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Biorthonormal Systems, Partial Fractions, and 
Hermite Interpolation 
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Apdo. Postal 55-534, Mhxico, D. F. 09340, Mkxico 

Using some properties of dual bases in finite dimensional vector spaces we obtain 
elementary linear algebra proofs of the partial fractions decomposition and the 
Hermite interpolation theorems. We also obtain an explicit expression for the 
inverse of a confluent Vandermonde matrix, an algebraic version of the residue 
theorem for rational functions, and several inverse pairs of change of basis matrices 
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1. INTRODUCTION 

The usual proofs of the partial fractions decomposition theorem use 
either complex analysis methods, as in Henrici [4, Theorem 4.4h, p. 2181, or 
they use induction and divisibility properties of polynomials, as in Birkhoff 
and MacLane [l, Theorem 18, p. 801. 

On the other hand, for the Hermite interpolation theorem, besides the 
well-known complex variables proof, there exist several linear algebra 
proofs which are in general nonconstructive. See Davis [2, Example 6, 
p. 291. 

In the present paper we present an elementary linear algebra proof of the 
partial fractions decomposition theorem, and we obtain as a corollary the 
Hermite interpolation theorem. We also obtain explicit expressions for 
the basic Hermite interpolation polynomials as linear combinations of 
powers. 

We construct several pairs of dual bases on the vector space 9 of 
polynomials of degree at most equal to N and its algebraic dual space. Such 
dual pairs of bases are also called biorthonormal systems on 9. We get first 
a pair of dual bases by a simple modification of the standard power basis 
and its dual, which consists of Taylor functionals. Using only some basic 
properties of dual bases we obtain a simple proof of the partial fractions 
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decomposition theorem. Then, applying Leibniz’s rule we get another 
biorthonormal system, which gives us immediately a constructive proof of 
the Hermite interpolation theorem. 

Another important biorthonormal system is the one formed by the basis 
of Homer polynomials and its dual. Thus dual pair allows us to find 
explicit formulas for the coefficients of the Hermite interpolation polynomi- 
als. This is equivalent to finding an explicit formula for the inverse of a 
confluent Vandermonde matrix. 

The dual of the Horner basis yields a simple formula for the sum of the 
residues of a proper rational function, which is very useful for the efficient 
computation of partial fractions decompositions of rational functions with 
high order poles. 

A very good reference for partial fractions is Mahoney and Sivazlian [5]. 
For the properties of dual bases that we consider in the next section see 
Nomizu [6], or Davis [2]. 

2. DUAL BASES 

In this section we present some elementary properties of dual bases in 
finite dimensional vector spaces. We also introduce some notation and 
terminology. 

Let N be a nonnegative integer and let B be a complex vector space of 
dimension N + 1. The elements of gN+ ’ will be considered as column 
vectors and will be denoted by boldface letters, for example u = 
(us, t(i, . . . , Us)=. A vector u in gN+l is called an ordered basis for 8 if 
1 uo, Ul,. . - , uN } is linearly independent. The algebraic dual space of d is 
denoted by 9. A basic result in linear algebra says that 9 has dimension 
N+ 1. 

ForuinbN+’ andfin9rN+’ wedefinetheGramianmatrixG(f,u)by 

G(f,U) = [hUj]y 0 I ‘3 j 2 NY (2.1) 
where the index i corresponds to rows and j to columns. 

The proof of the following proposition is straightforward and we omit it. 

PROPOSITION 2.1. Let u be an element of gN+* and let f be an element 
of .FN+l, then 

(i) G(f, u) is nonsingular if and onZy if f and u are ordered basis for 9 
and 8, respectively. 

(ii) If v = Au and g = Bf then 

G(g,v) = BG(f,u)A=. (2.2) 



350 LUIS VERDE-STAR 

The ordered bases u and f of & and 9 respectively are called dual bases 
if and only if G(f,u) = I. A pair of dual bases (f, u) is also called a 
biorthonormal system on 1. This is the terminology used by Davis [2]. 

PROPOSITION 2.2. (i) Given an ordered basis u of 8 there exists a unique 
ordered basis f of .F such that (f, u) is a biorthonormal system on 8. The 
symmetric statement with u and f interchanged also holdr. 

(ii) Let u and f be dual bases. Then for every w in Q and every h in 9 
we have 

N 

w= Cf~wc 
k=O 

and 

h = ; hu,f,. 

(2.3) 

k=O 

(iii) Let u and f be dual bases and let v = Au and g = Bf. Then g and 
varedualbasesifandonlyifB-‘=A=. 

Proof: Part (i) is a standard result on dual bases. !3ee Davis [2, Theorem 
1.2.11 or any book on linear algebra. Part (ii) is an immediate consequence 
of the relations huj = Si,p Part (iii) follows from JZq. (2.2). 

3. BIORTHONORMAL SYSTEMS ON SPACES OF POLYNOMIALS 

We denote by 9 the complex vector space of polynomials in the variable 
z with degree at most equal to N. The standard power basis of 9 is the 
ordered basis s = (so, sr,. . . , s,)~, where Sk(z) = zk, for 0 I k I N. The 
dual space of B is denoted by 9. 

In order to simplify the notation we define the operators dk = D k/k!, 
for k 2 0, where D denotes the usual differentiation operator. With this 
notation Leibniz’s rule is 

dk(uv) = i djudk-6. 
j=O 

For any complex number x we denote by E, the linear functional of 
evaluation at z = x detined by E,p(z) = p(x), for p E 8. The dual basis 
of s is the basis of Taylor functionals at x = 0, To = (T,, T,, . . . , TN)T, 
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where T,p = E, d “p( z), for 0 I k I N, since 

T,+(z) = Osk, j<N. (3.1) 

Another pair of dual bases is obtained as follows. For any number x the 
shifted powers uj(z) = (z - x)j form a basis of 8. Its dual basis is the set 
of Taylor functionals TX, k = E, dk, for 0 5 k I N, because 

Tx, k’j(‘) = 
0 

‘k E,(z - x)‘-” = c?~,~, 0 <j, k < N. (3.2) 

In some cases a dual basis may be constructed directly, without the use of 
matrix inversion. The shifted powers are one example. Another typical 
example is the Lagrange interpolation problem, where, given the functionals 
E+, Ez,, . . . , Ez,, with distinct zi’s, we want to find the dual basis 
(&J, 4, . * * 7 1, }. This is easily done defining 

N (z - Zj) 
lk(z)=;$zk-zj)’ OrksN, (3.3) 

called the basic Lagrange interpolation polynomials for the points 
z,,, zl, *. *, zN* It is clear that Ez,lk = Sj, k, and therefore we have a 
biorthonormal system. 

We present next an important example motivated by the decomposition 
of rational functions into partial fractions. 

Let zo, zi, . . . , z, be distinct real or complex numbers. Let m,, m,, . . . , m, 
be positive integers such that Mimi = N + 1. Define 

The partial fractions decomposition theorem says that for any p E 9 there 
exist numbers a,, k such that 

(3 -5) 

Multiplying both sides by w(z) we get p(z) expressed as a linear combina- 
tion of the polynomials qi k(~) = w(z)(z - z~)~-~I. We will show that 
these polynomials form a basis for 9, and we will construct the dual basis. 
We introduce some notation first. 
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We define the index set 

and we will always consider the elements of J ordered as 

(O,O),(O,l),...,(O, m. - l),(LO),(Ll),..., 

(l,ml-l),...,(n,O),(n,l), . . . . (n,m,--1). 

Let us define the polynomials 

and 

Wi(z) ‘= ,ljo(z - zj)m’P Oliln, (3.6) 
j+i 

4i,klZ) ‘= wi(z)(z - Zi)k, (i, k) E J. P-7) 

Note that the qi, k are elements of 9; i.e., their degree is at most equal to N. 
Since qi, k is a shifted power multiplied by wi, in order to construct the 

elements of the dual basis we may try to eliminate first the factor w,, and 
then proceed as in the case of shifted powers. Thus we define the linear 
functionals Li, k as 

(i, k) E J, p E 8. (3.8) 

PROPOSITION 3.1. 
(4i.k : (i, k) E JIT f 

The ordered bases L = ( Li, k : (i, k) E J)T and q = 
orm a biorthonormal system on 9. That is, 

Lr,sqi,k = ‘(r,s),(i,k)T (r, s), (i, k) E J. 

Proof: If r # i, Leibniz’s rule gives us 

(z - Zi)k 

w,(z) 

= E/((z - z,)+(z - z~)~-~,) = 0, 

since z, is a root of wi with multiplicity m,, and s < m,. If r = i then 

&qi,k = E,,d’(z - z~)~ = a,,,. cl 
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We obtain immediately 

COROLLARY 3.2. For any p E 9 we have 

(3.9) 

and 

AZ) - 
w(z) 

c &$p(z - Zi)+. 
(i. k)EJ 

(3.10) 

Note that (3.10) is the partial fractions decomposition formula. 
In order to simplify the notation we denote the Taylor functionals Ez,dj 

by T, j, for (i, j) E J. 
Applying Leibniz’s rule to (3.8) we get 

Li,kP = i q,k-j 
j=O 

q, jp = i Li,k-jlT., jp, p E 9, (3.11) 
j=O 

where 1 denotes the constant polynomial with value 1. Therefore 

Li, k = 5 Li, k-jlTi, jy (i, k) E J. 
j-0 

(3.12) 

Writing (3.12) in matrix notation we obtain 

L = diag(B,, B,, . . . , B,)T, (3.13) 

where T = (q, j : (i, j) E J)T, and for 0 I i 2 n, Bi is the lower triangular 
Toeplitz block 

’ Li,Cll 
\ 

Li,ll Li,O1 

B, = Li,21 J&l Li,O1 

jLi,:-,l Li,i,-zl Li i-S .*I 7 I Li,O1 1 

Since L,,,l = l/wi(zi) + 0, Bi is invertible and hence T is an ordered 
basis for 9. Its dual basis is the set of basic Her-mite interpolation 
polynomials associated to the points { zi} with multiplicities {m,}. If we 
denote the basic Hermite polynomials by Hi, k(~), then, by Proposition 2.2 
(iii) and (3.13) we have 

H = diag( Bz, BT,. . . , BT)q, (3.14) 
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which is equivalent to the scalar equations 

m,-1 

Hi,k(z) = C Li, j-&i, jCz>, (i, k) E J. (3.15) 
j=k 

It is easy to see that 

q-l-k 

q,k(‘) = qi,k(‘) c ‘%, jltz - ‘i)j, (i, k) E J. (3.16) 
j-0 

Note that the sum in (3.16) is the Taylor polynomial of degree mi - 1 - k 
of l/wi at z = zi. Note also that li,k has degree N for each (i, k) E J. 

Applying Proposition 2.2($ to the biorthonormal system (T, H) we 
obtain the Hermite interpolation formula 

PC’) = (, ~EJ~,k~Hi,k(z)~ p EP. (3.17) 
I, 

We introduce next another important basis for 9, closely related to 
w(z), which will allow us to express the polynomials qi k and Hi k as linear 
combinations of powers. 

Suppose that 

N+l 

w(z) = c bkzN+l-k. 
k=O 

(3.18) 

Using the identity 

Zk+l _ tk+l 

z-t 
= irlt*-j, k>Q, 

j=O 
(3.19) 

and a simple rearrangement of terms, it is easy to see that 

w[z, t] := w(z) -w(t) N 
z-t = k~o~,(f)zN-k, (3.20) 

where 

uk(t) = 5 bitk-j, Olk_<N+l. (3.21) 
j=O 

The polynomials uk are called the Horner polynomials of w because they 
satisfy the recurrence relation 

Uk+l(t) = tUk(t) + bk+l, 0 _< k 2 N, (3.22) 
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and u~+~ = w. Note that (3.22) is Horner’s algorithm for the computation 
of w(t). 

Since the polynomial qi, k is obtained dividing w by a power of t - zi, 
Homer’s algorithm gives us the coefficients in the expression for qi, k as a 
linear combination of powers of z. 

PROPOSITION 3.3. 

%,kG) = ~,m,-l-k4t7 47 (i, k) E J, (3.23) 

where the Taylor functional T., m,-l -k acts with respect to the variable z. 

Prooj Since 

TJWW - w(z)) = (;(t) ifO<j<m,; 

3 if j = 0, 

by Leibniz’s rule we have 

q,kW[t, z] = Ez,dk((w(t) - w(z))(t - z>-‘) 

= w(t)(t - Zj)-l-k = qi,m,-l-k(t). 

COROLLARY 3.4. 

(i) w[tT ‘1 = C 4i,m,-1-k(t)Hi,k(Z). 
(1, k)EJ 

(ii) H;*k(t) = L;,m,-l-kW[t, ‘1, 

where the functional acts with respect to z. 

(iii) 

(4 

(4 

(vii) 

&k(Z) = 2 L,,,,+kUjzN-j. 
j=O 

Hi,k(z) = 5 L~,m,-l-ksjuN-j(z)~ 
j=O 

%,k(‘) = f T,,,,-l-kv,zN-J~ 
j=k 

qi,ktZ) = 5 q,m,-l-kSjUN-j(Z). 
j=k 

w[z, tl - = c Hj,k(t)(Z - Zi)-l-k. w(z) (i, k)EJ 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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Proofi Part (i) follows from Proposition 3.3, since (T, H) is a biorthonor- 
mal system on B. Part (ii) follows from (i), since (L, q) is a biorthonormal 
system. Statements (iii) and (iv) are immediate consequences of (ii) and 
(3.20). Part (vii) clearly follows from (i) and clarifies the relationship 
between the basic Hermite polynomials and partial fractions decomposi- 
tion. 

The Hermite interpolation formula (3.17) gives us 

COROLLARY 3.5. 

6) Sj(2)’ c jk zi’-kHi,k(z), 
i 1 

0 sj I N. (3.31) 
(i. k)eJ 

Pit-1 

(ii> 4i,j(Z) = k;, q,k-jWiHi,k(z), (i, j> E J- (3.32) 
J 

(iii) ‘j(“) = c ~,kUjHi,k(Z)~ OrjsN. (3.33) 
(i, k)EJ 

PROPOSITION 3.6. (i) The dual basis of v is R = (R,, R,, . . . , R N)T, 
where 

R, = c N; k z~-~-~L~,,,,+~, 
i i 

O<k<N. (3.34) 
(is j)EJ 

(ii) For any p in 9 we have 

Residue at zi of E = T,,,p = dNp(0). (3.35) 
W 

Proof: Part (i) follows immediately from Proposition 2.2(iii) and (3.29). 
Since R,v, = 8N,k, for 0 I k I N, and vk is a manic polynomial for 

each k, it is clear that R,p = 0 for any p whose degree is less than or 
equal to N - 1, and also that R,z N = 1. Therefore R Np = T,p = dNp(0) 
for any p in 9. 

On the other hand, taking k = N in (3.34) we obtain 

RN = i Li,m,-lT 
i-o 

and the definition of the functionals Li, j gives 

Li,mi-lp = E,,d”J-’ = Residue of p at zi. 
W 

This completes the proof of (3.35). 
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Remark. Note that (3.35) is equivalent to a theorem of Hazony and 
Riley [3]. 

COROLLARY 3.7. Let V be the matrix of order N + 1 whose jth row 

consists of the numbers 
0 

“, zijek, for (i, k) E J, in the usual order. Then the 

inverse of V is the matrix whose (i, k)th row consists of the numbers 
Li,,,,-l-kvN-ky for 0 <j 2 N. 

Proof: This is just the matrix interpretation of the pair of inverse 
relations (3.31) and (3.26). 

Remarks. The matrix V is a generalized Vandermonde matrix. In (81 we 
use Corollary 3.7 in order to construct an efficient algorithm for the 
computation of V-l. 

Some of the propositions presented above simplify the proofs of the main 
results in our previous paper [7]. 

Note that we have obtained other pairs of inverse relations; for example, 
(3.15) and (3.32) form an inverse pair, and so do (3.27) and (3.32). 
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