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Abstract

In this paper, a set function ’ de�ned on a �nite set 
 is said to be an upper envelope if
there exists a set {pi} of nonnegative vectors on 
 such that ’(G) = max{p1(G); : : : ; pn(G)}
for all G⊂
. All upper envelopes form a convex cone. We give a necessary and su�cient
condition for an upper envelope to be extremal in the cone of all upper envelopes in terms of
its representation. Furthermore we study the upper envelopes represented by clutters. We show
that a clutter is extremal in the cone of the upper envelopes if and only if it satis�es some kind
of connectivity. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Throughout this paper, let 
 be a nonempty �nite ground set.
The study of the upper envelopes of probability measures has been developed in

fuzzy theory [3,5]. The upper envelopes of probability measures belong to the class of
the set functions that we call the uniform upper envelopes in this paper. But we treat
somewhat general class of the set functions, namely, the upper envelopes of nonnegative
additive functions. We simply call them the upper envelopes. The set functions that
we call upper envelopes are called multiply subadditive in [6].
We exploit nonnegative real vectors on 
 to represent an upper envelope. We denote

p(G)=
∑

x∈G p(x) for G⊂
. By this notation, we can regard a vector p on 
 as an
additive set function because p(A) + p(B) = p(A ∪ B) for any disjoint sets A; B⊂
.
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De�nition 1.1. A set function ’ on 
 is said to be an upper envelope if there exists
a set {pi}i∈I of nonnegative vectors on 
 such that

’(G) = max{pi(G) | i ∈ I}

for all G⊂
. We call such a set {pi} of vectors a representation of ’.

When we can take a representation {pi} so that pi(
) has the same value for all
i ∈ I , we call ’ a uniform upper envelope.
Denote, for a set function ’ on 
,

P(’) = {p : 
 → (0;∞) |p(G)6’(G) for all G⊂
}:

Note that if P is a representation of ’, then P⊂P(’) holds.
For a set function ’ on 
, ’ is an upper envelope if and only if, for each G⊂
,
there exists a p ∈ P(’) with p(G) = ’(G). Therefore, for any upper envelope ’, we
can take a �nite representation {pF}F ⊂
 where pF ∈ P(’) and pF(F) = ’(F).
All upper envelopes form a convex cone because when ’1(G) =max{pF

1 (G) |F ⊂
}
and ’2(G) = max{pF

2 (G) |F ⊂
} , for nonnegative numbers k1 and k2; (k1’1
+ k2’2)(G) =max{(k1pF

1 + k2pF
2 )(G) |F ⊂
} where pF

i ∈ P(’i) and pF
i (F) =’i(F)

for i = 1; 2. It is also easy to show that all uniform upper envelopes form a convex
cone.
In Section 2, we consider a condition for an upper envelope to be extremal in the cone
of all upper envelopes in terms of its representation (Theorem 2.1).
In Section 3, we consider the upper envelopes represented by clutters. We call them
hypergraphic. While the upper envelope is a generalization of the polymatroid rank
function, the hypergraphic upper envelope is a generalization of the matroid rank
function.
Nguyen [7] studied a condition for a matroid rank function to be extremal in the
cone of polymatroid rank functions. We generalize his results. We study a condition
for a hypergraphic upper envelope to be extremal in the cone of all upper envelopes
(Theorem 3.6).

2. Extremal condition for envelopes

Kashiwabara [4] studied various problems, for example, the sandwich problem, the
representation problem to a binary relation, the domain extension problem, about con-
vex classes of set functions in terms of the set of the extremal elements on a given
class of set functions.
In this section, we present a condition for an upper envelope to be extremal in the

cone of the upper envelopes in terms of its representations.
A representation P of ’ is said to be minimal if there exists no representation of ’

which is a proper subset of P.
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Theorem 2.1. An upper envelope ’ is extremal in the cone of the upper envelopes if
and only if for all minimal representations {pi}16i6n of ’ there exist no {qi}16i6n

and  satisfying the following conditions where qi is a vector on 
 for each i with
16i6n; and  is a set function on 
.
•  is not proportional to ’.
• For all G⊂
 and i with 16i6n; ’(G) = pi(G) implies  (G) = qi(G).
• For all x ∈ 
 and i with 16i6n; pi(x) = 0 implies qi(x) = 0.

Proof. Su�ciency: Let {pi} be a minimal representation of ’. Assume on the contrary
that there are  and {qi} satisfying the above conditions for {pi}.
We show that (’± � )(G) =max{(p1 ± �q1)(G); : : : ; (pn ± �qn)(G)} for a su�ciently
small �¿ 0.
For G⊂
 such that ’(G) = pi(G), we have (’± � )(G) = (pi ± �qi)(G) because of
 (G) = qi(G).
For G⊂
 such that ’(G)¿pi(G), we have (’± � )(G)¿ (pi ± �qi)(G) for a suf-
�ciently small �¿ 0.
Since pi(x) = 0 implies qi(x) = 0; pi ± �qi is nonnegative.
Necessity: Assume that an upper envelope ’ is not extremal in the cone of the upper

envelopes. Then there are upper envelopes ’′ and ’′′ such that ’=’′+’′′ where ’′

is not proportional to ’.
For each G⊂
, there exist p′

G ∈ P(’′) and p′′
G ∈ P(’′′) such that ’(G) = ’′(G)

+ ’′′(G) = p′
G(G) + p′′

G(G) because ’′ and ’′′ are upper envelopes. Since p′
G(H) +

p′′
G(H)6’′(H) + ’′′(H) = ’(H) for all H ⊂
, we have p′

G + p′′
G ∈ P(’).

Therefore, {p′
G +p′′

G}G⊂
 is a �nite representation of ’. So there exists a minimal
representation {p1; : : : ; pn} of ’ such that, for all i, pi=p′

i +p′′
i for some p′

i ∈ P(’′)
and p′′

i ∈ P(’′′).
Let qi = p′

i − pi and  = ’′ − ’.
For each G⊂
 and i with pi(G) = ’(G), we have p′

i(G) = ’′(G) and p′′
i (G) =

’′′(G) since p′
i(G) + p′′

i (G) = pi(G), ’′(G) + ’′′(G) = ’(G); p′
i(G)6’′(G) and

p′′
i (G)6’′′(G): So the �rst condition is satis�ed.
When pi(x)=0; p′

i(x)=p′′
i (x)=0 since pi=p′

i +p′′
i . So qi(x)=0 when pi(x)=0.

Corollary 2.2. A uniform upper envelope ’ is extremal in the cone of the uniform
upper envelopes if and only if for all minimal representations {pi}16i6n of ’ there
exist no {qi}16i6n and  satisfying the following conditions where qi is a vector on

 for each i with 16i6n; and  is a set function on 
.
•  is not proportional to ’.
• For all G⊂
 and i with 16i6n; ’(G) = pi(G) implies  (G) = qi(G).
• For all G⊂
; ’(G) = ’(
) implies  (G) =  (
).

Proof. Su�ciency: Let {pi} be a minimal representation of ’. Assume on the contrary
that there are  and {qi} satisfying the above conditions for {pi}.



180 K. Kashiwabara, B. Nakano /Discrete Applied Mathematics 101 (2000) 177–185

We can show similarly to the proof of the su�ciency of Theorem 2.1 that
(’ ± � )(G) = max{(p1 ± �q1)(G); : : : ; (pn ± �qn)(G)} for a su�ciently small
�¿ 0.
We show that pi(x) = 0 implies qi(x) = 0 when  (G) =  (
) for all G⊂
 with

’(G) = ’(
). Then we have pi ± �qi is nonnegative for a su�ciently small �¿ 0.
When pi(x) = 0; ’(
 − {x}) = pi(
 − {x}) = pi(
) = ’(
) since ’ is uniform. So
 (
 − {x}) = qi(
 − {x}) = qi(
) =  (
) by the second and the third assumptions.
So qi(x) = 0 when pi(x) = 0.
Since (pi ± �qi)(
) = (’ ± � )(
) for all i; ’ ± � are uniform upper envelopes.

So ’ is not extremal in the cone of the uniform upper envelopes.
Necessity: The proof is similar to the necessity part of Theorem 2.1. Assume that

a uniform upper envelope ’ is not extremal in the cone of the uniform upper en-
velopes. The �rst and second conditions can be proved similarly to the necessity part of
Theorem 2.1. We show the third condition.
For each G⊂
 with pi(G) =pi(
) =’(
), we have p′

i(G) =p′
i(
) and p′′

i (G) =
p′′

i (
) since p′
i(G) + p′′

i (G) = pi(G), p′
i(
) + p′′

i (
) = pi(
), p′
i(G)6p′

i(
) and
p′′

i (G)6p′′
i (
): So qi(G) = p′

i(G)− pi(G) = p′
i(
)− pi(
) = qi(
) =  (
).

Corollary 2.3. Let a set function ’ be extremal in the cone of the uniform upper
envelopes. Then ’(
 − {a}) = 0 or ’(
 − {a}) = ’(
) for all a ∈ 
.

Proof. Let {p1; : : : ; pn} be a minimal representation of ’. Assume there exists an
a ∈ 
 such that 0¡’(
 − {a})¡’(
) and �x such a. Then p(a)¿’(
) − ’(

− {a})¿ 0. We de�ne, for a su�ciently small �¿ 0, a vector qi on 
 by

qi(a) = �pi(a)− �’(
);

qi(x) = �pi(x) for x 6= a:

Note that qi(
) = 0 for all i, and that 06(pi + qi)(G)6’(
) for all G⊂
 for
su�ciently small �¿ 0 since 0¡pi(a)6’(
).
We de�ne  (G) = qi(G) for G⊂
 such that pi(G) = ’(G). We show that these

satisfy the third condition of Corollary 2.2. Assume that ’(
) = ’(G). Then we have
a ∈ G since ’(
 − {a})¡’(
). When pi(G) = ’(G),

 (G) = qi(G) = �pi(G)− �’(
) = �’(G)− �’(
) = �’(
)− �’(
)

= �pi(
)− �’(
) = qi(
) =  (
):

So by Corollary 2.2, we obtain the desired result.
It remains to show that the above de�nition is well de�ned.
In the case of a 6∈ G, for i and j such that pi(G) = pj(G),

qi(G) = �pi(G) = �pj(G) = qj(G):
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In the case of a ∈ G, for i and j such that pi(G) = pj(G),

qi(G) = qi(a) + qi(G − {a}) = �pi(a)− �’(
) + �pi(G − {a})
= �pi(G)− �’(
) = �pj(G)− �’(
) = �pj(a)− �’(
) + �pj(G − {a})
= qj(a) + qj(G − {a}) = qj(G):

So we have qi(G) = qj(G) when pi(G) = pj(G).

3. Extremal condition for clutters

A family of subsets of 
 is called a hypergraph on 
. We call H a hypergraph
only if H is nonempty. A hypergraph H is called a clutter if A 6⊂B and B 6⊂A for
all distinct A; B ∈ H. Given a clutter H on 
, de�ne

’H(G) = max
A∈H

�A(G)

where �A(x) = 1 for x ∈ A and �A(x) = 0 for x 6∈ A.
So a clutter induces an upper envelope. An upper envelope induced by a clutter is

called hypergraphic in this paper.
For a hypergraph H, if the all elements of H have the same cardinality, it is called

uniform. Obviously, a uniform hypergraph is a clutter. Note that a uniform hypergraph
induces a uniform upper envelope.
Denote by B(H) the set of minimal elements of {G⊂
: A∩G 6= ∅ for all A ∈ H}

with respect to set inclusion. B(H) is so called the blocking set of H. It is well
known that B(B(H)) =H holds for a clutter H(e.g. [2]).

Lemma 3.1. Let ’ be a hypergraphic upper envelope. Then ’ has a unique minimal
representation.

Proof. Let P be a minimal representation of ’ and H be the set of maximal elements
of {H ⊂
 |’(H) = |H |} with respect to set inclusion. Since ’({x})61 for all x ∈ 
,
p(x)61 for all p ∈ P and x ∈ 
. For H ∈ H, there exists a pH ∈ P such that
’(H) = |H | = pH (H). But since pH (x)61 for all x ∈ H and

∑
x∈H pH (x) = |H |,

we have pH (x) = 1 for all x ∈ H . If there exists an x 6∈ H such that pH (x) 6= 0,
pH (x) = 1 since ’ is integral. In that case, ’(H ∪ x) = pH (H ∪ {x}) = |H ∪ {x}|, a
contradiction to the maximality of H . So pH (x)= 0 for all x 6∈ H . We have pH = �H

for all H ∈ H. So {�H}H∈H ⊂P.
It is easy to show that, for any G⊂
, ’(G) = ’H(G). Therefore, {�H}H∈H is a

unique minimal representation of ’.

Lemma 3.2. Let H be a clutter on 
 and let G ∈ B(H). For each x ∈ G; there
exists an A ∈ H such that G ∩ A= {x}:
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Proof. If |G ∩ A|¿2 for any A ∈ H with x ∈ A, then (G − {x}) ∩ H 6= ∅ for all
H ∈ H. This contradicts the minimality of G. If there exists no A ∈ H with x ∈ A,
this contradicts the minimality of G because (G − {x}) ∩ H 6= ∅ for all H ∈ H.

For a clutter H, we introduce an equivalence relation on 
. For x; y ∈ 
, let x and
y belong to the same equivalence class if and only if there exists a G ∈ B(H) such
that x; y ∈ G. This relation generates an equivalence relation on 
. When there exists
only one equivalence class, we call H connected.
Note that this de�nition of connectedness is di�erent from the usual de�nition of

connectedness to the hypergraphs.
Let 
1 and 
2 be nonempty disjoint sets. For a clutter H1 on 
1 and a clutter H2

on 
2. We de�ne the clutter H1 ⊕H2 on 
1 ∪ 
2 as follows:

H1 ⊕H2 = {H1 ∪ H2 |H1 ∈ H1; H2 ∈ H2}:
We can naturally de�ne ⊕iHi.

Lemma 3.3. For clutters H1 and H2; H1 ⊕H2 is not connected.

Proof. We show that, for H=H1 ⊕H2, there exist no elements x ∈ 
1 and y ∈ 
2
such that x and y belong to the same equivalence class. Assume, on the contrary, that
there exist x ∈ 
1, y ∈ 
2 and G ∈ B(H) with x; y ∈ G. Then there exists an H ′ ∈ H

such that H ′ ∩G= {x} by the minimality of G and Lemma 3.2. Similarly, there exists
an H ′′ ∈ H such that H ′′ ∩ G = {y}. Let H = (H ′ ∩ 
2) ∪ (H ′′ ∩ 
1). Then H ∈ H

by the de�nition of H. But H ∩ G = ∅, a contradiction.

Denote H|
i = {H ∩ 
i|H ∈ H}:

Lemma 3.4. Let {
i} be the set of equivalence classes of a clutter H. Then H =⊕
i∈I (H |
i). Moreover when H is uniform; H |
i is uniform for all i.

Proof. Denote by Bi the same operation as B de�ned on 
i.
For 
i such that 
i ∩H = ∅ for all H ∈ H, obviously H= (H|
i)⊕ (H|
ci ). So

we assume that 
i ∩ H 6= ∅ for some H ∈ H in the sequel of this proof.
It is obvious from the de�nition of 
 that Bi(H|
i) = B(H)|
i.
B(
⋃

i Bi(H|
i))=⊕iBi(Bi(H|
i)) since B ∈ B(
⋃

i Bi(H|
i)) if and only if B∩
i ∈
Bi(Bi(H |
i)) for all i.

H= B(B(H)) = B

(⋃
i

B(H) |
i

)

= B

(⋃
i

Bi(H |
i)

)
=
⊕

i

Bi(Bi(H|
i)) =
⊕

i

(H|
i):

When Hi is not uniform for some i, H is not uniform.
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De�ne the dual of a clutter H as

Hd = {H c |H ∈ H}:
This de�nition of the dual operation is di�erent from the usual de�nition of the dual
operation to hypergraphs. It is easy to show that the dual of a clutter becomes a clutter.

Lemma 3.5. A clutter H is connected if and only if Hd is connected.

Proof.

(H1 ⊕H2)d = {(H1 ∪ H2)c |H1 ∈ H1; H2 ∈ H2}
= {H c

1 ∩ H c
2 |H1 ∈ H1; H2 ∈ H2}

= {(
1 − H1) ∪ (
2 − H2) |H1 ∈ H1; H2 ∈ H2}
=Hd

1 ⊕Hd
2 :

So the dual of a disconnected clutter is disconnected by Lemma 3.3. So the dual of a
connected clutter is connected.

Theorem 3.6. Let H be a clutter on 
 with
⋃

H=
. Then ’H(G)=maxA∈H �A(G)
is extremal in the cone of the upper envelopes if and only if H is connected.

Proof. Necessity: By Lemma 3.1, {�A}A∈H is a unique representation of ’. Assume
that H is connected and there exist  and {qA}A∈H satisfying the conditions in The-
orem 2.1. Since H is connected, ’({x}) = 1 for all x ∈ 
. For A ∈ H and x ∈ 

with x ∈ A, 1 = ’({x}) = �A(x) and qA(x) =  ({x}) by the second condition in The-
orem 2.1. For A ∈ H and x 6∈ A, �A(x) = 0 and qA(x) = 0 by the third condition in
Theorem 2.1.
We show that, for each G ∈ B(Hd),  ({x}) takes a constant value for all x ∈ G.
By Lemma 3.2, for G ∈ B(Hd) and x ∈ G, there exists an Ac ∈ Hd such that

G∩Ac={x}. Then G∩A=G−{x}. Since G∩Bc 6= ∅ for all Bc ∈ Hd, |G∩B|6|G|−1
for all B ∈ H. So ’(G) = �A(G) = |A∩G|= |G − {x}|=’(G − {x}) = �A(G − {x}).
So  (G − {x}) = qA(G − {x}) =∑y∈G−{x}  ({y}) since ’({y}) = �A(y) = 1 for all
y ∈ G−{x}. Because of qA(x)=0,  (G)=qA(G)=qA(x)+qA(G−{x})= (G−{x}).
Since  (G) =

∑
y∈G−{x}  ({y}) for all x ∈ G,  ({x}) takes a constant value for all

x ∈ G.
Then by Lemma 3.5, B(Hd) is connected. So together with the above claim,  ({x})

takes a constant value for all x ∈ 
. Therefore, qA(x)=l�A(x) for all x ∈ 
 and A ∈ H

for some l ∈ R. So  (G) = l’(G) for all G⊂
, a contradiction to the �rst condition
of Theorem 2.1.
Su�ciency: Let 
1; : : : ; 
r ⊂
 be the set of equivalence classes induced by H. We

�rst show that, for each G⊂
 and each i with 16i6r; |
i ∩ A1 ∩G|= |
i ∩ A2 ∩G|
for any A1; A2 ∈ H such that ’(G) = �A1 (G) = �A2 (G).
Assume on the contrary that, for some A1; A2 and G⊂
 such that ’(G)= �A1 (G)=

�A2 (G), there exists an i such that |
i ∩ A1 ∩ G|¿ |
i ∩ A2 ∩ G|. Then |
ci ∩ A1 ∩
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G|¡ |
ci ∩A2∩G| since |A1∩G|= |A2∩G|. By Lemma 3.4, (
i∩A1)∪(
ci ∩A2) ∈ H.
We have ’(G)=�A1 (G)= |A1∩G|¡ |((
i∩A1)∪ (
ci ∩A2))∩G|. But by the de�nition
of ’, ’(G)¿|H ∩ G| for all H ∈ H, a contradiction.
For H ⊂H, let qH (x) = 1 for x ∈ 
1 ∩ H and qH (x) = 0 otherwise. Then qH (A) =

|
1∩H∩A|. �H (x)=0 implies qH (x)=0. Let  (G)=|
1∩H∩G| where ’(G)=�H (G).
By the above claim, if �H (G) = �H ′(G) = ’(G), then qH (G) = qH ′(G). So  is well
de�ned. Moreover qH (G) =  (G) when �H (G) = ’(G). Because of 
1 6= 
 and
the assumption

⋃
H = 
,  is not proportional to ’. Therefore, the conditions of

Theorem 2.1 are satis�ed. So ’H is not extremal.

Corollary 3.7. Let H be a uniform hypergraph on 
 with
⋃

H=
. Then ’H(G)=
maxA∈H�A(G) is extremal in the cone of the uniform upper envelopes if and only if
H is connected.

Proof. Necessity: When H is connected, ’H is extremal in the cone of the upper
envelopes by Theorem 3.6. So ’H is extremal in the cone of uniform upper envelopes.
Su�ciency: The proof is similar to Theorem 3.6. To apply Corollary 2.2 instead of

Theorem 2.1, we modify the last part of the proof of su�ciency in Theorem 3.6.
Note that |H | = ’(
) for all H ∈ H since H is uniform. When ’(
) = ’(G),

|H |=’(
)=’(G)=�H (G)= |H ∩G| for all H ∈ H. So H ⊂G for all H ∈ H when
’(
) = ’(G). In that case,  (G) = |
1 ∩ H ∩ G|= |
1 ∩ H |= |
1 ∩ H ∩ 
|=  (
).
So the assumptions of Corollary 2.2 are satis�ed.

Example 3.8. Let 
 = {a; b; c; d}. Let
p1 = (1; 1; 0; 0); p2 = (0; 1; 1; 0); p3 = (0; 0; 1; 1); p4 = (1; 0; 0; 1):

B(H)= {{a; c}; {b; d}}. Because H is not connected, ’H is not extremal in the cone
of the uniform upper envelopes.
Let

p1 = (1; 1; 0; 0); p2 = (0; 1; 1; 0); p3 = (0; 0; 1; 1):

Then H = {{a; b}; {b; c}; {c; d}}: B(H) = {{a; c}; {b; d}; {b; c}}. Because H is con-
nected, ’H is extremal in the cone of the uniform upper envelopes.

For a uniform hypergraph H, H is called (the basis of) a matroid if, for any
B1; B2 ∈ H and any x ∈ B1, there exists a y ∈ B2 such that (B1 − {x}) ∪ {y} ∈ H.
The rank function of a matroid H is ’H. We de�ne the circuits of a matroid as

usual. For a matroid H and x ∈ 
, we de�ne the relation  on 
 by ef if and only
if the matroid has a circuit containing both e and f. It is known that this relation is an
equivalence relation on 
 (e.g., [8]). A matroid is called connected when there exists
only one equivalence class.

Lemma 3.9. A matroid H is connected if and only if H is connected as a clutter.
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Proof. H is connected as a clutter if and only if B(Hd) generates only one equiva-
lence class by Lemma 3.5.

{G⊂
 |A ∩ G 6= ∅ for all A ∈ Hd}= {G⊂
 |Ac ∩ G 6= ∅for all A ∈ H}
= {G⊂
 |G 6⊂A for all A ∈ H}:

So B(Hd) is the set of the circuits of H.

A set function ’ on 
 is a polymatroid rank function if the following three conditions
are satis�ed.
1. ’(∅) = 0:
2. ’(A)6’(B) for all A⊂B⊂
:
3. ’(A) + ’(B)¿’(A ∪ B) + ’(A ∩ B) for all A; B⊂
:
It is easy to show that a polymatroid rank function is a uniform upper envelope
(e.g. [1]).
The next corollary is also shown in [7].

Corollary 3.10. For a matroid H; it is connected if and only if the rank function
’H is extremal in the cone of the polymatroid rank functions.

Proof. Necessity: When a matroid H is disconnected, we can write H=H1⊕H2 for
some matroidsH1 andH2. Let r1 and r2 be rank functions ofH1 andH2, respectively.
Then ’H = r1 + r2.
Su�ciency: The cone of the polymatroid rank functions is included in the cone of

the uniform upper envelopes. So if a polymatroid rank function is extremal in the cone
of the uniform upper envelopes, it is extremal in the cone of the polymatroid rank
functions. By Corollary 3.7 and Lemma 3.9, a connected matroid is extremal in the
cone of the upper envelopes.
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