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On Best Approximation by Ridge Functions
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We consider best approximation of some function classes by the manifold Mn

consisting of sums of n arbitrary ridge functions. It is proved that the deviation of
the Sobolev class W r, d

2 from the manifold Mn in the space L2 behaves asymptoti-
cally as n&r�(d&1). � 1999 Academic Press

1. INTRODUCTION

In this work we study approximation of multivariate functions by ridge
functions. Ridge functions are defined as functions of the form h(a } x),
where a, x # Rd, (d�2), h: R � R, and a } x is the usual inner product. In
particular, we study approximation by sums of n arbitrary ridge functions.

For a subset A/Rd consider the space of ridge functions given by

M(A)=span[h(a } x): a # A, h # L(R)],

where h runs over the space L(R) of functions integrable on any compact
subset of R. Fix n, and consider the set

Mn=. [M(A): card A�n],

which is the union of all sets M(A), where A runs over all subsets in Rd of
cardinality at most n.

Approximation by ridge functions has been studied by several authors.
In Vostrecov and Kreines [26] and Lin and Pinkus [10] necessary and
sufficient conditions are found on set A in order that the closure of the set
M(A) coincides with the space of continuous functions. In addition, Lin
and Pinkus [10] proved that for any fixed n the set Mn is not dense in
C(Rd ). Additional results in this direction were obtained by Kroo [9].
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Recently a series of results were established estimating the degree of
approximation of functions by the ridge-manifold Mn in the two-dimen-
sional case, d=2 (see Oskolkov [17] and Temlyakov [21]). In particular,
Oskolkov showed that in the case d=2 orders of approximation of radial
functions by the ridge-manifold Mn and by the space of algebraic polyno-
mials of degree n coincide.

Note also the results connected with approximation by ridge functions of
a special form, neural networks (Mhaskar and Micchelli [16], Mhaskar
[15], DeVore et al. [4], Petrushev [18], Maiorov and Meir [13]).

We first introduce some definitions. Let K be a compact set in the space
Rd. Consider the space L2(K, Rd ) of functions defined on Rd with support
on the set K and norm

& f &2=\|R d
| f (x)|2 dx+

1�2

=\|K
| f (x)|2 dx+

1�2

.

We denote the ball of radius r in Rd by Bd (r)=[x=(x1 , ..., xd ): �d
i=1 x2

i

�r2]. In the sequel we mainly consider the unit ball Bd (1). We simplify
the notation somewhat by using Bd=Bd (1) and L2=L2(Bd, Rd ). The
results obtained here can be immediately extended to general compact
domains K by use of standard extension theorems, as in [1].

For any two sets W, H/L2 we define the distance of W from H by

dist(W, H, L2)=sup
f # W

dist( f, H, L2),

where dist( f, H, L2)=infh # H & f&h&L2 .
Furthermore, for any function f # Lp we denote by Ff its Fourier

transform

Ff (u)=(2?)&d�2 |
R d

f (x) eiu } x dx,

where u # Rd and u } x is the inner product of u and x. The inverse Fourier
transform will be denoted by F&1.

In the space L2 define the derivative of order \�0 as

D\f :=F&1[ |u| \ Ff (u)],

where |u|=- u2
1+ } } } +u2

d . In the space L2 consider the class of functions

W r, d
2 ={ f : max

\�r
&D \f &2�1= .

69BEST APPROXIMATION BY RIDGE FUNCTIONS



When r is an integer, the class W r, d
2 is equivalent to the Sobolev class of

functions f from L2 , for which all distributional derivatives D&f of order
smaller or equal to r, satisfy an inequality &D&f &2�1.

Let c, and c1 , c2 , ... be positive constants depending solely upon the
parameters r and d. For two positive sequences an and bn , n=0, 1, ... we
write an �� bn if there exist positive constants c1 and c2 such that c1�an �bn

�c2 for all n=0, 1, ... .
The main result of our work is the following.

Theorem 1. Let r>0, d�2. Then the asymptotic relation

dist(W r, d
2 , Mn , L2) �� n&r�(d&1)

holds.

We describe briefly the proof of the main theorem. In order to obtain the
lower bound, we construct for any n a function f # W r, d

2 depending on n
such that the distance of f from the manifold Mn is greater than cn&r�(d&1).
The construction of the function f will be done in the following way. In
Section 2 we construct an orthonormal system [ pk(x)]�

k=1 of algebraic
polynomials on the ball Bd. Further, we construct a set of polynomials of
the form [�m

k=1 uk pk : (u1 , ..., um) # U], where U is some discrete set in Rm,
on which a Bernstein inequality is satisfied. In Section 3 we show that the
coefficients of decomposition of the ridge functions ga=g(a } x), i.e., the
inner products ( ga , pk) are algebraic polynomials ?(a, b) of degree k in
the variables a and are linear functions in some variables b1 , ..., b l depend-
ing only on the function g. On the basis of the results of Sections 2 and 3
the problem of approximation of functions from the class W r, d

2 is reduced
to the problem of approximation of finite-dimensional sets by a polynomial
manifold of a special form. In Section 4 we obtain estimates for approxima-
tion of the cube in Rm by polynomial manifolds. In Section 5 we prove
Theorem 1 using the results of Sections 2�4. In the Appendix we present
well-known results from the theory of orthogonal polynomials on the segment
and from the theory of harmonic analysis on the sphere, which we use in
the proof of Theorem 1.

2. ORTHOGONAL SYSTEM OF ALGEBRAIC POLYNOMIALS
ON THE BALL

Consider the Hilbert space L2 of all square integrable functions on the
ball Bd with the inner product

( f, g)=|
B d

f (x) g(x) dx ( f, g # L2).
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In the present section we construct an orthogonal system of algebraic
polynomials on the ball Bd which have the form of ridge functions (or ridge
polynomials). We make use of results from the theory of orthogonal poly-
nomials on a segment, and from the harmonic analysis on the Euclidean
sphere. Orthogonal subspaces consisting of ridge polynomials may be
found in the papers [11, 4, 17, 18]. Some properties of the Gegenbauer
polynomials given in [18] will be exploited in our work.

We will use the orthogonal system of polynomials on the ball Bd in
Section 3 for the decomposition of the initial ridge functions by ridge
polynomials.

Let s be a natural number. Consider the space

Ps=span[xk#xk1
1

} } } xkd
d : |k|=k1+ } } } +kd�s],

consisting of all algebraic polynomials on Rd of degree at most s. Denote
by Ph

s the subspace in Ps consisting of all homogeneous polynomials of
degree s, i.e., Ph

s =span[xk1
1 } } } xkd

d : |k|=s].
Let Sd&1=[!=(!1 , ..., !d ) # Rd : !2

1+ } } } +!2
d=1] be the unit sphere in

the space Rd.
Consider the Hilbert space L2(Sd&1) of square integrable functions on

the sphere Sd&1 with the inner product

(h1 , h2)=|
Sd&1

h1(!) h2(!) d! (h1 , h2 # L2(Sd&1)), (1)

where by d! we denote the normalized Lebesgue measure on the sphere Sd&1.
Consider (see the Appendix) in the space L2(S d&1) the subspace Hl of

spherical harmonics of degree l. Let [hlk]k # Kl be the orthogonal system
(A.7) in the subspace Hl .

Let further s be any even number. Consider the space H2s=Hs �
Hs+2 � } } } �H2s which is the direct sum of the orthogonal subspace Hs ,
Hs+2 , ..., H2s of the spherical harmonics with even degrees from s to 2s.
Denote by Ns the dimension of space H2s .

We have Ns �� sd&1. Indeed, using (see (A.9)) the relation dim Hs �� sd&2

we obtain

Ns=dim H2s=dim Hs+dim Hs+2+ } } } +dim H2s �� sd&1.

Consider in the space H2s the family Bs=[hi ]Ns
i=1

consisting (see the
Appendix) of the functions

[hs, k]k # K s _ [hs+2, k]k # K s+2 _ } } } _ [h2s, k]k # K 2s .
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The set Bs is an orthonormal basis in the space H2s , i.e., for any indices
1�i, i$�Ns we have (hi , h i$)=$ii$ , where $ii$=0 for i{i$, and $ ii=1.

Now consider (see the Appendix) the Gegenbauer polynomials C d�2
n (t),

t # R, of degree n associated with d�2. Set

un(t)=v&1�2
n C d�2

n (t) \vn=
?1�2(d )n 1((d+1)�2)
(n+d�2) n! 1(d�2) + ,

where (a)0=1, and (a)n=a(a+1) } } } (a+n&1).
Introduce the set of pairs of indices

8s={(i, j ) : i=1, 2, ..., Ns ; j=
s
2

,
s
2

+1, ..., s= .

Construct for any pair (i, j ) # 8s the function on Rd

Pij(x)=&1�2
2 j |

S d&1
h i (!) u2 j (x } !) d! \&2 j=

(2 j+1)d&1

2(2?)d&1 + , (2)

which are algebraic polynomials of degree 2 j. Here we denote by x } ! the
inner product of the vectors x and !.

Consider in 8s a subset

9s=[(i, j ) # 8s : deg h i�2 j]. (3)

Let us estimate the asymptotic behavior of the cardinality of the set 9s .
From (3) we have |9s |=�s

j=s�2 (dim Hs+dim Hs+2+ } } } +dim H2 j ).
Using (A.9) we obtain

|9s | �� :
s

j=s�2

[sd&2+(s+2)d&2+ } } } +(2 j )d&2] �� sd. (4)

Consider the set 6s=[P ij(x) : (i, j ) # 9s]. We will prove that 6s is an
orthonormal system of polynomials on Bd.

Lemma 1. (1) For any two multi-indices (ij ), (i$j$) # 9s the identity

(Pij , Pi$j$ )=$ii$ $jj$

holds.

(2) If (i, j ) # 8s"9s , then Pij(x)#0.
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Proof. From the definition (2) of the polynomials Pij , and the proper-
ties (A.4) (for j{j$) and (A.5) (for j=j$) of the Gegenbauer polynomials
we have

|
B d

Pij(x) Pi$j$(x) dx=(&2 j&2 j$)
1�2 |

S d&1_Sd&1
h i (!) hi$(') d! d'

_|
B d

u2 j (x } !) u2 j$(x } ') dx

=$jj$
&2 j

u2 j(1) |S d&1
hi (!) d! |

Sd&1
hi$(') u2 j(! } ') d'.

Let j=j$. Since (i$, j$) # 9s then deg hi$�2 j$=2 j. Therefore we obtain
from (A.6)

&2 j

u2 j (1) |Sd&1
hi$(') u2 j(! } ') d'=h i$ (!).

Hence

|
B d

Pij(x) P i$j$(x) dx=$jj$ |
S d&1

hi(!) hi$(!) d!=$jj$$ii$ .

In the final equality we have used the property of orthonormality of the
system [hi ]. The first statement of the lemma is proved. The second state-
ment of the lemma follows from property (A.10). K

Let r be any positive number, and r$ be the smallest even number such
that r$�r. Set + :=+r :=2r$&1. Let j be any index from set Is=[1, ..., s].
Denote by :j and ;j integers such that s&j=(++1) : j+;j , where :j # Z,
and ;j # [0, ..., +].

Set #j=- v2 j �&2 j . It is easy to verify the asymptotic relation #j �� j&1�2.
Consider the function a from 9s to R defined by

a(i, j )=aij=(&1) +&;j \ +
;j+ # j= i:j

,

where =i:j
is some number equal &1 or 1. The set of functions a corre-

sponding to all possible selections of the =i:j
=\1, (i, j ) # 9s will be

denoted Ar
s .

Consider the set of polynomials on Rd

P(Ar
s)={ :

(i, j ) # 9s

aij Pij(x): a # A r
s= . (5)
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For any polynomial Pa # P(Ar
s) the asymptotic relation &Pa &2

�� s(d&1)�2

holds. Indeed, from Lemma 1 and (4) we have

&Pa &2
2=" :

(i, j ) # 9s

aijPij"
2

2

= :
(i, j ) # 9s

|aij |
2

= :
(i, j ) # 9s

\ +
;j+

2

#2
j

�� s&1 |9s | �� sd&1. (6)

In Theorem 2 we will prove that on the class of polynomials P(Ar
s) a

Bernstein inequality holds.

Theorem 2. Let r>0 be any number, and s be any even positive integer.
Then for any polynomial Pa # P(Ar

s) the inequality

&DrPa&2�csr+(d&1)�2

holds.

We will first prove this inequality for even r.

Lemma 2. Let r, s be any even positive integers with s�r�2. Then for any
polynomial Pa # P(A r

s) the inequality

&DrPa &2�csr+(d&1)�2

holds.

Proof. From the definition of the operator Dr it follows that for any
polynomial u=u(t), t # R, and for any unit vector ! # S d&1

Dru(x } !)=(&2)r�2 u(x } !)=(&1)r�2 \d ru
dtr+ t=x } !

,

where 2 is the Laplace operator. From definition (2) we have

DrPij(x)=&1�2
2 j |

Sd&1
h i (!) Dru2 j(x } !) d!=&1�2

2 j |
Sd&1

hi (!) \d r u2 j

dtr + t=x } !
d!.

Set *=d�2. Taking into consideration that 8s=[(i, j ): i=1, 2, ..., Ns ;
j=s�2, (s�2)+1, ..., s], and u2 j(t)=v&1�2

2 j C *
2 j(t), we obtain

DrPa(x)= :
(i, j ) # 8s

aijD
rPij(x)= :

Ns

i=1
|

S d&1
hi (!) :

s

j=s�2

#&1
j aij \

d rC *
2 j

dtr + t=x } !
d!.

(7)
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Set a$ij=#&1
j aij . Define C :

k(t)#0 for negative k and all :. From property
(A.2) we have

d rC *
2 j

dtr (t)=2r(*)r C *+r
2 j&r(t).

From this and (7) it follows that

DrPa(x)=2r(*)r :
Ns

i=1
|

S d&1
hi (!) :

s

j=s�2

a$ijC *+r
2 j&r(x } !) d!. (8)

We express the interior sum in (8) as a linear combination of the polyno-
mials C *

k , in the following way. From identity (A.3) we have for any
natural numbers q and :�2

C:
2q(t)= :

q

k=0

2k+:&1
:&1

C :&1
2k (t).

Since *+1=d�2+1�2, then using this formula r times we obtain

C *+r
2q (t)= :

q

k1=0

:
k1

k2=0

:
k2

k3=0

} } } :
kr&1

kr=0
\ `

r

i=1

2ki+*+r&i
*+r&i + C *

2kr
(t).

Change the order of summation to obtain

C*+r
2q (t)= :

q

kr=0

:
q

kr&1=kr

:
q

kr&2=kr&1

} } } :
q

k1=k2
\ `

r

i=1

2ki+*+r&i
*+r&i + C *

2kr
(t). (9)

Set k=kr and consider the function in the variable q

Qk(q)= :
q

kr&1=k

:
q

kr&2=kr&1

} } } :
q

k1=k2

`
r&1

i=1

(2ki+*+r&i ). (10)

The expression (9) may be rewritten as

C *+r
2q (t)=

1
(*)r

:
q

k=0

(2k+*) Qk(q) C *
2k(t). (11)

Consider the interior sum in (8) and set Si (t)=�s
j=s�2 a$ijC *+r

2 j&r(t). From
identity (11) it follows that

Si (t)=
1

(*)r
:
s

j=s�2

a$ij :
j&r�2

k=0

(2k+*) Qk( j&r�2) C *
2k(t).
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Let jk=min[s�2, k+(r�2)], and in the last expression change the order of
summation so that

Si (t)=
1

(*)r
:

s&r�2

k=0

(2k+*) C *
2k(t) :

s

j=jk

a$ijQk( j&r�2).

Substitute this expression into (8) and take into consideration that
#&1

k �Sd&1 hi (!) C *
2k(x } !) d!=P ik(x), and P ik(x)#0 for all (i, k) � 9s . Thus

DrPa(x)=2r :
Ns

i=1
|

Sd&1 _h i (!) :
s&r�2

k=0

(2k+*) C *
2k(x } !) :

s

j=jk

a$ij Qk( j&r�2)& d!

=2r :
Ns

i=1

:
s&r�2

k=0

(2k+*) :
s

j=jk

a$ij Qk( j&r�2) |
S d&1

h i (!) C *
2k(x } !) d!

=2r :
(i, k) # 9s , k�s&r�2

(2k+*) #k :
s

j=jk

a$ijQk( j&r�2) Pik(x).

Applying Lemma 1 and Parseval's identity we obtain

&DrPa &2
2=22r :

(i, k) # 9s , k�s&r�2 } (2k+*) #k :
s

j=jk

a$ij Qk ( j&r�2)}
2

. (12)

In order to estimate this last sum we will need the following

Proposition 1. For any index pair (i, k) # 9s such that k�s&r�2 the
inequality

} :
s

j=jk

a$ijQk( j&r�2)}�csr&1

holds.

Proof. Since a$ij=#&1
j a ij=(&1)+&;j ( +

;j
) = i:j

by (5), we have

S# :
s

j=jk

a$ijQk( j&r�2)= :
s

j=jk

(&1) +&;j \ +
; j+ =i:j

Qk( j&r�2).

Define the integer l to satisfy

s&(++1)(l&1)�jk<s&(++1) l, (13)

and write the sum S as

S=\ :
s&(++1) l

j=jk

+ :
s

j=s&(++1) l+1
+ (&1)+&;j \ +

; j+ =i:j
Qk( j&r�2)=: S1+S2 .

(14)
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We first estimate S1 . From definition (10) of the function Qk(q) we have

Qk( j&r�2)= :
j&r�2

kr&1=k

:
j&r�2

kr&2=kr&1

} } } :
j&r�2

k1=k2

`
r&1

i=1

(2k i+*+r&i )

�( j&r�2&k+1)r&1 `
r&1

i=1

(2 j+*&i ).

From here taking into consideration (13) we obtain for all j # [k+r�2, ...,
s&(++1) l]

Qk( j&r�2)�(++2)r&1 `
r&1

i=1

(2s+*&i )�(++2)r&1 (2s+*&1)r&1

�c1sr&1.

Applying (13) once more we obtain

|S1 |= } :
s&(++1) l

j=jk

(&1) +&;j \ +
;j+ =i:j

Qk( j&r�2)}
�c1sr&1 :

+

;=0
\+

;+=c2sr&1. (15)

We now show that S2=0. Indeed, using the relation s&j=(++1) :j+;j ,
where :j # Z and ;j # [0, ..., +] we have

S2= :
s

j=s&(++1) l+1

(&1)+&;j \ +
;j+ =i:j

Qk( j&r�2)

=:
:

=i: :
+

;=0

(&1)+&; \+
;+ Qk(s&(++1):&;&r�2), (16)

where : run over some set of integers. From (10) it is seen that for any k
the function Qk( j ) in the variable j is a polynomial of degree 2(r&1)<
2(r$&1)<+. At the same time, the inner sum in (16) is a finite difference
of the polynomial Qk( j) of order +. Hence

:
+

;=0

(&1)+&; \+
;+ Qk(s&(++1):+;&r�2)=0

for all :. Therefore from (16) we have S2=0. From (14) and (15) we
obtain Proposition 1. K
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Proof of Lemma 2 (continued ). From identity (12) and Proposition 1 it
follows that

&DrPa &2
2�22r :

(i, k) # 9s , k�s&r�2

[(2k+*) #kcsr&1]2

�[c(2s+*) #s�2sr&1]2 |9s |�cs2r&1 |9s |.

From this and (4) follows the statement of Lemma 2.

Proof of Theorem 2. Let r$ be the smallest even number such that r$�r.
Applying the multiplicative inequality for derivatives (see [2]) we have

&DrPa &2�&Pa&1&(r�r$)
2 &Dr$Pa&r�r$

2 .

Using Lemma 2 and inequality (7) we obtain

&DrPa &2�(cs(d&1)�2)1&r�r$ (csr$+(d&1)�2)r�r$=csr+(d&1)�2,

thus establishing Theorem 2. K

3. DECOMPOSITION OF RIDGE FUNCTIONS BY THE
ORTHOGONAL SYSTEM OF RIDGE POLYNOMIALS

Consider the orthogonal system of polynomials 6s=[Pij=Pij(x):
(i, j ) # 9s], constructed in Section 2. In this section we will show that for
any polynomial P # 6s and for any ridge function g|=g(| } x), where
|=(|1 , ..., |d ) # Rd and g # L(R), the coefficient of the decomposition by
the system 6s corresponding to P, i.e.,

( g| , P) =|
Bd

g(| } x) P(x) dx

is a function h(|, b) that is an algebraic polynomial in the variables
|1 , ..., |d , and a linear function of some variables b1 , ..., bm depending only
on the function g.

Let g(| } x) be an arbitrary ridge function, where | # Rd, and g # L(R).
Without loss of generality we can assume that | # Sd&1.

Consider the group SO(d ) of all orthogonal matrices of order d with
determinant equal to 1. For any vector | # Sd&1 there exists a matrix _=
_| # SO(d ) such that |=_e, where e=(1, 0, ..., 0). Elements of the matrix
are denoted by (_ij )

d
i, j=1 .
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Let P(x) be any polynomial from the system 6s . Using the ortho-
gonality of the matrix _ and the invariance of the measure dx with respect
to the orthogonal mapping we have

( g| , P) =|
B d

g(| } x) P(x) dx=|
B d

g(_e } x) P(x) dx

=|
B d

g(x1) P(_x) dx. (17)

Since P(x) is a polynomial of degree �2s, the integral (17) can be
presented as

|
B d

g(x1 ) P(_x) dx= :
|k|�2s

pk(_; P) |
B d

g(x1) xk dx, (18)

where the functions _ � pk(_; P) are some polynomials of degree �2s in
the d2 variables _ij , i, j=1, ..., d, and k=(k1 , ..., kd ) is a multi-index, |k|=
k1+ } } } +kd , xk=xk1

1
} } } xkd

d .
Fix the multi-index k. Consider the integral

|
B d

g(x1) xk dx=|
B d

g(x1) xk1
1

xk2
2

} } } xkd
d dx1 } } } dxd

=|
1

&1
g(x1 ) xk1

1
dx1 |

Bx1

xk2
2

} } } xkd
d dx2 } } } dxd , (19)

where we denote Bx1
=[(x2 , ..., xd ) # Rd&1 : x2

2+ } } } +x2
d�1&x2

1].
Transforming to polar coordinates in the inner integral, we obtain

|
Bx1

xk2
2

} } } xkd
d dx2 } } } dxd=|

- 1&x2
1

0
rd&2 dr |

Sd&2
(r!2)k2 } } } (r!d )kd d!

=|
- 1&x2

1

0
rk2+ } } } +kd+d&2 dr |

S d&2
!k2

2
} } } !kd

d d!

=qk, d(1&x2
1)(k2+ } } } +kd+d&1)�2,

where

qk, d=
1

k2+ } } } +kd+d&1 |
Sd&2

!k2
2

} } } !kd
d d!
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is a constant depending only on the vector k and d. Therefore from (19),
applying the change of variable x1=cos t, we obtain

|
B d

g(x1) xk dx=qk, d |
1

&1
g(x1) xk1

1 (1&x2
1) (k2+ } } } +kd+d&1)�2 dx1

=qk, d |
?

0
g(cos t)(cos t)k1 (sin t)k2+ } } } +kd+d dt. (20)

Introduce the notation

bl( g)={|
?

0
g(cos t) cos(lt) dt,

|
?

0
g(cos t) sin(lt) dt,

l even

l odd.

Then the intral (20) can be rewritten as

|
Bd

g(x1) xk dx= :
|k|+d

l=0

cklbl( g),

where the coefficients ckl depend only on k and l. Substituting this final
expression into (18) and changing the order of summation we obtain

|
Bd

g(x1) P(_x) dx= :
|k|�2s

pk(_; P) :
|k|+d

l=0

cklb l( g)

= :
2s+d

l=0

bl( g) :
k: l&d�|k|�2s

ckl pk(_; P).

From this and identity (17) we conclude

Theorem 3. Let |=_e # S d&1, g # L(R), let s be a natural number, and
P # 6s . Then the inner product of the functions g|=g(| } x) and P=P(x)
may be expressed as

( g| , P) = :
2s+d

l=0

b l( g) \l(_; P),

where

\l(_; P)= :
k: l&d�|k|�2s

ckl pk(_; P),

pk(_; P) are some polynomials of degree �2s in the variables _ij , i, j=1, ..., d,
and ckl depend only on k and l.
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4. SOME ESTIMATES IN THE FINITE-DIMENSIONAL SPACE

In this section we obtain estimates for the approximation of sets in a
finite-dimensional space by certain polynomials manifolds. To obtain the
lower bounds of approximation, we use estimates of the number of connected
components of polynomial manifolds. These estimates are related to the
problem of calculation of the pseudo-dimension of manifolds, which is widely
studied within the neural network community (see [25, 27, 8, 12, 23]).

We start with some notations. Let m be a fixed natural number. Consider
the m-dimensional Hilbert space l m

2 consisting of vectors a=(a1 , ..., am) #
Rm with the norm &a& l2

m=(�m
i=1 |ai |

2)1�2. Let H be some set in l m
2 . Define

the distance of a point a from the set H as dist(a, H, l m
2 )=infh # H &a&h& l2

m .
Introduce the vector set E m consisting of all vectors ==(=1 , ..., =m) with
coordinates =i # [1, &1] for all i=1, ..., m.

Let m, s, p and q be natural numbers. Let ?ij(_), i=1, ..., m; j=1, ..., q be
any algebraic polynomials with real coefficients in the variables _=
(_1 , ..., _p) # R p, each of degree s. Construct the polynomials in the p+q
variables b=(b1 , ..., bq) # Rq and _=(_1 , ..., _p) # R p

?i (b, _)= :
q

j=1

bj ?ij(_), i=1, ..., m. (21)

Construct in Rm a polynomial manifold

6m, s, p, q=[?(b, _)=(?1(b, _), ..., ?m(b, _)): (b, _) # Rq_R p].

Theorem 4. Let m, s, p, q be integers such that p+q�m�2 and

p log2(4s)+( p+1) log2( p+q+2)+( p+q) log2 \ 2em
p+q+�m�4. (22)

Then there exists a vector = in Em an some absolute constant c>0 such
that

dist(=, 6m, s, p, q , l m
2 )�c - m.

We first prove auxiliary statements. For a given vector x=(x1 , ..., xm) #
Rm we define the vector sgn x=(sgn x1 , ..., sgn xm) # Em, where sgn a=1
for a�0, and sgn a=&1 for a<0. For a set K/Rm, denote by sgn K a set
of vectors [sgn x: x # K].
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Lemma 3. Let m, s, p, q be integers such that p+q�m�2. Then for the
cardinality of the set sgn 6m, s, p, q the following estimate holds

|sgn 6m, s, p, q |�(4s) p ( p+q+1) p+2 \ 2em
p+q+

p+q

.

Assume for the moment that we have proved Lemma 3.

Proof of Theorem 4. Let a<1 be the absolute constant satisfying the
equation 1& 1

2 (1&a)2 log2 e= 47
67 (i.e., a=0.39...).

Denote H=sgn 6m, s, p, q . Let h=(h1 , ..., hm) be any vector from H.
Define the subset of Em

Eh={= # E m : :
m

i=1

|=i&hi |
2�2am= .

Since hi=1 or &1, we have the estimate for the cardinality of Eh ,

|Eh |= }{= # E m : :
m

i=1

(=i (&h i )+1)2�2am=}
= }{= # Em : :

m

i=1

(=i+1)2�2am=}
= }{= : :

i : =i=1

1�am�2=}= :
[am�2]

i=0
\m

i + .

From the well-known estimate (see, for example, [5, Chap. 8]) we have

:
[am�2]

i=0 \m
i +�2me&2m((1�2)&;) 2

�2bm,

where ;=m&1[am�2], and b=1& 1
2(1&a)2 log2 e= 47

64 . Hence |Eh |�247m�64.
Consider in Em the subset E$=�h # H (Em"Eh). We estimate the cardinality

of E$ via

|E$|= }Em> .
h # H

Eh }�2m&|H | max
h # H

|Eh |

�2m&|H | 2(47�64)m. (23)

By Lemma 3 and the conditions of Theorem 4 we have

|H |�(4s) p ( p+q+1) p+2 \ 2em
p+q+

p+q

�2m�4.
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From this and (23) we obtain |E$|�2m&2(63�64)m>0. Therefore there exist
a vector = # E m such that for every vector h # H the following inequality
holds

&=&h&l 2
m�- 2am.

Taking into consideration the fact that every vector h has the form h=
sgn ?(b, _), where ?(b, _) # 6m, s, p, q we obtain the inequality

&=&?(b, _)&l2
m�

1
2

&=&sgn ?(b, _)&l2
m��am

2
.

Theorem 4 is proved. K

We now prove Lemma 3. Set &=p+q. The set of points (b, _) # R& on
which the polynomial ?(b, _) vanishes will be denoted by Z(?).

Consider the domains D=�m
i=1 Z(? i ) in R&, and D$=R&"D. We will

need an estimate on the number of connected components of the set D$.
We denote the number of connected components of any G/R& by N(G ).
The following lemma is a direct consequence of a result of Warren [27,
Theorem 1, 2].

Lemma 4 (Warren). For any polynomials ?1(b, _), ..., ?m(b, _) of the
form (21) there exist positive numbers $1 , ..., $m such that the number of
connected components of the set D$ satisfies the inequality

N(D$)� :
&

k=1

:
i1< } } } <ik

:
=1 , ..., =k=\1

N \ ,
k

l=1

Z(?il
+=l$il

)+ ,

where the indices i1 , ..., ik run over all different integers between 1 and m, and
[=1 , ..., =k] assume all values in [1, &1]k.

Let g1(_), ..., gn(_) be any polynomials in the variable _ # R p. Let deg gi

be the degree of the polynomial gi . Set d=deg gi+ } } } +deg gn .

Consider in R p the manifold S=[_: g1(_)�0, ..., gn(_)�0]. Let N(S )
be the number of connected components of the manifold S. From the work
of Milnor [14, Theorem 3] it directly follows1
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Lemma 5 (Milnor). If g1 , ..., gn are any polynomials in variable _ # R p, then

N(S )� 1
2 (2+d )(1+d ) p&1.

Using Lemma 5 we will also estimate the numbers N(�k
l=1 Z(?il

+=l$il
)).

Fix k, i1 , ..., ik and =1 , ..., =k . Without loss of generality we may take i l=l,
and = l=&1 for all l=1, ..., k.

Lemma 6. For any 1�k�& and any positive numbers $1 , ..., $k , the
following inequality holds

N \ ,
k

l=1

Z(?l&$l )+�(4s) p (k+1) p+1.

Proof. Consider the system of k linear equations

?11(_) b1+ } } } +?1q(_) bq=$1

{ b (24)

?k1(_) b1+ } } } +?kq(_) bq=$k

in the variables b1 , ..., bq , with coefficients ?ij(_) and constants $i .
For any fixed _, denote by Dl(_) the sum of squares of all minors of

order l of the matrix(?ij(_))k q
i=1 j=1 , and by Dl+1(_) the sum of squares of

all minors of order l+1 of the extended matrix

?11(_) } } } ?1q(_) $1

\ b . . . b b + .

?k1(_) } } } ?kq(_) $k

It follows from a theorem of Kronecker�Capelli that the set S of all
vectors _ # R p for which there exists a solution to the system (24) may be
expressed as

S= .
k&1

l=1

Sl , Sl=[_ # R p : Dl(_)>0, Dl+1 (_)=0]. (25)

Since the ?ij(_) are polynomials of degree s then Dl (_) and Dl+1 (_) are
polynomials of degree 2sl and 2s(l+1), respectively. From the continuous
dependence of the solutions of (24) on the coefficients ?ij(_), where _ runs
over some connected component of Sl , it follows that N(�k

l=1 Z(? l&$l ))
=N(S). From (25) we have

N \ ,
k

l=1

Z(?l&$l )+=N(S)� :
k&1

l=1

N(Sl ). (26)
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Note that for any l a set Sl may be presented as the set of solutions of
the system of inequalities

Dl (_)>0, &Dl+1 (_)�0. (27)

We claim that N(Sl )�(4s(k+1)) p. Indeed, assume that N(Sl )�m+1,
where m=(4s(k+1)) p. Then there exist m+1 disjoint components
Q1 , ..., Qm+1 of the set Sl . For each 1�i�m, choose a point _ i in Q i . Put
:=mini Dl (_i ), and note that :>0.

Consider the set in R p

S$l=[_ # R p : Dl(_)�:, &Dl+1 (_)�0].

From Lemma 5 it follows that the number of connected components of the
set S$ satisfies the inequality N(S$l)� 1

2 (2+d )(1+d) p&1, where d=deg Dl

+deg Dl+1 . Since d�2sl+2s(l+1)�4s(k+1) we have

N(S$l )� 1
2 (2+4s(k+1))(1+4s(k+1)) p&1�(4s(k+1)) p=m.

On the other hand, since S$l & Qi{< for all i=1, ..., m+1, and Q1 , ..., Qm+1

do not intersect, then

N(S$l )�N(Sl )�m+1

yielding a contradiction. Hence N(Sl )�(4s(k+1)) p. From here and (26)
we obtain

N \ ,
k

l=1

Z(?l&$l )+� :
k&1

l=1

N(Sl )� :
k&1

l=1

(4s(k+1)) p�(4s) p (k+1) p+1.

Lemma 6 is proved. K

From Lemmas 4 and 6 one obtains the following estimate for the
number of connected components of the set D$=R&"�m

i=1 Z(?i )

N(D$)� :
&

k=1

:
i1< } } } <ik

:
=1 , ..., =k=\1

(4s) p (k+1) p+1

�(4s) p ( p+q+1) p+1 :
&

k=1
\m

k + 2k

�2&(4s) p ( p+q+1) p+1 :
&

k=1

mk

k!
�2&(4s) p ( p+q+1) p+1 & \em

& +
&

,

where we make use of the relation &=p+q�m�2. Hence we obtain
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Lemma 7. Let m, s, p, q be natural numbers, p+q�m�2. Then for any
polynomials ?1(b, _), ..., ?m(b, _) of the form (21) in the variables (b, _) # Rq+p

the following estimate for the number of connected components of the set
D$=Rq+p "�m

i=1 Z(?i )

N(D$)�(4s) p ( p+q+1) p+2 \ 2em
p+q+

p+q

holds.

Proof of Lemma 3. The statement of Lemma 3 follows directly from
Lemma 7. Indeed, note that a vector function sgn ?( y ) is constant on any
connected component of the set D$. Therefore the cardinality of the vector
set sgn 6m, s, p, q is at most N(D$). From this and Lemma 7 we obtain
Lemma 3. K

5. PROOF OF THEOREM 1

Proof of the Lower Bound in Theorem 1. Let n be any natural number
and s be any even number such that {n�sd&1�2{n, where { is some
positive constant depending only on d, which we define below. We have the
asymptotice n �� sd&1. Consider the set of polynomials

P(Ar
s)={ :

(i, j ) # 9s

aij Pij(x): a=(aij ) (i, j ) # 9s
# Ar

s= , (28)

introduced in Section 2.
Estimate the distance of the set P(Ar

s) from the manifold Mn

dist(P(Ar
s), Mn , L2)=max

a # A r
s

inf
g # Mn

&Pa(x)&g(x)&2 .

Let Pa(x)=�(i, j ) # 9s
a ij Pij(x) be an arbitrary function from P(Ar

s) and
let

g(x)= :
n

t=1

gt(|t } x), (|t # Sd&1, gt # L(R) for all t)

be an arbitrary function from the manifold Mn .
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By Lemma 1, the system of polynomials [Pij] (i, j ) # 9s
is orthonormal.

Therefore

&Pa(x)&g(x)&2
2=" :

(i, j) # 9s

aijPij (x)&g(x)"
2

2

�" :
(i, j) # 9s

aij Pij(x)& :
(i, j) # 9s

( g, Pij) Pij(x)"
2

2

=" :
(i, j) # 9s

(aij&( g, Pij) ) Pij(x)"
2

2

= :
(i, j ) # 9s

|aij&( g, Pij ) |2. (29)

Fix indices i, j, and consider the inner product ( g, Pij). According to
Theorem 3 we have

( g, Pij) = :
n

t=1

( gt (|t } v ), Pij) = :
n

t=1

:
2s+d

l=0

bl( gt ) \l(_t ; Pij ), (30)

where _t=(_ t
ij )

d
i, j=1 are orthogonal matrices from the group SO(d) for

which |t=_te, e=(1, 0, ..., 0), and \ l (_t ; Pij ) are some polynomials of
degree not greater than 2s in the variables _t

ij , i, j=1, ..., d. From (30) it
follows that

inf
g # Mn

:
(i, j ) # 9s

|aij&( g, Pij) | 2

= inf
[_ t], [ gt ]

:
(i, j ) # 9s

} aij& :
n

t=1

:
2s+d

l=0

bl ( gt) \ l(_t ; Pij )}
2

, (31)

where the infimum is calculated over all collections of matrices _1, ..., _n #
SO(d ) and functions g1 , ..., gn # L(R).

Set p=nd2, and q=n(2s+d+1). Enumerate arbitrarily all elements of
the matrices _1, ..., _n to form the vector _=(_1 , ..., _p). For fixed i, j we
also enumerate the set of polynomials to form [ \l(_t ; Pij ): t=1, ..., n;
l=0, ..., 2s+d], and denote them by [ \k(_; Pij ): k=1, ..., q]. Then from
(31) it follows that

inf
g # Mn

:
(i, j ) # 9s

|aij&( g, Pij) | 2� inf
(b, _) # Rq_Rp

:
(i, j ) # 9s

} aij& :
q

k=1

bk \k(_; Pij ) }
2

,

(32)

where b=(b1 , ..., bq) and _=(_1 , ..., _p) run over Rq and R p, respectively.
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Using relations (29), (31), and (32) we obtain

dist(P(Ar
s), Mn , L2)2�max

a # Ar
s

inf
g # Mn

:
(i, j ) # 9s

|aij&( g, Pij ) |2

�max
a # Ar

s

inf
(b, _) # R q_Rp

:
(i, j ) # 9s

} aij& :
q

k=1

bk \k(_; Pij)}
2

.

(33)

Set ?ij(b, _)=�q
k=1 bk \k(_; Pij ), and consider the sum

I(a, b, _) := :
(i, j) # 9s

|aij&?ij(b, _)|2. (34)

Recall that aij=(&1)+&;j ( +
;j

) # j= i, :j
, where + is some integer depending

only on r, and the numbers :j and ;j are defined for a given j from the
relation s&j=(++1) :j+;j , where : j # Z, ; j # [0, ..., +], while the
numbers =i, :j

equal +1 or &1.
Consider a subset 9 0

s =[(i, j ) # 9s : ;j=0] in 9s . Estimate the quantity
(34)

I(a, b, _)= :
(i, j ) # 9s

}(&1)+&;j \ +
;j+ #j=i, :j

&?ij(b, _)}
2

= :
(i, j ) # 9s

} (&1)+&;j \ +
; j+ #j =i, :j

&?i, s&(++1) :j&;j
(b, _)}

2

� :
(i, j ) # 9s

0
|(&1)+ #j=i, :j

&?i, s&(++1):j
(b, _)| 2.

Since #2
j

�� j&1�2s&1 for all (i, j ) # 9s , we have

I(a, b, _)�2s&1 :
(i, j ) # 9 s

0
|=i, :j

&(&1)+ #&1
j ?i, s&(++1) :j

(b, _)|2. (35)

Set m=|9 0
s |. From the definition of the numbers ; j and (4) we have the

asymptotics m �� |9s |�(++1) �� sd.
Since on the set of indices (i, j ) # 9 0

s we have j=s&(++1):j , i.e. the
relation between j and :j is one-to-one, the set of vectors [(=i, :j

)(i, j) # 9 s
0 : =i, :j

#
[&1, +1] for all (i, j ) # 9 0

s ] coincides with the set

[(=i, j ) (i, j ) # 9s
0 : =i, j # [&1, +1] for all (i, j ) # 9 0

s ]

=[==(=1 , ..., =m): =1 , ..., =m # [&1, +1]]=: Em.
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Denote the elements of the set

[(&1)+ #&1
j ?i, s&(++1) :j

(b, _): (i, j ) # 9 0
s ]

by (?1(b, _), ..., ?m(b, _)). Then from the inequality (35) we have

max
a # As

+
inf

(b, _) # R q_Rp
I(a, b, _)�2s&1 max

= # E m
inf

(b, _) # Rq_R p
:
m

i=1

|=i&?i (b, _)|2.

(36)

From relations (33), (34), and (36) we have

dist(P(Ar
s), Mn , L2)2�max

a # A s
+

inf
(b, _) # Rq_Rp

I(a, b, _)

�2s&1 max
= # E m

inf
(b, _) # R q_Rp

:
m

i=1

|=i&?i (b, _)|2.

Recall that

{n�sd&1�2{n, p=nd2, q=n(2s+d+1), c1sd�m�c2sd.

Set {=200d5. It is easy to verify that the inequality (22) is satisfied. Thus
from Theorem 4 we obtain

max
= # Em

inf
(b, _) # R q_Rp

:
m

i=1

|=i&?i (b, _)| 2�cm �� sd.

Hence there exists a polynomial Pa # P(A +
s ) such that

dist(Pa , Mn , L2)�cs(d&1)�2.

According to Theorem 2 the function P� a(x)=(c�sr+(d&1)�2) Pa(x) belongs
to class W r, d

2 . Therefore taking into consideration that s �� n1�(d&1), we
obtain

dist(W r, d
2 , Mn , L2)�dist(P� a , Mn , L2)�c

1
sr+(d&1)�2 s(d&1)�2 ��

1
nr�(d&1) .

Proof of the Upper Bound in Theorem 1. Now we prove the upper
bound in Theorem 1. Let s be any natural number. Consider the space Ps

of all polynomials of degree not greater than s, and the space Ph
s of

homogeneous polynomials of degree s.

Proposition 2. If n=dim Ph
s then Ps/Mn .
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Proof. Let a1 , ..., an be n vectors in Rd for which the [(ai } x)s]n
i=1 are

linearly independent. Since each (ai } x)s is in Ph
s , and n=dim Ph

s , these
functions span Ph

s .
For each 0�k�s the [(ai } x)k]s

i=0 span Pk . This is immediate and may
be proved as follows. Every polynomial in Ph

k may be obtained as an
appropriate derivative of order s&k of a polynomial in Ph

s . Every derivative
of order s&k of (ai } x)s is a constant times (ai } x)k. Thus the set [(ai } x)k]
spans Ph

k for every 0�k<m.
This implies that

Ps={ :
n

i=1

p i (a i } x): pi is polynomial of degree �s].

The space on the right hand side is a subspace of Mn . Thus Ps/Mn .
Now we prove the upper bound in Theorem 1. First we formulate a

well-known result (see [22]): the error in the best approximation of any
function f # W r, d

2 from the polynomial space Ps in the L2-norm is bounded
above as follows,

dist( f, Ps , L2)�cs&r.

Since n=dim Ph
s then n �� sd&1. Hence from Proposition 2 it follows

dist(W r, d
2 , Mn , L2)�dist(W r, d

2 , Ps , L2)�cs&r �� n&r�(d&1).

The upper bound is established, and Theorem 1 is proved. K

APPENDIX

We discuss some well-known results connected with orthogonal polyno-
mials, which we use in this present work.

The Gegenbauer Polynomials

The Gegenbauer polynomials are usually defined via the generating
function

(1&2tz+z2)&*= :
�

k=0

C *
k(t) zk,

where |z|<1, |t|<1, and *>0. The coefficients C *
k(t) are algebraic polyno-

mials of degree k and are termed the Gegenbauer polynomials associated
with *.
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The Gegenbauer polynomials possess the following properties:

(1) The family of polynomials [C *
k] is a complete orthogonal system

for the weighted space L2(I, w), I=[&1, 1], w(t) :=w*(t) :=(1&t2)*&1�2,
and

|
I

C *
m(t) C *

n(t) w(t) dt={0,
vn, * ,

m{n
m=n

,

with vn, * :=
?1�2(2*)n 1(*+1�2)

(n+*) n! 1(*)
, (A.1)

where we use the usual notation (a)0 :=0, (a)n :=a(a+1) } } } (a+N&1).

(2) There is an identity which relates the Gegenbauer polynomials to
its derivatives (see [6])

dmC *
n

dtm (t)=2m(*)m C *+m
n&m(t) (m=1, 2, ..., n). (A.2)

(3) The following relation between contiguous Gegenbauer polyno-
mials holds (see [6])

(m+*) C *&1
m+1=(*&1)(C *

m+1&C *
m&1) (*>1),

and C *
0(t)=1. Set m=2n&1. This identity readily implies

C*
2n=

2n+*&1
*&1

C *&1
2n +C *

2n&2 ,

from which we obtain by induction

C *
2n= :

n

k=0

2k+*&1
*&1

C *&1
2k . (A.3)

(4) Let Pn denote the set of all algebraic polynomials of total degree
n in d real variables. Set un(t)=v&1�2

n C d�2
n (t), where vn=?1�2(d )n 1((d+1)�2)�

(n+d�2) n! 1(d�2). The polynomials un(! } x), ! # S d&1, are in Pn and the
un(! } x) are orthogonal to Pn&1 in L2(Bd ) (see [18]):

|
Bd

un(! } x) p(x) dx=0 \! # S d&1 and \p # Pn&1 . (A.4)

(5) For each !, ' # S d&1 we have (see [18])

|
B d

un(! } x) un(' } x) dx=
un(! } ')

un(1)
. (A.5)
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(6) For each polynomial h(x) # Pn such that h(x)=(&1)n h(&x) for
all x # Rd we have (see [18])

|
S d&1

h(!) un(! } ') d!=
un(1)

&n
h('), where &n=

(n+1)d&1

2(2?)d&1 . (A.6)

An Orthogonal System of Polynomials on the Sphere

We state some facts (see [6, 24]) from the theory of harmonic analysis
on the sphere. Let s be any positive integer. Consider a space Hs consisting
of the homogeneous harmonic polynomials of degree s in the d variables
x1 , ..., xd . Any polynomial from Hs is decomposable by a linear combina-
tion of polynomials of the form

hsk(x)=Ask `
d&2

j=0

rkj&kj&1+1
d&j

C (d&j&2)�2+kj+1
kj&kj+1 \xd&j

rd&j+ (x2\ix1)kd&2, (A.7)

where r2
d&j=x2

1+ } } } +x2
d&j . The vector k with integer coordinates

belongs to the set

K s=[k=(k0 , k1 , ..., kd&3 , =kd&2): 0�kd&2� } } } �k1�k0=s, ==\1],

and Ask is the normalization factor

Ask=
1

1(d�2)

_ `
d&3

j=0

22kj+1+d&j&4 (kj&kj+1)(d&j+2kj&2) 12((d&j&2)�2+kj+2)

- ? 1(kj+kj+1+d&j&2)
.

It is known that the dimension of the space Hs is given by

dim Hs=|K s |=\s+d&1
s +&\s+d&3

s&2 + , (A.8)

if s�2, and dim H0=1, dim H1=d. It is easy to verify that the dimension
of Hs is asymptotically given by

dim Hs=\2+
2

(d&2)!
+c(s, d )+ s(s+1) } } } (s+d&3) �� sd&2, (A.9)

where 0�c(s, d )�1 is some function depending only on s and d.
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The family of functions [hsk]k # Ks is an orthonormal system in the space
L2(S d&1), i.e., for any multi-indices k, k$ # K s, the following holds

(hsk , hsk$)=|
S d&1

hsk(!) hsk$(!) d!=$kk$ .

Note that the spaces Hs and Hs$ for s{s$ are orthogonal with respect to
the inner product (1). The family of functions ��

s=0 [hsk]k # K s is a complete
orthonormal system in the space L2(S d&1).

The set of polynomials on the sphere [ p: p # Pn] of degree �n belongs
to the space H0�H1 � } } } �Hn , which is the direct sum of the orthogonal
subspaces H0 , H1 , ..., Hn . From the above it follows that for any polyno-
mial p # Pn and for any function h # Hn+1�Hn+2� } } } the equality

|
S d&1

p(!) h(!) d!=0. (A.10)

holds.
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