) > dim;, Hom (X, I;) > 0.
Lex

Otherwise, f(dim X) = 0 and X is a B-module. Assume that X is a
B.-module. Then X lies in the preprojective component %; of T . By (2.2)
and (2.3), (go;7'(y7),dim X), = (o7 '(y;), dim X>B <'0. Thus
g(dim X) < 0.
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For the converse, if f(dim X) > 0, clearly X is a predecessor of some
[, and X € 2. If f(dim X) = 0 and g(dim X) < 0, as above, X is a
B-module and we apply (2.3). 1

3. THE ALGORITHM

3.1.Let A = kQ /I be a finite dimensional k-algebra and Q, = {1,..., n}
be the set of vertices of Q.

For each writex i € Q,, we consider the indecomposable decomposition
rad P, = eB’ R(’) Let ~ be the minimal equivalence relation on{1,...,;}
such that ] ~j' if succ(supp R{") N succ(supp RY) # &, where succ(L)
denotes the set of vertices x € Q0 such that there is an oriented path from
some / € L to x. We may assume that 1,...,s; (< ¢,) are representatives
of the equivalence classes {1,...,t}/~

We fix M = max{dim, /, dlmkR“) 1 <i<n 1<j<t}

3.2. Let x € Q, be a sink. We describe an inductive procedure to decide
whether or not the simple projective module P, belongs to a preprojective
component. Namely, starting with %, = {dim P}, we will define induc-
tively a procedure for constructing a new set %, ,, C K,(A) from £, C
K,(A). The procedure may fail; in that case, &, is not defined and the
procedure stops indicating that P, does not belong to a preprojective
component. Otherwise, the procedure continues.

More precisely, assume %, C K,(A) is a well-defined finite set satisfying

(a) for each y €%, there is a unique indecomposable § with dim § =
Y5
(b) the set {§: y €2} is closed under predecessors in I', and
P,_ | CL;
(c) each module j (for y € ) is directing.
Let %) be the full subquiver of T, formed by those § with y €%
such that § is not injective and dim 7;'§ & .%,. Then A is a section; see

(1.4). Consider the full subquiver #*) of T, formed by 7, '§ with § € 7.
We distinguish several situations:

(1) if none of the modules Y €% has dimY = dim X for X a
direct summand of rad P, i € Q,, then we define

P =P U {dim Y: Yeyl(f)};

(2) assume Y €.41” has dim Y = dim R{" for some i € Q,,1 <j <1,
Then consider the algebra A’ as defined in (1 3). All RY) are A'- modules.
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Let S be the set of all vertices y € U . succ(supp R{") such that P, is
simple projective, that is, a sink of the quiver Q' of A'. Since Q' has less
than n vertices, then our algorithm decides whether or not P, x € S,
lies in a preprojective component of I',;. We may encounter the following
situations:

(2.i) there is a P,, y € S®, which does not lie in a preprojective
component of T',:. Then we say that the procedure fails and %, is not
defined. 4

Otherwise, all P,, y € S, lie in preprojective components %, ..., , of
I',i. Using the functionals defined in Section 2, we may decide whether or
not RY, 1 <[ <, lies in some &,.

(2.ii) There is some R{” not lying in U;_,%,, then the procedure fails.
Otherwise, all R\, 1 <[ <1, lie in U_,%,. Then,

(2.ii) If @R = rad P, is not directing, then the procedure fails.

(2.iv) Assume that rad P, is directing in mod ;.. Then we may construct
a set P c K (A") satisfying conditions (a)—(c) above such that dim R!"
eV 1 <l<t,. Let

R® = {i € Q,: there is some Y € 94", dim Y = dim R{" for some j}

and assume we have constructed 2 for all i € R™), then

P =P U ( U gz)(i)) U {dimPl-: i ER(”}.

ieR®

If &, is defined we say that the procedure is successful at the step s.
Using (1.1) and (1.2), it is clear that %, , satisfies the conditions (a)—(c).

3.3. THEOREM. The simple projective PX belongs to a preprojective compo-
nent of I, if and only if the procedure is successful for every step s = 0.
Moreover,

(a) if the procedure fails, then 2, is not defined for some s < s, == 2n -
max{Mn?, 16}.

(b) If the procedure has been successful for all s < s, then for any s > s,
we have P, =2, U{dim7'X: X € 70,0 <1 <5 — 5.} where A s
the section defined in (3.2).

Proof. 1If P, belongs to a preprojective component £, then clearly
P C{dim X: X €%} is well-defined for all s > 0.

Conversely, if all & are well-defined, then the set of modules % = {§:
y € Uy, (2} yields a connected component of I',. This component is
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directing and each module has only finitely many predecessors, thus it is
preprojective.

(a) Assume that 2, is defined and considered the section %, We
claim the following:

If 2., =2 U{dim7;'X: X9 0<l<t for 0<t<
max{Mn?, 16}, then £, ,, =2, U {dim7,'X: X €79, 0 <[ <t} for all
t > 0 and P, belongs to a preprojective component.

Indeed, under this hypothesis the section A is a m-complete section
with m = max{Mn, 16}. Let .¥,...,. be the connected components of
9. First we show that no .% is of Dynkin type. Assume that % is of
Dynkin type, then the full subquiver determined by {r;'X: X €., 0 <[
< m} is contained in N.% (the translation quiver with vertices (x, r) for
x €%, re N,arrows (x,r) = (y,r) = (x,r + 1) for each arrow x — y in
%, and translation 7(x,r) = (x,r — 1)). For X, X, €.%,Y = 1,'X,,0 <
[ < m, we have

dim, Hom ,( X;,Y) = dim k(N%)((X,,0),(X;,1)).
By [5], this dimension is zero for

n—1, if % isoftype A, or D, withs <n
‘= 15, if & isoftype E,,6 <p <8.

Therefore, for any X €.%, 7,;'X is injective for some [ < m. A contradic-
tion showing .% is not of Dynkin type.

Now, since m + 1 > Mn?, then each of % is a c-complete section by
Corollary 1.5. Thus #,,, =%, U {dim7;'X: 0 </ < 1} for all ¢ > 0. Hence
the set of modules {y: y € U,. (%} yields a preprojective component of
I',. This shows the claim.

Now, assume that %, is defined for 0 < s < b and thereisno0 <a <b
such that %, , =2, U{dim7'X: X7, 0<l<t} for 0<t<

max{Mn?, 16}. Then there are numbers 0 =a, <a, <a, < -+ <a, <
a,,, = b such that a,,, — a, < max{Mn?, 16} and “) and A%+ are
not isomorphic, i = 0,...,7. We may assume that #“*! already coin-

cides with #%+0 (0 < i < r). Therefore, there is a module Y in 5%
which is either injective or a direct summand of the radical of a projective
module; that is, either I, €% or P, € %" for some j € Q. Since
this may only happen 2n times, we get that r < 2n. Therefore b < 2n -
max{Mn?, 16}. This proves (a).

(b) follows also from the proof of (a). 1

3.4. Remarks. (1) Suppose we apply the procedure (3.2) starting with
the simple projective P, and we get &, for 0 <s < s, = 2n - max{Mn?, 16}.
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Then P, belongs to a preprojective component & of I',. The section S0
is a maximal c-complete section (3.3,b). At that moment we have gotten
all information needed to construct the functionals f,g: K,(4) - R
deciding which modules belong to % (2.1).

(2) The remark above also shows that the step (2.ii) in the algorithm
(3.2) can be carried out by means of the same procedure (inductively).

REFERENCES

1. D. Baer, Homological properties of wild hereditary artin algebras, in “Lecture Notes in
Mathematics,” Vol. 1177, pp. 1-12, Springer-Verlag, New York /Berlin, 1986.
2. R. Bautista, F. Larrion, and L. Salmerén, On simply connected algebras, J. London Math.
Soc. (2) 27 (1983), 212-220.
3. K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469.
4. P. Draxler and J. A. de la Pena, Algebras with preprojective components, Tsukuba J.
Math., to appear.
5. P. Gabriel and A. V. Roiter, Representations of finite-dimensional algebras, in “Algebra
VIIL” Encyclopaedia of Math. Sci., Vol. 73, Springer-Verlag, New York/Berlin, 1992.
6. D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. 60 (1993),
237-246.
7. J. A. de la Penia and M. Takane, Spectral properties of Coxeter transformations and
applications, Arch. Math. 55 (1990), 120-134.
8. Ch. Riedtmann, Algebren, Darstellungskocher, Uberlagerungen und zuriick, Comment.
Math. Helv. 55 (1980), 199-224.
9. C. M. Ringel, Tame algebras and integral quadratic forms, in “Lecture Notes in
Mathematics,” Vol. 1099, Springer-Verlag, New York /Berlin, 1984.
10. C. M. Ringel, The spectral radius of the Coxeter transformation for a generalized Cartan
matrix, Math. Annalen., to appear.
11. A. Skowrofiski and M. Wenderlich, Algebras whose indecomposable projective modules
are directing, J. Algebra, to appear.
12. M. Takane, On the Coxeter transformation of a wild algebra, Arch. Math., 63 (1994),
128-135.
13. Ch. Xi, On wild algebras with the small growth number, Comm. Algebra 18, (1991),
3413-3422.



