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Abstract

In this Letter, we investigate the structures of the pseudoscalar charmonium and bottomonium in the framewor
coupled rainbow Schwinger–Dyson equation and ladder Bethe–Salpeter equation with the confining effective potential
modified flat bottom potential). As the current masses are very large, the dressing or renormalization for thec andb quarks
are tender, however, mass poles in the timelike region are absent. The Euclidean time Fourier transformed quark p
has no mass poles in the timelike region which naturally implements confinement. The Bethe–Salpeter wavefunctions
mesons have the same type (Gaussian type) momentum dependence and center around zero momentum with spati
to aboutq2 = 1 GeV2 which happen to be the energy scale for chiral symmetry breaking, the strong interactions in the i
region result in bound states. The decay constants for those pseudoscalar heavy quarkonia are compatible with the
experimental extractions and theoretical calculations.
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1. Introduction

Heavy quarkonium, bound state of the heavy qu
and antiquark, characterized by at least three wid
separated energy scales: the hard scale (the massm of
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the heavy quarks), the soft scale (the relative mom
tum of the heavy quark–antiquark|p|) and the ultrasof
scale (the typical kinetic energy of the heavy qua
antiquarkE), plays a special role in probing the stro
interactions in both the perturbative and nonpertur
tive regions. By definition of the heavy quark,m is
large in comparison with the typical hadronic sc
Λ , the corresponding processes can be succ
QCD
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fully described in perturbative quantum chromod
namics (QCD) due to the asymptotic freedom. Ho
ever, the lower scales|p| andE, which are responsibl
for the binding, cannot be accessible by perturba
theory. The appearance of multiscales in the dynam
of the heavy quarkonium makes its quantitative stu
extremely difficult, the properties of the bound sta
and their decays can provide powerful test for QCD
both the perturbative and nonperturbative regions.

The physicists propose many original approac
to deal with the long distance properties of QCD, su
as chiral perturbation theory[1], heavy quark effective
theory[2], QCD sum rules[3], lattice QCD[4], pertur-
bative QCD[5], coupled Schwinger–Dyson equatio
(SDE) and Bethe–Salpeter equation (BSE) met
[6], nonrelativistic QCD[7], potential nonrelativistic
QCD [8], etc. All of those approaches have both o
standing advantages and obvious shortcomings in
or other ways. The coupled rainbow SDE and lad
BSE have given a lot of successful descriptions
the long distance properties of the low energy Q
and the QCD vacuum (for example, Refs.[9–12], for
recent reviews one can see Refs.[13,14]). The SDE
can naturally embody the dynamical symmetry bre
ing and confinement which are two crucial features
QCD, although they correspond to two very differe
energy scales[15,16]. On the other hand, the BSE
a conventional approach in dealing with the two bo
relativistic bound state problems[17]. From the solu-
tions of the BSE, we can obtain useful informati
about the under-structure of the mesons and ob
powerful tests for the quark theory. However, the ob
ously drawback may be the model dependent ker
for the gluon two-point Green’s function and the tru
cations for the coupled divergent SDE and BSE se
in one or the other ways[18]. Many analytical and nu
merical calculations indicate that the coupled rainb
SDE and ladder BSE with phenomenological poten
models can give model independent results and s
factory values[6,9–14]. The usually used effective po
tential models are confining Diracδ function potential,
Gaussian distribution potential and flat bottom pot
tial (FBP)[13,14,19–21]. The FBP is a sum of Yukaw
potentials, which not only satisfies chiral invarian
and fully relativistic covariance, but also suppres
the singular point that the Yukawa potential has
works well in understanding the dynamical chiral sy
metry breaking, confinement and the QCD vacuum
well as the meson structures, such as electromag
form factors, radius, decay constants[18,22,23].

During the past two years, the experiments h
discovered a number of new states, for example, thη′

c

in exclusiveB → KKSK−π+ decays by Belle[24],
the narrowDsJ states by BaBar, CLEO and Belle[25],
evidence for theΘ+(1540) with quantum number
of K+n [26], and theX(3872) through decay to
π+π−J/ψ by Belle [27]. New experimental result
call for interpretations, offer opportunities to exte
our knowledge about hadron spectrum and challe
our understanding of the strong interaction; furth
more, they revitalize the study of heavy quarkonia a
stimulate a lot of theoretical analysis through the ch
monia and bottomonia have been thoroughly inve
gated.

The decay constants of the pseudoscalar char
nium and bottomonium (ηc and ηb) mesons play an
important role in modern physics with the assumpt
of current-meson duality. The precise knowledge
the those valuesfηc and fηb

will provide great im-
provements in our understanding of various proces
convolving theηc and ηb mesons, for example, th
processB → ηcK , where the mismatches betwe
the theoretical and experimental values are large[28].
Theηc meson is already observed experimentally,
current experimental situation with theηb meson is
rather uncertain, yet the discovery of theηb meson
is one of the primary goals of the CLEO-c resea
program[29]; furthermore, theηb meson may be ob
served in run II at the Tevatron through the dec
modes into charmed statesD∗D(∗) [30]. It is inter-
esting to combine those successful potential m
els within the framework of coupled SDE and BS
to calculate the decay constants of the pseudosc
heavy quarkonia such asηc andηb. For previous stud
ies about the electroweak decays of the pseudos
mesons with the SDE and BSE, one can con
Refs.[6,9–14]. In this Letter, we use an infrared mo
ified flat-bottom potential (IMFBP) which takes th
advantages of both the Gaussian distribution poten
and the FBP to calculate the decay constants of th
pseudoscalar heavy quarkonia.

The Letter is arranged as follows: we introduce
IMFBP in Section2; in Section3–5, we solve the
rainbow SDE and ladder BSE, explore the analy
ity of the quark propagators, investigate the dyna
ical dressing and confinement, finally obtain the
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Section6 is reserved for conclusion.

2. Infrared modified flat bottom potential

The present techniques in QCD calculation can
give satisfactory larger behavior for the gluon two
point Green’s function to implement the linear pote
tial confinement mechanism, in practical calculati
the phenomenological effective potential models
ways do the work. As in our previous work[18], we
use a Gaussian distribution function to represent
infrared behavior of the gluon two-point Green’s fun
tion,

(1)4πG1
(
k2) = 3π2� 2

∆2
e− k2

∆ ,

which determines the quark–antiquark interact
through a strength parameter� and a range parame
ter ∆. This form is inspired by theδ function poten-
tial (in other words the infrared dominated potenti
used in Refs.[19,20], which it approaches in the lim
∆ → 0. For the intermediate momentum, we take
FBP as the best approximation and neglect the la
momentum contributions from the perturbative QC
calculations as the coupling constant at high ene
is very small. The FBP is a sum of Yukawa pote
tials which is an analogy to the exchange of a serie
particles and ghosts with different masses (Euclid
form),

(2)G2
(
k2) =

n∑
j=0

aj

k2 + (N + jρ)2
,

whereN stands for the minimum value of the mass
ρ is their mass difference, andaj is their relative cou-
pling constant. Due to the particular condition we ta
for the FBP, there is no divergence in solving the SD
In its three-dimensional form, the FBP takes the f
lowing form:

(3)V (r) = −
n∑

j=0

aj

e−(N+jρ)r

r
.

In order to suppress the singular point atr = 0, we
take the following conditions:

V (0) = const,
; (4)
dV (0)

dr
= d2V (0)

dr2
= · · · = dnV (0)

drn
= 0.

The aj can be determined by solve the equations
ferred from the flat bottom condition Eq.(4). As in
previous literature[18,21–23], n is set to be 9. The
phenomenological effective potential (IMFBP) can
taken as

(5)G
(
k2) = G1

(
k2) + G2

(
k2).

3. Schwinger–Dyson equation

The SDE can provide a natural framework for
vestigating the nonperturbative properties of the qu
and gluon Green’s functions. By studying the ev
lution behavior and analytic structure of the dres
quark propagators, we can obtain valuable informa
about the dynamical dressing phenomenon and
finement. In the following, we write down the rainbo
SDE for the quark propagator,

S−1(p) = iγ · p + m̂c,b

(6)

+ 4π

∫
d4k

(2π)4
γµ

λa

2
S(k)γν

λa

2
Gµν(k −p),

where

S−1(p) = iA
(
p2)γ · p + B

(
p2)

(7)≡ A
(
p2)[iγ · p + m

(
p2)],

(8)Gµν(k) =
(

δµν − kµkν

k2

)
G

(
k2),

andm̂c,b stands for the current quark mass that exp
itly breaks chiral symmetry.

The full SDE for the quark propagator is a diverge
series of coupled nonlinear integral equations for
propagators and vertexes, we have to make trunca
in one or other ways. The rainbow SDE has given a
of successful descriptions of the QCD vacuum and
energy hadron phenomena[6,13–16], in this Letter, we
take the rainbow SDE. If we go beyond the rainb
approximation, the bare vertexγµ

λa

2 has to be substi
tuted by the full quark–gluon vertexΓ a

µ (qqg), which
satisfies the Slavnov–Tayler identity. In the weak c
pling limit, g2 → 0, two Feynman diagrams contribu
to the vertexΓ a

µ (qqg) at one-loop level due to th
non-Abelian nature of QCD, i.e., the self-interacti
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of gluons[31]. If we neglect the contributions from th
three-gluon vertexΓ a

µ (ggg) and retain an Abelian ver

sion, the vertexΓ a
µ (qqg) can be taken asλ

a

2 Γµ(qqp),
where the vertexΓµ(qqp) is the quark–photon verte
which satisfies the Ward–Takahashi identity. In pra
cal calculation, we can take the vertexΓµ(qqp) to be
the Ball–Chiu and Curtis–Pennington vertex[32,33]
so as to avoid solving the coupled SDE for the ver
Γµ(qqp). However, the nonperturbative properties
QCD at the low energy region suggest that the SD
are strongly coupled nonlinear integral equations,
theoretical work has ever proven that the contributi
from the vertexΓ a

µ (ggg) can be safely neglected du
to the complex Dirac and tensor structures. The
Feynman diagram contributions version of the v
tex Γ a

µ (qqg), i.e., neglecting the contributions fro
the vertexΓ a

µ (ggg) in dressing the vertexΓ a
µ (qqg)

is inconsistent with the Slavnov–Tayler identity[31].
If we take the assumption that the contributions fr
the vertexΓ a

µ (ggg) are not different greatly from th
vertex Γ a

µ (qqg), we can multiply the contribution
from the vertexΓ a

µ (qqg) by some parameters whic
effectively embody the contributions from the vert
Γ a

µ (ggg) [34].
In this Letter, we assume that a Wick rotation

Euclidean variables is allowed, and perform a rotat
analytically continuingp andk into the Euclidean re
gion. The Euclidean rainbow SDE can be projec
into two coupled integral equations forA(p2) and
B(p2). Alternatively, one can derive the SDE fro
the Euclidean path-integral formulation of the theo
thus avoiding possible difficulties in performing th
Wick rotation [35]. As far as only numerical result
are concerned, the two procedures are equal. In
the analytical structures of quark propagators have
teresting information about confinement, we will ma
detailed discussion about thec andb quarks propaga
tors respectively in Section5.

4. Bethe–Salpeter equation

The BSE is a conventional approach in dealing w
the two body relativistic bound state problems[17].
The precise knowledge about the quark structure
the mesons will result in better understanding of th
properties. In the following, we write down the ladd
BSE for the pseudoscalar quarkonia,

S−1+
(

q + P

2

)
χ(q,P )S−1−

(
q − P

2

)

(9)= 16π

3

∫
d4k

(2π)4
γµχ(k,P )γνGµν(q − k),

where S(q) is the quark propagator,Gµν(k) is the
gluon propagator,Pµ is the four-momentum of th
center of mass of the pseudoscalar quarkonia,qµ is
the relative four-momentum between the quark a
antiquark, γµ is the bare quark–gluon vertex, an
χ(q,P ) is the Bethe–Salpeter wavefunction (BSW)
the bound state.

We can perform the Wick rotation analytically an
continueq and k into the Euclidean region.1 In the
lowest order approximation, the BSWχ(q,P ) can be
written as

χ(q,P ) = γ5
[
iF 0

1 (q,P ) + γ · PF 0
2 (q,P )

+ γ · qq · PF 1
3 (q,P )

(10)+ i[γ · q, γ · P ]F 0
4 (q,P )

]
.

The ladder BSE can be projected into the followi
four coupled integral equations,

(11)

∑
j

H(i, j)F
0,1
j (q,P ) =

∑
j

∞∫
0

k3 dk

π∫
0

sin2 θK(i, j),

the expressions of theH(i, j) andK(i, j) are cumber-
some and neglected here.

Here we will give some explanations for the expr
sions ofH(i, j). The H(i, j)’s are functions of the
quark’s Schwinger–Dyson functions (SDF)A(q2 +
P 2/4+ q ·P), B(q2 +P 2/4+ q ·P), A(q2 +P 2/4−
q · P) andB(q2 + P 2/4 − q · P). The relative four-
momentumq is a quantity in the Euclidean spac
time while the center of mass four-momentumP must
be continued to the Minkowski spacetime, i.e.,P 2 =
−m2

ηc,ηb
, this results in theq · P varying throughout a

complex domain. It is inconvenient to solve the SD
at the resulting complex values of the quark mom
tum, especially for the heavy quarks. As the dress
effect is minor, we can expandA andB in terms of

1 To avoid possible difficulties in performing the Wick rotatio
one can derive the BSE from the Euclidean path-integral form
tion of the theory.
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A
(
q2 + P 2/4+ q · P )
= A

(
q2 + P 2/4

) + A
(
q2 + P 2/4

)′
q · P + · · · .

The other problem is that we cannot solve the S
in the timelike region as the two point gluon Gree
function cannot be exactly inferred from theSU(3)

color gauge theory even in the low energy spacelike
gion. In practical calculations, we can extrapolate
values ofA andB from the spacelike region smooth
to the timelike region with suitable polynomial fun
tions. To avoid possible violation with confinement
sense of the appearance of pole massesq2 = −m2(q2)

in the timelike region, we must be care in choo
ing the polynomial functions[20]. For theηc meson,
the mass is about 3.0 GeV, the extrapolation to th
timelike region with the quantity−m2

ηc
/4 can be per-

formed easily, however, the large mass of theηb meson
makes the extrapolation into the deep timelike reg
troublesome. Although theηb meson has not bee
observed experimentally yet, the theoretical calcu
tions indicate that its mass is about 9.4 GeV[36]. As
the dressed quark propagators comprise the nota
of constituent quarks by providing a massm(q2) =
B(q2)/A(q2), which corresponding to the dynamic
symmetry breaking phenomena for the light quar
We can simplify the calculation greatly and avoid t
problems concerning the extrapolations in solving
BSE by take the following propagator for thec andb

quarks,

(12)S−1(q2) = iγ · q + Mc,b,

where theMc,b is the Euclidean constituent qua
mass withM2

c,b = m2
c,b(q

2) = q2 obtained from the
solution of the SDE(6).

Finally we write down the normalization conditio
for the BSW,

Nc

∫
d4q

(2π)4
Tr

{
χ̄

∂S−1+
∂Pµ

χ(q,P )S−1−

(13)+ χ̄S−1+ χ(q,P )
∂S−1−
∂Pµ

}
= 2Pµ,

whereχ̄ = γ χ+γ .
4 4
5. Coupled rainbow SDE and ladder BSE and
the decay constants

In this section, we explore the coupled equations
the rainbow SDE and ladder BSE for the pseudosc
heavy quarkonia numerically, the final results for t
SDFs and BSWs can be plotted as functions of
square momentumq2.

In order to demonstrate the confinement of qua
we have to study the analyticity of SDFs for thec and
b quarks, and prove that there no mass poles on the
timelikeq2 axial. In the following, we take the Fourie
transform with respect to the Euclidean timeT for the
scalar part (Ss ) of the quark propagator[6,13,37],

(14)

S∗
s (T ) =

+∞∫
−∞

dq4

2π
eiq4T

B(q2)

q2A2(q2) + B2(q2)

∣∣∣∣�q=0
,

where the 3-vector part ofq is set to zero. IfS(q) has a
mass pole atq2 = −m2(q2) in the real timelike region
the Fourier transformedS∗

s (T ) would fall off ase−mT

for largeT or logS∗
s = −mT .

In our numerical calculations, for smallT , the val-
ues ofS∗

s are positive and decrease rapidly to zero a
beyond with the increase ofT , which are compatible
with the result (curve tendency with respect toT ) from
lattice simulations[38]; for largeT , the values ofS∗

s

are negative, except occasionally a very small frac
of positive values. The negative values forS∗

s indicate
an explicit violation of the axiom of reflection pos
tivity [39], in other words, the quarks are not physi
observable, i.e., confinement.

For thec andb quarks, the current masses are v
large, the dressing or renormalization is tender and
curves are not steep which in contrast to the dyn
ical chiral symmetry breaking phenomenon for t
light quarks,mc(0)/m̂c � 1.5 andmb(0)/m̂b � 1.1,
however, mass poles in the timelike region are
sent. At zero momentum,mc(0) = 1937 MeV and
mb(0) = 5105 MeV, while the Euclidean constitue
quark massesMc = 1908 MeV andMb = 5096 MeV,
which defined byM2 = m2(q2) = q2, are compati-
ble with the constituent quark masses in the lite
ture. From the plotted BSWs (seeFig. 1 as an ex-
ample), we can see that the BSWs for pseudosc
mesons have the same type (Gaussian type) mom
tum dependence while the quantitative values are
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Fig. 1. BSWs for charmonium.

ferent from each other. Just like the lighterq̄q andq̄Q

pseudoscalar mesons[18], the Gaussian type BSW
center around zero momentum with spatial extens
to aboutq2 = 1 GeV2 which happen to be the energ
scale for chiral symmetry breaking, the strong int
actions in the infrared region result in bound stat
Finally we obtain the values for the decay constant
those pseudoscalar mesons which are defined by

ifπPµ = 〈0|q̄γµγ5q
∣∣π(P )

〉
,

(15)= Nc

∫
Tr

[
γµγ5χ(k,P )

] d4k

(2π)4
,

here we useπ to represent the pseudoscalar meson2

(16)fηc = 349 MeV, fηb
= 287 MeV,

which are compatible with the results from the e
perimental extractions and theoretical calculatio
fηc = 335 ± 75 MeV (exp) [40]; fηc ≈ 400 MeV
(exp)[41]; fηc = 420±52 MeV,fηb

= 705±27 MeV
(theor) [42]; fηc = 292 ± 25 MeV (theor) [43];
fηc ≈ 350 MeV (theor)[44]; fηc = 300± 50 MeV
(theor) [45]. In calculation, the values of̂mc and m̂b

are taken as the current quark masses,m̂c = 1250 MeV
and m̂b = 4700 MeV; the input parameters for th
FBP areN = 1.0Λ, V (0) = −11.0Λ, ρ = 5.0Λ and
Λ = 200 MeV, which are determined in study of th
q̄q and q̄Q pseudoscalar mesons[18]. In this Letter,
the Euclidean constituent quark masses for thec and

2 Here we write down theNc explicitly according to the normal
ization condition(13).
b quarks are taken in solving the BSE as the dre
ing is tender. We borrow some idea from the fact t
the simple phenomenological model of Cornell p
tential (Coulomb potential plus linear potential) wi
constituent quark masses can give satisfactory m
spectrum for the heavy quarkonia3 and take large
values for the strength parameter� and range para
meter∆, i.e., � = 2.2 GeV and∆ = 2.9 GeV2, in
the infrared region comparing with the correspon
ing ones used in Ref.[18]. Furthermore the masse
of the pseudoscalar mesons are taken as input par
ters. If we take the Euclidean constituent quark mas
Mc = mc(0) andMb = mb(0), the decay constants fo
theηc andηb mesons change slightly,fηc = 357 MeV
andfηb

= 289 MeV.

6. Conclusion

In this Letter, we investigate the under-structu
of the pseudoscalar heavy quarkoniaηc andηb in the
framework of the coupled rainbow SDE and ladd
BSE with the confining effective potential (IMFBP
After we solve the coupled rainbow SDE and ladd
BSE numerically, we obtain the SDFs and BSWs
the pseudoscalar heavy quarkoniaηc andηb. As the
current masses of thec andb quarks are very large
the dressing or renormalization for the SDFs is t
der and the curves are not steep which in cont
to the explicitly dynamical chiral symmetry brea
ing phenomenon for the light quarks, however, m
poles in the timelike region are absent. We can s
plify the calculation greatly and avoid the problem
concerning the extrapolations in solving the BSE
making the substitutionB(q2) → M andA(q2) → 1.
The BSWs for the pseudoscalar heavy quarkonia h
the same type (Gaussian type) momentum dep
dence while the quantitative values are different fr
each other. The Gaussian type BSWs center aro
zero momentum with spatial extension to aboutq2 =
1 GeV2 which happen to be the energy scale for c
ral symmetry breaking, the strong interactions in
infrared region result in bound states. Our numer
results for the values of the decay constants of

3 For an excellent review of the potential models, one can con
Ref. [46].
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pseudoscalar heavy quarkonia are compatible with
corresponding ones obtained from the experime
extractions and theoretical calculations. Once the
isfactory SDFs and BSWs for the pseudoscalar he
quarkonia are known, we can use them to investiga
lot of important quantities involving theB, ηc andηb

mesons.
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