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The generalized Petersen graph GP(n, k), n > 2 and 1 < k & n - 1, has vertex-set 
(uO,ul ,..., u *-,, vO,u ,,..., v,_,) and edge-set (u,ui+,,uioi,vivi+,:O<i<n-1 
with subscripts reduced modulo nt. In this paper it is proved that GP(n, k) is 
hamiltonian if and only if it is neither GP(n, 2) z GP(n, n - 2) z GP(n, (n - 1)/2 2 
GP(n, (n + 1)/2) when n = 5 (mod 6) nor GP(n, n/2) when n = 0 (mod 4) and 
n > 8. 

1. INTRODUCTION 

The generalized Petersen graph GP(n, k), n > 2 and 1 < k < n - 1, has 
vertex-set {uO, u1 ,..., u,_i, uO, U, ,..., v,-i} and edge-set {uiui+ i, uivi, v~v~+~: 
0 < i < n - 1 with subscripts reduced modulo n}. These graphs were first 
defined by Watkins in [9]. In this original definition, GP(n, k) was not 
defined when n is even and k = n/2 because the resulting graph is not cubic. 
However, we do not exclude them because their behavior with regard to 
Hamiltonian cycles is so easily determined. 

In this paper we completely determine which generalized Petersen graphs 
have a Hamiltonian cycle, thereby settling a modified conjecture of Castagna 
and Prins [4]. Consequently, a brief but thorough history of the problem is 
in order. 

Watkins posed the question 19) of whether or not every cubic GP(n, k), 
other than GP(5, 2) 2 GP(5, 3), has a l-factorization. Meanwhile, Robertson 
[6] proved that GP(n, 2) is Hamiltonian if and only if n f 5 (mod 6). 
Robertson’s result was proved independently by Bondy [3]. In the latter 
paper, Bondy also proved that GP(n, 3) is Hamiltonian whenever n + 5. 
Finally, Castagna and Prins provided an affirmative answer to Watkins’ l- 
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factorization question in 141. In doing so, they observed that they found no 
non-Hamiltonian cubic generalized Petersen graphs other than those found 
by Robertson. This led them to conjecture that the Robertson examples were 
the only non-Hamiltonian examples. The preceding results together with the 
elementary observation that GP(n, 1) is always Hamiltonian is where the 
progress on the Castagna-Prins conjecture stood through most of the 1970s. 

The first of two important contributions towards the resolution of the 
conjecture was made by Bannai 121 with the following result: 

THEOREM 1. If n and k are relatively prime, then GP(n, k) is 
Hamiltonian unless n = 5 (mod 6) and GP(n, k) 2 GP(n, 2), that is, k = 2, 
(n - 1)/2, (n + 1)/2, or n - 2. 

The second contribution was the introduction of the lattice diagrams in 
[ 1 ] for the proof of the following result. More will be said about these lattice 
diagrams in the next section since they are employed extensively throughout 
this paper. 

THEOREM 2. If k > 3, then there exists an n(k) such that GP(n, k) is 
Hamiltonian for all n > n(k). 

It was noticed that it is easy to prove that GP(2k, k) is Hamiltonian if and 
only if k = 2 or k is odd. This was then incorporated into the 
Castagna-Prins conjecture to obtain a modified conjecture accordingly. 
Simmons and Slater have verified the modified conjecture for all k < 36 
(7,8]. The purpose of this paper is to prove the following result. 

THEOREM 3. The generalized Petersen graph GP(n, k) is Hamiltonian if 
and only if it is neither 

(i) GP(n, 2) z GP(n, n - 2) g GP(n, (n - 1)/2) z GP(n, (n + 1)/2, 
n FE S(mod 6), nor 

(ii) GP(n, n/2), n = 0 (mod 4) and n > 8. 

2. LATTICE DIAGRAMS 

Label the lattice points in the plane with the integers 0, l,..., n - 1 so that 
if (x, y) is labelled with i, then (x + 1,~) is labelled with i + 1 and (x, y - 1) 
is labelled with i + k, all arithmetic being done modulo n. Make it a labelled 
graph H(n, k) by letting (x, y) and (x’, y’) be adjacent if and only if 
Ix-x’]+]y-y’]=l. A subgraph L(n, k) of H(n, k) is called a lattice 
diagram for GP(n, k) if L(n, k) has either a closed or an open Eulerian trail 
such that a traversal of the Eulerian trail obeys the following rules: 
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0 1 

0 25 

() 4 

,) 16 

24 25 

FIGURE 1 

(1) If a vertex of degree 4 is entered vertically (horizontally), then it 
must be departed vertically (horizontally); 

(2) Each label 0, l,..., n - 1 is encountered once in the horizontal 
direction and once in the vertical direction when traversing L(n, k); and 

(3) If L(n, k) has an open Eulerian trail, then the two vertices of odd 
degree must have the same label and either both have degre 1 or one has 
degree 1 and the other has degree 3. 

It is not difficult to see that a lattice diagram L(n, k) corresponds to a 
Hamiltonian cycle in GP(n, k) and transforms the problem of looking for 
Hamiltonian cycles to looking for certain labelled Eulerian graphs. For 
example, in Fig. 1 we show an L(33, 12) lattice diagram. The eulerian 
traversal starting 0, I,..., corresponds to the Hamiltonian cycle U, u i u, u ,S vZ5 
“. u10”22uZZu23u23vllu11~10~V -‘* v15v3u24u24 “- u2v2u14u14u13 .‘. uO”O In 

GP(33, 12). For more details on lattice diagrams see [l]. 

3. PROOF OF THEOREM 3 

We first dispose of the case that n is even and k = n/2. Since deg(vi) = 2 
for i = 0, l,..., n - 1, if GP(n, n/2) is Hamiltonian, any Hamiltonian cycle 
must contain the paths u~v~u~+~,~ ui+,,,* for i = 0, l,..., (n - 2)/2. Conse- 
quently, it is easy to see that GP(n, n/2) is hamiltonian if and only if n = 4 
or II = 2 (mod 4). 

For the remainder of the proof, we assume that k # n/2 so that GP(n, k) is 
always cubic. We may also assume that k < [n/2] because 
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2k+h-1 
t . . ..d 
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FIGURE 2 

GP(n, k) E GP(n, n - k). Because of Bannai’s theorem, we shall be finished 
if we show that GP(n, k) is Hamiltonian whenever gcd(n, k) # 1. 

LEMMA 1. The cubic generalized Petersen graph GP(n, k) is 
Hamiltonian whenever gcd(n, k) is even. 

Proof: The L(n, k) lattice diagram in Fig. 2 yields a Hamiltonian cycle 
in GP(n, k) when gcd(n, k) = 4m for any m > 1 and n > 2k + 4m. Likewise, 
an L(n, k) lattice diagram is given in Fig. 3 when gcd(n, k) = 4m + 2 for any 
m>O and n>2k+4m+2. I 

This leaves us with the problem of showing that GP(dn, dk) is 
Hamiltonian for all odd d > 1 when gcd(n, k) = 1. This is considerably more 
difftcult than the even greatest common divisor case covered by Lemma 1. 
An idea that reduces the problem to a manageable number of cases is 
presented in Lemma 2. First we need some definitions. 

A labelling of the lattice points as described earlier will be called a k- 
oriented labelling. On occasion we shall need a labelling where we add n - k, 
instead of k, to the label of (x, y) to obtain the label of (X,-V - 1). Such a 
labelling will be called an (n - k)-oriented labelling. It is clear that a lattice 
diagram corresponds to a Hamiltonian cycle as long as every label is 
encountered once vertically and once horizontally no matter which orien- 
tation the labelling may have. If a lattice diagram L(n, k) has a subpath of 
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k+4m+l r _ 2,” - ‘i’2~;“~ . . 2k+bm-+ ++4”7f . . 2 

FIGURE 3 

the Eulerian traversal of the form 0, 1, k + 1,2k + i,,.., n + 1 - k, n + 2 - k 
when the labelling is k-oriented or 0, 1, n + 1 - k, n + 1 - 2k ,..., k t 1, k t 2 
when then labelling is (n - k)-oriented, then it is called an extendible lattice 
diagram. 

LEMMA 2. Let n and k be relatively prime with 1 < k < n/2. If there 
exist an extendible lattice diagram L(3n, 3k), then GP(dn,dk) is 
Hamiltonian for all odd d > 1. 

ProoJ: Suppose there is an extendible lattice diagram L(3n, 3k). Suppose 
the labelling is 3k-oriented. Notice that the graph GP(3n, 3k) has three 
disjoint cycles of length n for the subgraph induced on the set of vertices 
{uo, Ul,..., v3n-1 ). The extendible lattice diagram L(3n, 3k) yields a 
Hamiltonian cycle C in GP(3n, 3k) containing the path 
P=u,u,v,v,,+,v,,+, ..a v-~~+,u~~~+~u-~~+~, that is, all the vertices vi 
with i = 1 (mod 3) appear as a Hamiltonian path in the cycle C. Now 
consider the graph GP(dn, dk) for odd d > 3. Notice that the subgraph 
induced on the set of vertices {uO, vr ,.,., vdn-,} consists of d disjoint cycles 
of length n. We use the cycle C in GP(3n, 3k) to construct a Hamiltonian 
cycle C’ in GP(dn, dk) as follows: Any vertex of GP(3n, 3k) with subscript 
3i, 0 < i < n - I, corresponds to the same type of vertex with subscript di, 
0 < i < n - 1, in GP(dn, dk). Those with subscripts of the form 3i + 1 
correspond to those in GP(dn, dk) with subscripts di + 1 and those with 
subscripts 3i + 2 in GP(3n, 3k) correspond to those with subscripts 
di + (d - 1) in GP(dn, dk). The path P in C becomes the path P’ given by 

P’ = U~U,v,vdk+l “’ V-dk+lU-dk+IU-dk+2v-dk+2v-2dk+2 “’ vdk+2v2U2 
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Notice that P’ uses the vertices uO,u ,,..., udp2, uedk+,, uetiktZ ,..., umdktd-, 
and all vertices ui with i & 0 (mod d) and i f d - 1 (mod d). Now let p be 
the path in C from u0 to u-3X+ 2 such that PUP = C. Now any occurrence 
Of u3i+l on p must have uJi and ujiiz as its immediate neighbors because 
oli+, lies on P. So in building the path P’ of C’ corresponding to p, replace 
the Z-path ~~~~~~~~ njitZ by the (d- 1)-path udiudi+ Iudi+L ... uditdm ,. Any 
vertices uji and ujiiz on p are simply replaced by udi and udi, (, , , respec- 
tively. Then P’ Up is a Hamiltonian cycle of GP(dn, dk). 

A similar argument works if the labelling is (3n - 3k)-oriented. 1 

It is easy to see how the proof of Lemma 2 works by considering the 
corresponding lattice diagrams. As an illustration, Fig. 4 contains an 
L(55, 20) lattice diagram obtained from the L(33, 12) lattice diagram of 
Fig. 1 according to the proof of Lemma 2. 

The proof of Theorem 3 will be complete if we show that there is an ex- 
tendible L(3n, 3k) lattice diagram for all relatively prime n and k. 
1 < k < n/2. There are two main cases to consider, namely, n even and n 
odd. We first consider the case that n is odd. 

The length of the path 3ik, 3(i + 1) k,..., 3jk will be called the 3k-distance 
from 3ik to 3jk while the length of the path 3ik, 3(i - 1) k,..., 3jk will be 
called the (3n - 3k)-distance between them where length refers to the number 
of edges. Since n is odd, either the 3k-distance from 0 to 3 is odd and the 
(3n - 3k)-distance is even or vice-versa. We shall orient the lattice diagram 
so that the distance from 0 down to 3 is odd. 

The first subcase is that the distance from 0 down to 3 is n - 2. If this 
were (3n - 3k)-distance, then 3 - 6k = 0 (mod 3n) would hold which would 

50 51 52 53 54 

FIGURE 4 
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1+3(n-1)/2 

6 8 
3(n+3)/2 2+3(n+3)/2 

FIGURE 5 

force 6k = 3n + 3 to hold. This is a contradiction because k < n/2. Hence, 
the distance must be 3k-distance (that is, the lattice diagram must have 3k- 
orientation; this will be used over and over). This implies that 3 + 6k = 0 
(mod 3n) holds which in turn implies that k = (n - 1)/2. So we need a 3k- 
oriented I,(34 3(n - 1)/2) extendible lattice diagram. One is shown in Fig. 5. 
It works for all II > 5. When n = 3 and (n - 1)/2 = 1, the diagram of Fig. 6 
works since it covers all cases when k is odd and k divides n. 

to 

( (a-3)k 

-I (a-2)k 
0 1 2 3 4 k-2 k-l k k+l -k-l 

z n L+i . ik-17 E. . 
(d-l)k 

*  .  

,  I  .  L(dk,k) for 

l-k 2-k 4-k ‘s-2 
ak-1 

FIGURE 6 
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If the distance from 0 to 3 is 1, then either -3k 3 3 (mod 3n) or 3k 3 3 
(mod 3n). The first is impossible because k < n/2 while the second implies 
that k = 1. The latter situation has been disposed of by Fig. 6. Hence, we 
may assume that the distance from 0 to 3 is at least 3 and at most n - 4. In 
subsequent diagrams, if there are two signs in front of a term, the upper sign 
refers to a 3k-oriented labeling and the lower sign to a (3n - 3k)oriented 
labelling. So the vertex immediately below 4, for example, will be labelled 
4 f 3k. 

In the rest of the subcases for IZ odd, the location of the label r6k - 3 in 
the column beneath 0 is crucial. Notice that r6k - 3 lies the same distance 
above f6k that 0 lies above 3. Since r6k has even distance at least 2 below 
3, F6k - 3 has even distance at least 2 below 0. The extendible lattice 
diagram in Fig. 7 works for all the cases that r6k - 3 lies between k6k and 
3 F 9k. This is because the left part of the diagram from f6k down through 
+3k + 3 needs length at least 3 from T6k - 3 down to 3 in order to work. 

3 1 

FIGURE 1 
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Also, in the special case that the length from 3 to r3k is precisely 3, the 
diagram still works because all the switchbacks above the horizontal part 
containing the vertex 16k are gone and the edge between 16k - 1 and 16k 
is also deleted so that both have degree 2. 

0 1 

7 
7 
13 

1ZIll+1 

cm+7 

4 

10 

16 

22 

~(3(4m+3),6), m 2 2 

2 

lan-15 

12m-9 
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lan-12 * 13ll-10 

~a-6 
lh 

s 

12m+3 

0 

FIGURE 8 
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0 1 

1 
7 
13 L(21,6) 

16 

5 

FIGURE 9 

I 
i3k+4 

4 

?3k+b 

i6k+4 

+3k ?3k+2 

FIGURE 10 
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Next suppose that r6k - 3 E 3 T 3k (mod 3n). If we are in the 3k- 
distance situation, then -6k - 3 E 3 - 3k (mod 3n) must hold. But this 
contradicts k < n/2 for n > 5 and yields n = 3, k = 1 otherwise. The latter 
has already been dealt with. Thus, we know that 6k - 3 = 3 + 3k (mod 3n) 
is the only possible situation. Solving this congruence yields k = 2 and since 
we must be in the (3n - 3k)-distance situation, n = 3 (mod 4) must hold. The 
extendible lattice diagram in Fig. 8 covers all cases with II > 11 and the 
extendible lattice diagram in Fig. 9 covers the case that n = 7. Notice that 
the diagrams are drawn with 6-orientation rather than (3n - 6).orientation. 

The next subcase to consider is that r6k - 3 = 3 f 3k (mod 3n). This 
forces k = (n f 2)/3 to hold. Thus k cannot be even or else n is even. The 
case that k E 3 (mod 4) cannot arise either since the appropriate distances 
from 0 to 3 are then even. When k z 1 (mod 4), the distances from 0 to 3 are 
odd and k > 5 may be assumed because k = 1 has already been done. 
Figure 10 contains an extendible lattice diagram that covers all such cases. 

The last special subcase to consider is that r6k - 3 = 3 f 9k (mod 3n). In 
Fig. 11 we show a diagram that covers all cases for which the distance from 
0 to 3 T 6k is at least 7, that is, n is at least 21. This leaves the special cases 

4T3k 

4 

4i3k 

FIGURE 11 
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0 1 

7 +3k+l 

4 
56k-1 

73k-1 

FIGURE 12 

3?6k 

0+6k 

FIGURE 13 
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of n = 3, k = 1 and n = 11, k = 4. The first one is covered by the diagram of 
Fig. 6 and the last special case is covered by the extendible L(33, 12) lattice 
diagram of Fig. 1. 

To complete the case of n odd, the extendible lattice diagram of Fig. 12 
takes care of all the situations for which r6k - 3 lies distance 5 or more 
below 3. 

This now leaves us with the case that n is even. Thus, k is odd and both 
the 3k-distance and (3n - 3k)-distance from 0 to 3 are odd. We shall work 
with whichever of the two distances is greater. Hence, the distance from 0 to 
3 is at least n/2. 

If the distance from 0 to 3 is n - 1, then k = 1 and we are done because of 
Fig. 6. So we may assume the distance from 0 to 3 is at most n - 3. If the 
distance is exactly n - 3, then the diagram of Fig. 13 covers all such cases. 

We now may assume the distance from 0 to 3 is n - 5 or less. Let the 

0 1 

7 ?3k+l 

I 
T3k-2 

-2 

+-3k-2 

i6k-‘2 

! 476k 

4T3k 

3i6k 

3+9k 

FIGURE 14 
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+3k-3 t3k f3k+2 

t6k+6 

'3k 

0 

FIGURE 15 

16 

7 

-2 

-11 
~(3n,9), n z z(mod 6) and n b 

-20 

FIGURE 16 
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distance from 4 to 1 T 3k be d. Since the distance from 0 to 3 is 
n - d- 1, d is even and d > 4. Consider the partial lattice diagram shown in 
Fig. 14. The location of 6 f 6k in the column under 0 is crucial. First, 
6 f 6k lies between 0 and 3 f 9k because the distance from 6 it 6k to 3 f 6k 
is d + 1 which is at least 5. Also, notice that d + 1 is odd while the distance 
from -3 to 3 f 6k is even so that 6 f 6k cannot be -3. 

First, suppose that 6 f 6k lies below -3 and has distance 3 or more from 
-3. Then attach the diagram of Fig. 15 to that of Fig. 14 at 6 f 6k to give 
an extendible (3n, 3k) lattice diagram. 

-6 

f3k-6 

FIGURE 17 
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FIGURE 18 

Now suppose that 6 & 6k = -3 k 3k (mod 3n). If we are working with a 
3k-orientation situation, we have 6 + 6k = -3 + 3k (mod 3n) which implies 
3n = 3k + 9. This is impossible because we may assume II > 7 since the 
smaller values of n are covered by earlier cases. The only possibility left is 
that we are working with a (3n - 3k)-orientation situation. Thus, 6 - 6k c 
-3 - 3k (mod 3n) holds which implies that k = 3. The diagram of Fig. 16 
covers this case because it is easy to verify that n = 2 (mod 6) and n > 14 
are the only values of n that have not been previously covered for this case. 

3k+7 

7 

3k+13 

L(6k+6,3k), k odd and 

/ 

3k+4 kb 5 
4 

3k+lO 

10 

3k+l 

FIGURE 19 
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We are now left with the situation that 6 f 6k occurs above -3. We know 
that the distance from 6 f 6k to -3 is odd. The distance from 0 to 3 is 
n - d - 1 so that the distance from 0 to 3 f 6k is n - d + 1. The distance 
from 3 to 0 is d + 1 which implies the distance from 6 f 3k to 3 f 3k is also 
d + 1. Since -3 lies above 3, n - d - 1 > d + 1. Hence, the distance from 0 
to 6 f 6k is at least 3 and because it is even, it is at least 4. Thus, 6 f 6k lies 
between f 12k and - 3 F 3k inclusive. 

We first dispose of the general case that the distance from 6 f 6k to -3 
is 3 or more, that is, 6 f 6k $ -3 f 3k (mod 3n). Figure 17 contains an ex- 

4 6 

t3k+3 

i6k+3 

ii 

33k-1 

+6k-1 

FIGURE 20 
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tendible lattice diagram that works as we now verify. First, the switchover in 
the diagram at the 4 f 6k and 4 f 9k level requires that the distance from 
3 + 6k to -6 is at least 3. This is precisely the case we are working in. Next, 
the part of the diagram from &3k to k6k + 6 works as long as the distance 
from k3k to &6k + 6 is odd and at least 3. This is the case since it is the 
same as the distance from 0 to k3k + 6. Finally, the only potential special 
cases will arise if the distance from -6 to r3k is insufficient. This disance is 
odd and the diagram works as shown if it is 5 or more. If the distance is 3, 
the modification depicted in Fig. 18 will work. If this distance is 1, then 3k- 
orientation leads to k = 1 which has already been covered. A (3n - 3k)- 
orientation leads to n = 2k + 2, k odd and k > 5 (smaller odd values are 
covered by the diagrams of Figs. 6 and 13) which is covered by the extend- 
ible lattice diagram of Fig. 19. 

We are at last left with the special case that 6 f 6k = -3 f 3k (mod 3n). 
The extendible lattice diagram of Fig. 20 covers this case as long as the 
distance from 3 to r3k is at least 6. The only other possibility is that this 
distance is precisely 4 since Fig. 13 covers the situation that the distance is 
2. In the k-orientation case with the distance 4, we have 3 + 15k = 0 
(mod 3n) and 9k + 9 E 0 (mod 3n) which imply that 6k + 6 = 0 (mod 3n). 
This forces k = 1 to hold and this has already been done. In the (3n - 3k)- 
orientation case, we have 3 - 15k E 0 (mod 3n) and 9 - 9k = 0 (mod 3n). 
This implies that 6k E -6 (mod 3n) or that k = (n - 2)/2. But these are all 
covered by the extendible lattice diagram of Fig. 20. 

This completes the proof of Theorem 3. 1 

4. CONCLUSION 

It is now easy to obtain a slight generalization of the main result of 
Castagna and Prins in [4]. 

COROLLARY 1. The chromatic index of every generalized Petersen 
graph, other than the Petersen graph itself and GP(2, l), is three. In 
particular, every cubic generalized Petersen graph, other than the Petersen 
graph, has a l-factorization. 

Proof. It is easy to 3-color the edges of all GP(2k, k), k > 2, by starting 
with one color for all of the edges of the form uivi, i = 0, l,..., 2k - 1. 
Clearly, GP(2, 1) has chromatic index two and it is well known that the 
Petersen graph has chromatic index four. It is easy to see that GP(n, k) has a 
l-factorization when it has a Hamiltonian cycle. This leaves only GP(n, 2), 
n E 5 (mod 6) and n > 11, to consider. They are easy to do by observing 
that it suffices to find a 2-factor all of whose components are even length 
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u. 1+1 u. 1+2 ui+3 ui+l ui+2 u. 
1+3 

* 

5 JD vi+l v. 
1+3 

FIGURE 21 

cycles. Such a 2-factor is easy to obtain by induction. The two cycles 
uuvvuuvvu anduuvvvuu v vuuuvvu formsucha 011332200 4 5 5 1 9 9 10 10 8 8 1 6 6 4 4 

2-factor in GP(ll, 2). The induction step works by noticing that if an even 
length cycle contains a path of the form viv. r+2Ui+2Ui+3vi+3vi+lUi+l~ then 
12 vertices can be incorporated to allow us to go from GP(6m + 5,2) to 
GP(6(m + 1) + 5,2) and still have a 2-factor whose components are even 
length cycles. This is depicted in Fig. 21. The above 2-factor for GP(ll, 2) 
has the required property. I 

Klee [ 5 1 has asked a related question about what he calls H-prisms. Take 
two vertex disjoint n-cycles uou,u2 ..a u,-, u, and vovl v2 ... v,-, u. together 
with some permutation u of {0, i,..., it - 1). Form a cubic graph H(a) by 
adjoining the edges uivDCi), i = 0, l,..., n - 1. The question is to determine for 
which CJ the graph H(a) is Hamiltonian. Bannai’s result mentioned earlier 
answers this question for the permutations of the form u(i) = ai + b when 
gcd(a, n) = 1 and 0 < b < n - 1. One could also ask the same question for 
various special 2-regular graphs other than n-cycles. 
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