Constructing the Preprojective Components of an Algebra

J. A. de la Peña

Instituto de Matemáticas, UNAM, México 04510, D. F., México

netadata, citation and similar papers at core.ac.uk

S. Kasjan

Faculty of Mathematics and Informatics, Nicholas Copernicus University, Toruń, Poland

Communicated by Kent R. Fuller

Received October 15, 1994

Let k be an algebraically closed field. Let A be a finite-dimensional k-algebra. We may assume that A = kQ/I, where Q is a finite connected quiver and I is an admissible ideal of the path algebra kQ; see [5]. The nature of our problem allows us to assume without loss of generality that Q has no oriented cycles.

Consider the category of the finite dimensional left A-modules, mod_A . For each indecomposable non-projective A-module X, the Auslander– Reiten translate $\tau_A X$ is an indecomposable non-injective module. The Auslander–Reiten quiver Γ_A has as vertices representatives of the isoclasses of finite dimensional indecomposable A-modules, and there are as many arrows from X to Y in Γ_A as $\dim_k \operatorname{rad}_A(X,Y)/\operatorname{rad}_A^2(X,Y)$. A connected component \mathscr{P} of Γ_A is said to be *preprojective* if \mathscr{P} has no oriented cycles and each module X in \mathscr{P} has only finitely many predecessors in the path order of \mathscr{P} . Several classes of algebras have preprojective components, such as algebras with the separation condition (in particular, tree algebras) [2] and hereditary algebras [9]. A general criterion for the existence of preprojective components was recently established [4].

Given a preprojective component \mathscr{P} of Γ_A , the modules on \mathscr{P} can be easily determined. Starting with the simple projective modules and using the additivity of the dimension function on Auslander–Reiten sequences, the classes **dim** X in the Grothendieck group $K_0(A)$ of modules $X \in \mathscr{P}$ are obtained; the module X is the unique indecomposable with class **dim** X. This *knitting procedure* has been used since at least 1977 (see [5]). The purpose of this work is to give an algorithmic procedure to construct all preprojective components in Γ_A . Indeed, we do the following.

(a) We describe an algorithm which decides whether or not a given simple projective module P_i belongs to a preprojective component; in fact, we show that if by starting with P_i it is possible to use the knitting procedure to construct $N(\dim_k A)$ new modules (where $N(\dim_k A)$ is a certain number depending only on $\dim_k A$), then P_i lies in a preprojective component of Γ_A ;

(b) if P_i belongs to a preprojective component \mathscr{P} , by applying the procedure (a), we get two functionals $f, g: K_0(A) \to \mathbf{R}$ such that an indecomposable module X belongs to \mathscr{P} if and only if one of the following holds: (i) $f(\dim X) > 0$ or (ii) $f(\dim X) = 0$ and $g(\dim X) < 0$.

For the proof of the above statements we show some results on the growth of $(\dim_k \operatorname{Hom}_B(\tau_B^{-t}X, Y))_t$ which are interesting by themselves. Indeed, for a wild connected hereditary algebra $B = k\Delta$ and two indecomposable *B*-modules *X* and *Y* such that *X* is preprojective and *Y* is regular or preinjective, we prove that

$$\dim_k \operatorname{Hom}_B(\tau_B^{-t}X,Y) \ge \left[\frac{t}{d^2}\right]$$

for $t \ge 3d$, where d is the number of vertices of Δ .

This work was done during a visit of the second author to UNAM in Mexico. We acknowledge the support of the Consejo Nacional de Ciencia y Tecnología and Polish Scientific Grant 1221/2/91.

1. DIMENSION OF MODULES IN PREPROJECTIVE COMPONENTS

1.1 Let A = kQ/I be as in the Introduction. We assume that the set of vertices of Q is $Q_0 = \{1, ..., n\}$. For each vertex $i \in Q_0$, we have the simple module S_i with $S_i(i) = k$ and $S_i(j) = 0$ for $j \neq i$. The projective cover of S_i is denoted by P_i and its injective envelope by I_i .

Given a module $X \in \text{mod}_A$, its class $\dim X \in K_0(A) = \mathbb{Z}^n$ has *i*th coordinate $\dim_k \text{Hom}_A(P_i, X)$. Since the global dimension gldim A is finite, we get a bilinear form

$$\langle -, - \rangle_A \colon K_0(A) \times K_0(A) \to \mathbf{Z}, \langle \dim X, \dim Y \rangle$$

= $\sum_{s=0}^{\infty} (-1)^s \dim_k \operatorname{Ext}_A^s(X, Y)$

Let X be a module in a preprojective component \mathscr{P} of Γ_A . Then $\operatorname{Ext}^s_A(X, X) = 0$ for $s \ge 1$ and $\dim_k \operatorname{End}_A(X) = 1$. Also there is a quo-

tient *B* of *A* such that *X* is a faithful *B*-module. Then gldim $B \le 2$ and $p \dim_B X \le 1$. Hence if *Y* is an indecomposable *A*-module with **dim** X =**dim** *Y*, then *Y* is a *B*-module and $1 = \langle \text{dim} X, \text{dim} Y \rangle_B$. Thus $\text{Hom}_A(X, Y) \ne 0$. Similarly, $\text{Hom}_A(Y, X) \ne 0$, which implies that *X* and *Y* are isomorphic. See [3, 9].

1.2. Following [6], we say that the module $X \in \text{mod}_A$ is *directing* provided there do not exist indecomposable direct summands X_1, X_2 of X and an indecomposable nonprojective module Y such that $X_1 \leq \tau_A Y$ and $Y \leq X_2$ (we write $Y \leq Z$ for two indecomposable modules Y, Z if there is a chain of non-zero maps $Y = Y_0 \rightarrow Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_t = Z$). In particular, an indecomposable module X is directing if and only if there is no chain of non-zero, non-isomorphisms $X \rightarrow X_1 \rightarrow \cdots \rightarrow X_t = X$.

For an indecomposable projective module P_i , the radical rad P_i satisfies $P_i/\text{rad }P_i \approx S_i$. In [6] (see also [11]), it is shown that the following assertions are equivalent:

(a) P_i is directing,

(b) rad P_i is directing,

(c) each indecomposable direct summand of rad P_i is directing.

1.3. Given $i \in Q_0$, consider the quotient A^i of A formed as the full subcategory of A with vertices j such that there is no path from j to i in Q (*Note*: There is a trivial path from i to i.).

The following is an inductive criterion for the existence of preprojective components in Γ_A .

THEOREM [4]. There is a preprojective component in Γ_A if and only if for each vertex $i \in Q_0$ one of the following conditions is satisfied:

(a) there is a preprojective component \mathscr{P}' of Γ_{A^i} such that no indecomposable direct summand of rad P_i belongs to \mathscr{P}' ;

(b) rad P_i is a directing A^i -module and each indecomposable direct summand of rad P_i has only finitely many predecessors in mod_{A^i} , all of them directing.

1.4. Let \mathscr{C} be a component of Γ_A . Let \mathscr{S} be a full subquiver in \mathscr{C} . We say that

(i) \mathscr{S} is a *section* if \mathscr{S} is path-closed in \mathscr{C} ; if $X \in \mathscr{S}$, then $\tau_A X \notin \mathscr{S}$; each $X \in \mathscr{S}$ is directing.

(ii) \mathscr{S} is a *m*-complete section ($m \in \mathbb{N} \cup \{\infty\}$) if:

(a) \mathscr{S} is a section;

(b) \mathscr{S} admits only finitely many precessors in Γ_A , all of them directing;

(c) if $X \to Y$ is an arrow in Γ_A , $X \in \mathcal{S}$, and $Y \notin \mathcal{S}$, then Y is non-projective and $\tau_A Y \in \mathcal{S}$;

(d) if $X \in \mathcal{S}$, $0 \le l \le m$, and Y is a predecessor of $\tau_A^{-l}X$ such that $Y = I_j$ or Y is a direct summand of rad P_j , then Y is proper predecessor of \mathcal{S} .

Remarks. (1) Let \mathscr{S} be a *m*-complete section in \mathscr{C} . Then we get a full subquiver $\tau_A^{-l}\mathscr{S}$ of \mathscr{C} formed by the modules $\{\tau_A^{-l}X: X \in \mathscr{S}\}$ for any $0 \le l \le m$. The quiver $\tau_A^{-l}\mathscr{S}$ is a (m - l)-complete section in \mathscr{C} .

Let $k(\mathscr{C})$ be the mesh-category of \mathscr{C} ; see [5, 8]. Consider any two modules X, Y in \mathscr{C} predecessors of $\tau_A^{-m}\mathscr{S}$, then $\operatorname{Hom}_A(X, Y) = k(\mathscr{C})(X, Y)$.

(2) Let \mathscr{P} be an infinite preprojective component of Γ_A . Consider the modules $\tau_A^{-s_i}P_i$ such that $P_i \in \mathscr{P}, \tau_A^{-s}P_i$ is non-injective for all $s \ge 0$, and s_i is minimal such that $\tau_A^{-s_i}P_i$ is no predecessor in \mathscr{P} of an injective or a projective module. Then the full subquiver \mathscr{S} of \mathscr{P} formed by all modules $\tau_A^{-s_i}P_i$ is a maximal ∞ -complete section in \mathscr{P} . Almost every module in \mathscr{P} belongs to $\bigcup_{t\ge 0}\tau_A^{-t}\mathscr{S}$.

1.5. The main purpose of this section is to show the following

THEOREM. Let \mathscr{S} be a connected component of a m-complete section in a component \mathscr{C} of Γ_A . Assume that \mathscr{S} is not of Dynkin type. Then for every $3n \le t \le m + 1$ and $X \in \mathscr{S}$, we have

$$\left[\frac{t}{n^2}\right] \le \dim_k \tau_A^{-t} X.$$

Let us show the useful consequence.

COROLLARY. Let \mathscr{S} be a connected component of a m-complete section in a component \mathscr{C} of Γ_A and assume that \mathscr{S} is not of Dynkin type. Let M be the maximal of all dim_k Y, where $Y = I_j$ or Y is a direct summand of a rad P_j , for some $j \in Q_0$. Suppose $m + 1 > Mn^2$. Then \mathscr{S} is ∞ -complete section.

Proof. Let $X \in \mathcal{S}$. Since \mathcal{S} is a *m*-complete section, $\tau_A^{-m}X$ is noninjective. Therefore $\tau_A^{-(m+1)}X$ is a well-defined and $\dim_k \tau^{-(m+1)}X \ge [(m + 1)/n^2] > M$. Hence $\tau_A^{-(m+1)}X$ is not isomorphic to I_j or to a direct summand of rad P_j for some $j \in Q_0$. Thus \mathcal{S} is a (m + 1)-complete section.

Since $[(m + 2)/n^2] > M$, we may continue inductively to get that \mathscr{S} is a ∞ -complete section.

1.6. We shall reduce the proof of (1.5) to the case of preprojective components of tilted algebras. We recall that for a given module $X \in \text{mod}_A$, the support of X is supp $X = \{i \in Q_0: X(i) \neq 0\}$.

LEMMA. Let \mathscr{C} be a component of Γ_A and \mathscr{S} be a connected component of a m-complete section in \mathscr{C} which is not of Dynkin type. Let X_1, \ldots, X_d be the modules in \mathscr{S} and B be the full subcategory of A in the vertices of $\bigcup_{i=1}^d \operatorname{supp} X_i$. Then

(a) There is a preprojective component \mathscr{C}' of Γ_B containing \mathscr{S} . Moreover \mathscr{S} is a m-complete section in \mathscr{C}' .

(b) The module $\bigoplus_{i=1}^{d} X_i$ is a *B*-tilting module.

(c) The modules $\tau_A^{-l}X$, for $X \in \mathscr{S}$ and $0 \le l \le m + 1$ are B-modules and $\tau_B^{-l}X = \tau_A^{-l}X$.

(d) Let ϕ_A (resp. ϕ_B) be the Coxeter matrix of A (resp. B), then for any $X \in \mathcal{S}, 0 \le l \le m + 1$, we have

dim
$$au_A^{-l}X = (\operatorname{\mathbf{dim}} X) \phi_B^{-l}$$

Proof. Clearly, \mathscr{S} is formed by *B*-modules. Since \mathscr{S} is a *m*-complete section, the modules $\tau_A^{-l}X$ with $X \in \mathscr{S}$ and $0 \le l \le m + 1$ are also *B*-modules and $\tau_B^{-l}X = \tau_A^{-l}X$. This shows (c).

By the definition of B, \mathscr{C}' contains all the indecomposable projective *B*-modules P'_j , $1 \le j \le m$. To show that \mathscr{S} is a *slice* in *B* (in the sense of [9, 4.2]), it is enough to observe that $\bigoplus_{i=1}^{d} X_i$ is a sincere *B*-module. This proves (a) and (b).

Let $X \in \mathscr{S}$ and $0 \le l \le m$. Then $\operatorname{Hom}_B(\tau_B^{-l-1}X, B) = 0$ implies that $i \dim_B \tau_B^{-l}X \le 1$. Moreover, since $\tau_B^{-l}X$ has no injective predecessors in Γ_B , then $\dim \tau_B^{-l-1}X = (\dim \tau_B^{-l}X)\phi_B^{-1}$; see [9, 2.4]. Therefore (d) follows by induction.

1.7. For the proof of (1.5) we need some results on the growth of $\dim_k \operatorname{Hom}_B(\tau_B^{-t}X, Y)$ in the case *B* is a hereditary algebra.

We recall that a connected algebra $B = k\Delta$ is of *tame* representationinfinite type if Δ is a quiver of Euclidean type; B is of *wild type* if either Δ contains a quiver of the form \therefore with at least 3 arrows or Δ contains properly a convex subquiver of Euclidean type.

PROPOSITION. Let $B = k\Delta$ be a representation-infinite, connected hereditary algebra and $\Delta_0 = \{1, ..., d\}$. Let X and Y be indecomposable B-modules. Assume that X is preprojective and Y is preinjective (resp., preinjective or regular) if B is tame (resp., B is wild). Then

$$\dim_k \operatorname{Hom}_B(\tau_B^{-t}X,Y) > \left[\frac{t}{d^2}\right], \quad \text{for } t \ge 3d.$$

Proof. We shall divide the proof in several steps:

(1) For any two vertices $i, j \in \Delta_0$, we show that $\dim_k \tau_B^{-t} P_i(j) \ge 4[t/d^2]$, for $t \ge d$.

(a) We consider first the case where Δ is of Euclidean type. Let $\mathscr{T}_1, \ldots, \mathscr{T}_s$ be the non-homogeneous tubular components of Γ_B ; let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ be the modules in the mouth of the tube \mathscr{T}_i . Then $\sum_{j=1}^s (n_i - 1) = d - 2$ and $\sum_{j=1}^{n_i} \dim X_j^{(i)} = z$ $(1 \le i \le s)$, where z is a sincere vector generating the space $\{v \in \mathbf{Q}^n : \langle \dim X_j^{(i)}, v \rangle_B = 0, 1 \le i \le s, i \le j \le n_i \}$. Let *m* be the least common multiple of n_1, \ldots, n_s . Then

$$\langle \dim X_j^{(i)}, \dim \tau_B^{-m} P_i \rangle_B = \langle \dim \tau_B^{-m} X_j^{(i)}, \dim P_i \rangle_B$$

= $\langle \dim X_j^{(i)}, \dim P_i \rangle_B.$

Hence $\dim \tau_B^{-m} P_i = \dim P_i + az$ for some $a \in \mathbb{Z}$. Therefore for any $t \in \mathbb{N}$, we write t = mc + e with $c \ge 0$ and $0 \le e \le m$. We get

$$\dim \tau_B^{-t} P_i = (\dim P_i) \phi_B^{-t} = acz + \dim \tau_B^{-e} P_i \ge acz.$$

Hence a > 0; moreover, we have the following bounds for m:

$$\Delta \text{ of type } \tilde{\mathbf{A}}_{d-1} : m \leq \left[\frac{1}{2}(d-1)\right]^2 < \frac{1}{4}d^2;$$

$$\Delta \text{ of type } \tilde{\mathbf{D}}_{d-1} : m \leq 2(d-3);$$

$$\Delta \text{ of type } \tilde{\mathbf{E}}_6 : m = 3;$$

$$\Delta \text{ of type } \tilde{\mathbf{E}}_7 : m = 4;$$

$$\Delta \text{ of type } \tilde{\mathbf{E}}_8 : m = 6$$

Therefore $\dim_k \tau_B^{-t} P_i(j) \ge [t/m] \ge 4[t/d^2].$

(b) We consider the case where Δ is of the form a
i b with $s \ge 3$ arrows. The inverse of the Coxeter matrix of B is

$$\phi_B^{-1} = \begin{bmatrix} -1 & -s \\ s & s^2 - 1 \end{bmatrix}.$$

Then for $(a_0, b_0) = \dim P_b$, we write $(a_t, b_t) = \dim \tau_B^{-t} P_b$. We get inductively $b_t \ge a_t$; $b_t \ge s^{t+1}$ and $a_t \ge (s-1)s^t$ for $t \ge 1$. Similarly, for $(c_0, d_0) = \dim P_a$, we write $(c_t, d_t) = \dim \tau_B^{-t} P_a$, and we get $d_t \ge c_t$; $d_t \ge s^t$ and $c_t \ge (s-1)s^{t-1}$ for $t \ge 1$. Certainly, $s^{t-2} \ge [t/2]$, for $t \ge 2$.

(c) In the general case, we may assume that B = B'[R] is a one-point extension of the representation-infinite hereditary algebra B'. By induction hypothesis $\dim_k \tau_{B'}^{-i}P_i(j) \ge 4[t/(d-1)^2]$ for any two vertices of the quiver Δ' of B' and for $t \ge d-1$. Let ω the extension vertex of B, that is, rad $P_{\omega} = R$. Consider the preprojective component \mathcal{P} (resp. \mathcal{P}') of B (resp., B'). Then \mathcal{P} (resp., \mathcal{P}') is a standard component of the form $N\Delta^{op}$ (resp., $N\Delta'^{op}$). For any set S of vertices of \mathcal{P} , we denote by $k(\mathcal{P})/S$ the quotient category of the mesh category $k(\mathcal{P})$ by the ideal generated by all paths factorizing through some vertex in S.

Let i, j be any two vertices in Δ'_0 . Let S_1 be the τ -orbit $\{\tau_B^{-t}P_\omega: t \ge 0\}$, then $k(\mathscr{P})/S_1 = k(\mathscr{P}')$. Hence

$$\dim_{k} \tau_{B}^{-t} P_{i}(j) = \dim_{k} \operatorname{Hom}_{B}(P_{j}, \tau_{B}^{-t} P_{i}) \ge \dim_{k} \operatorname{Hom}_{B'}(P_{j}, \tau_{B'}^{-t} P_{i})$$
$$\ge 4 \left[\frac{t}{(d-1)^{2}} \right] \ge 4 \left[\frac{t}{d^{2}} \right],$$

for $t \ge d$. Let *i* be in Δ'_0 . Let S_2 be the set of vertices $\{\tau_B^{-t}P_\omega: t \ge 1\}$, then $k(\mathscr{P})/S_2(X,Y) = k(\mathscr{P}')(X,Y)$ for $X, Y \in \mathscr{P}'$ and $k(\mathscr{P})/S_2(P_\omega,Y) = k(\mathscr{P}')(\tau_B^{-1}R,Y)$, for $Y \in \mathscr{P}'$. Hence

$$\dim_{k} \tau_{B}^{-t} P_{i}(\omega) \geq \dim_{k} \operatorname{Hom}_{B'}\left(\tau_{B'}^{-1} R, \tau_{B'}^{-1} P_{i}\right)$$
$$= \dim_{k} \operatorname{Hom}_{B'}\left(R, \tau_{B'}^{-t+1} P_{i}\right) \geq 4\left[\frac{t-1}{\left(d-1\right)^{2}}\right] \geq 4\left[\frac{t}{d^{2}}\right],$$

for $t \ge d$.

Similarly, we get $\dim_k \tau_B^{-t} P_{\omega}(i) \ge 4[t/d^2]$, for any $i \in \Delta_0$. This finishes the proof of our first claim.

(2) Let X be a preprojective B-module and Y be a preinjective B-module. Let $t \ge d$ and assume $X = \tau_B^{-m} P_i$ and $Y = \tau_B^q I_i$. Then

$$\dim_{k} \operatorname{Hom}_{B}(\tau_{B}^{-t}X,Y) = \dim_{k} \operatorname{Hom}_{B}(\tau_{B}^{-(t+m+q)}P_{i},I_{j}) \ge 4\left[\frac{t+m+q}{d^{2}}\right]$$
$$\ge 4\left[\frac{t}{d^{2}}\right],$$

applying (1).

(3) For the rest of the proof we may assume that B is wild.

Let Y be an indecomposable regular B-module. We show that there is an integer $1 \le s \le 2d$ and an exact sequence

$$0 \to Y' \to \tau_B^s Y \to C \to 0$$

of B-modules where Y' (resp., C) is a direct sum of regular (resp., preinjective) B-modules. Indeed, assume first that Y is a simple regular module. As in [1, (1,1)] we obtain an exact sequence

$$0 \to Y \to \tau_B^s Y \to C \to 0$$

where $1 \le s \le 2d$ and C is a direct sum of preinjective modules. Assume now that $0 \to Y' \to Y \to Y'' \to 0$ is an exact sequence with Y' and Y'' regular *B*-modules. By induction hypothesis, there is an exact sequence

$$0 \to R \to \tau_B^s Y'' \to C \to 0$$

for some $1 \le s \le 2d$, where R (resp., C) is a direct sum of regular (resp., preinjective) modules. We complete the exact and commutative diagram

where E is a regular module. This shows claim (3).

(4) Let X be a preprojective and Y be a regular B-module. By (3), we may construct a sequence

$$0 \longrightarrow Y' \longrightarrow \tau_B^s Y \longrightarrow C \longrightarrow 0$$

where $1 \le s \le 2d$ and Y' (resp., C) is a direct sum of regular (resp., preinjective) modules. Let $t \ge 3d$. For $t' = t - s \ge d$, we get an exact sequence

$$\operatorname{Hom}_{B}(\tau_{B}^{-t'}X,\tau_{B}^{s}Y) \to \operatorname{Hom}_{B}(\tau_{B}^{-t'}X,C) \to \operatorname{Ext}_{B}^{1}(\tau_{B}^{-t'}X,Y') = 0.$$

From (2), we get that

$$\dim_k \operatorname{Hom}_B(\tau_B^{-t}X,Y) = \dim_k \operatorname{Hom}_B(\tau_B^{-t+s}X,\tau_B^sY) \ge 4\left[\frac{t-s}{d^2}\right] > \left[\frac{t}{d^2}\right].$$

This completes the proof of the proposition.

This completes the proof of the proposition.

1.8. Proof of the Theorem 1.5. Clearly, by (1.6) we may assume that A is a tilted algebra and \mathscr{S} is a *m*-complete section not of Dynkin type in the preprojective component \mathscr{C} of Γ_A . Moreover, if X_1, \ldots, X_n are the modules in \mathscr{S} , then $\bigoplus_{i=1}^n X_i$ is a tilting module.

Let $B = k\Delta$ be a hereditary algebra and $_BT$ be a tilting module with $A = \operatorname{End}_B(T)$. The functor $\Sigma = \operatorname{Hom}_B(T, -)$ (resp., $\Sigma' = \operatorname{Ext}^1_B(T, -)$) induces an equivalence between the full subcategories $\mathscr{G}(T) = \{X: \operatorname{Ext}^1_B(T, X) = 0\}$ of mod_B and $\mathscr{G}(T) = \{M: \operatorname{Tor}_1^A(T, M) = 0\}$ of mod_A (resp., $\mathscr{F}(T) = \{X: \operatorname{Hom}_B(T, X) = 0\}$ and $\chi(T) = \{M: T \otimes_A M = 0\}$). We may choose $_BT$ such that \mathscr{S} is formed by the modules ΣQ_x , $x \in \Delta_0$, where Q_x (resp., P_x) is the indecomposable injective (resp., projective) *B*-module associated with *x*. Observe that $\tau_A^{-1}\Sigma Q_x = \Sigma' P_x$ and $\tau_A^{-t}\Sigma Q_x = \Sigma' \tau_B^{-t+1} P_x$, for $1 \le t \le m$. See [9, 4.1].

Since \mathscr{S} has only finitely many predecessors in Γ_A , there is at least one preinjective summand T_j of T. Then $N = \tau_B T_j \in \mathscr{F}(T)$ and $I_j = \Sigma' N$ is an indecomposable injective A-module.

Taking $X = \Sigma Q_x$ in \mathscr{S} and $3n \le t \le m+1$, we get using (1.7) $\dim_k \tau_A^{-t} X \ge \dim_k \operatorname{Hom}_A(\tau_A^{-t} X, I_j) = \dim_k \operatorname{Hom}_B(\tau_B^{-t+1} P_x, N) > [(t-1)/n^2]$. The result follows.

1.9. *Remark.* In some cases the lower bounds given in (1.5) may be improved. Namely, let $B = k\Delta$ be a wild hereditary connected algebra with $d = |\Delta_0|$. Then there are constants 0 < a, $1 < \mu$ such that for any projective *P* and $t \ge 0$, we have

$$\dim_k \tau_B^{-t} P \ge a \mu^m.$$

Moreover, the constant μ may be chosen independent of Δ .

Proof. Consider $\phi = \phi_B$, the Coxeter matrix of *B*. Since *B* is wild, the spectral radius $\rho = \rho(\phi) > 1$ [10]. There is a vector y^+ with positive coordinates such that $y^+\phi = \rho y^+$ [7, 12]. Hence

$$\left(\dim_k \tau_B^{-t} P_i\right)|y^+| > \left\langle \left(\operatorname{dim} P_i\right) \phi^{-t}, y^+ \right\rangle_B = \rho^t \left\langle \operatorname{dim} P_i, y^+ \right\rangle_B = \rho^t y^+(i) > 0.$$

Therefore, $\dim_k \tau_B^{-t} P_i \ge \rho^t y^+(i)/|y^+|$, where $|y^+| = \sum_{j \in \Delta_0} y^+(j)$. As in [7, 4.3], we have that for any $j \in \Delta_0$,

$$\rho^{-d} \le y^+(i)/y^+(j) \quad \text{and} \quad \frac{1}{d\rho^d} \le y^+(i)/|y^+|.$$

Finally, we recall that since *B* is wild, $\rho \ge \mu$, where μ is the largest root of the polynomial $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$; approximately $\mu \approx 1.1762$; see [13].

2. WHEN DOES A MODULE BELONG TO A GIVEN PREPROJECTIVE COMPONENT?

2.1. Let \mathscr{P} be an infinite preprojective component of the Auslander-Reiten quiver Γ_A of the algebra A = kQ/I. The purpose of this section is to prove the following:

PROPOSITION. There are functionals $f, g: K_0(A) \to \mathbf{R}$ such that an indecomposable module X belongs to \mathscr{P} if and only if one of the following two conditions holds

(i) $f(\dim X) > 0$

(ii) $f(\operatorname{dim} X) = 0$ and $g(\operatorname{dim} X) < 0$.

In fact, we will explicitly construct f and g.

2.2. For the proof of the proposition, we consider a section \mathscr{S} of \mathscr{P} as in (1.4, (2)), that is, \mathscr{S} a *maximal* ∞ -*complete section* in \mathscr{P} . Let $\mathscr{S}_1, \ldots, \mathscr{S}_r$ be the connected components of \mathscr{S} . As in Lemma 1.6, we consider the full subcategory *B* of *A* in the vertices of $\bigcup_{x \in \mathscr{S}} \operatorname{supp} X$.

LEMMA. The algebra $B = \coprod_{i=1}^{r} B_i$ is a coproduct of tilded algebras B_1, \ldots, B_r , such that for $1 \le i \le r$, \mathscr{S}_i is a slice in a preprojective component \mathscr{P}_i of Γ_{B_i} . Moreover, $B_i = k\Delta_i/J_i$ for a path-closed subquiver Δ_i of Q, $1 \le i \le r$.

Proof. For each $1 \le i \le r$, let $s(i) = \operatorname{supp} \mathscr{S}_i = \bigcup_{X \in \mathscr{S}_i} \operatorname{supp} X$. Observe that $B_i = \operatorname{End}_A(\bigoplus_{j \in s(i)} P_j)^{\operatorname{op}}$ is a tilted algebra having slice \mathscr{S}_i in a preprojective component. For $1 \le i$, $j \le r$, $i \ne j$, the algebra $B_{ij} = \operatorname{End}_A(\bigoplus_{i \in s(i) \cup s(j)} P_i)^{\operatorname{op}}$ is also a tilted algebra with slice $\mathscr{S}_i \coprod \mathscr{S}_j$. Let $H = k\Delta$ be a hereditary algebra with a tilting module $_H T$ such that $B_{ij} = \operatorname{End}_A(T)$. Then $\Delta^{\operatorname{op}} = \mathscr{S}_i \coprod \mathscr{S}_j$ and $H = H_1 \coprod H_2$ with $H_i = k\Delta_i$ a connected hereditary algebra such that $\Delta_i^{\operatorname{op}} = \mathscr{S}_i$, i = 1, 2. Hence $B_{ij} = B_i \coprod B_j$ and $B = \coprod_{i=1}^r B_i$.

Let $B_i = k\Delta_i/J_i$ and $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_t \rightarrow a_{t+1} = b$ and a, b vertices in Δ_i (that is, $a, b \in s(i)$). Assume that $c = a_t \notin s(i)$. Then P_c is a predecessor of some $X_1 \in \mathcal{S}_i$ with $X_1(a) \neq 0$ and I_c is a successor of some $X_2 \in \mathcal{S}_i$ with $X_2(b) \neq 0$. Since $\operatorname{Hom}_A(P_c, I_c) \neq 0$ and \mathcal{S} is a maximal ∞ -complete section, there is some $Z \in \mathcal{S}$ such that $Z(c) \neq 0$. Assume $Z \in \mathcal{S}_j$. Since $c \notin s(i)$, then $j \neq i$. But then $c \in \operatorname{supp} I_b \cap \operatorname{supp} Z \subset s(i) \cap s(j)$, which contradicts that $B_{ij} = B_i \coprod B_j$.

2.3. Keep the notation as in (2.1) and (2.2) above. Let $T_1^{(i)}, \ldots, T_{m_i}^{(i)}$ be the vertices of \mathscr{S}_i and $T^{(i)} = \bigoplus_{j=1}^{m_i} T_j^{(i)}$. Then $H_i = \operatorname{End}_A(T^{(i)})$ is a repre-

sentation-infinite connected hereditary algebra; write $H_i = k\Delta_i$ where $\Delta_i = \mathscr{S}_i^{\text{op}}$ is a quiver not of Dynkin type. Consider the isometry

$$\sigma_i \colon K_0(B_i) \to K_0(H_i), \dim X$$

$$\mapsto \left(\dim_k \operatorname{Hom}_{B_i}(T_j^{(i)}, X) - \dim_k \operatorname{Ext}_{B_i}^1(T_j^{(i)}, X)\right)_j.$$

Moreover, let $1 \le \rho_i$ be the spectral radius of the Coxeter matrix ϕ_{B_i} . Let y_i^- be a vector with positive coordinates such that $y_i^- \phi_{B_i} = \rho_i^{-1} y_i^-$. The following is a slight modification of [7, (2.2)].

LEMMA. Let X be an indecomposable B_i -module. Then X belongs to \mathcal{P}_i if and only if $\langle y_i^-, \sigma_i(\dim X) \rangle_{H_i} < 0$.

Proof. The tilting module $T^{(i)}$ defines a torsion theory $(\mathcal{F}, \mathcal{F})$ in mod_{B_i} . Observe that the indecomposable torsion-free modules (thus in \mathcal{F}) belong to the preprojective component \mathcal{P}_i of Γ_{B_i} . Moreover, the modules of the form $\operatorname{Hom}_{B_i}(T^{(i)}, X)$ with $X \in \mathcal{F} \cap \mathcal{P}_i$ are the vertices of the preprojective component \mathcal{C}_i of Γ_{H_i} .

If $X \in \mathscr{P}_i$, we distinguish two possibilities. If $X \in \mathscr{T}$, then $\sigma_i(\dim X) = \dim \operatorname{Hom}_{B_i}(T^{(i)}, X)$ and $\operatorname{Hom}_{B_i}(T^{(i)}, X) \in \mathscr{C}_i$. Hence [7, (2.2)] implies that $\langle y_i^-, \sigma_i(\dim X) \rangle_{H_i} < 0$. If $X \in \mathscr{F}$, then $\sigma_i(\dim X) = -\dim \operatorname{Ext}_{B_i}^1(T^{(i)}, X)$ and $\operatorname{Ext}_{B_i}^1(T^{(i)}, X) \notin \mathscr{C}_i$. In this case, $\langle y_i^-, \sigma_i(\dim X) \rangle_{H_i} = -\langle y_i^-, \dim \operatorname{Ext}_{B_i}^1(T^{(i)}, X) \rangle_{H_i} < 0$. For the converse assume that $\langle y_i^-, \sigma_i(\dim X) \rangle_{H_i} < 0$. If $X \in \mathscr{F}$, trivially $X \in \mathscr{P}_i$. Otherwise $X \in \mathscr{T}$ and $\operatorname{Hom}_{B_i}(T^{(i)}, X) \in \mathscr{C}_i$, applying [7, (2.2)]. Therefore $X \in \mathscr{P}_i$.

2.4. *Proof of* (2.1). Let J be a direct sum of all injective modules $I_i \in \mathscr{P}$. We define $f: K_0(A) \to \mathbb{Z}$, dim $X \mapsto \langle \dim X, \dim J \rangle_A$.

Consider B_1, \ldots, B_r as in (2.2) and let $\varepsilon_i: K_0(B_i) \to K_0(A)$ be the canonical inclusion, $i = 1, \ldots, r$. We define

$$g: K_0(A) \to \mathbf{R}, \dim X \mapsto \sum_{i=1}^r \langle \varepsilon_i \sigma_i^{-1}(y_i^-), \dim X \rangle_A.$$

First assume that X is an indecomposable in \mathscr{P} . If $X(j) \neq 0$ for some $I_i \in \mathscr{P}$, then

$$f(\operatorname{dim} X) = \sum_{I_i \in \mathscr{P}} \dim_k \operatorname{Hom}_A(X, I_i) \ge \dim_k \operatorname{Hom}_A(X, I_j) > 0.$$

Otherwise, $f(\dim X) = 0$ and X is a *B*-module. Assume that X is a B_i -module. Then X lies in the preprojective component \mathscr{P}_i of Γ_{B_i} . By (2.2) and (2.3), $\langle \varepsilon_i \sigma_i^{-1}(y_i^-), \dim X \rangle_A = \langle \sigma_i^{-1}(y_i^-), \dim X \rangle_{B_i} < 0$. Thus $g(\dim X) < 0$.

For the converse, if $f(\dim X) > 0$, clearly X is a predecessor of some $I_i \in \mathscr{P}$ and $X \in \mathscr{P}$. If $f(\dim X) = 0$ and $g(\dim X) < 0$, as above, X is a *B*-module and we apply (2.3).

3. THE ALGORITHM

3.1. Let A = kQ/I be a finite dimensional k-algebra and $Q_0 = \{1, ..., n\}$ be the set of vertices of Q.

For each writex $i \in Q_0$, we consider the indecomposable decomposition rad $P_i = \bigoplus_{j=1}^{t_i} R_j^{(i)}$. Let \sim be the minimal equivalence relation on $\{1, \ldots, t_i\}$ such that $j \sim j'$ if succ(supp $R_j^{(i)}) \cap$ succ(supp $R_{j'}^{(i)}) \neq \emptyset$, where succ(L) denotes the set of vertices $x \in Q_0$ such that there is an oriented path from some $l \in L$ to x. We may assume that $1, \ldots, s_i$ ($\leq t_i$) are representatives of the equivalence classes $\{1, \ldots, t_i\}/\sim$.

We fix $M = \max\{\dim_k I_i, \dim_k R_j^{(i)}: 1 \le i \le n, 1 \le j \le t_i\}.$

3.2. Let $x \in Q_0$ be a sink. We describe an *inductive procedure* to decide whether or not the simple projective module P_x belongs to a preprojective component. Namely, starting with $\mathscr{P}_0 = \{\dim P_x\}$, we will define inductively a procedure for constructing a new set $\mathscr{P}_{s+1} \subset K_0(A)$ from $\mathscr{P}_s \subset K_0(A)$. The procedure may fail; in that case, \mathscr{P}_{s+1} is not defined and the procedure stops indicating that P_x does not belong to a preprojective component. Otherwise, the procedure continues.

More precisely, assume $\mathscr{P}_s \subset K_0(A)$ is a well-defined finite set satisfying

(a) for each $y \in \mathscr{P}_s$ there is a unique indecomposable \hat{y} with dim $\hat{y} = y$;

(b) the set $\{\hat{y}: y \in \mathscr{P}_s\}$ is closed under predecessors in Γ_A and $\mathscr{P}_{s-1} \subset \mathscr{P}_s$;

(c) each module \hat{y} (for $y \in \mathscr{P}_s$) is directing.

Let $\mathscr{S}^{(s)}$ be the full subquiver of Γ_A formed by those \hat{y} with $y \in \mathscr{P}_s$ such that \hat{y} is not injective and $\dim \tau_A^{-1} \hat{y} \notin \mathscr{P}_s$. Then $\mathscr{S}^{(s)}$ is a section; see (1.4). Consider the full subquiver $\mathscr{S}_1^{(s)}$ of Γ_A formed by $\tau_A^{-1} \hat{y}$ with $\hat{y} \in \mathscr{S}^{(s)}$. We distinguish several situations:

(1) if none of the modules $Y \in \mathscr{S}_1^{(s)}$ has $\dim Y = \dim X$ for X a direct summand of rad P_i , $i \in Q_0$, then we define

$$\mathscr{P}_{s+1} \coloneqq \mathscr{P}_s \cup \left\{ \dim Y \colon Y \in \mathscr{P}_1^{(s)} \right\};$$

(2) assume $Y \in \mathscr{S}_1^{(s)}$ has dim $Y = \dim R_j^{(i)}$ for some $i \in Q_0, 1 \le j \le t_i$. Then consider the algebra A^i as defined in (1.3). All $R_j^{(i)}$ are A^i -modules. Let $S^{(i)}$ be the set of all vertices $y \in \bigcup_{l=1}^{s_i} \operatorname{succ}(\operatorname{supp} R_l^{(i)})$ such that P_y is simple projective, that is, a sink of the quiver Q^i of A^i . Since Q^i has less than *n* vertices, then our algorithm decides whether or not P_x , $x \in S^{(i)}$, lies in a preprojective component of Γ_{A^i} . We may encounter the following situations:

(2.i) there is a P_y , $y \in S^{(i)}$, which does not lie in a preprojective component of Γ_{A^i} . Then we say that the *procedure fails* and \mathscr{P}_{s+1} is not defined.

Otherwise, all P_y , $y \in S^{(i)}$, lie in preprojective components $\mathscr{C}_1, \ldots, \mathscr{C}_s$ of Γ_{A^i} . Using the functionals defined in Section 2, we may decide whether or not $R_l^{(i)}$, $1 \le l \le t_i$, lies in some \mathscr{C}_l .

(2.ii) There is some $R_l^{(i)}$ not lying in $\bigcup_{t=1}^{s} \mathscr{C}_t$, then the *procedure fails*. Otherwise, all $R_l^{(i)}$, $1 \le l \le t_i$, lie in $\bigcup_{t=1}^{s} \mathscr{C}_t$. Then,

(2.iii) If $\bigoplus_{l=1}^{t_i} R_l^{(i)} = \text{rad } P_i$ is not directing, then the procedure fails.

(2.iv) Assume that rad P_i is directing in mod_{A^i} . Then we may construct a set $\mathscr{P}^{(i)} \subset K_0(A^i)$ satisfying conditions (a)–(c) above such that $\dim R_l^{(i)} \in \mathscr{P}^{(i)}$, $1 \le l \le t_i$. Let

 $R^{(s)} = \left\{ i \in Q_0 : \text{there is some } Y \in \mathscr{P}_1^{(s)}, \, \dim Y = \dim R_j^{(i)} \text{ for some } j \right\}$

and assume we have constructed $\mathscr{P}^{(i)}$ for all $i \in R^{(s)}$, then

$$\mathscr{P}_{s+1} = \mathscr{P}_s \cup \left(\bigcup_{i \in R^{(s)}} \mathscr{P}^{(i)}\right) \cup \{\dim P_i : i \in R^{(s)}\}.$$

If \mathscr{P}_{s+1} is defined we say that the *procedure is successful* at the step *s*. Using (1.1) and (1.2), it is clear that \mathscr{P}_{s+1} satisfies the conditions (a)–(c).

3.3. THEOREM. The simple projective P_x belongs to a preprojective component of Γ_A if and only if the procedure is successful for every step $s \ge 0$. Moreover,

(a) if the procedure fails, then \mathcal{P}_s is not defined for some $s \leq s_0 := 2n \cdot \max\{Mn^2, 16\}$.

(b) If the procedure has been successful for all $s \leq s_0$, then for any $s \geq s_0$ we have $\mathscr{P}_s = \mathscr{P}_{s_0} \cup \{\dim \tau_A^{-l}X: X \in \mathscr{S}^{(s_0)}, 0 \leq l \leq s - s_0\}$ where $\mathscr{S}^{(s_0)}$ is the section defined in (3.2).

Proof. If P_x belongs to a preprojective component \mathscr{P} , then clearly $\mathscr{P}_s \subset \{\dim X: X \in \mathscr{P}\}$ is well-defined for all $s \ge 0$.

Conversely, if all \mathscr{P}_s are well-defined, then the set of modules $\mathscr{P} = \{\hat{y}: y \in \bigcup_{s \ge 0} \mathscr{P}_s\}$ yields a connected component of Γ_A . This component is

directing and each module has only finitely many predecessors, thus it is preprojective.

(a) Assume that \mathcal{P}_s is defined and considered the section $\mathcal{S}^{(s)}$. We claim the following:

If $\mathscr{P}_{s+t} = \mathscr{P}_s \cup \{\dim \tau_A^{-l}X: X \in \mathscr{S}^{(s)}, 0 \le l \le t\}$ for $0 \le t \le \max\{Mn^2, 16\}$, then $\mathscr{P}_{s+t} = \mathscr{P}_s \cup \{\dim \tau_A^{-l}X: X \in \mathscr{S}^{(s)}, 0 \le l \le t\}$ for all $t \ge 0$ and P_x belongs to a preprojective component.

Indeed, under this hypothesis the section $\mathscr{S}^{(s)}$ is a *m*-complete section with $m = \max\{Mn, 16\}$. Let $\mathscr{S}_1, \ldots, \mathscr{S}_t$ be the connected components of $\mathscr{S}^{(s)}$. First we show that no \mathscr{S}_i is of Dynkin type. Assume that \mathscr{S}_i is of Dynkin type, then the full subquiver determined by $\{\tau_A^{-l}X: X \in \mathscr{S}_i, 0 \le l \le m\}$ is contained in $\mathbb{N}\mathscr{S}_i$ (the translation quiver with vertices (x, r) for $x \in \mathscr{S}_r, r \in \mathbb{N}$, arrows $(x, r) \to (y, r) \to (x, r + 1)$ for each arrow $x \to y$ in \mathscr{S}_i , and translation $\tau(x, r) = (x, r - 1)$). For $X_1, X_2 \in \mathscr{S}_i, Y = \tau_A^{-l}X_2, 0 \le l \le m$, we have

$$\dim_k \operatorname{Hom}_A(X_1, Y) = \dim_k k(\mathbb{N}\mathscr{S}_i)((X_1, 0), (X_2, l)).$$

By [5], this dimension is zero for

$$l \ge \begin{cases} n-1, & \text{if } \mathcal{S}_i \text{ is of type } \mathbf{A}_s \text{ or } \mathbf{D}_s, \text{ with } s \le n \\ 15, & \text{if } \mathcal{S}_i \text{ is of type } \mathbf{E}_p, 6 \le p \le 8. \end{cases}$$

Therefore, for any $X \in \mathcal{S}_i$, $\tau_A^{-l}X$ is injective for some l < m. A contradiction showing \mathcal{S}_i is not of Dynkin type.

Now, since $m + 1 > Mn^2$, then each of \mathscr{S}_i is a ∞ -complete section by Corollary 1.5. Thus $\mathscr{P}_{s+t} = \mathscr{P}_s \cup \{\dim \tau_A^{-l}X: 0 \le l \le t\}$ for all $t \ge 0$. Hence the set of modules $\{\hat{y}: y \in \bigcup_{t \ge 0} \mathscr{P}_t\}$ yields a preprojective component of Γ_A . This shows the claim.

Now, assume that \mathscr{P}_s is defined for $0 \le s \le b$ and there is no $0 \le a \le b$ such that $\mathscr{P}_{a+t} = \mathscr{P}_a \cup \{\dim \tau_A^{-l}X: X \in \mathscr{S}^{(a)}, 0 \le l \le t\}$ for $0 \le t \le$ max $\{Mn^2, 16\}$. Then there are numbers $0 = a_0 < a_1 < a_2 < \cdots < a_r < a_{r+1} = b$ such that $a_{i+1} - a_i < \max\{Mn^2, 16\}$ and $\mathscr{S}^{(a_i)}$ and $\mathscr{S}^{(a_{i+1})}$ are not isomorphic, $i = 0, \ldots, r$. We may assume that $\mathscr{S}^{(a_i+1)}$ already coincides with $\mathscr{S}^{(a_{i+1})}$ $(0 \le i \le r)$. Therefore, there is a module Y in $\mathscr{S}^{(a_i)}$ which is either injective or a direct summand of the radical of a projective module; that is, either $I_j \in \mathscr{S}^{(a_i)}$ or $P_j \in \mathscr{S}^{(a_i+1)}$ for some $j \in Q_0$. Since this may only happen 2n times, we get that $r \le 2n$. Therefore $b < 2n \cdot$ max $\{Mn^2, 16\}$. This proves (a).

(b) follows also from the proof of (a).

3.4. *Remarks.* (1) Suppose we apply the procedure (3.2) starting with the simple projective P_x and we get \mathscr{P}_s for $0 \le s \le s_0 = 2n \cdot \max\{Mn^2, 16\}$.

Then P_x belongs to a preprojective component \mathscr{P} of Γ_A . The section $\mathscr{S}^{(s_0)}$ is a maximal ∞ -complete section (3.3, b). At that moment we have gotten all information needed to construct the functionals $f, g: K_0(A) \to \mathbf{R}$ deciding which modules belong to \mathscr{P} (2.1).

(2) The remark above also shows that the step (2.ii) in the algorithm (3.2) can be carried out by means of the same procedure (inductively).

REFERENCES

- 1. D. Baer, Homological properties of wild hereditary artin algebras, in "Lecture Notes in Mathematics," Vol. 1177, pp. 1–12, Springer-Verlag, New York/Berlin, 1986.
- R. Bautista, F. Larrión, and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (1983), 212–220.
- 3. K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469.
- 4. P. Dräxler and J. A. de la Peña, Algebras with preprojective components, *Tsukuba J. Math.*, to appear.
- 5. P. Gabriel and A. V. Roiter, Representations of finite-dimensional algebras, *in* "Algebra VIII," Encyclopaedia of Math. Sci., Vol. 73, Springer-Verlag, New York/Berlin, 1992.
- 6. D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. 60 (1993), 237-246.
- 7. J. A. de la Peña and M. Takane, Spectral properties of Coxeter transformations and applications, *Arch. Math.* 55 (1990), 120–134.
- Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199–224.
- 9. C. M. Ringel, Tame algebras and integral quadratic forms, *in* "Lecture Notes in Mathematics," Vol. 1099, Springer-Verlag, New York/Berlin, 1984.
- 10. C. M. Ringel, The spectral radius of the Coxeter transformation for a generalized Cartan matrix, *Math. Annalen.*, to appear.
- 11. A. Skowroński and M. Wenderlich, Algebras whose indecomposable projective modules are directing, J. Algebra, to appear.
- 12. M. Takane, On the Coxeter transformation of a wild algebra, Arch. Math., 63 (1994), 128-135.
- 13. Ch. Xi, On wild algebras with the small growth number, *Comm. Algebra* 18, (1991), 3413-3422.