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Abstract

We provide sharp decay estimates for circular averages of a certain bilinear extension
operator on L2(S') x L*(S").
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1. Introduction

In this paper we establish a certain bilinear estimate for circular averages of the
extension operator for the Fourier transform on S' cR?. For fe L*(S') let f(x) =

f(=x), (so that f — f represents translation by 7 when S' is thought of as T = R/Z),
and let the extension operator be given by

fao(x) = [

S

e (y)da(y)
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for xeR?. Here and throughout, do denotes surface measure on S' or, in this

introduction only, S"~!, according to context.
Our principal result is:

Theorem 1. If f,ge L*(S") with

dist(supp(f),supp(g))

and

dist(supp(fj, supp(g)),

bounded below, then

— — C
[ 170 (Re)g do (R)| do(x) < 111l
for all R>0.

Remark. (i) The constant C that appears above depends only upon the lower bound
in the support hypothesis.

(ii) Since f{x) = f(—x), the second support condition dictates that the supports of
f and g cannot be ‘diametrically opposite’.

(iii) The decay rate R/ is optimal, as we shall show with some examples in
Section 6 below.

Before passing to the proof of Theorem 1, it would seem appropriate to try to
place the result in context. In the first instance there is a corresponding linear
estimate (which is equivalent to a bilinear estimate without support restrictions). It is
the following:

Linear estimate: For f e L*(S"),
|f/c-l';(Rx)|2 da(x)<—c I¥alk:
s' SRV

Thus, the ‘gain’ of R'/® in the decay rate of Theorem 1 is attributable to the
hypothesis of separation of the supports of £, g.
This linear estimate is a special case of an n-dimensional result:

Linear Estimate (n-dimensions): For f e L*(S"™"),

R 11

[ |17 (R o) < i

This result was a principal ingredient used by Barceld et al. [2] in their study
of radial weighted estimates for solutions to the Helmholtz equation, and,
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independently, by Carbery and Soria [4] in their study of localisation problems
arising in multiple Fourier inversion.

Both these works raised implicitly (see also [5] for further discussion) the
possibility that one might consider whether the following inequality holds for

arbitrary positive measures p supported in the unit ball B of R”, and f eLz(S"”):

/\fa’t7 Rx)[* dp(x) < <SR- ]|||ﬂH|R||f||27
where

2
w(T(o,0°R
Nl = sup  ATECR)
T:R'<a<R1/2 %

and T'(a, ) denotes a tube in R” with n — 1 short sides o and one long side 5. This
inequality is known to be true (perhaps with some extra logarithmic factors) when
du(x) = w(x) dx and the weight w is radial [2,4]. In any case, when du = dg, it is
easily seen that |||a]|| is realised at R-%/3 by R~'/3 tubes tangential to S"~', and that
it takes the value approximately R'/3, thereby explaining the form of the linear
estimate above.

Thus, our Theorem 1 may be seen as a first step in understanding the general two-
dimensional bilinear inequality

/B o (Re)g do (R)| dy(x) < 221111l

under the support conditions of Theorem 1.

Finally, we note that inequalities of this kind, in either their linear or bilinear
settings, are likely to prove useful in a variety of problems. (One needs only to point
to [8] in the recent literature concerning bilinear extension estimates.)

2. A preliminary reduction

We shall concentrate on proving the following inequality, equivalent to Theorem

1. If lpeLOC(Sl) and f and ¢ have separated supports, as in the statement of
Theorem 1, then there exists an absolute constant C such that

/§ e (Rx)g do (RX)Y(x) do(x)| < s W11 sl (1)

for all R>0.

The support properties of f and g imply that f dox(gdc)* is supported in
a closed annulus A4 centred at the origin and contained in {xeR*:0<|x|<2}.
(Here, h*(x)=h(—x).) If Qe¥(R?) is real valued, radial, and such that
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supp(Q) = {¢eR?: 0<|¢| <2}, and O(¢) = 1 on A, then
[ Fdo(Rogdo (Ro)W(x) dax) = [ (f das (g do)*)” (R (x) do()
| S do+(gdo)* (x)0(x) do (R) d
| Jdo (Rx)g do (Rx) Qg do(x) dx
where Qy/r(x) = R*Q(Rx). Hence, it suffices to show that

W11 1Al lgll (2)

/fda Rx)gda(Rx)Ql/R*lpda( ) dx| <

R5/6

for all f,ge L*(S"). Note that the introduction of the function Q has allowed us to

work with arbitrary functions f,ge L3(S").
If we write f and ¢ as Fourier series,

_ § : ajezjargx

jez

and
X) — Z ﬁkelk 'alrgx7

kez

we obtain
fdo (Rx) =" o;J;(R|x|)el 2 *

J

and

gdo(Rx) Z Biedi(R|x[)e™ e,
where J,, given by

2n
J”([) _ / ei(n()ft cos 0) d@,
0
denotes the Bessel function of order n. Similarly, if

_ im arg x
x) = E cpe™ e,

meZ
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then

Qir*y do(x) = Qi/r(x = )e™ "8 da(y)

RZQ(R(tei(d)fﬁ _ 1))eimé) do

Sonf,
2n
- Em: / RPQ(R(1e"? — €)™ do(x = 1)
S|

2n
Cmeimd) / RZQ(R(teiE) _ 1))671')116' do
0

where
2n
F(t,R) = / R Q(R(te" — 1))e™ ™ d. (3)
0
(Here we are identifying R? with C merely for convenience.) Consequently,
/ f/d;(Rx)g/a-’(\r(Rx)Ql/R s do(x) dx
RZ

=[5 com (RIS BRI 47 5 F (3], R) d
R” j kom

= 27t/ V Z o J;(RS) BTk (RS)ci—jFi—i(s, R)s ds.
0 Jk

We shall prove Theorem 1 by showing that

/ Z o;J;(Rs) By Ji (Rs) ek Fi_j(s, R)s ds

SWIIlPIIooHa\lzzmllﬁ\l;z(z) (4)

for all o, Be *(Z).

Due to the fact that for each keZ, J_, = Ji, we will split our analysis of the
above into two parts. Part 1 will correspond to summing over j, k>0, and
Part 2 to summing over j<0 and k>0. The remaining terms can be understood by
symmetry.

Notation. For X, Y >0, we say that X ~ Y if X lies between two positive absolute
constant multiples of Y. The constants may change from line to line, but remain
absolute.
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3. An overview of the proof

As noted above, we shall prove Theorem 1 by proving inequality (4).
In order to understand the left-hand side of (4) we need some estimates
on Bessel functions and on the functions F,,. We begin with the Bessel function
estimates.

3.1. Behaviour of J,

Lemma 2. There exists an absolute constant c¢ such that for each k=0,

1/4}

ls] + &
Is| — Kk

uk@)gcslﬂnnn{kvﬂ

(so that in particular, |Ji(s)| <cs~'/?), and furthermore,

i (s)|<es™ 12,

The above lemma can be found for example in [6], and can be used to prove the
following:

Lemma 3. For each t>1,

j-,keNS;l;'Ijk\w |J/<S)Jk(s>|7 j,keN;lS/liffl\'Fl |Jj(S)Jk(S)‘
1, 0<s<3t,
<esTO8 (/)Y 3i<s<p,
st/e, s>8.

Proof. We sketch the proof of the first estimate only. Firstly, we note that it
suffices to establish this estimate with sup;cn;—x~, replaced by sup; ey i—-
This is a consequence of a certain scale invariance (in ) of the claimed bound,
and the fact that symmetry allows us to suppose that j>k. Hence, it suffices
to show that

1, 0<s<3t,
sup |Jj(s)J;-i(s)| <es /0 s/, Bi<s<i,
’ s'/e, s=>1.

This estimate follows by applying Lemma 2 to the product |J;(s)J;—(s)| for each
jeN. O
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3.2. Behaviour of F,

Recall that F, is defined by (3), where the function Q is smooth, radial, and has Q
compactly supported in {éeR*: 0<|é|<2}. If we pretend temporarily—in violation
of the uncertainty principle—that @ itself also has compact support in
{xeR?:|x| <1}, the following properties of F,, are easy to establish:

(i) F,, is essentially supported in {|z — 1|<+%}.
(ii) |F,(t, R)|<CR.
(111) |Fm(ra R) - Fm’(rv R)‘ < C|Wl - ml|'
(iv) [y Fo(r,R)rdr =0.
) |f030 For(r, R)rdr|<C/R, (since O vanishes on {I¢] =2}).

A more rigorous analysis of the functions F), is contained in the detailed proofs of
Sections 4 and 5. For now we only wish to comment that the vanishing of O at the
origin is needed for Part 1 terms while the vanishing of O on {|¢| = 2} is needed for
Part 2 terms. In particular, see Section 5, analysis of term III’, for further details of
estimate (V).

3.3. Strategy of the proof—Part 1 terms

The fact that Q has compact support means that we should not expect to see any
structure in ¥ on a scale finer than 1/R. Thus, we may assume that the Fourier
frequencies of {y of order greater than 2R are negligible in comparison with those of
order less than 2R. Therefore, in examining (4) (with j, k >0) we may assume that the
principal contribution arises when |k —j|<2R, and it is then reasonable to
decompose the (j,k) sum into regions where |k —j|~27R, 1<2’<R. At the
expense of incurring at most an extra logarithmic term we may treat each p
separately. For each such p, the bilinear form is now ‘local’ on scale 277 R, and so we
may assume that for certain jo,ko with |ko —jo|~277R, the {o;} and {f;} are
supported in |j — jo| <27772R and |k — ko| <27772R, respectively.

For p, jo, ko,j and k as above, we may estimate

<

/000 Ji(Rs)Ji(Rs)Fo(s, R)s ds

/Om Ji(Rs)Ji(Rs)Fr—j(s, R)s ds

+

/0% Ji(R$)Jic(RS)[Fr—j — Fol(s, R)s ds

For the first term we can use property (iv) of Fy to allow us to integrate by parts,
and then properties (i) and (ii) of Fy and the relevant Bessel function estimates to
control the resulting terms by O(R~>/®). For the second term we use property (iii) of
F,, to obtain a similar bound.
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Of course, it is not merely size of [ J;(Rs)J(Rs)Fy_;(s, R)s ds which determines
the behaviour of the quadratic form in (4); but supposing it were only size that
mattered, we would now be finished because, by Plancherel’s theorem,

132 Bl I<IW Lo Nl 1Bl -

3.4. Strategy of the proof—Part 2 terms

For Part 2 we need to examine
_ o0
S e | RIS Feeyls, R .
Jik=0; k+j<2R 0

where d@; = o_; and it is now more natural to break the (j,k) sum into regions
where 2R — (j + k)| ~27R, 1<2?<R. We now estimate the integrated term by
adding and subtracting Fag(s, R) (instead of Fj as in Part 1) and proceed similarly
using property (v) of Frg to once again integrate by parts and obtain a suitable
estimate.

For technical reasons, the formal proof below in Sections 4 and 5 proceeds along
lines slightly different from those described here. Nevertheless, it is hoped that these

remarks will provide a useful guide for the reader in following the arguments of the
next two sections.

4. The proof of Theorem 1: Part 1

In this section we consider the contribution arising from the indices j, k>0.

We first set up some further notation. For a 2zn-periodic function v on R we denote
by #(n) its nth Fourier coefficient. For NeN, let ®y be the Nth Fejér kernel on
R/Z =T and let

Vy =2@yn 11 — Py
be the Nth de la Vallée—Poussin kernel. For /e N let
Wi = Vysi — V.
We will need the following well-known elementary lemma.

Lemma 4.

@yl =1
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and there exists an absolute constant ¢ such that

2
/0 By (0 — ¢) — By (0)] dO< NI
for all NeN.

Let /o and /; be the smallest integers for which 20 >R, and 21 > (2R)"*. Now,

/% Z o;J;(Rs) By Jx (Rs) e Fr_j(s, R)s ds

0 /0 1 A
/0 o J;(Rs) B Ji(Rs) Wik — j)ek—j(Fr—i(s, R) — Fo(s, R))s ds
= ]k

s [ 8 (ROBIRT V3 (k= ek iy, R) = s R)s s
Tk

[ 52 s RIFLITR Vo) il s

‘/0 =l

=1+II+1III+1V.

Ms»

Z ojJ; (Rs)B;Ji(Rs) W;(k J)er—iFr—i(s,R)s ds
Jik

\.

Estimating III: Observe that since Q has integral zero on R,

o0
/ Fo(s,R)sds =0
0

for all R. Integration by parts in III thus gives,
Il =—R / Z %} (Rs) BTk (Rs)
+ ajJ,-(Rs)m) ( /0 Fo(t, R)t dt> Voo (k — )er; ds.
Now, for each s=0,

> o/ (Rs) BTk (Rs) Vo (k — f)er—
Jik

<||f1llgll> SUP |J/(RS)Jk(RS slgp

§ im0
V210 m e

m

-5/6
SCUA 1Ml 1o [V 1 | Rs|
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by Lemma 2. Since, by Lemma 4, Vy is bounded in L! uniformly in N,

o0 N
<R llll . R [ 57| [ Rt Ry ds.

To obtain the desired estimate for III, it suffices to show that

R/ §3/6 / Fo(t, R)tdt
0

0
Lemma 5. For each N eN there is a constant Cy such that

ds

is uniformly bounded.

Cymin{s, 1}

<
(1+R|s—1))Y

/l Fo(t, R)t dt

0

for all s=0.

Proof.
s s p2n
_ 2 i0_
/OFo(t,R)tdt_/O/O R O(R(te” — 1)) dOt dt
= [ Rowre— (1,0 ax
_ _/ R2O(R(x — (1,0))) dx,
[x|=s

since [» O = 0. The lemma now follows from the above two expressions and the fact
that Q is rapidly decreasing. O

By Lemma 5, for N>2,

o]
R/ s/6
0

* 573 /%min{s, 1}

ds< CR/V—N s
o (I+R[s—1|)

@ Rds
<C/ T
o (1+R|s—1])

< O

/ Fo(t,R)t dt
0

uniformly in R, as required.

Remark. Within the analysis of III lies a proof of the fact that under the hypotheses
of Theorem 1,

/§ o (Rx)g do (Rx) do(x)| < 5 1711l (5)
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for all R>0. However, this requires the additional estimate

sup |J;(s)J/(s)| <es~!
Jjez ’

for some constant ¢> 0. This estimate can be found in [1]. (A proof of a result similar
to (5) can be found in [5].)

Estimating 1I: For each s>0,

>~ @ Ji(Rs) B Ji(Rs) Vo (k — j)e—i (Fi—y (s, R) — Fo(s, R))
Jik

<[ f1l:llglly sup 1;(Rs) Tk (Rs)ll[vl
JiK

2n
x/ Z Vo, (m)(Fp(s, R) — Fo(s, R))e™ | d0.
0 m
Now,
> Fuls. R)e" = R*Q(R(s¢" ~ 1))
and so

Z I7271(””1)(Fm(5', R) — FO(S, R))eim()

2n
- /O Vi (0~ ) — Vo (0)]RO(R(s¢™ — 1)) dp

and hence, by Lemma 4,

2n
</0

2n 2n
) -V 2 i _
<f (/0 V(0 - 6) V21(9)Id9)R|Q(R(se )l dg

> Vi (m)(Fu(s, R) — Fo(s, R))e™ | dO

m

2n
<C /0 26| R Q(R(s¢" — 1))] d (6)
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and so,
0 2/3 2n )
IHI<C2"|\f|\2|\gllzlllﬁllm/0 (Rs)” /*/0 || R?|Q(R(se'” —1))| deps d.

Now,

/ " (Re) 2 / " GIRIQ(R(se — 1))| dips s
0 0
- / |Rx| " arg x|R|Q(R(x — (1,0)))] dx
RZ

- / |01+ Roy2)| 2P arg (71 + R y2)I100) | dy
<3 R arg (1 + RO dy
lyI<R/2

+/ (71 + R,y2)| | arg (1 +R,yz)IIQ(y)|dy}- (7)
[y/>R/2

Since the first term in the above sum is dominated by

R—2/3/ bl d <2R‘5/3/ p
eram +RIGDID | low)ldy

and the second term is rapidly decreasing in R,

< C2 R fllllglla W] < CR™PI AL gl W] o

since 2 < (2R)1/ 3, Evidently, we could have chosen /; to be much larger; however,
this turns out to be of no advantage to us in the analysis that remains.
Estimating 1: Fix e Z such that [, </</y and s>0, and consider

> 04 (Rs) BTk (Rs) Wik = j)ci—i(Fi—i(s, R) — Fo(s, R)).
J.k

Now, ﬁ/\l(k —j)#0< |k —j| ~2!, and so we may restrict our attention to sequences o
and B such that o= {o}; . <219, and B = {Bi}y_s,<2/10, for some jo and ko
satisfying |ko — jo| ~2'.
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Now,

> 0 Ji(Rs) BT (Rs) Wik — j)ex—i(Fi—i(s, R) — Fo(s, R))
Jik

1/2 1/2
<( > |o<,-Jf<Rs>|2) ( 2. ﬁkfk<RS>2)

li—jol<2!/10 |k—ko| <2//10

X sup | > Wi(m)ew[F(s, R) — Fo(s, R)]e™”
0 m
< flLlgllLlWll,  sup  |J;(Rs)Ji(Rs)|
[i—k|~25 k=0

do

2n
x /U

<CIfLIglLIWIL, — sup |J;(Rs)Jk(Rs)|
[i—k| ~ 21,k =0

2n )
x / 2 6|R|Q(R(se — 1))] d.
0

Z Wi(m)[Fp(s, R) — Fo(s, R)]e™

The last inequality above follows as in (6). Now, by Lemma 3,

0 2
/0 sup | (Rs)Je(Rs)| / 2|6 R|Q(R(se® — 1))|déps ds

= ~2!

<CRS [ e arg xRYUQURx ~ (1,0))] d
|x|<3.21/R
vere | /SRl /2)! 2 arg xR QURCx = (1,0))]
3.2//R<|x|<2¥/R

+C/ 2'R*|Q(R(x — (1,0)))| dx.
Ix|>23/R

The first and second terms in the above sum are bounded above by C%R‘S/ 6 and
C(%)S/ RS/ 6 respectively, by arguing as in (7). The third term decays rapidly in R

since 2/ =2/ > (2R)1/3. Summing in /; </ <y gives the desired estimate for I.
Estimating IV: Fix [ >y, and let the sequences o and f be localised as before. Now,

S° i (Rs) BT (Rs) Wik — j)cx—iFi—i(s, R)
Jik

> Wi(m)Fu(s, R)e™| do.

m

2n
<[If1Llgll 1]l sup \J_/(RS)Jk(RSﬂ/
[k—j~2! 0
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On integrating by parts we see that

> Wim)Fy(s, R)e™

[ Wi(¢)R*Q(R(se""~?) — 1)) d¢p
0

- TS Wl A (RQUR( ) - 1) d
i d o \nje dd) se

2n

_?0

Wi(9)5 (RO(R(se" ~ 1)(0 ) do,

where

for each neZ.

Remark. Since, like 177, /1/171 has mean value zero on [0, 27], the above integration by
parts argument can be iterated yielding rapid decay in 2//R. However, this is not
necessary for our purposes.

Observe that

%(RQ(R(se” - 1)) Z%(RQ(R(SCOS t—1,ssin1)))
= Rx* - VO(R(x = (1,0)),

where x = (scos ¢,ssin ¢), and x+ = (—ssin ¢,5cos ). Hence,

/271
0 m

do

> Wi(m)F,u(s, R)e™

R . 2n
<?HW1||1/ |(—ssin0,scos 0) - R*VQ(R(scos 0 — 1,s5sin 0))| dO
0
and since sup, || W)||, < oo,

0 2n
/ sup |J;(Rs)Jk(Rs)| /
0 |kl ~2'

R
<Csp [ sup  |L(RIX)k(R|x])|[x| R*[VQ(R(x — (1,0)))| dx
2R i~

Z Wi(m)F,(s, R)e im0\ J0s ds

m
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R
=05 sup [ (RIx|)Ji(R|x])|Ix|R*VO(R(x — (1,0)))] dx
[x|<3.2!/R |k—j| ~2!
R
+ Cg/ sup_ |Ji(RIx|)Je(R|x])||x| R*|VQ(R(x — (1,0)))| dx.
|x|>3.2//R |k—j| ~2!

Now, by Lemma 3, for |x|<3.2//R,

Sup VR (R < ClRx| ¢
—j ~2

and so,

/I sup_ |J(RIx|)Ji(RIx])||x| RV Q(R(x — (1,0)))] dx

X|<3.21/R [k—j|~2!

<CRS/6 / x|/ RV Q(R(x — (1,0)))] dx
[RZ

< CR/®,

Since for all /=1,

/ sup | (RIx|)Jk(RIXDIX|R* [V Q(R(x — (1,0)))| dx

x| >3.2/R [k—j|~2

<c / YRIVO(R(x — (1,0)))]
|x[>3

is rapidly decreasing in R, we conclude that
>~ i (Rs) BTk (Rs) Wik — j)ex;Fi—y(s, R)|s ds

/ o0
0 |k

R
<CG RO llgl Wl

Summing in / >/, we obtain
VIS CR™C[| £l gl Wl

as required.

5. The proof of Theorem 1: Part 2

In this section we consider the contribution arising from the remaining indices;
j<0 and k=0.
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We recall the notation established at the beginning of Section 4. Let N e N be such
that 2R< N <2R+ 1. Now,

a > RITRS ey o5 Ris e

o lo 1 e
/ ‘J/(Rs)ﬁkfk(RS) Wik —j — N)cg—j(Fr—j(s,R) — Fy(s,R))s ds
=l jk

/ Z 0;J;(Rs) B Ji(Rs) Vs (k — j — N)cx—_;(Fi_j(s, R) — Fy(s, R))s ds
/ Z 07 J; (Rs) BT ( )V210 (k—j—N)ci—iFn(s, R)s ds
Jik

/ T (RS)BeTe (RO Wik — ] — N)ex_Foy(s. R)s ds
=ly jk
+I’+II’+IH’+IV’.

Estimating TII': We begin by observing that

/OC Fy(s,R)sds = O(R™").
0

To see this we write

/ Fy(s,R)sds
0

0 2n
= / / R2Q(R(se"” — 1))e™™ d0s ds
o Jo

= /2 R*Q(R(x — (170)))eiNargxdx’

= / RzQ(R(x_O’())))e—i(x( ))(ON)(l (xp—arg x) _1) dx
R

(since Q vanishes on |¢| = N/R)
< [ RIQ(RC: = (1,0))| Ry — arg x| v
RZ
= [ 100z - Rarg (v + (R 0))]

By decomposing the range of integration in the final expression above and using the
fact that Q is rapidly decreasing, O(R™!) follows.
Let ne C(R) have integral 1, and let i,z = Ry(R-).
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Now, for

)»:/ vFN(s,R)sds,
0

we write

0 -
' = /0 Z %;J;(Rs) By (Rs) Vaiy (k = j — N)ex—j[Fn (s, R)s — 2y jp(s — 1)) ds
Ix;

+ }“/o Z :Jj(Rs) By T (Rs) Vi (k — j — N)ci—jnir(s — 1) ds.
Jk

To the first term in the above we may apply the same integration by parts argument
that we used to control III, since by construction,

/OOC[FN(S, R)s — Jny (s — 1) ds = 0.

The remaining term we trivially control by ¢cR™Y| f|],||g]l,|1¥]] .. -

Observation: In all of our estimates it is enough to restrict our attention to s
satisfying R|s — 1| < R®, for any fixed ¢>0. This is a consequence of the rapid decay
of Q, and can be seen as follows:

/ Z o J;(RS) BTk (Rs)ck—jFr—i(s, R)s ds

s=0;R[s—1|>R¢ Tk
<||f||z||g||2|\w||w/ RIQ(R(x — (1,0)))] dx
Rl[x|-1]> R

<CkRE[| S]]

for some constant Cx (depending on &), for all KeN.

In the following estimates it will be convenient to make such a restriction on s.

Estimating 1': We begin as in the estimation of 1. Fix /e Z such that /; </<ly, and
s>0 such that R|s — 1| < R* for some 0 <&¢<1/3. As before, we restrict our attention
to sequences o = {oj};_;<2/100 and B = {Bi}y_x <210, for some jo and ko
satisfying |k() —Jo — N| ~2!

Now,

Za] Rs)BJi(Rs) Wik — j — N)ex—j(Fi—j(s, R) — Fx(s, R))

<ClfILlglLIWll,  sup |J;(Rs)Ji(Rs)]
Jk—j=N|~2!

2
< [ 21gIRIORGE ~ 1)] o, (s)
0
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where the supremum is restricted to j<0 and k>0. Since 2/>2/ > (2R)1/3,

{(J.5) |k —j = N|~2"y < {(j k) : [k —j — 2Rs|~2'}
and so (8) is less than or equal to

Cll AL lgl2 ] sup [Jj(Rs)Ji(Rs)]
|k—j—2Rs|~2/;j<0,k>0

2n )
< [ 21GIRIORE - 1)] o,
0

We now proceed as in the analysis of I, but using the second estimate from Lemma 3
rather than the first.

Estimating 1I' and 1V': We may estimate 1’ and 1V’ as we did II and IV,
respectively, with little complication.

6. Optimality of the decay rate in Theorem 1

We give two examples which demonstrate the sharpness of the decay rate in
Theorem 1.

We will say that a function f : S' > C is an ‘S'-modulated cap’ if
£(6) = ze (e e
for some cap C<S' and keZ. We will say that £ is an ‘R*-modulated cap’ if
f(x) = ge(x)e™

for some C<=S' and aeR?.
Our first example is in terms of S'-modulated caps, and is the natural example

given our proof of Theorem 1. Our second example will be in terms of R*>-modulated
caps.

6.1. Example 1
The important observation here is that, in a very precise way ‘the operator
grgdo(R),
restricted to S', rotates S'-modulated caps, and the angle of rotation depends on the

frequency of the modulation’. So, by choosing the frequencies appropriately, we can
‘run the caps into each other’.
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Notation. For a cap C<=S! we denote by C* the cap with the same centre as C but
with half the angular length (the ‘concentric half’ of C).

Let C; and C, be 1-caps on S' centred at (1,0) and (0, 1), respectively.
Let

£(x) = 76, (x)eR e

and
g(x) = Xczu(—Q)(X)-
Now,
f/d-;(Ré) :/ eiR(Ofcos(()farg &) do
C
and
g/d\a(Ré) _ / efiR cos(0—arg &) do
Czu(—Cz)

for ¢€S'. Let hi(0) = cos(0 — arg &) — 0, and hy(0) = cos( — arg &). We observe
that

H(0) =0<0=argé—mn/2
and
H(0) =0<0=argl, argl+n
It is now easy to see that
fdo(RE) = R TR(R) + O(R™)
on Cf + {n/2} (C} rotated anticlockwise through 7/2). Similarly,
gdo(RE) = Jo(R) + O(R™)
on C¥uU(—C%). From the optimal* asymptotic estimates,

|[Jr(R)|~R™'3 and|Jo(R)| <R,

4Optimal from the point of view of the decay exponents; in particular, we refer the reader to Watson
([9, p. 260]) for the estimate for Jg(R).
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we may now conclude that since C} + {n/2} = C%, the estimate

[ 170 (Ro)g o (RE) ()< RV 11 gl
is also optimal.

Remark. If f is an S'-modulated cap with frequency &, (0 <k < R), then we get some
intermediate rotation (between 0 and 7/2) given by the critical points of the phase
Rcos(0 —arg &) + k0.

6.2. Example 2

Let €=S' be a cap of angular length 1, centred at the north pole (0,1). Let cc S’
be a cap of angular length R~'/3, centred at the point (1,0). We now choose
g(x) = e (x)e™
and
iRa-x

S(X) = ge0(—g)(x)e™,

where a = (0,1 — 2R~'/3). By easy considerations, there exists an absolute constant
¢>0 such that

g do (RE)|=cR Py (8), 9)

where T is the rectangle of dimensions R=*3 x R~!/3, centred at (0, 1) with long side
pointing in the direction (1,0). By arguments similar to those in Example I,

(Xsu(—g) da)" (RE) is well approximated by J;(Ré) on the cone
I'={¢eR*:1&>218 ]},
with an error of order (1 + R|¢|)™". Hence, for R|¢ —a|> 1,
fdo(RE) = do(R|¢ — al) + O((RIZ —al)™")
on I' + {a}. By stationary phase (see [7]) we have the asymptotic estimate
do(X) = c|X|"'? cos(|X| — n/4) + O(|X| %), as |X|-

and so, for R|¢ —a|> 1,

Sdo(RE) = e(R|& — al)”? cos(RIE — al = n/4) + O((R|¢ —al)™")

on I' + {a}.
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Merely to avoid irrelevant technicalities, let us suppose that
|fdo(RE)|=c(1+ R|E —a])”"/?

on I' + {a}.
Now, by construction, |[TAS'|~R~1/3 and on T<T + {a}, | fdo (RE)|>cR™/3.
Since || /]|~ 1 and [|g[[,~R""/°,

[ 170 (RO)gdo (RE) (&) > <R ~ RV

as required.
Finally, we remark that Example | has very much in common with the example in
[3, Section 3]
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