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a b s t r a c t

Recently, Gautschi introduced so-called generalized Gauss–Radau and Gauss–Lobatto
formulae which are quadrature formulae of Gaussian type involving not only the values
but also the derivatives of the function at the endpoints. In the present note we show the
positivity of the corresponding weights; this positivity has been conjectured already by
Gautschi.
As a consequence, we establish several convergence theorems for these quadrature

formulae.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper [1], Gautschi considered so-called generalized Gauss–Radau and Gauss–Lobatto formulae which are
quadrature formulae of Gaussian type, i.e., having a highest possible degree of exactness, and involving not only the values
but also the derivatives of the function at the endpoints of the interval of integration. Such formulae are of the form∫

f (t) dλ(t) =
r−1∑
j=0

λ
(j)
0 f

(j)(a)+
n∑
j=1

λjf (τj)+
s−1∑
j=0

(−1)jλ(j)n+1f
(j)(b)+ Rn,r,s(f )

=: Qn,r,s(f )+ Rn,r,s(f ), (1)
where λ is a positive measure with support being a subset of [a, b] having an infinite number of points of increase in (a, b),
and the integers r, s ≥ 0 are the multiplicities of the endpoints a and b, respectively. In what follows we will also allow the
case a = −∞ (or b = +∞) of a possibly unbounded support in which case only r = 0 (or s = 0, respectively) is considered,
that is, the corresponding sum in Qn,r,s(f ) does vanish.
It is well-known and easily verified that our requirement for the highest possible degree of exactness leads to a unique

quadrature formula of the form (1) with the degree of exactness being equal to 2n+ r + s− 1
∀f ∈ P2n+r+s−1: Rn,r,s(f ) = 0, (2)

where here and in what follows Pm denotes the space of real polynomials of degree at most m. Here the free nodes τj
have to be chosen as to be the simple zeros of the nth orthogonal polynomial with respect to the modified measure
(x− a)r(b− x)sdλ(x) on (a, b) being clearly positive, and hence τj ∈ (a, b). Indeed, we get for Qn,0,0 the classical Gaussian
quadrature rule, for Qn,1,0 and Qn,0,1 the Gauss–Radau formulae and for Qn,1,1 the Gauss–Lobatto formula. For all these
classical quadrature formulae it is known that the weights λ1, . . . , λn and possibly λ

(0)
0 , λ

(0)
n+1 are strictly positive. The

generalized Gauss–Radau (Gauss–Lobatto) formulae of [1] are obtained for s = 0 (and r = s, respectively).
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Based on extensive numerical experiments for Jacobi, Laguerre and elliptic Chebyshev measures using the numerical
tools and methods described in [2], Gautschi conjectured in [1, Sections 2.2 and 3.2] that the weights of the generalized
Gauss–Radau and Gauss–Lobatto formulae are all strictly positive. He proved himself this conjecture for the inner weights
λ1, . . . , λn as well as for some boundary weights, namely λ

(r−1)
0 , λ

(r−2)
0 > 0 for the generalized Gauss–Radau formulae

Qn,r,0, and λ
(r−1)
0 , λ

(r−2)
0 , λ

(r−1)
n+1 , λ

(r−2)
n+1 > 0 for the generalized Gauss–Lobatto formulae Qn,r,r . However, the sign of the other

weights remained an open question.
The aim of this paper is to show in Theorem 1 below that Gautschi’s conjecture is true, namely, all weights in the

quadrature formulae Qn,r,s are strictly positive. For this we will show the slightly stronger result that suitable underlying
Lagrange polynomials (in the Hermite sense) do not change sign in (a, b). As a consequence, we obtain in Corollary 4
convergence of the quadrature Qn,r,s(f ) for fixed r, s and n → ∞ for sufficiently differentiable functions f . The case of
r, s, n→∞ is discussed in Theorem 7 where we establish a geometric rate of convergence for analytic f .
Before stating and proving our results in the next sections, we should mention that generalized Gauss–Radau and

Gauss–Lobatto formulae are of major interest in different applications, and in particular in moment preserving spline
approximation on a compact interval [a, b] = [0, 1], see [3], [2, Section 3.3], and [1, Section 4]: given a function f ∈
Cm+1([0, 1]) with moments µj =

∫ 1
0 t
jf (t) dt , we are looking for a partition 0 = τ0 < τ1 < · · · < τn < τn+1 = 1

and a spline σ of class Cm−1 being piecewise Pm on each [τj, τj+1] for j = 0, 1, . . . , n and having the same moments

∀j = 0, 1, . . . ,N:
∫ 1

0
t jσ(t) dt = µj, (3)

with N as large as possible, or in other words, the error f − σ is orthogonal to PN with respect to Lebesgue measure. By
[2, Theorem 3.61], such a spline σ exists for N = 2n + m if and only if the measure dλ(t) = (−1)m+1f (m+1)(t)/(m!) dt
on [0, 1] has a generalized Gauss–Radau quadrature formula Qn,m+1,m+1 as in (1), and in this case the spline is given by the
quadrature data via

σ(t) =
n∑
j=1

λj(τj − t)m+ +
m∑
j=0

(t − 1)j

j!
[f (j)(1)+ (−1)mm! λ(m−j)n+1 ].

2. Positivity of the weights

Theorem 1. All weights in the Gauss-type quadrature formula Qn,r,s given in (1) are strictly positive for all integers n, r, s ≥ 0

j = 1, 2, . . . , n: λj > 0, (4)

j = 0, 1, 2, . . . , r − 1: λ
(j)
0 > 0, (5)

j = 0, 1, 2, . . . , s− 1: λ
(j)
n+1 > 0. (6)

Proof. The property (4) has already been established in [1], for the sake of completeness we repeat here the proof: consider

pj(t) =
ωj(t)
ωj(τj)

, ωj(t) = (t − a)r(b− t)s
n∏

k=1,k6=j

(τk − t)2,

then it is clear by construction that pj(τj) = 1, and pj ∈ P2n+r+s−2 is non negative on (a, b). According to (2), we may
conclude that Rn,r,s(pj) = 0, and thus

λj = Qn,r,s(pj) =
∫
pj(t)dλ(t) > 0,

as claimed in (4).
For a proof of (5), consider the polynomial

Pj(t) = Pn,r,s,a,j(t) =
(t − a)j

j!
Ωr−j−1(t)ω(t), ω(t) = (b− t)s

n∏
k=1

(τk − t)2, (7)

whereΩm denotes themth partial sum of the Taylor expansion of 1/ω at t = a. Writing shorter

Dkc f =
f (k)(c)
k!

,

we observe that, by construction,

∀k = 1, . . . , n: D0τkPj = 0, ∀k = 0, . . . , s− 1: DkbPj = 0, ∀k = 0, . . . , j− 1: DkaPj = 0.
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Furthermore, for k = j, j+ 1, . . . , r − 1 we find by the Leibniz product rule and by definition ofΩm that

DkaPj =
k∑
`=0

[
D`a
(t − a)j

j!

] [
Dk−`a (Ωr−j−1ω)

]
=
1
j!
Dk−ja (Ωr−j−1ω) =

1
j!
δk−j,0.

Since in addition Pj ∈ P2n+r+s−1, we may conclude that

λ
(j)
0 = λ

(j)
0 j!D

j
aPj = Qn,r,s(Pj) =

∫
Pj(t) dλ(t). (8)

In order to discuss the sign of the expression on the right, we need the following auxiliary result.

Lemma 2. Let P(t) =
∏m
j=1(xj − t), with x1, . . . , xm ∈ (c,+∞), then

∀` = 0, 1, . . . : D`c
(1
P

)
> 0.

Proof. Form = 1 we find that D`c
( 1
P

)
=

1
(x1−c)`+1

> 0. The general case follows by induction onm using the Leibniz product
rule. �

As a consequence of the preceding lemma, we find that

Ωm(t) =
m∑
`=0

(t − a)`D`a
( 1
ω

)
is strictly positive on (a, b) for all m ≥ 0, and thus Pj defined in (7) is also non negative in (a, b). It follows from (8) that
λ
(j)
0 > 0, as claimed in (5).
Finally, for a proof of (6) we observe that the variable transformation t ′ = −t allows us to exchange the roles of (r, a, λ(j)0 )

and (s, b, λ(j)n+1) in the quadrature formula (1), and in particular gives a factor (−1)
j for the jth derivative. Hence the assertion

(6) follows from (5), but it is also straightforward enough to give direct proof following the above lines. �

Remark 3. Notice that also D1τkPj = 0 for k = 1, 2, . . . , n. Thus, for polynomial interpolation (in the sense of Hermite) at
the node awith multiplicity r , the nodes τ1, . . . , τn with multiplicity 2, and bwith multiplicity s, we have shown implicitly
that the Lagrange polynomials Pj = Pn,r,s,a,j associated with the jth derivative at a do not change sign on [a, b]. It follows
by symmetry that the Lagrange polynomial Pn,r,s,b,j associated with the jth derivative at b has constant sign (−1)j on [a, b].
However, the Lagrange polynomials associated with τj may very well change sign on (a, b).

The positivity of the quadrature weights is the essential key for proving the following convergence result both for
generalized Gauss–Radau and for Gauss–Lobatto formulae.

Corollary 4. Let [a, b] be compact, and q := max{r − 1, s− 1}. Then for any f ∈ Cq([a, b]) we have

lim
n→∞

Qn,r,s(f ) =
∫
f (t) dλ(t).

Proof. Let us suppose that r, s ≥ 1, the extension of the proof for r = 0 or s = 0 is straightforward. It is not difficult to see
that the space X = Cq([a, b]) equipped with the norm

‖f ‖ = max
0≤j≤q

max
x∈[a,b]

|f (j)(x)|

gives a Banach space: the completeness follows immediately from thewell-known completeness of the spaceC([a, b])with
respect to the maximum norm on [a, b], see, e.g., [4, p. 258]. Also, from [5, Theorem 6.3.2] it follows that polynomials are
dense in (X, ‖ · ‖). Hence we are prepared to apply the Banach–Steinhaus Theorem: for f being a polynomial of degree k,
we obtain from (2) that

∀n >
k− r − s
2

: Qn,r,s(f ) =
∫
f (t) dλ(t),

i.e., we have convergence for a dense subset of (X, ‖·‖). For obtaining convergence inX it only remains to show that the norm
of the linear functionals Qn,r,s is bounded uniformly in n. Writing more explicitly λ

(j)
0 (n), λj(n), λ

(j)
n+1(n) for the quadrature

weights occurring in (1), we obtain the simple upper bound

‖Qn,r,s‖ ≤
r−1∑
j=0

λ
(j)
0 (n)+

n∑
j=1

λj(n)+
s−1∑
j=0

λ
(j)
n+1(n), (9)
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since, according to Theorem 1, all weights occurring in these sums are positive. We observe that

λ
(0)
0 (n)+

n∑
j=1

λj(n)+ λ
(0)
n+1(n) = Qn,r,s(1) =

∫
dλ(t) <∞.

For the remaining terms we consider the polynomial (not depending on n)

P(x) :=
r−1∑
j=1

P0,r,s,a,j(x)+
s−1∑
j=1

(−1)jP0,r,s,b,j(x)

of degree≤ r+ s−1, where we recall from Remark 3 that each term in the above sums, representing up to a sign a Lagrange
polynomial in the sense of Hermite at the abscissa a with multiplicity r and b with multiplicity s, is non-negative on [a, b].
Hence this polynomial P is also non-negative on [a, b], implying that, again by the positivity of the weights,

r−1∑
j=1

λ
(j)
0 (n)+

s−1∑
j=1

λ
(j)
n+1(n) ≤ Qn,r,s(P) =

∫
P(t) dλ(t)

for all n ≥ 0, where in the last equality we have used (2). Hence the expression on the right of (9) is bounded uniformly
in n, and the Banach–Steinhaus Theorem allows us to conclude that there is convergence as claimed in the assertion of
Corollary 4. �

Remark 5. By using classical argumentswemay also estimate the rate of convergence of our quadrature formula: according
to (2), we find the following bound for the error

|Rn,r,s(f )| ≤
(∫

dλ(t)+ ‖Qn,r,s‖
)

inf
p∈P2n+r+s−1

‖f − p‖. (10)

Here we can give a quite rough explicit upper bound for ‖Qn,r,s‖ which is independent of n: by having a closer look at the
construction of the polynomials P0,r,s,a,j from (7) we see that

∀x ∈ [a, b] : 0 ≤ P0,r,s,a,j(x) ≤
(x− a)j

j!

r−j−1∑
`=0

(x− a)`

(b− a)s+`
≤ r(b− a)r ,

and a similar bound for (−1)jP0,r,s,b,j(x). Consequently, we learn from the previous proof and especially from (9) that

‖Qn,r,s‖ ≤
(
1+ r2(b− a)r + s2(b− a)s

) ∫
dλ(t). (11)

Using (10) and (11), it is possible to show also convergence for a composite quadrature rule based on suitably shifted and
scaled counterparts of Qn,r,s, and to derive an explicit rate of convergence in terms of the size of the largest underlying
subinterval.

3. Rate of convergence for analytic functions

Denote by Pf ∈ P2n+r+s−1 the polynomial interpolating f with multiplicity r in a, multiplicity s in b and multiplicity 2 at
the other abscissae τj occurring in (1) for j = 1, . . . , n, then using the Cauchy error formula for polynomial interpolation we
get from (2) that the error for our quadrature formula for f ∈ C2n+r+s([a, b])may be written in terms of divided differences
as

Rn,r,s(f ) =
∫ (
f (t)− Pf (t)

)
dλ(t)

=

∫
(t − a)r(t − b)s

n∏
j=1

(t − τj)2[a, . . . , a︸ ︷︷ ︸
r

, τ1, τ1︸ ︷︷ ︸
2

, . . . , τn, τn︸ ︷︷ ︸
2

, b, . . . , b︸ ︷︷ ︸
s

, t] f dλ(t)

= [a, . . . , a, τ1, τ1, . . . , τn, τn, b, . . . , b, ξn,r,s]f
∫
(t − a)r(t − b)s

n∏
j=1

(t − τj)2 dλ(t)

=
f (2n+r+s)(ξ ′n,r,s)
(2n+ r + s)!

∫
(t − a)r(t − b)s

n∏
j=1

(t − τj)2 dλ(t) (12)

with ξn,r,s, ξ ′n,r,s ∈ [a, b], since the polynomial factor in the integral is of unique sign. Denote by pn,r,s the orthonormal
polynomial with respect to the modified weight (t − a)r(b− t)s dλ(t). We suppose that λ has the compact support [−1, 1]
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with a ≤ −1 < 1 ≤ b, then it is well-known from, e.g., [6, Section 11.11] that

lim sup
n→∞

|Rn,0,0(f )|1/n ≤ 1/ρ2 < 1 (13)

provided that f is analytic in the closed ellipse Eρ with foci±1 and half axes (ρ ± 1/ρ)/2, and that this result is optimal for
measures satisfying the Szegö condition. A similar rate is shown to be true for fixed r, s > 0, and we are curious about the
rate of convergence if r = rn and s = sn such that rn/n→ α ≥ 0, sn/n→ β ≥ 0.
We first notice that ξn,r,s ∈ [−1, 1] in (12). Hence, for a (set of) contour(s) C encercling once [−1, 1] and a, b and staying

in a neighborhood of [a, b]where f is analytic, we get from the Cauchy formula for divided differences and from (12)

Rn,rn,sn(f ) =
1
2π i

∫
C

f (z)
(z − ξn,rn,sn)(z − a)rn(b− z)snpn,rn,sn(z)2

dz,

and thus

lim sup
n→∞

|Rn,rn,sn(f )|
1/n
≤ lim sup

n→∞
max
z∈C

1
|z − a|α|z − b|β |pn,rn,sn(z)|2/n

. (14)

Thuswe are leftwith the question of nth roots asymptotics for orthogonal polynomialswith varyingweights, which has been
the subject of a number of publications over the last twenty years, see, e.g., the monographs [7, Chapters III.6 and VII] or
[8, Chapter 3] of Stahl and Totik. Since the negative logarithm of the absolute value of a polynomial is a logarithmic potential
of some discrete measure, here the right tool to describe the nth root asymptotic is to consider a weighted equilibrium
problem in logarithmic potential theory: the potential and the energy of a Borelmeasureµwith compact support are defined
by

Uµ(y) =
∫
log

(
1
|x− y|

)
dµ(x), I(µ) =

∫ ∫
log

(
1
|x− y|

)
dµ(x) dµ(y).

Define the external field Q (x) = Uσ (x), σ = α
2 δa +

β

2 δb, with δc the Dirac unit point measure at x = c , then there exists
a unique probability measure µ supported on Σ = [−1, 1] which under all such measures has minimal weighted energy
I(µ) + 2

∫
Q dµ, see [7, Theorem I.1.3]. By the same Theorem (see also [7, Theorem I.5.1]) we also have the equilibrium

conditions that Uµ(x) + Q (x) is equal to some constant F on the support of µ, and ≥ F in [−1, 1]. Then according to [9]
(see also [8])(

lim sup
n→∞

max
z∈C

1
|z − a|α|z − b|β |pn,rn,sn(z)|2/n

)
≤ exp

(
2 sup
z∈C

(
Uµ(z)+ Q (z)− F

))
, (15)

with equality iff the starting measure of orthogonality λ is sufficiently regular.
For our external field, the extremal measure may be found explicitly: since Q is convex on [−1, 1], it follows from

[7, Theorem IV.1.11] that the support of µ is an interval of the form [A, B], with −1 ≤ A < B ≤ 1, and also a < A and
B < b since Q becomes+∞ at a, b and thus in a neighborhood of these points we may not have equality in the equilibrium
condition.

Lemma 6. Denoting by z 7→ φ(z) = (2z − A − B + 2
√
(z − A)(z − B))/(B − A) the conformal Riemann map sending the

exterior of [A, B] onto the exterior of the closed unit disk, then we have for z ∈ C

exp(2(Uµ(z)+ Q (z)− F)) =
1

|φ(z)|2

∣∣∣∣ 1− φ(z)φ(a)
φ(z)(φ(z)− φ(a))

∣∣∣∣α ∣∣∣∣ 1− φ(z)φ(b)
φ(z)(φ(z)− φ(b))

∣∣∣∣β , (16)

where−1 ≤ A < B ≤ 1 are defined by the system

α

2

(√
A− a
B− a

− 1

)
+
β

2

(√
b− A
b− B

− 1

){
= 1 if B < 1,
≤ 1 if B = 1,

α

2

(√
B− a
A− a

− 1

)
+
β

2

(√
b− B
b− A

− 1

){
= 1 if A > −1,
≤ 1 if A = −1.

Proof. Denote by σ̂ the balayage measure of σ onto [A, B], then by [7, Theorem II.4.4], µ+ σ̂ is a positive measure of total
mass (1 + α

2 +
β

2 ) supported on [A, B], and from the equilibrium conditions we know that its potential is constant quasi
everywhere on [A, B]. However, by, e.g., [7, Theorem I.1.3], the onlymeasure satisfying this relation is (1+ α

2 +
β

2 )ω[A,B], with
ω[A,B] the Robin measure of [A, B], i.e., the equilibriummeasure with external field 0 on [A, B]. Hence from [7, Eqns. (II.4.32)
and (II.4.35)] and the fact that Uµ + Q − F equals zero on [A, B]we may conclude that

Uµ(z)+ Q (z)− F =
α

2
g[A,B](z, a)+

β

2
g[A,B](z, b)−

(
1+

α

2
+
β

2

)
g[A,B](z,∞),
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Fig. 1. Level curves for different choices of the parameters a, α, b, β: on the left we find the classical case α = β = 0, here [A, B] = [−1, 1] and the level
lines are ellipses. On the right α = β = 1 and b = −a = 1, the endpoints of the support of orthogonality, here the level sets for ρ > 1 are connected with
connected complement, in this case B = −A ≈ 0.86603.

Fig. 2. Level curves for different choices of the parameters α = β: in both cases, a = −1.5, b = 1, but on the left we find α = β = 0.2, on the right
α = β = 1, leading to [A, B] = [−1, 1] in both cases. In particular, for small ρ > 1 we find three connected components for our level sets.

where by x 7→ g[A,B](x, y)we denote the Green function of the domain C \ [A, B]with pole at y 6∈ [A, B]. Taking into account
the link [7, Eqn. (II.4.45)] between the Green function and the Riemann map, relation (16) follows. Finally, the so-called
F-functional of [7, Theorem IV.1.5]

F(A, B) = log
(
B− A
4

)
−
1
π

∫ B

A

Q (x) dx
√
(x− A)(B− x)

=

(
1+

α

2
+
β

2

)
log

(
B− A
4

)
+
α

2
g[A,B](a,∞)+

β

2
g[A,B](b,∞)

must take its globalmaximumon−1 ≤ A < B ≤ 1 at the endpoints of the support of the extremalmeasureµ. Taking partial
derivatives, we arrive at the given system of equations and inequalities for A, B as in [7, Theorem II.4.4 and Lemma II.1.15],
compare with [7, Example II.1.17] for the special case a = −1 and b = 1 of Jacobi weights. �

In order to exploit Lemma 6, we have to consider for ρ > 1 the (closed) level sets Eρ(a, α, b, β) being the complement
of the set of z ∈ C \ [A, B] where the right-hand side of (16) is < ρ−2 < 1. Notice that for α = β = 0 we have
[A, B] = [−1, 1], and we obtain for the complement the reqirement |φ(z)| > ρ, that is, Eρ(a, 0, b, 0) coincides with the
ellipses Eρ considered before. Also, by the equilibrium conditions, [−1, 1] ∪ {a, b} ⊂ Eρ(a, α, b, β) for all ρ > 1, and from
the maximum principle for analytic functions wemay conclude that Eρ(a, α, b, β) has a connected complement containing
a neighborhood of infinity, and at most three connected components, one of them containing a (if α > 0), a second b
(if β > 0), and the third the interval [−1, 1], see Fig. 2. Moreover, if A > −1 (and similarly B < 1), then µ is also an
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Fig. 3. Level curves for different choices of the parameters β: in both cases, a = −1.5, b = 1, α = 1, but β = 1 on the left (leading to
[A, B] = [−1, 0.8402]), and β = 1.2 on the right (leading to [A, B] = [−1, 0.79334]). Here for small ρ > 1 we find two connected components for
our level sets.

extremal measure if we replaceΣ = [−1, 1] by the larger set [a, 1], and hence [a, 1] ⊂ Eρ(a, α, b, β), showing that there
are only at most two connected components (see Fig. 3).
If we choose as C the boundary of some level set Eρ(a, α, b, β) for some ρ > 1, this (set of) contour(s) encircles once

a, b, and the interval [−1, 1]. A combination of (14)–(16) leads to the following result.

Theorem 7. Suppose that rn/n→ α ≥ 0, sn/n→ β ≥ 0, and let f be analytic in Eρ(a, α, b, β) for some ρ > 1, then

lim sup
n→∞

|Rn,rn,sn(f )|
1/n
≤ ρ−2.

One may show that again this estimate is best possible if the orthogonality measure λ is sufficiently regular. In addition,
if λ satisfies the Szegő condition, then following [10] we may obtain strong asymptotics for the orthonormal polynomials
pn,rn,sn , and hence with help of steepest descend an asymptotic equivalent of |Rn,rn,sn(f )|.
Different examples for the level sets of the preceding theorem are given in Figs. 1–3. Though the shapes of these sets

are quite different depending on the parameters, there seem to be clearly an indication: if the function f is regular in larger
neighborhoods around a and b, but not in such a large neighborhood around for instance 0 (which is true for instance for
the function f (z) = 1/(1 + z2)), then by the choice of larger α, β one improves the rate of geometric convergence of our
generalized Gauss–Lobatto quadrature formula.
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