
NORTH- HOLLAND

E V A L U A T I O N O F T H E D O M A I N PROP

PASCAL VAN HENTENRYCK, AGOSTINO CORTESI, AND
B A U D O U I N LE CHARLIER

D The domain Prop [11, 30] is a conceptually simple and elegant abstract do-
main to compute groundness information for Prolog programs, where ab-
stract substitutions are represented by Boolean functions. Prop has raised
much theoretical interest recently, but little is known about the practical
accuracy and efficiency of this domain. Experimental evaluation of Prop
is particularly important since Prop theoretically needs to solve a co-NP-
Complete problem. However, this complexity issue may not matter much
in practice because the size of the abstract substitutions is bounded since
Prop would only work on the clause variables in many frameworks. The
purpose of this paper is to study the performance of domain Prop. Its first
contribution is to describe an implementation of the domain Prop and to
use it to instantiate a generic abstract interpretation algorithm [17, 23, 27].
A key feature of the implementation is the use of ordered binary decision
graphs to provide a compact representation of many Boolean functions.
Its second contribution is to describe the design and implementation of a
new domain, Pat (Prop), combining the domain Prop with structural infor-
mation about the subterms. This new domain may significantly improve
the accuracy of the domain Prop on programs manipulating difference-
lists. Both implementations (resp. 6000 and 12,000 lines of C) have been
evaluated systematically, and their efficiency and accuracy for groundness
inference have been compared with several other abstract domains. The
interest of Pat (Prop) and Prop for on-line analysis is also investigated. <3

This paper is an extended version of [26]. Part of this research was done while A. Cortesi was
visiting Brown University.

Address correspondence to Pascal Van Hentenryck, Brown University, Box 1910, Providence,
RI 02912, USA, or Agostino Cortesi, University of Venezia, Via Torino 155, 1-30170 Mestre-
VE, Italy or Baudouin Le Charlier, University of Namur, 21 rue Grandgagnage, B-5000 Namur,
Belgium.

Received February 1993; accepted September 1994.

T H E J O U R N A L OF L O G I C P R O G R A M M I N G

QElsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

0743-i066/95/$9.50
SSDI 0743-i066(94)00029-6

238 P. VAN HENTENRYCK ET AL.

1. I N T R O D U C T I O N

Abstract interpretation of Prolog has attracted many researchers in recent years.
This effort is motivated by the need of optimization in Prolog compilers to be
competitive with procedural languages and the declarative nature of the language
which makes it more amenable to static analysis. Considerable progress has been
realized in this area in terms of the frameworks (e.g., [1, 2, 5, 9, 28, 29, 32, 41]),
the algorithms (e.g., [2, 8, 21, 23, 36]), the abstract domains (e.g., [20, 3, 34]), and
the implementations (e.g., [17, 19, 39, 27]).

An abstract domain which has raised much interest in recent years is the do-
main Prop proposed by Marriott and Sondergaard [30]. The domain is intended
to compute groundness information in Prolog programs. It is conceptually simple
and elegant since abstract substitutions are represented by Boolean functions built
using the logical connectives ¢*, V, A. The domain has been further investigated in
[11] and related to other abstract domains in [12].

Although the domain is properly understood from a theoretical standpoint, many
practical questions regarding its efficiency and accuracy remain to be answered. In
particular, the efficiency of Prop has been subject to much debate. On the one
hand, it requires the solving of a co-NP-Complete problem (i.e., equivalence of
two Boolean functions). On the other hand, in many frameworks, Prop would
only deal with the variables appearing in the clauses whose number should be, in
general, reasonably small. The accuracy of Prop is also an interesting problem
since sophisticated dependencies between the variables can compensate the fact
that Prop does not keep track of functors. Note also that the study of Prop has
a broader interest since many domains (e.g., nonlinearity) can be expressed using
Boolean formulas. Hence, performance results on Prop may provide us with useful
information on the use of Boolean functions to represent abstract substitutions.

The purpose of this paper is to study the performance of domain Prop. Its first
contribution is to describe an implementation of the domain Prop and to use it
to instantiate a generic abstract interpretation algorithm [17, 23, 27]. A key lea-
ture of the implementation is the use of ordered binary decision graphs to provide
a compact representation of many Boolean functions. Its second contribution is
to describe the design and implementation of a new domain, Pat (Prop), combin-
ing the domain Prop with structural information about the subterms. This new
domain may significantly improve the accuracy of the domain Prop on programs
manipulating difference-lists.

Both implementations (resp. 6000 and 12,000 lines of C) have been evaluated
systematically, and their efficiency and accuracy for groundness inference have been
compared with several other abstract domains: the domain Mode (mode, same-
value, sharing), the domain P a t t e r n (mode, same-value, sharing, pattern), and
the domains Mode and P a t t e r n used inside reexecution algorithm [25] to improve
accuracy. These last two algorithms are denoted by Mode-reex and by P a t - r e e x
in the following. The interest of Pat (Prop) and Prop for on-line 1 analysis [15] are
also investigated.

The rest of the paper is organized as follows. The first section gives an overview
of the abstract interpretation framework. The second section describes the concrete

iOn- l ine analysis is also known in the logic programming communi ty as goM-independent or
condensing analysis [18~ 20].

E V A L U A T I O N OF T H E D O M A I N P R O P 239

semantics. The third section presents the domain Prop, illustrates the analysis on
a simple example, and discusses the implementation of Boolean functions. The
fourth section presents the new domain Pat (Prop) as an instantiation of a generic
pa t tern domain presented in [13]. The fifth section reports experimental results on
Prop and P a t (P r o p) . The experimental results include accuracy for groundness
inference, efficiency, and various statistics on the use of Boolean functions. I t also
discusses the use of Prop and Pat (Prop) for on-line analysis and the impact of
caching on the efficiency. The last section draws the conclusions of this research
and suggests directions for future work.

2. O V E R V I E W OF T H E A B S T R A C T I N T E R P R E T A T I O N F R A M E W O R K

In this section, we briefly review our abstract interpretation framework. A detailed
theoretical presentation of the framework can be found in [22] and [33]. This last
reference also contains all the correctness proofs. The framework is close to the
work of Marriott and Sondergaard [28] and Winsborough [40]. It follows the tradi-
tional approach to abstract interpretation [14]. The generic abstract interpretation
algorithm GhIh is presented in detail in [27] and more formally but more briefly in
[23].

CONCRETE SEMANTICS. As is traditional in abstract interpretation, the start-
ing point of the analysis is a collecting semantics for the programming language.
Our concrete semantics is a collecting fixpoint semantics which captures the top-
down execution of logic programs using a left-to-right computat ion rule and ignores
the clause selection rule. The semantics manipulates sets of substitutions which
are of the form {xl ~ t l , . . . ,Xn ~ tn} for some n > 0. Two main operations are
performed on substitutions: unification and projection. The semantics associates
with each of the predicate symbol p in the program a set of tuples of the form
((~in, P, Oo~t) which can be interpreted as follows:

"the execution of p(x l , . . . ,x~)O with 0 E Oin produces a sequence of
substitutions 01 , . . . , On,.. . , all of which belongs to Oo~t."

ABSTRACT SEMANTICS. The second step of the methodology is the abstrac-
tion of the concrete semantics. Our abstract semantics consists of abstracting a set
of substi tutions by a single abstract substitution, i.e., an abstract substitution rep-
resents a set of substitutions. As a consequence, the abstract semantics associates
with each predicate symbol p a set of tuples of the form (~in,p, Pout) which can be
read informally as follows:

"the execution o f p (x l , . . . , xn)O with 0 satisfying the property described
by ~m produces a sequence of substitutions 01 , . . . , On,.. . , all of which
satisfying the property described by/3o~t."

The abstract semantics assumes a number of operations on abstract substitutions,
in particular, unification, projection, and upper bound. The first two operations
are simply consistent approximations of the corresponding concrete operations.
The upper bound operation is a consistent abstraction of the union of sets of
substitutions.

240 P. VAN H E N T E N R Y C K E T AL.

THE FIXPOINT ALGORITHM. The last step of the methodology consists of com-
puting the least fixpoint or a postfixpoint of the abstract semantics. The fixpoint
algorithm CAIA [27] is a top-down fixpoint algorithm computing a small, but suf-
ficient, subset of least fixpoint (or of a postfixpoint) necessary to answer a user
query. The algorithm uses memoization, a dependency graph to avoid redundant
computation, the abstract operations of the abstract semantics, and the ordering
relation on the abstract domain. It has many similarities with PLAI [35], and can be
seen either as an implementation of Bruynooghe's framework [2] or as an instance
of a general fixpoint algorithm [24].

3. T H E C O N C R E T E S E M A N T I C S

The purpose of this section is to present the concrete semantics which is the basis of
the analysis. It sets up the terminology necessary to specify the abstract operations,
and helps in understanding the experimental results by presenting the concrete
transformation which is then abstracted. The concrete semantics is a collecting
fixpoint semantics. It is defined on normalized programs [2] which are defined
in Section 3.1. The main semantic objects manipulated are sets of substitutions
which are defined in Section 3.2. The main operations on sets of substitutions are
described informally in Section 3.3. They will be specified formally in Section 4.2,
together with their abstractions. The concrete semantics is described in Section 3.4.

3.1. Normalized Programs

We assume the existence of sets Fi and Pi (i > 0) denoting sets of functors and
predicate symbols of arity i and of an infinite set P V of program variables. Variables
in P V are ordered and denoted by the x l , x 2 , . . . , x i ,

Normalized programs contain clauses with heads of the form p (x l , . . . , x~) where
n > 0 and p c Pn- Normalized clauses also contain bodies of the form 11,. •., l~
(n > 0) where the li are either procedure calls of the form p (x i , , . . . , xin) where
xil , . • -, xi, are all distinct variables and p E P~ or built-in predicates of one of the
forms xi = xj (i ~ j) or x~ -~ g (x j l , . . . , x j , ,) where i, j l , . . . , j n are all distinct
indices and g c Fn.

The motivation behind these definitions is to allow the result of any predicate
p/n to be expressed as a set of substitutions on program variables x l , . . •, x~. Nor-
malization may induce some loss of precision in abstract domains which are sensitive
to the syntactical form of the programs, as discussed later.

3.2. Concrete Domain

The concrete semantics is defined in terms of sets of concrete substitutions. We
provide the necessary notions here.

We assume the existence of another infinite set R V of renaming variables. We
distinguish two kinds of substitutions: program substitutions, denoted by 0, whose
domain and codomain are subsets of P V and RV, respectively, and standard sub-
stitutions, denoted by o, whose domain and codomain are subsets of RV. The
domain of a substitution 0 = {xl ~- t l , . . . , Xn +-- An}, denoted by dora(O), is sim-
ply {Xl, . . . ,xn}. In the following, PS denotes the set of program substitutions,

E V A L U A T I O N O F T H E D O M A I N P R O P 2 4 1

P S D denotes the set of program substitutions, the domain of which is D, and SS
denotes the set of standard substitutions.

Let 0 be a program substitution and D C_ dora(O). The restriction 01 of 0 to
D, denoted 0/~, is the substitution such that dom(O I) = D and xiO = xiO I for all
x i C D .

The definitions of substi tution composition and most general unifier are the usual
ones, but are only used for standard substitutions. Program substitutions and
standard substitutions can only be combined by applying a standard substitution

to a program substitution 0. The result, denoted by 0or, is defined by dom(Oa) =
dora(O) and x(Oa) = (x0)a for all x e dora(O). For program substitutions, the
notion of free variable is nonstandard to avoid clashes between variables during
renaming. A free variable is represented by a binding to a renaming variable that
appears nowhere else. As a consequence, the domain of a substitution is invariant
under renaming.

We say that a substitution 0 grounds a syntactic object o when var(oO) is empty,
where var(t) is the set of variables in t.

Let 8 be asubse t o f P S . 8 is complete if and only if, for allO c 8, 0 and 0 /
are variant 2 implies that 0 / E 8. Let D be a finite subset of P V . CSD = { 8 :
VO ~ 8 dora(O) = D and 8 is complete}. CSD is a complete lattice w.r.t, set
inclusion C.

3.3. Concrete Operations

We now provide an informal presentation of the concrete operations. They are
specified formally together with their abstractions in Section 4.2. The concrete
semantics uses the following operations.

• UNION(81,... , 8,,) where the Oi are a set of substitutions on the same do-
main: this operation returns sets of substitutions which is the union of all
8i . It is used to compute the output of a procedure given the outputs for its
clauses.

• AI_VAR(O) where 0 is a set of substitutions with domain {xl,x2}: this oper-
ation returns the set of substitutions obtained by unifying the terms bound
to xi and x2 in each substitution of 8. It is used for literals of the form
x~ = xj in normalized programs.

• AI_FUNC(8, g) where 8 is a set of substitutions with domain {Xl , . . . , xn}
and g is a function symbol of arity n - 1: this operation returns the set of
substitutions obtained by unifying in each substitution 0 E (9 the terms tl
and g (t 2 , . . . , tn) where t~ is the term bound to xi in O. It is used for literals
xil = g(x~2, . . . , x~.) in normalized programs.

• EXTC(c, 8) where 8 is a set of substitutions with domain {Xl , . . . , xn} and
c is a clause containing variables {Xl , . . . , xm} (m > n): this operation re-
turns a set of substitutions obtained by extending each substitution in 8 to
accommodate the new free variables of the clause. It is used at the entry of
a clause to include the variables in the body not present in the head.

• RESTRC(c, 8) where 8 is a set of substitutions on the variables { x l , . . . , x m }
and { x l , . . . , Xn} are the head variables of clause c (n < m): this operation

2 T h i s i m p l i e s t h a t t h e r e ex i s t a, s i g m a ~ E S S s u c h t h a t 0 r = 0 a a n d 0 = 0~a r.

242 P. VAN H E N T E N R Y C K E T AL.

returns the set of subst i tut ions obtained by project ing each subst i tu t ion in
(9 on variables { X l , . . . , xn}. It is used at the exit of a clause to restrict the
subst i tu t ion to the head variables only.
RESTRG(I, O) where (9 is a set of subst i tut ions on domain D = { x ~ , . . . , xn},
and l is a literal p(x~, . . . ,x i , , ,) (or xi~ = xz 2 or x~ = g(x~2,...,xi,,)): this
opera t ion returns the set of subst i tut ions obtained by

1. project ing each subst i tut ion 0 E (9 on { X i l , . . . , xi,,, } obta ining 0';
2. expressing 0' in terms of { X l , . . . , x,~} by mapping xik to xk.

It is used before the execution of a literal in the b o d y of a clause. The
subst i tut ions in the resulting set are expressed in terms of { x l , . . . , Xm}, i.e.,
as subst i tut ions for p/m.
EXTG(I, (9, (9') where (9 is a set of subst i tut ions on D = { x l , . . •, xn}, the vari-

' ables of the clause where l appears, l is a literal p(x~ , . . . ,xi,,,.) (or Xix = xi~
or x~ = g(xi2,...,xi,,,)) with {x i , , . . . , x i , , , } C_ D, and (9' is a set of sub-
st i tut ions on { X l , . . . , Xm} representing the result of p(x~, . . . , xm) (9" where
(9"=RESTRG(I, (9): this operat ion returns the set of subst i tut ions obta ined
by instant ia t ing each subst i tut ion 0 E (9 to take into account each result ing
subst i tu t ion 0' E (9' of the literal l. I t is used after the execution of a literal
to propagate the results of the literal to all variables of the clause.

3.4. Concrete Semantics

We are now in a position to define the concrete semantics.

SETS OF CONCRETE TUPLES. We assume in the following an under lying pro-
gram P . The semantics of P is captured by a set of concrete tuples of the form
((gin,p, (9o~t) where (9o~t is intended to represent the set of ou tpu t subst i tu t ions
obta ined by executing p(xl , . . . ,x ,~) on the set of input subst i tut ions (gin and
Oin, Oo~t E CSD with D = { x l , . . . ,x,~}. We only consider functional sets sct of
concrete tuples, implying tha t for all ((9,p), there exists at most one set (9' such
tha t ((9,p, (9') E sct. This set is denoted by sct((9,p), dom(sct) is the set of pairs
((9,p) for which there exists an (9~ such tha t ((9,p, (9') E sct. We call underlying
domain UD the set of pairs ((9,p) where p is a predicate symbol of ar i ty n in P ,
D = { x l , . . . ,xn} and (9 E CSD. We denote by S C T the set of all monotonic sets
of concrete tuples, i.e., those satisfying (91 C (92 ~ sct((91,p) c_ sct((92,p), each
t ime sct((91,p) and sct(O2,p) are defined. We denote by S C T T the set of all total
sets of concrete tuples. S C T T is endowed with a s t ructure of cpo (i.e., complete
part ial order) by defining

• ± = { ((9 , p , O) : ((9 , p) c UD};
. set <_ set' - V((9,p) E UD sct(O,p) C_ sct'((9,p).

CONCRETE TRANSFORMATION. The concrete semantics is defined in terms of
one function and one t ransformat ion given in Figure 1. We assume an underlying
program P. p, c, g, and 1 denote, respectively, a procedure name, a clause, a
sequence of literals, and a literal, using only predicate symbols from P.

Informal ly speaking, the first rule of T defines a procedure execution, the second
rule defines a clause execution, while the third rule defines a clause suffix execution.
A procedure is executed by executing its clauses and taking the union of their
results. A clause is executed by extending its subst i tut ions to take into account

EVALUATION OF THE DOMAIN PROP 243

TSCT(scI) = {(O,p ,O ') : (O,p) e UD and O ' = T(O,p, sct)}.

T (O , p. sct) = u~IoN(01 On)
where O, = T(O, c,, sct),

c l , . . . , c , are the clauses of p.

T(O, c, sc t)= RESTRC(c, 0 ')
where O' = T(EXTC(c, 0), g, scQ,

g is the body of c.

T(O, <>,set) = O.
T(O, t.g, set) = T(O3,g, set)
where Oa = EXTG(I,O, O2),

O~ = sct(O~,p)
AI_VAR(O,)
AI_FUNC(O1, g)

Oa = RESTRO(I, 0).

if I is p (. . .)
i f l i s x , = x ~
if I is x, = g(...),

F I G U R E 1. The semantic t ransformation.

the local variables, executing its body, and project ing its local variables. A suffix is
executed by restricting the subst i tut ions to the variables of the first goal, applying
the goal, extending the result on all the variables of the clause, and executing the
rest of the suffix. The execution of a goal is either a unification or a lookup in the
set of results (procedure call).

CONCRETE SEMANTICS. The t ransformat ion and functions are monotonic and
cont inuous w.r.t. S C T T and the canonical ordering on the Cartesian p roduc t
C S D × S C T T , respectively. Since S C T T is a cpo, the concrete semantics of
a p rogram is defined as the least fixpoint of the t ransformat ion T S C T , denoted
(T S C T) . This fixpoint can be shown to be consistent w.r.t. SLD-resolut ion in
the following sense:

Theorem 3.1. Let P be a program, I = p (x l , . . . , Xn) be a literal, Oin be a program
subst i tut ion with dom(Oin) = { x l , . . . , x ~ } , sct be # (T S C T) , and e i n = {O e
P S : O and Oin are variant}. The following s ta tement is true (we assume that
SLD-re fu ta t ion uses renaming variables belonging to SS):

i f ~ is an answer-subst i tut ion of SLD-refutat ion applied to P U {+-- loin}, then
there exists a substi tution Oo~t E sc t (Oin ,p) such that Oo~t = Oin~ r.

4. T H E D O M A I N PROP

We now show how the concrete semantics can be abstracted using the domain Prop.
Intuitively, the abst ract ion consists of replacing the concrete domain (e.g., sets of
subst i tu t ions) by an abs t rac t domain (e.g., Boolean formula), and of defining ab-
s t rac t operat ions which are consistent approximat ions of each concrete operat ion.
Section 4.1 describes the abs t rac t domain. Section 4.2 describes the abs t rac t opera-
t ions as consistent approximat ions of the concrete operations. Section 4.3 sketches
the abs t rac t semantics. Section 4.5 describes some implementa t ion details. Sec-
t ion 4.4 gives an example of analysis.

244 P. VAN HENTENRYCK ET AL

4.1. Abstract Domain

In Prop, a set of concrete substitutions over D = {Xl , . . . ,x~} is represented by
a Boolean function using variables from D, that is, an element of (D --~ Bool) --+
Bool, where Bool = { fa l se , true}. In the following, we denote a Boolean function
by any of the propositional formulas which represent it. We also use ± to denote
the abstract substitution fa lse .

Definition 4.1. The domain Prop over D = {Xl, . . . ,x ,~}, denoted PropD, is the
poset of Boolean functions that can be represented by propositional formulas
constructed from D, the Boolean t ruth values, and the logical connectives and
ordered by implication.

I t is easy to see that PropD is a finite lattice where the greatest lower bound is
given by conjunction and the least upper bound by disjunction. Our implementa-
tion uses ordered binary decision graphs (OBDG) to represent Boolean functions
since they allow many Boolean functions to have compact representations. See
Section 4.5 for more discussion of OBDD.

Definition 4.2. A t ru th assignment over D is a function I : D --~ Bool. The value
of a Boolean function f w.r.t, a t ru th assignment I is denoted I (f) . When
I (f) = true, we say that I satisfies f .

The basic intuition behind the domain Prop is that a substitution 0 is abstracted
by a Boolean function f over D iff, for all instances 0 ~ of 8, the t ru th assignment I
defined by

I (x i) : true iff ~ grounds xi(1 < i < n)

satisfies f . For instance, xl ¢=~ x2 abstracts the substitutions { x l / Y l , X 2 / y l } ,
{ x l / a , x2 /a} , but not { x l / a , x2 / y } nor { x l / y l , x2/Y2}.

Definition 4.3. The concretization function for P r O p D is a function Cc : PropD --~
CSD defined as follows:

Ce(f) : {8 e PSD] Vcr e SS : (assign (~)) (f) : t rue}

where ass ign : PSD ---+ D --* Bool is defined by ass ign 0 xi : t rue iff
grounds xi.

The following definitions will be used later.

Definition 4.~. The valuation of a function f w.r.t, a variable xi and a t ru th value
b, denoted fizz=b, is the function obtained by replacing xi by b in f .

Definition 4.5. The dependence set D f of a Boolean function f is the set

D~ : {x~ I fLx,=,~e ¢* flx,:satso}

Definition 4.6. The normalization of a function f w.r.t. [xil,. --, x~] is the Boolean
function obtained by replacing simultaneously x i l , . . . , x~,, by Xl ,xn in f .
This normalization is denoted norm f [x~l , . . . , xi,.].

EVALUATION OF THE DOMAIN PROP 245

Def in i t ion ~.Z The denormalization of a function f w.r.t. [x~l,...,x~,,] is the
Boolean function obtained by replacing simultaneously Xl, . . •, x~ by x i l , . . . , xi,,
in f . This denormalization is denoted d e n o r m f [x ~ , , . . . , x,,,].

4.2. Abstract Operations

We now describe the abstract operations as consistent approximations of the con-
crete operations. Recall that if oc : (CSDI × . . . × C S D .) --~ CSD and oa :
(PrOPD 1 × . . . X ProPD.) ~ ProPD are corresponding concrete and abstract op-
erations, Oa is a consistent approximation of oc if and only if

Vfl E ProPD 1 : ' ' "Vfn E ProPD,~ : oc (Cc(f l) , . . . , Ce(fn)) C Ce(oa(f l , . . . ,riO)"

For each operation, we give both its concrete version and its abstract version
and overload the names of the operations by dropping the subscripts. The informal
presentation of the operation was given in Section 3.3, but we repeat some of them
here for clarity.

UNION (UPPER BOUND). Operation UNION is used to collect the results of the
clauses of a procedure to define the result of the procedure. Its concrete version is
specified as follows, assuming that O1 , . . . , On E CSD:

UNION(O] , . . . , On) = 01 U ' " U O n.

Its abstract version is obtained by taking the disjunction of the Boolean formula:

UNION(fl,. . . , fn) = f l V ' - - V fn-

It is important to note that this abstraction is very precise and almost never loses
precision in practice. It is not optimal, however, as the following example (adapted
from one of the reviews) shows. Let 0 = {Xl ~-- y, x2 ~-- z} where y, z E R V and y
and z are distinct. We have

0 ~ Ce(Xl) ~ 0 ~ Cc(x I ~ x2).

Since xl V (Xl ~ x2) is logically equivalent to true, we also have

e Cc(xl V (x 1 ~ x2)) : Cc(t?"ue).

A practical program leading to the above example is as follows:

p(Xl,X2) : - Xl=g(X3,X2).

p(Xl,X2) : - X l = a .

The loss of precision can be removed by using sets of Boolean functions or an algo-
rithm based on OLDT-resolution. It remains to see if this would yield a practical
analysis.

246 P. VAN HENTENRYCK ET AL.

UNIFICATION OF TWO VARIABLES Operat ion AI_VAR performs the unification
of the terms bound to variables Xl, x2. Its concrete version is specified as follows,
assuming tha t D = {xl ,x2} and (9 E CSD:

AI_VAR(e) = {0o': 0 C e ~z cr E SS & ~ C mgu(xlO, X20)}.

Its abs t rac t version is defined by adding an equivalence between Xl and x2 in the
input abs t rac t substi tut ion:

AI_VAR(f):f A (XlC~X2).

UNIFICATION OF A VARIABLE AND A FUNCTOR Operat ion AI_FUNC unifies the
terms t l with g(t2,. • •, tn), where ti are the terms bound xi in the subst i tut ions. Its
concrete version is specified as follows, assuming tha t D = { X l , . . . , Xn}, 0 C CSD,
and g E Fn-l:

AI_FUNC(O,g)={0a: 0 E O & a E as & ~r E mgu(xlO, g(x2,...,xn)O)}.

Its abstract version also adds an equivalence which is slightly more complex than

in the previous operation.

AI_FUNC(f,t)= f A (xl ¢:> x2 A . . . Axn).

RESTRICTION OF A CLAUSE SUBSTITUTION. Opera t ion RESTRC restricts a set
of subst i tut ions expressed on all the clause variables to a subst i tu t ion expressed on
the head variables. It is used at the end of a clause execution. I ts concrete version
is specified as follows, assuming tha t c is a clause, D ' is the set of variables in the
head, and D is the set of variables of c:

RESTRC(c, e) = {0/,), : 0 C e } .

The abs t rac t version simply restricts the Boolean function to the variables appear-
ing in the head. Let { X n + l , . . . , Xm} be the variables appear ing only in the b o d y of
c:

RESTRC(c, f) = e l i m _ a l l [x , + l , . . . , xm]f

where

elim_all [] f=f

elim_all [xj,..., Xm] f=

elim_all [Xj+l~...,Xm] (flx~=true V flx~=false) (n < j <__ m).

Note that this operation is one of the operations where precision can be lost in
practice.

EXTENSION OF A CLAUSE SUBSTITUTION. Operation EXTC extends a set of

substitutions expressed on variables in the head of a clause to a set of substituions
expressed on all variables in the clause. It is used at the beginning of a clause

execution. Its concrete version is specified as follows, assuming that c is a clause,

D t is the set of variables in the head, and D is the set of variables of c.

EXTC(c,O) ={0:dora(0) = D & O/D , E (~ & V x c D \ D t, x i s free in 0}.

E V A L U A T I O N OF T H E D O M A I N P R O P 247

T h e abs t r ac t version is trivial:

E X T C (c , f) = f

RESTRICTION OF A SUBSTITUTION BEFORE A LITERAL. Opera t ion RESTRG is
used before execut ing a literal l. I t expresses a set of subs t i tu t ions O in t e rms of the
formal p a r a m e t e r s X l , . . . , x~ of the literal 1 by project ing the variables not appear -
ing in I and m a p p i n g the remaining var iables x i l , . . . , xi,,, to the formal p a r a m e t e r s
x l , . . . , x~, I ts concrete version can be specified as follows:

R E S T R G (l , ~) = { O : d o m (O) = D ' & 3 0 ' C O : x j O = x i , j O ' (l < j < n) } .

I t s abs t rac t version amounts to e l iminat ing from the Boolean funct ion all var iables
not appea r ing in the literal and normaliz ing the result ing function. Let S be the
list of variables in D f \ { x i ~ , . . . , xi,, }:

RESTRG(/, f) = norm [xil , xi,,] (e l i m _ a l l S f) .

Note tha t , once again, this opera t ion may lose precision.

EXTENSION OF A SUBSTITUTION AFTER A LITERAL. Opera t ion EXTG is used
after the execut ion of a literal l to extend the result of I (expressed on its variables)
to all clause variables. More precisely, EXTG extends a set of subs t i tu t ions (~ wi th
a set of subs t i tu t ions (~t represent ing the result of executing a literal l on O. I ts
concrete version is specified as follows, assuming tha t D is the domain of O, D t~ =
{xil , . . . , xi,, } is the set of variables appear ing in 1 exact ly in t ha t order, and D ~ =

EXTG(/ ,O,~ ') = { 0 ~ : 0 E O , ~ E S S & 0 ' ~ E O ' & d o m (c r) Ccodom(O') &

(codom (O) \ codom (O')) N codom (cr) = 0 &

dom(O') = D' & xjO' = xi~O (1 < j < n)}.

I ts abs t r ac t version amoun t s to denormalizing the subst i tu t ion and t ak i r
junc t ion wi th the clause subst i tu t ion.

EXTG(I, f , f ')= f A denorm [x i l , . . . , xi,,,] f ' .

4.3. Abstract Semantics

T h e abs t rac t semant ics can be ob ta ined easily by replacing sets
abs t r ac t subs t i tu t ions and each concrete opera t ion by its abs t '
a t r ans fo rma t ion TSAT. T h e abs t rac t semantics is then def
the least f ixpoint of T S A T . Moreover, the semantics can be
the concrete semantics .

Theorem 4.1. Let P be a program, T S A T and T S r
formations, sat = # (T S A T) , and sct = # (T S C
D = {Xl , . . . , x ,~} where n ~s the arity ofp.

fl E PropD ~ sct(Cc(/3),p) (

2 4 8 P. VAN H E N T E N R Y C K E T AL.

qsort(Xl , X2) "-

x 3 = [] ,

qsort(Xl , X2 , X3).

q s o r t (X l , X2 , X3) : -

x l = [3 ,

X3 = X2.

qsort(Xi , X2 , X3) "-

x l = [x 4 I x s] ,

partition(X5 , X4 , X6 , X7),

XS = [X4 i X9] ,

qsort(X6 , X2 , X8),

qsort(X7 , X9 , X3).

F I G U R E 2. Quicksort on differ-
ence lists in normalized form.

~.~. An Example

F~gure 3 depicts the analysis of a quicksort algorithm using difference lists, whose
normalized form is shown in Figure 2. Note that the first recursive call is performed
with an open-ended list which makes the program difficult to analyze (i.e., many
domains would lose precision). The trace of the execution shows the various abstract
operations and their associated substitutions. Parts of the trace have been removed
for clarity. In particular, the trace for the call to p a r t i t i o n is omitted (line 16), as
well as part of the first iteration of the second clause for one of the recursive calls to
q s o r t / 3 (line 29) since it returns _l_ and is shown during the second iteration (lines
34-40). The Boolean functions are shown in a 'readable form. This is a slightly
edited version of the output of our system which depicts formulas in disjunctive
normal form, although the canonical form used by the algorithm is different. Also,
we use A ¢~ B ¢:~ C to abbreviate (A ¢~ B) A (B ¢=> C). The abstract interpretation
algorithm used to obtain the trace is the so-called prefix optimization algorithm
which avoids reconsidering clauses and prefixes of clauses by keeping an advanced
dependency graph [17]. The initial query has a first argument which is ground and
a second argument which is a variable. This is abstracted by the formula xl in the
trace.

q s o r t / 2 simply calls q s o r t / 3 (line 4) whose first clause returns the substitution
x3 A x2 A xl, indicating that all its arguments are ground (line 9). The second
clause calls q s o r t / 3 with a substitution xl (line 20), and this call restarts a new
subcomputation. The result of this subcomputation is xl A (x2 ¢~ x3) (line 43).
This means that xl and x2 will be ground as soon as x3 will be ground, and
reciprocally. The second recursive call simply returns _1_ for the first iteration (line
46) and x3 A x2 A xl for the second iteration (line 53). As a consequence, all
arguments of q s o r t / 3 are ground at the exit of the clause (line 58), and q s o r t / 2
returns a ground argument for its second argument.

The really interesting point in this example is the substitution returned by the
nested call to q s o r t / 3 which preserves an equivalence between the second and
third arguments. This enables the domain Prop to achieve maximal precision in
this example without keeping track of functors and working only on the clause
variables.

E V A L U A T I O N O F T H E D O M A I N P R O P 249

1 Try c l a u s e 1
2 E x i t E X T C x l
3 E x i t A I - F U N C x3 ^ x l
4 Cal l P R O - G O A L q s o r t / 3 x3 h x l
5 T r y c l a u s e 1
6 E x i t E X T C x3 a x l
7 E x i t A I - F U N C x3 ^ x l
8 E x i t A I - V A R x 3 A x2 n x l
9 Exit RESTRC x3 A x2 h xl
l0 E x i t U N I O N x3 A x2 A x l
11 E x i t c l a u s e 1
12 T r y c l a u s e 2
13 E x i t E X T C x3 ^ x l
14 E x i t A I - F U N C x5 A x4 ^ x3 ^ x l
15 Cal l P R O - G O A L p a r t i t i o n x2 A x l
16
17 E x i t P R O - G O A L p a r t i t i o n x4 ^ x3 ^ x2 ^ x l
18 E x i t E X T G x7 ^ x6 A x5 ^ x4 n x3 ^ x l
19 Ex i t A I - F U N C (x9 ¢~, xS) ^ x7 A x6 ^ x5 A x4 A x3 A x l
20 Cal l P R O - G O A L q s o r t / 3 xl
21 T r y c l a u s e 1
22 Ex i t E X T C xl
23 E x i t A I - F U N C xl
24 E x i t A I - V A R (x3 ¢~ x2) ^ x l
25 E x i t R E S T R C (x3 ¢~. x2) a x l
26 E x i t U N I O N (x3 ¢~ x2) A x l
27 E x i t c l a u s e 1
28 T r y c l a u s e 2
29
30 E x i t R E S T R C .L
31 E x i t U N I O N (x3 ¢~ x2) A x l
32 E x i t c l a u s e 2
33 T r y c l a u s e 2
34 Call P R O - G O A L q s o r t / 3 x l
35 E x i t P R O - G O A L q s o r t / 3 (x3 ¢~ x2) A x l
36 E x i t E X T G (x9 ¢~ x8 ¢~ x2) A x7 ^ x6 ^ x5 A x4 ^ x l
37 Cal l P R O - G O A L q s o r t / 3 x l
38 E x i t P R O - G O A L (x3 ~ x2) ^ x l
39 E x i t E X T G (x9 o x8 ¢~ x3 ~ x2) ^ x7 A x6 A x5 A x4 A x l
40 E x i t RESTRC (x 3 0 x2) ^ x l
41 E x i t U N I O N (x 3 ¢~ x2) A x l
42 E x i t c l a u s e 2
43 E x i t P R O - G O A L (x3 ~ . x2) ^ x l
44 E x i t E X T G (x9 ¢~ x8 ¢~ x2) ^ x7 A x6 ^ x5 A x4 ^ x3 A x l
45 Cal l PRO-GOAL q s o r t / 3 x3 h x l
46 Exi t P R O - G O A L q s o r t / 3 3_
47 E x i t E X T G .k
48 E x i t R E S T R C .1.
49 E x i t U N I O N x3 ^ x2 ^ x l
50 E x i t c l a u s e 2
51 Try clause 2
52 (.;all PRO-GOAL qsort/3 x3 A xl
53 Exit PRO-GOAL qsort/3 x3 ^ x2 A xl
54 Exit EXTG x9 A x8 A x7 ^ x6 A x5 ^ x4 A x3 A x2 A xl
55 E x i t R E S T R C x3 ^ x2 A x l
56 E x i t U N I O N x3 ^ x2 A x l
57 E x i t c l a u s e 2
58 E x i t P R O - G O A L q s o r t / 3 x3 ^ x2 A x l
59 E x i t E X T G x3 ^ x2 ^ x l
60 E x i t R E S T R C x2 A x l
61 E x i t U N I O N x2 ^ x l
62 E x i t c l a u s e 1

FIGURE 3. AnMysis of qsort/2 using Prop.

2 5 0 P. VAN H E N T E N R Y C K E T AL.

4.5. Implementation

Our implementation of the domain Prop uses ordered binary decision graphs (OBDG)
as a canonical form for Boolean functions [6]. OBDGs require a total ordering on
the variables. The ordering can have a significant impact on the size of Boolean
functions. Since there is no obvious good ordering for abstract interpretation, our
implementation simply uses xl < x2 < " ' < xn. The data structure underlying
OBDGs is a binary tree with a number of restrictions.

Definition 4.8 [6]. A function graph is a rooted, directed graph with vertex set
V containing two types of vertices. A nonterminal vertex v has as attributes
an index index(v) E { x l , . . . , x n } and two children low(v) and high(v) from
V. A terminal vertex v has as attribute a value value(v) E {false, true}.
Furthermore, for any nonterminal vertex v, if low(v) is also nonterminal, then
index(v) > index(low(v)). Similarly, if high(v) is nonterminal, then index(v) >
index(high(v)).

The correspondence between function graphs and Boolean functions is given by
the following definitions.

Definition 4.9 [6]. A function graph G having root vertex v denotes a function fv
defined recursively as

1. if v is a terminal vertex, then fv = true if value(v) = true. fv = fa l se
otherwise.

2. if v is a nonternfinal vertex with index(v) = x~, then f , is the function

f v (X l , . . . , x n) = xi A f tow(v)(Xl , . . . ,Xn) V ~xi A fhigh(v)(Xl, . . . ,Xn).

OBDGs are simply function graphs where redundant vertices and duplicated sub-
graphs have been removed.

Definition 4.10 [6]. A function graph G is an ordered binary decision graph iff it
contains no vertex v with low(v) = high(v) nor does it contain distinct vertices
v and v t such that the subgraph rooted by v and v t are isomorphic. 3

Reference [6] describes several algorithms for the reduction, restriction, and com-
position of OBDGs. Other algorithms (e.g., elimination, comparison) can be de-
signed along the same principles. The main complexity results are given in Table 1.
Contrary to the implementation of Bryant, our implementation uses hashtables
instead of two-dimensional arrays, and avoids the sorting step of the reduce op-
eration, further reducing the complexity. In the complexity results, we assume
that hashing takes constant time. We also note Gi, the OBDG associated with a
Boolean function fi, and note IGI, the number of vertices in the graph G. Although
each operation is polynomial, it is important to realize that the size of the resulting
graph can be significantly larger than the inputs of the operation. A sequence of
operations can thus lead to a graph whose size is exponential in terms of the inputs.

3Informally, two graphs are isomorphic if their structures and attributes match with the same
order of children.

EVALUATION OF THE DOMAIN PROP 251

T A B L E 1, Complexity results of the basic operations on graphs.

Procedure Result Time Complexity

Reduce G reduced in canonical form O(IOI)
Apply f l <op) f2 O(lallIG21)
Valuate flxi=b O(lal)
Compose fl Ix~=S2 o(lal 12 la2 I)
Compare true iff f l = f2 O(min(IGll, la21))
Eliminate flz=true V flx=fazs~ O(IGI 2)

This is to be expected since Boolean satisfiability is an NP-complete problem. An
important measure in the experiments will thus be the size of the graphs in practice.

5. T H E D O M A I N PAT(PROP)

The domain Prop presented in the previous section may lose accuracy since it only
works on the clause variables. In this section, we lift up this limitation and consider
an infinite abstract domain integrating Prop with a pat tern component preserving
structural information about terms. This new domain is interesting for a number
of reasons. On the one hand, it is likely to improve the accuracy of the analysis,
since even more sophisticated relationships between variables will be maintained.
On the other hand, its computational cost is not bounded in the same way as the
domain Prop. It is thus particularly important to identify whether the execution
of the analysis remains reasonable under these conditions.

The new domain can be obtained by instantiating the generic pa t tern domain
proposed in [13] to Prop. The generic pat tern domain upgrades any domain ex-
pressed on clause variables, called the N-domain, into an abstract domain combining
the N-domain and a pat tern component.

The presentation of the generic domain and its associated algorithms is outside
the scope of this paper, but the reader can refer to [13] for a comprehensive overview
of this approach. In the rest of this section, we briefly review the semantic part of
the generic domain Pat (N) and the operations it requires from the N-domain. We
also show how to define these operations for the domain Prop to obtain Pat (Prop) .

The rest of this section is organized as follows. Section 5.1 gives some basic
intuitions about the generic domain. Section 5.2 describes the generic domain
Pat (N), including its concretization function. Section 5.3 defines Pat (Prop) as an
instantiation of Pat (N). Section 5.4 describes the concrete and abstract versions
of the operations needed for the instantiation. Sections 5.2 and 5.3 can be skipped
in a first reading.

5.1. Informal Overview

The key concept in the representation of the substitutions in this generic domain
is the notion of subterm. With each subterm appearing in a substitution, the
generic abstract domain may associate a pattern which specifies the main functor,
as well as the subterms which are its arguments. In addition, it associates with
each subterm its properties. These properties (e.g., sharing, groundness, freeness)

252 P. VAN H E N T E N R Y C K E T AL.

are left unspecified and are represented in the X-domain. Moreover, each variable
in the domain of the substitution is associated with one of the subterms. Note that
this information enables us to express that two arguments have the same value
(and hence that two variables are bound together) by associating two arguments
with the same subterm. To identify the subterms in an unambiguous way, an index
is associated with each of them. If there are n subterms, we make use of indices
1 , . . . , n. For instance, the substitution

{xl ~-- t* a , x2 +--- a , x3 ~ y] \ []}

will have seven subterms. The association of indices to them could be, for instance,

{ (1 , t*a) , (2 , t),(3, a),(4, a),(5, yl \ []), (6, yl), (7, [])}.

The pattern component (possibly) assigns to an index an expression g (i l , . . . ,in)
where g is a function symbol of arity n and i l , . . . , in are indices. If it is omitted,
the pattern is said to be undefined. In our example, the pattern component makes
the following associations:

{(1, 2 • 3), (2, t), (3, a), (4, a), 6 \ 7), (7, [])}.

The same value component, in this example, maps xl to 1, x2 to 4, and x3 to 5.
The properties of each of the subterms are stored by the X-domain. The ~-

domain has no knowledge about the pattern component. This allows the X-domain
to be viewed as working on clause variables. The identification of subterms (and
hence the link between the structural component and the X-domain) is a somewhat
arbitrary choice. In the following, we identify the subterms with integer indices, say
1 . . . n if n subterms are considered. The ~-domain thus represents properties of
the subterms by using these indices. For instance, when the X-domain corresponds
to Prop, the Boolean formula1 A 2 A 3 A (5¢=~6) A 7 c a n b e u s e d to store
information on the above substitution.

NOTATION. In the following, we denote by Ip the set of indices {1, . . . ,p}, by
STp the set of tuples of terms (t l , . . . , tp), and by S T the set of all sets STp for
some p > 0.

5.2. The Generic Domain P a t t e r n

An abstract substitution in Pa t (X) over the P V variables x l , . . . ,xn is a triple
(f rm , sv, g), where sv (the same value component) is a total function, f r m (the
pattern component) is a partial function, and ~ is an element of the X-domain. The
meaning of the pattern, same value, and X-domain components is as follows.

5.2.1. THE PATTERN COMPONENT. The pattern component associates with
some of the indices in Ip an expression g (i l , . . . , iq) where g is a function symbol
of arity q and { i l , . . . , i q } C Ip. The pattern component is a partial function
f r m : Ip 74 Fp, where Fp is the set of all patterns on Ip, satisfying the following
condition: let Gfrm be the graph whose nodes belong to Ip and whose arcs are
the pairs (i , j) such that f rm(i) = g(. . . , j , . . .) . G/r m must be an acyclic graph.
We take the convention of denoting by f rm(i) = under the fact that no pattern
is associated with i. The meaning of the component is given by the concretization

EVALUATION OF THE DOMAIN PROP 253

func t ion t h a t specifies t h a t the componen t represents all p_tuples of t e rms t h a t
sa t i s fy s imu l t aneous ly all p a t t e r n cons t ra in ts :

Cc(f rm) = { (t l , . . . , t p) I Vi, i l , . . . , i q E Ip :

I rm(i) = g (i l , . . . , i q) ~ t i=g(t~ l , . . . , t i , ,) } .

T h e cond i t ion on Gfrm ensures t h a t Cc(f rm) is not empty. In the following, we
deno te by FRMp the set of all funct ions f r m for a fixed p and by F R M the union
of all FRMp (p >_ 0).

5.2 .2 . THE SAME VALUE COMPONENT. The second componen t assigns a sub-
t e r m to each var iable in the subs t i tu t ion . Given a set D of p r o g r a m var iables and a
set of indices I ~ , th is componen t is a sur ject ive funct ion sv : D --~ Im. I ts mean ing
is given by a concre t i za t ion funct ion t h a t makes sure t ha t two var iables ass igned
to the same index have the same value:

Cc(sv) = {0 I dora(O) = D and Vxi, xj E D: sv(xi) = s v (3 2 j) :=~ x i O = XjO}.

We deno te by SVD,m the set of all same value funct ions for fixed D and ra and by
S V the union of all sets SVD.~ for any D and m.

5 .2 .3 . THE ~-DOMAIN AND ITS BASIC OPERATIONS. The ~ - c o m p o n e n t of t he
gener ic d o m a i n is a doma in ~p t h a t gives in format ion on a set of t e rms < t l , . . . , tp}.
T h e d o m a i n is a ssumed to sa t i s fy t r a d i t i o n a l requirements . For ins tance, t he SRp
m a y be a cpo wi th an order < ~ , an upper bound opera t ion , and a m o n o t o n e
conc re t i za t ion funct ion w.r . t . <~.4 In the following, we denote by N the set of all
~p (p > 0).

T h e ~ - d o m a i n needs a nmnber of basic opera t ions , i.e., T_UNION, T_AI_VAR,
T_ AI_FUNC, PROJ, INTR, JOIN, REN, in t e rms of which the s t a n d a r d ope ra t i ons are
imp lemen ted . T h e i m p l e m e n t a t i o n of the s t a n d a r d ope ra t ions in t e rms of those
bas ic ope ra t i ons is ou ts ide the scope of th is paper , bu t the reader m a y consul t [13]
for more deta i ls . The basic ope ra t ions will be specified la ter , t oge the r wi th the i r
a b s t r a c t versions.

5 .2 .4 . THE GENERIC ABSTRACT DOMAIN. We are now in a pos i t ion to specify
t he a b s t r a c t domain .

Definition 5.1. Let D be a finite set of p rog ra m variables . The set of a b s t r a c t
subs t i t u t i ons P a t (N) is the subse t of F R M x S V x N consis t ing of e lements
(frm, sv, l> sa t i s fy ing the following condi t ions:

i. Brn, p E N, p >_ m & ~ c Np & sv c SVD,m & f r m c FRMp;
ii. V i : m < i < p : ? j : l < j < p : f r m (j) = g (. . . , i , . . .) .

Formal ly , the mean ing of an a b s t r a c t subs t i t u t i on 3 = (f rm, sv, g) is given by
the following concre t i za t ion function:

Cc(~)
= {O:dora(O) = D & 3(tl tp) E Cc(~) N C c (f r m) :Vx E D : xO = tsv(z)}.

4Some of these requirements can be lifted up. See [24] for more details.

254 p. VAN HENTENRYCK ET AL.

5.3. The Domain P a t (P r o p)

We now consider the domain Pa t (Prop) as an instant iat ion of Pa t (~) to Prop.
The basic idea is to associate a variable i with each te rm ti. The concret izat ion
function is easily generalized to tuples of terms as follows.

Defini t ion 5.2. The concretization function for Prop1,, is a function Cc : Propi, , ---+
STp defined as follows:

C c (f) = {<t l , . . . ,tp} I Vcr E S S : ass ign ((r i o , . . . , tpcr))(f) = t rue}

where ass ign : STp --, Ip -~ Bool is defined by ass ign <Q, . . . , tp) i = t rue iff ti
is ground.

5.4. Abstract Operations

We now specify the abstract ion of the N-domain operat ions for Pa t (Prop) . As for
P rop , we give the concrete and abstract versions for each operat ion, the abs t rac t
version being a consistent approximat ion of the concrete version.

The concrete operat ions are of two kinds. First, there are a certain number
of operat ions which are similar to the t radi t ional operations, but on sets of tu-
ples instead of on sets of substi tutions. These are operat ions T_UNION, T_ AI_VAR,
T_AI_FUNC. Second, there are a number of operat ions mot ivated by the need for
introducing, removing, and renaming terms as the computa t ion proceeds. Let us
explain informally why some of them are needed. Operat ion INTR is used each t ime
new terms are being introduced in a substi tution. This is the case at clause en t ry
(operat ion EXTC) as well as during the unification operat ions (operations AI_VAR,
AI_FUNC, EXTG). Opera t ion PROJ is used each t ime some terms should be removed
from a substi tut ion. This occurs in many operations, including clause exit (,~ESTRC)
and procedure entry (RESTRG). Operat ion JOIN is used to join two tuples in opera-
t ion EXTG just before calling the general unification algorithm. We now tu rn to the
operat ions whose implementat ions are conceptual ly simple in the case of P rop and
are closely related to those of the Prop domain.

UNION. This operat ion takes the union of two sets of tuples. Its concrete
version is specified as follows:

T-UNION((I)I, ffP2) = (1)1 U (I) 2.

Its abs t rac t version uses disjunction once again:

T_UNION(/1, f2) -- f l V f2.

UNIFICATION OF TWO VARIABLES. This operat ion is very close to the s tan-
dard operation. The concrete version of operat ion T_AI_VAR is as follows:

T_AI_VAR((I),i,j) = { <rio- , . . . ,tpO'> i < t l , ' ' " ,tp> C (I) (~g

a E mgu(t~, t j) & a E SS }.

Its abs t rac t version is given as follows.

T_AI_VAR(f , i , j) = f A (i ¢=~ j) .

EVALUATION OF THE DOMAIN PROP 255

UNIFICATION OF A VARIABLE AND A FUNCTOR. This opera t ion is very close
to the s tandard operation. The concrete version of operat ion T_AI_FUNC is as
follows:

T_ AI_ FUNC(~, i, { j~ , . . . , j~ }, 9) : { <t l~ , . . . , t ,~> I <t~,...,tp> • ~
• mgu(t i , g (t j l , . . . , t j . .)) ~ (7 • S S }.

I ts abs t rac t version adds an equivalence, as was the case for unification in Prop:

W_AI_FUI~C(f , i ,{ j l , . . . , jn} ,g)=f A (i c a j l A . . . A jn).

PROJECTION. This operat ion projects out of term tj. Its concrete version is
specified as follows:

pa0J(~, j) = { (t l , . . . , t j_ , , t j + l , . . . , tp> I (t l , . . . , tp> • • }.

I ts abs t rac t version is s imply

PROJ(f , j) = denorm [1 , . . . , j - 1 , p , j , . . . , p - 1] fly=true V fli=false"

INTRODUCTION OF VARIABLES. This operat ion introduces k variables in loca-
t ions m + 1 , . . . , m + k. Its concrete version can be specified as follows:

INTR(~P, m, k) = { (t l , . . . , tin, Y l , . . . , Yk, tin-I-I,..., tp) I <tl , ' ' ' , tp) E (~
Yl,-- •, Yk are new distinct variables}.

I ts abs t rac t version is obtained by shifting the indices of the last p - m variables
by k positions.

INWR(f,m, k) -- d e n o r m [1 , . . . , m , m + 1 + k , m + 2 + k , . . . ,p + k] f .

JOIN. This operat ion concatenates tuples of terms coming from two different
sets. I ts concrete version is given as follows:

. , t~ , t i , . , t ~ > I <t~,. ~1

Its abs t rac t version is given in terms of conjunction. Let f l • Props,,, f2 • Prop1,,:

JOIN(f l , f2) = f l A denorm [p + 1 P+q] f2.

RENAMING OF VARIABLES. The ~-domain also needs a renaming operat ion.
Let r : Ip -* Ip be a renaming of indices. The concrete version can be specified as
follows:

REN(ffP, r) = {(t r (1) , . - . , tr(p)} I (t i , ' ' ' , ~:P> • (~}"

Its abs t rac t version is implemented by using the denorm function previously defined:

REN(/, t) = denorm [t(1) t(p)] f .

256 P. VAN H E N T E N R Y C K E T AL.

6. E X P E R I M E N T A L E V A L U A T I O N

In this section, we report experimental results about the efficiency and accuracy of
Prop and P a t (P r o p) and compare them with other abstract domains. Section 6.1
describes the preliminaries, including a description of the benchmarks and the do-
mains and algorithms used in the experiments. Sections 6.2 and 6.3 describe, re-
spectively, the accuracy and efficiency of Prop and Pat (Prop) . Section 6.4 discusses
the use of Prop and Pat (Prop) for on-line analysis, while Section 6.5 discusses the
impact of caching on this domain.

It is important to stress that the experiments were not chosen to obtain as
many ground arguments as possible to improve efficiency. In fact, the on-line (or
condensing or goal-independent) analysis makes no assumption on the queries, and
hence manipulates mostly nonground substitutions. Hence, the experiments cover
well the possible cases that may occur in practice.

6.1. Preliminaries

THE PROGRAMS TESTED. The programs we use are hopefully representative of
"pure" logic programs (i.e., without the use of dynamic predicates such as a s s e r t
and r e t r a c t) . They are taken from a number of authors and used for various
purposes from compiler writing to equation-solvers, combinatorial problems, and
theorem-proving. Hence, they should be representative of a large class of programs.
In order to accommodate the many built-ins provided in Prolog implementations
and not supported in our current implementation, some programs have been ex-
tended with some clauses achieving the effect of the built-ins. Examples are the
predicates to achieve input /output , meta-predicates such as s e t o f , b a g o f , a r g ,
and f u n c t o r . The clauses containing a s s e r t and r e t r a c t have been dropped in
the one program containing them (i.e., Syntax error handling in the reader pro-
gram).

The program k a l a h is a program which plays the game of kalah. It is taken
from [37] and implements an a lpha-be ta search procedure. The program p r e s s l
is a symbolic equation-solver program taken from [37] as well. P r e s s2 is the same
program, but one literal is repeated to improve precision. 5 The program cs is a
cutting-stock program taken from [38]. It is a program used to generate a number of
configurations representing various ways of cutting a wood board into small shelves.
The program uses, in various ways, the nondeterminism of Prolog. The program
Dis j is taken from [16], and is the generate and test equivalent of a constraint
program used to solve a disjunctive scheduling problem. This is also a program
using the nondeterminism of Prolog. The program Read is the tokenizer and reader
written by R. O'Keefe and D.H.D. Warren for Prolog. It is mainly a deterministic
program, with mutually recursive procedures. The program PC is a program writ ten
by W. Older to solve a specific mathematical problem. The program G a b r i e l is the
Browse program taken from Gabriel benchmark. The program P lan (PL for short)
is a planning program taken from Sterling and Shapiro. The program Queens is
a simple program to solve the n-queens problem. Peep is a program writ ten by
S.Debray to carry out the peephole optimization in the SB-Prolog compiler. It is
a deterministic program. We also use the traditional concatenation and quicksort

5That is, to simulate the effect of the reexecution strategy [25].

E V A L U A T I O N O F T H E D O M A I N P R O P 2 5 7

programs, say Append (with input modes (v a r , v a r , ground)) and 0 s o r t (difference
lists sorting the small elements first).

THE DOMAIN Pattern. The abstract domain Pattern contains pat terns (i.e.,
for each subterm, the main functor and a reference to its arguments are stored),
sharing, same-value, and mode components. It is best viewed as an abstract ion of
the domain of Bruynooghe and Janssens [3] where a pat tern component has been
added. The domain is fully described in [33], which also contains the proofs of
monotonici ty and consistency.

As for the generic domain Pat (N) presented before, which is in fact a gener-
alization of P a t t e r n , the key concept in the representation of the substitutions
is the notion of subterm. Given a substitution on a set of variables, an abstract
substi tut ion associates with each subterm the following information:

• its mode (e.g., Gro, Var, Ngv (i.e., neither ground nor variable));
• its pattern which specifies the main functor as well as the subterms which are

its arguments. Note tha t the pattern is optional. If it is omitted, the pa t te rn
is said to be undefined;

• its possible sharin 9 with other subterms.

The correspondence between each variable in the domain of the substitution and
one of the subterms is provided by a function called same value, which behaves as
in Pa t (N).

If we consider again the substitution presented in Section 5.1, the association of
indices is the same, giving the pat tern representation

{(1, 2 * 3), (2, t), (3, a), (4, a), (5, 6\7), (7, [])}.

Each index is associated with a mode taken from

{±, Gro, Var, Ngv, Novar, Gv, Nogro, Any}.

In the example, we have the following associations:

{(1, Gro), (2, Gro), (3, Gro), (4, Gro), (5, Ngv), (6, Var), (7, Gro)}.

Finally, the sharing component specifies which indices, not associated with a pat-
tern, may possibly share variables. We only restrict our at tention to indices with
no pat tern since the other pat terns already express some sharing information and
we do not want to introduce inconsistencies between the components. The actual
sharing relation can be derived from these two components. In our particular ex-
ample, the only sharing is the couple (6, 6) which expresses that variable Yl shares
a variable with itself.

Note that all components of this domain are not useful for a groundness analysis.
If only groundness is important , the mode component could be simplified to contain
only two modes: any and ground. If only pure programs are used, then sharing
could be omit ted as well. The same-value and structural information are, however,
fundamental to obtain a good precision. Hence, the efficiency results given in the
following would be bet ter if those components were omitted, but the present results
give an idea of how well Prop and Pat (Prop) compare with other domains.

258 P. VAN HENTENRYCK ET AL.

THE DOMAIN Mode. The domain of [33] is a reformulation of the domain of
[2]. The domain could be viewed as a simplification of the elaborate domain where
the pattern information has been omitted and the sharing has been simplified to
an equivalence relation. Only three modes are considered: ground, var , and any.
Equality constraints can only hold between program variables (and not between
subterms of the terms bound to them). The same restriction applies to sharing
constraints. Moreover, algorithms for primitive operations are significantly differ-
ent. They are much simpler and the loss of accuracy is significant. Note once
again that the mode and sharing components can be simplified if only groundness
information would be important.

THE GENERIC ABSTRACT INTERPRETATION ALGORITHM. The algorithm used
in the experimental results is the so-called "prefix optimization" algorithm [17]. It
is essentially our original algorithm [23, 27] augmented with an advanced depen-
dency graph to avoid recomputing clauses or prefixes of clauses that would not bring
additional information. The original algorithm is a top-down algorithm computing
a subset of the least fixpoint, small but sufficient to answer the query. It works at
a fine granularity, i.e., it keeps multiple input /output patterns for each predicate.
Both algorithms can be seen as particular implementations of Bruynooghe's op-
erational framework [2] or, alternatively, as instantiations of a universal top-down
fixpoint algorithm [24] to the abstraction of the semantics depicted in Figure 1.

We also use the reexecution algorithm of [25]. This algorithm is essentially simi-
lar to the previous one, except that procedure calls and built-ins are systematically
reexecuted to gain precision, exploiting the referential transparency of logic pro-
gramming languages. This algorithm only deals with Prolog programs not using
side-effects (e.g., a s s e r t) . The reexecution is also local to a clause. Reexecution
turns out to be a versatile tool to keep the domain simple and increase precision
substantially.

6.2. The Domain Prop

6.2.1. ACCURACY. In this section, we compare Mode, Mode-reex, P a t t e r n ,
and Prop with respect to their precision in computing groundness information.
All domains allow to compute other interesting information: freeness and sharing
information is computed by Mode and P a t t e r n , as well as pattern information for
P a t t e r n . Covering information can be computed by Prop and P a t t e r n . We only
concentrate on the groundness information here.

Tables 2 and 3 compare Mode and Prop for the input and output modes of all
predicates. The first column reports the total number of arguments in procedure
heads, the next two columns, G-Hod and G-Pro, the number of arguments inferred
ground by Mode and Prop, the fourth column, B-Hod, reports the number of cases
where Mode infers ground for an argument while Prop does not infer groundness,
and the fifth column is just the opposite measure. The last columns compare the
results at the level of the procedures (instead of at the level of arguments). These
two domains were compared since they both work on the variables of the clauses
and do not keep track of functors in the abstract domain. The results indicate that
Prop is more precise than Mode. Mode never infers more information than Prop and
loses precision compared to Prop in almost all programs.

Tables 4 and 5 report the same comparison for Prop and P a t t e r n . Contrary to
Prop, P a t t e r n keeps track of the f.unctors and works at the level of subterms. As a

EVALUATION OF THE DOMAIN PROP 259

T A B L E 2. A c c u r a c y of t h e a n a l y s i s on i n p u t s : C o m p a r i s o n of Mode a n d P rop .

Program Args G-Mod G-Pro B-Mod B-Pro Procs B-Mod-P B-Pro-P

Append 3 1 1 0 0 1 0 0

CS 94 19 56 0 37 34 0 20

D i s j 60 11 38 0 27 30 0 17

G a b r i e l 59 18 18 0 0 20 0 0

Kalah 123 35 79 0 44 44 0 36

Peep 63 22 39 0 17 19 0 9

PG 31 8 20 0 12 10 0 6

P l a n 32 5 20 0 15 13 0 9

P r e s s l 143 9 15 0 6 52 0 4

P r e s s 2 143 9 15 0 6 52 0 4

QSort 9 1 4 0 3 3 0 2

Queens 11 2 7 0 5 5 0 4

Read 122 34 34 0 0 43 0 0

T A B L E 3. A c c u r a c y of t h e a n a l y s i s on o u t p u t s : C o m p a r i s o n of Mode a n d P rop .

Program Args G-Mod G-Pro B-Mod B-Pro Procs B-Mod-P B-Pro-P

Append 3 2 3 0 1 1 0 1

CS 94 28 94 0 66 34 0 30

D i s j 60 24 60 0 36 30 0 20

G a b r i e l 59 22 22 0 0 20 0 0

Kalah 123 55 121 0 66 44 0 36

Peep 63 30 55 0 25 19 0 13

PG 31 8 31 0 23 10 0 10

P l a n 32 7 31 0 24 13 0 10

P r e s s l 143 26 39 0 13 52 0 8

P r e s s 2 143 26 39 0 13 52 0 8

QSort 9 1 7 0 6 3 0 3

Queens 11 2 11 0 9 5 0 5

Read 122 68 70 0 2 43 0 2

consequence, the size of its substitutions is not bounded a priori. The experimental
results are particularly interesting, and indicate that Prop and P a t t e r n are very
close in accuracy to compute groundness information in the benchmark programs.
p a t t e r n is slightly better on the input modes since it infers more groundness on
P re s s2 , all other results being the same. The loss of precision in Prop comes from
the fact that it loses track of the functors. Boolean functions on the clause variables
are not enough in this case. The results on the output modes indicate that Prop is
more accurate in some programs, Peep 6 and Qsor t , while it loses precision in other
programs, Read, P r e s s l , and Press2. All other programs give the same results.
The gain of precision in Qsort comes from the inherent loss of precision in P a t t e r n
when different clauses defining a predicate return results with different patterns.

6The gain in accuracy is Peep is somewha t unreal since it is due to an imprecis ion in one of
the ope ra t ions of P a t t e r n which can be corrected easi ly [27].

260 P. VAN HENTENRYCK ET AL.

T A B L E 4. Accuracy of the analys is on inputs : C o m p a r i s o n of Prop a n d Pattern.

Program Args G-Pro G-Pat B-Pro B-Pat Procs B-Pro-P B-Pat-P

Append 3 i 1 0 0 i 0 0

CS 94 56 56 0 0 34 0 0

Disj 60 38 38 0 0 30 0 0

Gabriel 59 18 18 0 0 20 0 0

Kalah 123 79 79 0 0 44 0 0

Peep 63 39 39 0 0 19 0 0
PG 31 20 20 0 0 10 0 0
Plan 32 20 20 0 0 13 0 0
P r e s s i 143 15 15 0 0 52 0 0
Press2 143 15 99 0 84 52 0 50
QSort 9 4 4 0 0 3 0 0
Queens 11 7 7 0 0 5 0 0
Read 122 34 34 0 0 43 0 0

T A B L E 5. Accuracy of the Analys is on O u t p u t s : C o m p a r i s o n of Prop a n d P a t t e r n .

Program Args G-Pro G-Pat B-Pro B-Pat Procs B-Pro-P B-Pat-P

Append 3 3 3 0 0 1 0 0
CS 94 94 94 0 0 34 0 0
Disj 60 60 60 0 0 30 0 0
g a b r i e l 59 22 22 0 0 20 0 0
ga lah 123 121 121 0 0 44 0 0
Peep 63 55 53 2 0 19 2 0
PG 31 31 31 0 0 10 0 0
Plan 32 31 31 0 0 13 0 0
P r e s s l 143 39 40 0 1 52 0 0
Press2 143 39 140 0 101 52 0 47
QSort 9 7 6 1 0 3 1 0
Queens 11 l l 11 0 0 5 0 0
Read 122 70 74 0 4 43 0 4

P r o p a v o i d s t h e d r a w b a c k in t h i s e x a m p l e b y k e e p i n g d e p e n d e n c i e s b e t w e e n t h e

v a r i a b l e s , as e x p l a i n e d p r e v i o u s l y in t h e t r a c e . T h e loss o f p r e c i s i o n in P r o p is

a l w a y s d u e t o t h e f ac t t h a t i t o n l y w o r k s o n t h e c l a u s e v a r i a b l e s a n d n o t o n s u b t e r m s

of t h e t e r m s b o u n d t o t h e m .

T a b l e s 6 a n d 7 r e p o r t t h e s a m e r e s u l t s in p e r c e n t a g e . T h e y i n d i c a t e t h a t b o t h

d o m a i n s in fe r a h i g h p e r c e n t a g e o f g r o u n d a r g u m e n t s o n t h e b e n c h m a r k s . O n m a n y

p r o g r a m s , t h e y in fe r m o r e t h a n 80% of g r o u n d a r g u m e n t s .

No t a b l e is g i v e n for t h e c o m p a r i s o n o f P r o p a n d M o d e - R e e x s i n c e a l l r e s u l t s

a r e e x a c t l y t h e s a m e . T h e r e is n o w a y t o d i s t i n g u i s h t h e p r e c i s i o n of t h e a lgo-

r i t h m s o n o u r b e n c h m a r k . T h i s r e s u l t is e x p l a i n e d b y t h e f ac t t h a t r e e x e c u t i o n , in

fac t , l o ca l l y " s i m u l a t e s " P r o p s i n c e b l o d e - R e e x i m p l i c i t l y k e e p s all e q u a t i o n s a n d

p r o p a g a t e s g r o u n d n e s s u s i n g t h e m . N e v e r t h e l e s s , P r o p is b e t t e r t h a n M o d e - R e e x ,

in t h e o r y , b e c a u s e n o n l o c a l l i t e r a l s a re n o t r e e x e c u t e d i n s i d e a c l ause . H e r e is a n

a r t i f i c i a l e x a m p l e of a p r o g r a m w h e r e P r o p wil l d e r i v e g r o u n d n e s s o f t h e o u t p u t ,

EVALUATION OF THE DOMAIN PROP 261

T A B L E 6. Accuracy of the analysis on inputs : C o m p a r i s o n of Prop a n d P a t t e r n in
percen tage .

Program Args G-Pro G-Pat B-Pro B-Pat

Append 3 33.33 33.33 0.00 0.00
CS 94 59.57 59.57 0.00 0.00
Disj 60 63.33 63.33 0.00 0.00
Gabriel 59 30.50 30.50 0.00 0.00
Kalah 123 64.22 64.22 0.00 0.00
Peep 63 61.90 61.90 0.00 0.00
PG 31 64.51 64.51 0,00 0.00
Plan 32 62.50 62.50 0.00 0.00
Press 1 143 10.48 10.48 0.00 0.00
Press2 143 10.48 69.23 0.00 58.74
QSort 9 44.44 44.44 0.00 0.00
Queens 11 63.63 63.63 0.00 0.00
Read 122 27.86 27.86 0.00 0.00

but Mode-Reex will not:

q (X l) : - Xl = f (X 2 , X 3) , p (X 1 , X 2 , X 3) .

p (X I , X 2 , X 3) : - X l = a .

p (X 1 , X 2 , X 3) : - X 2 = b , X3=c.

M o d e - r e e x d o e s n o t d e t e c t g r o u n d n e s s s ince i t n e v e r c o n s i d e r s t h e r e e x e c u t i o n of

Xl = f (X2 , X3) d u r i n g t h e s o l v i n g of p / 3 a n d t h e g r o u n d n e s s i n f o r m a t i o n is l o s t

b y t h e UNION o p e r a t i o n . N o t e t h a t g l o b a l r e e x e c u t i o n (or p r o p a g a t i o n) [4, 31] is

a b l e t o d e t e c t g r o u n d n e s s in t h i s case as well.

I n c o n c l u s i o n , t h e e x p e r i m e n t a l r e s u l t s i n d i c a t e t h a t P r o p h a s a r e m a r k a b l e a c c u -

racy, a l t h o u g h i t d o e s n o t keep t r a c k of f u n c t o r s . I t o u t p e r f o r m s Mode a n d c o m p a r e s

wel l w i t h P a t t e r n . I n m a n y cases , t h e r e s u l t s a re o p t i m a l or c lose t o o p t i m a l (i .e. ,

T A B L E 7. Accuracy of t he analysis on ou tpu t s : C o m p a r i s o n of Prop and P a t t e r n .

Program Args G-Pro G-Pat B-Pro B-Pat

Append 3 100.00 100.00 0.00 0.00
CS 94 100.00 100.00 0.00 0.00
Dis3 60 I00.00 I00.00 0.00 0.00

Gabriel 59 37.28 37.28 0.00 0.00
Kalah 123 98.37 98,37 0.00 0.00
Peep 63 87.30 84.12 3.17 0.00
PG 31 100.00 100.00 0.00 0.00
Plan 32 96.87 96.87 0.00 0.00
P r e s s / 143 27.27 27.97 0.00 0.60
Press2 143 27.27 97.90 0.00 70.62
QSort 9 0.77 0.66 0.ii 0.00

Queens 11 100.00 100.00 0.00 0.00
Read 122 57.37 60.65 0.00 3.27

262 P. VAN HENTENRYCK ET AL.

TABLE 8. Efficiency results for the domain Prop.

P r o g r a m Time G-Iter C-Iter G-Iter/Time C-Iter/Time

CS 1.34 50 94 37.31 70.15

Dis3 1.01 45 88 44.55 87.13

G a b r i e l 0.47 47 114 100.00 242.55

Kalah 0.93 65 129 69.89 138.71

Peep 1.16 36 249 31.03 214.66

PG 0.16 16 31 100.00 193.75

P l a n 0.12 19 41 158.33 341.67

P r e s s t 5.96 287 866 48.15 145.30

P r e s s 2 6.03 287 878 47.60 145.61

QSort 0.05 7 15 140.00 300.00

Queens 0.04 9 17 225.00 425.00

Read 1.66 76 311 45.78 187.35

Mean 87.31 207.66

all groundness information is inferred correctly). Loss of precision appears only on
the p r e s s programs and on read. It also achieves exactly the same precision as the
reexecution algorithm on mode on the benchmark programs. This positive result
is due to the ability of preserving sophisticated relationships between variables in
Prop.

6.2.2. EFFICIENCY. We now turn to the efficiency of Prop. Efficiency results
about Prop were important to obtain since, on the one hand, equivalence of Boolean
functions (i.e., determining if two Boolean expressions define the same function) is a
co-NP-complete problem and, on the other hand, the complexity of Prop is bounded
because our algorithm only works on the variables in the clauses.

Experimental results on Prop are given in Table 8. We report the computation
times in seconds on a Sun Sparc SS10/30 workstation, the number of procedure
iterations and the number of clause iterations, and a number of ratios. The results
indicate that the computation times are very reasonable. No program takes more
than 6.5 s, and most programs are under 1.5 s. The most time-consuming programs
are P r e s s l and Press2 , which are also the programs where Prop loses accuracy.
Prop performs about 88 goal iterations per second on the average. In contrast,
P a t t e r n and Mode perform about 112 and 191 iterations per second, indicating
that the abstract operations in Prop are more expensive. This last result should
be interpreted with care, however, since, on the one hand, the first iteration of a
goal is generally (but not always) more time consuming than the subsequent ones
due to the prefix optimization and, on the other hand, Pat (Prop) converges more
quickly than the other domains.

We compare the efficiency results of Prop with P a t t e r n , Mode, and Node-Reex.
Table 9 compares the efficiency of Prop, P a t t e r n , Node, and Mode-Reex. It indi-
cates that Prop takes 77% of the time of P a t t e r n on the average, is 1.56 as slow as
Mode, and requires 122% of the time of Mode-Reex. Prop is faster than P a t t e r n
on all programs but Press2 where Prop loses precision compared to P a t t e r n . On
many programs, Prop is twice as fast as P a t t e r n and three times as fast on Read.
The last result is explained by the fact that no argument is ground in the sec-
ond part of the program, and hence P a t t e r n makes many more iterations due to

EVALUATION OF THE DOMAIN PROP 263

T A B L E 9. Computation times: Comparison of the domains.

P r o g r a m Prop:Pr P a t t e r n : P a Mode:Mo Mode-Reex:Mr P r / P a Pr/Mo Pr/Mr

CS 1.34 2.00 1.29 1,67 0.67 1.04 0.80

D i s j 1.01 1.12 0.74 1.01 0.90 1.36 1.00

G a b r i e l 0.47 0.69 0.31 0.40 0.68 1.52 1.18

Kalah 0.93 1.86 0.72 0.81 0.50 1.29 1.15

Peep 1.16 2.14 1.11 1.28 0.54 1.05 0.91

PG 0.16 0.27 0.16 0.13 0.59 1.00 1.23

P l a n 0.12 0.20 0.11 0.08 0.60 1.09 1.50

P r e e s l 5.96 8.80 1.51 3.12 0.68 3.95 1.91

P r e s s 2 6.03 2.77 1.55 3.09 2.18 3.89 1.95

0Sort 0.05 0.06 0.08 0.05 0.83 0.63 1.00

Queens 0.04 0.05 0.06 0.04 0.80 0.67 1.00

Read 1.66 5.29 1.39 1.58 0.31 1.19 1.05

Mean 0.77 1.56 1.22

other information that it needs to compute (i.e., patterns and sharing). P a t t e r n
is also about twice as fast as Prop on Press2. Prop is almost always slower than
Mode-Reex. In general, the differences between the two programs are small; Prop
is, however, twice as slow as Mode-Reex on the Press programs. The case of CS
can easily be explained by the fact that it contains very many unifications and that
Prop abstracts the information in a better way.

Table 10 compares the goal iterations of Prop, P a t t e r n , Mode, and Mode-Reex.
Informally speaking, the goal iterations are the number of iterations of the semantic
function T used with a procedure as second argument. It indicates that, on the
average, Prop makes about 60% of the iterations of P a t t e r n , 63% of the iterations
of Mode, and 76% of the iterations of Mode-Reex. Prop makes fewer iterations
than P a t t e r n on all programs but Press2. This result is important, and seems to
indicate that Prop converges more quickly than the other domains. Its operations,
however, seem to be more expensive, as mentioned previously, although this should
be interpreted with care, as stated before.

Table 11 gives some results on the sizes of the abstract substitutions. We collect
information each time an abstract operation is executed. The information collected
concerns the variables that may occur in the clause substitution and the size of
the graph at a call point. In the table, 0p denotes the number of call points, V the
summation of the number of variables over all operations, MV the maximum number
of variables over all operations, and AV the average number of variables. S is the
summation of all sizes of the graph (i.e., the number of nodes in the graph) over
all operations, MS the maximal size of a graph, and AS the mean of all sizes. We
also give two ratios, MS/MV and AS/AV, the last one giving the number of nodes
used per variable. The results indicate that the maximum size of a graph on all
programs is 123, while the theoretical maximum is 242. On the average, a graph
uses 1.13 nodes per variable with a maximum of 1.30 over all programs. The ratio
MS/MY is also never greater than 8. The results clearly indicate the compactness of
the representation and explain the behavior of Prop.

Finally, Table 12 gives the repartition of the time between the various abstract
operations. It indicates that 80% of the time is spent in the abstract operations for

264 P. VAN HENTENRYCK ET AL.

T A B L E 10. Goa l i te ra t ion: C o m p a r i s o n of the d o m a i n s .

Program Prop:Pr. P a t t e r n : P a Mode:Mo Mode-Reex:Mr Pr /Pa Pr/Mo Pr/Mr

CS 50 85 81 64 0.58 0.61 0.78

Disj 45 68 62 53 0.66 0.72 0.84

Gabr ie l 47 81 80 84 0.58 0.58 0.55

Kalah 65 117 91 80 0.55 0.71 0.81

Peep 36 94 75 59 0.38 0.48 0.61

PG 16 38 34 20 0.42 0.47 0.80

Plan 19 36 46 29 0.52 0.41 0.65

P r e s s i 287 552 238 350 0.51 1.20 0.82

Press2 287 210 238 350 1.36 1.20 0.82

QSort 7 13 26 12 0.53 0.30 0.58

Queens 9 15 23 11 0.60 0.39 0.81

Read 76 209 119 115 0.36 0.63 0.66

Mean 0.59 0.63 0.76

this domain. The most consuming operations are RESTRG (about 19%), AI_FUNC
(about 16%), while SMALLERE0, RESTRC, and EXTG are all above 10%.

In summary, the efficiency of Prop is somewhat intermediary between Mode and
P a t t e r n , but less efficient than Mode-Reex. The result is rather positive since
Prop has roughly the same precision as P a t t e r n for groundness analysis. On our
benchmarks, Mode-Reex and Prop are really close in accuracy and efficiency (with
an advantage in efficiency for Mode-Reex). It is useful at this point to mention tha t
the on-line analysis presented in Section 6.4 will show tha t the efficiency is not too
dependent on the fact that the results are ground at the end of the computat ion in
many programs.

T A B L E 11. S ta t i s t i c s on the s u b s t i t u t i o n s : S t a n d a r d ana lys i s .

Program Op V MV AV S MS AS MS/MY AS/AV

CS 2122 16530 42 7.79 17,437 107 8.22 2.55 1.06

Dis j 2095 14047 25 6.71 13,443 38 6.42 1.52 0.96

Gabr ie l 1621 7950 19 4.90 9754 31 6.02 1.63 1.23

Kalah 3446 18,314 19 5.31 18,845 35 5.47 1.84 1.03

Peep 4549 23,984 15 5.27 24,603 29 5.41 1.93 1.03

PG 727 3569 16 4.91 3845 30 5.29 1.88 1.08

P lan 972 3024 8 3.11 3921 13 4.03 1.63 1.30

P r e s s l 20,259 89,201 17 4.40 114,554 123 5.61 7.24 1.28

P res s2 20,528 90,601 17 4.41 115,778 123 5.64 7.24 1.28

QSort 360 1474 9 4.09 1588 18 4.41 2.00 1.08

Queens 352 1122 10 3.19 1372 14 3.90 1.4 1.22

Read 6325 34300 22 5.42 34,383 79 5.44 3.59 1.00

Mean 5279.67 25,343 18.25 4.96 29,960 53.33 5.49 2.87 1.13

EVALUATION OF THE DOMAIN PROP 265

T A B L E 12. Statistics on the time of the operations for Prop.

Program RG AIF RC EG AIT AIV EC LEQ LUB ToT

CS 27.70 19.85 15.11 9.78 1.33 0.30 0.30 10.81 5.19 90.37

D i s j 37.30 16.01 10.72 8.37 0.59 0.29 0.15 10.57 4.55 88.55

G a b r i e l 14.09 14.85 10.91 12.18 1.27 1.40 0.13 12.44 9.26 76.52

Kalah 17.96 19.40 10.78 10.34 2.73 0.72 0.43 13.94 6.18 82.47

Peep 14.45 27.14 12.68 6.78 0.29 2.51 0.29 11.50 5.16 80.83

PG 19.50 16.74 9.40 9.06 1.26 1.26 0.11 16.40 6.77 80.50

P l a n 17.50 13.84 5.09 14.51 0.66 0.22 0.22 18.38 8.19 78.63

P r e s s l 18.26 18.57 14.46 13.39 0.91 0.61 0.30 16.89 6.39 89.80

P r e s s 2 18.35 18.05 14.14 13.53 0.90 0.60 0.30 15.94 6.17 87.97

QSort 16.79 6.76 7.67 9.49 0.65 0.65 0.00 11.44 3.77 57.22

Queens 10.50 9.8 5.9 5.5 1.6 0.00 0.3 13.20 19.70 66.50

Read 21.47 14.56 12.35 12.06 1.62 0.88 0.29 12.21 5.59 81.03

Mean 19.49 16.30 10.77 10.42 1.15 0.79 0.24 13.64 7.24 80.03

6.3. The Domain Pat (Prop)

6.3.1. ACCURACY. Tables 13 and 14 compare Prop and Pa t (Prop) for the in-
put and output arguments. The results indicate that Pat (Prop) improves on Prop
on the p r e s s programs as far as inputs are concerned and on the p r e s s programs
and read for the outputs. The improvement comes from the better handling of
difference-lists provided by Pat (Prop). Note also that, the increase in precision
is substantial for the p r e s s program. Tables 15 and 16 compare P a t t e r n with
Pat (Prop). The results indicate that Pat (Prop) improves on P a t t e r n on the pro-
gram p r e s s l , once again due to its better handling of difference-lists. We also com-
pared Pat (Prop) with P a t - r e e x , i.e., the reexecution algorithm on P a t t e r n . Once
again, the results were exactly the same as was the case for Prop and Mode-reex.
Note also that, in theory, Pat (Prop) is more accurate than P a t - r e e x , as the fol-
lowing example demonstrates.

t e s t

p(X)
p(X)
q(X)

q(X)

(X) :- p(X),q(X).

:- X = g(Y,Z),Y = f(Z).

:- X = g(Y,Z),Z = f(Y).

:- X = g(Y,Z),Y = a.

:- X = g(Y,Z),Z = a.

Informally speaking, the key to understanding this example is to notice that
p/1 returns the term g(A, B) with the function A ~ B, while q/1 gives the term
9(A, B) with the function A V B. The result of Pat (Prop) is thus the term f(A, B)
with A A B. P a t - r e e x would not be able to infer groundness in this case since
groundness is lost in operation UNION.

In summary, Pa t (Prop) and P a t - r e e x are more accurate than all the other
domains and produce improvements on programs with sophisticated handling of
difference-lists. On our benchmarks, Pat (Prop) produces optimal results on all
programs but read. We were not able to detect if the results were optimal for
r ead since only the source of the program was at our disposal (no specification

266 P. VAN HENTENRYCK ET AL.

T A B L E 13. A c c u r a c y of t he ana lys i s on inpu t s : C o m p a r i s o n of P r o p a n d P a t (P r o p) .

P rogram Args G-Pro G-PPr B-Pro B-PPr Procs B-Pro-P B-PPr-P

CS 94 56 56 0 0 34 0 0

Dis j 60 38 38 0 0 30 0 0

Gabr ie l 59 18 18 0 0 20 0 0

Kalah 123 79 79 0 0 44 0 0

Peep 63 39 39 0 0 19 0 0

PG 31 20 20 0 0 i0 0 0

Plan 32 20 20 0 0 13 0 0

P r e s s l 143 15 99 0 84 52 0 50

P res s2 143 15 99 0 84 52 0 50

QSort 9 4 4 0 0 3 0 0

Queens 11 7 7 0 0 5 0 0

Read 122 34 34 0 0 43 0 0

T A B L E 14. A c c u r a c y of t he ana lys i s on o u t p u t s : C o m p a r i s o n of P r o p a n d P a t (P r o p) .

P rogram Args G-Pro G-PPr B-Pro B-PPr Procs B-Pro-P B-PPr-P

CS 94 94 94 0 0 34 0 0

Disj 60 60 60 0 0 30 0 0

Gabriel 59 22 22 0 0 20 0 0

Kalah 123 121 121 0 0 44 0 0

Peep 63 55 55 0 0 19 0 0

PG 31 31 31 0 0 I0 0 0

Plan 32 31 31 0 0 13 0 0

P r e s s l 143 39 140 0 101 52 0 47

Press2 143 39 140 0 101 52 0 47

QSort 9 7 7 0 0 3 0 0

Queens 11 11 11 0 0 5 0 0

Read 122 70 74 0 4 43 0 4

T A B L E 15. A c c u r a c y of t he ana lys i s on inpu t s : C o m p a r i s o n of P a t t e r n a n d P a t (P r o p) .

P rogram Args G-Pat G-PPr B-Pat B-PPr Procs B-Pat-P B-PPr-P

CS 94 56 56 0 0 34 0 0

Disj 60 38 38 0 0 30 0 0

Gabriel 59 18 18 0 0 20 0 0

Kalah 123 79 79 0 0 44 0 0

Peep 63 39 39 0 0 19 0 0

PG 31 20 20 0 0 i0 0 0

Plan 32 20 20 0 0 13 0 0

Pressl 143 15 99 0 84 52 0 50

Press2 143 99 99 0 0 52 0 0

QSort 9 4 4 0 0 3 0 0

Queens 11 7 7 0 0 5 0 0

Read 122 34 34 0 0 43 0 0

EVALUATION OF THE DOMAIN PROP 267

T A B L E 16. Accuracy of the analysis on outputs: Comparison of P a t t e r n and Pat (Prop).

Program Args G-Pat G-PPr B-Pat B-PPr Procs B-Pat-P B-PPr-P

CS 94 94 94 0 0 34 0 0

Disj 60 60 60 0 0 30 0 0

Gabriel 59 22 22 0 0 20 0 0

Kalah 123 121 121 0 0 44 0 0

Peep 63 53 55 0 2 19 0 2
PG 31 31 31 0 0 i0 0 0

Plan 32 31 31 0 0 13 0 0

Pressl 143 40 140 0 i00 52 0 47

Press2 143 140 140 0 0 52 0 0

QSort 9 6 7 0 1 3 0 1
Queens 11 11 11 0 0 5 0 0
Read 122 74 74 0 0 43 0 0

T A B L E 17. Efficiency results for the domain Pat (Prop).

Program Time G-Iter C-Iter G-Iter/Time C:Iter/Time

CS 20.95 84 166 4.01 7.92
Disj 9.59 68 134 7.09 13.97
Gabriel 11.98 62 141 5.18 11.77
Kalah 22.52 117 236 5.20 10.48
Peep 15.98 76 410 4.76 25.66
PG 2.42 36 76 14.88 31.40
Plan 2.50 31 67 12.40 26.80
Presel 34.26 190 631 5.55 18.42
Press2 34.85 192 655 5.51 18.79
QSort 0.31 10 22 32.26 70.97
Queens 0.32 15 29 46.88 90.63
Read 182.07 178 804 0.98 4.42

Mean 12.06 27.60

or exp lana t ion were available). We also believe t h a t Pa t (Prop) produces a lmost

op t ima l results on a lmost all Prolog programs, but this remains to be va l ida ted

exper imenta l ly .

6 .3 .2 . EFFICIENCY. Table 17 depicts the efficiency results of P a t (P r o p) . All

bu t one p rog ram are below 35 s, and most of t h e m are below 20 s. T h e mos t

demand ing p rog ram is clearly r e a d , which takes about 3 min. The average number

of goal i te ra t ions per seconds is 12, which is significantly less t han the 87 i te ra t ions

per seconds of Prop. It follows tha t the cost of the opera t ions in Pa t (Prop) is much

higher t h a n in Prop.
Table 18 compares the efficiency of Pa t (P r o p) , P a t - r e e x , P a t t e r n , and Prop.

T h e results indicate tha t , on the average, Pa t (Prop) is, respectively, 6, 11, and 22
t imes slower t h a n P a t - r e e x , P a t t e r n , and Prop. Most programs are also close to

the average. This indicates t h a t the addi t ional accuracy provided by Pa t (Prop)
comes at a price since the increase in compu ta t ion t ime is significant. P a t (Prop) is

268 P. VAN HENTENRYCK ET AL.

TABLE 18. Computation times: Comparison of the domains with Pat (Prop).

Program A:Pat(Prop) B:Pat-reex C:Pattern D:Prop A/B A/C A/D

CS 20.95 5.83 2.00 1.34 3.59 10.48 15.63

Disj 9.59 2.56 1.12 1.01 3.75 8.56 9.50

Gabriel 11.98 1.52 0.69 0.47 7.88 17.36 25.49

galah 22.52 3.12 1.86 0.93 7.22 12.11 24.22

Peep 15.98 3.57 2.14 1.16 4.48 7.47 13.78
PG 2.42 0.34 0.27 0.16 7.12 8.96 15.13
Plan 2.50 0.24 0.20 0.12 10.42 12.50 20.83
Pressl 34.26 4.28 8.80 5.96 8.00 3.89 5.75
Press2 34.85 4.58 2.77 6.03 7.61 12.58 5.78
QSort 0.31 0.14 0.06 0.05 2.21 5.17 6.20
Queens 0.32 0.06 0.05 0.04 5.33 6.40 8.00
Read 182.07 28.29 5.29 1.66 6.44 34.42 109.68

Mean 6.17 11.66 21.66

thus appropriate for a very highly optimizing option or for programs relying heavily
on difference-lists, since those programs would not be handled well by Prop.

Table 19 compares the goal iterations for the same programs. Interestingly, they
indicate that Pat (Prop) makes only 1.6 more iterations than Prop and makes fewer
iterations than P a t - r e e x and Pa t t e rn . This seems to indicate that the cost of the
operations in Pat (Prop) is significantly higher. Table 20 gives some information
on the number of operations on Boolean formulas performed by Pat (Prop) and
the size of the graphs manipulated. The results indicate that the average size of
a graph in Pat (Prop) is about 17 nodes on 12 variables, giving an average of 1.35
nodes per variable. The maximal size is 419 on program cs and the maximum
number of variables is 81. Table 21 compares these results with those of Prop.
They indicate that Pat (Prop) performs about 4.5 more operations than Prop on
graphs whose sizes are about three times larger. This clearly explains where the
time goes in Pat (Prop). We also measured the time spent in the various operations
related to the Boolean expressions. The most interesting result is probably the fact
that Pat (Prop) spends about 80% of its time on only these operations. The most
costly operations are PROJ and REN, taking, respectively, about 27 and 22% of the
computing time.

6.4. On-Line Analysis

We now consider the use of Prop and Pat (Prop) for an on-line analysis [15]. On-
line analyses are also called condensing analyses [20] and goal-independent analyses
[18] in the logic programming community. The key idea consists of performing the
analysis without any assumption on the queries. The result for a given query can
then be obtained by specializing the on-line results with the input query. On-line
analyses are thus particularly appropriate for compositional or modular analyses.
The key benefit of on-line analyses is that a predicate can be analyzed once (in a
general fashion), and then specialized for various specific uses. It is important to
stress, however, that on-line analyses put additional requirements on the domain
to enable an effective specialization.

EVALUATION OF THE DOMAIN PROP 269

T A B L E 19. Goa l i te ra t ion: C o m p a r i s o n of t he d o m a i n s w i t h P a t (P r o p) .

P rog ram A:Pat (Prop) B :Pa t - r eex C : P a t t e r n D:Prop A/B A/C A/D

CS 84 152 85 50 0.55 0.99 1.68

Disj 68 115 68 45 0.59 1.00 1.51

Gabriel 62 133 81 47 0.47 0.77 1.32

Kalah 117 153 117 65 0.76 1.00 1.80

Peep 76 122 94 36 0,62 0.81 2.11

PG 36 48 38 16 0,75 0.95 2.25

Plan 31 44 36 19 0,70 0.86 1.63

P r e s s l 190 322 552 287 0.59 0.34 0.66

P re s s2 192 331 210 287 0,58 0.91 0.67

QSort 10 24 13 7 0,42 0.77 1.43

Queens 15 17 16 9 0.88 1.00 1.67

Read 178 595 209 76 0.30 0.85 2.34

Mean 0.60 0.85 1.59

Prop and Pat(Prop) are potentially interesting domains for on-line analysis
since it is possible to obtain a specialized output pattern by taking the conjunc-
tion of the input pattern and the general output pattern. For instance, in Prop,
append(xl ,x2,x3) returns x3 ~ x2 A Xl, and qso r t (x l ,x2) returns Xl ¢* x2,
which can both be specialized optimally. In the case of Prop and Pat (Prop), the
specialization simply amounts to making the conjunction of the input queries and
the result. For instance, if append is called with the last argument being ground,
the specialization is simply

(x 3 ~ x 2 A Xl) A x 3

which is equivalent to
x 1 A X 2 A X 3 .

T A B L E 20 . S ta t i s t i c s on the s u b s t i t u t i o n s for Pa t (P r o p) .

Program Op MV AV MS AS MS/MV AS/AV

CS 13,143 81 20.92 419 24.01 5.17 1.15

Disj 10,256 41 16.87 67 17.57 1.63 1.04

Gab r i e l 7046 43 12.05 285 26.47 6.63 2.20

Kalah 20,264 48 16.45 84 17.48 1.75 1.06

Peep 25,460 23 10,14 53 10.84 2.30 1.07

PG 4454 30 11.01 34 12.34 1.13 1.12

Plan 4059 27 9,18 39 11.31 1.44 1.23

Pressl 38,146 44 11.95 128 14.05 2.91 1.18

Pre s s2 39,235 44 11.86 128 13.95 2.91 1.18

QSort 791 15 7.63 30 9.16 2.00 1.20

Queens 1048 13 7.41 20 8.28 1.54 1.12

Read 60,080 44 13.24 1601 34.51 36.39 2.61

Mean 18695.17 37.75 12.39 240.67 16.66 5.48 1.35

270 P. VAN HENTENRYCK ET AL.

T A B L E 21. Statistics on the substitutions: Ratio Pat (Prop) /Prop.

Program Op Y MV AV S MS AS MS/MV AS/AV

CS 6.19 16.64 1.93 2.69 18.09 3.92 2.92 2.03 1.09
Disj 4.90 12.32 1.64 2.51 13.40 1.76 2.74 1.08 1.09
Gabriel 4.35 10.68 2.26 2.46 19.12 9.19 4.40 4.06 1.79
Kalah 5.98 18.53 2.53 3.10 19.13 2.40 3.20 0.95 1.03
Peep 5.60 10.77 1.53 1.92 11.22 1.83 2.00 1.19 1.04
PG 6.13 13.74 1.88 2.24 14.29 1.13 2.33 0.60 1.04
Plan 4.18 12.32 3.38 2.95 11.71 3.00 2.81 0.89 0.95
Pressl 1.88 5.11 2.59 2.72 4.68 1.04 2.50 0.40 0.92
Press2 1.91 5.14 2.59 2.69 4.73 1.04 2.47 0.40 0.92
QSort 2.20 4.10 1.67 1.87 4.56 1.67 2.08 1.00 1.11
Queens 2.98 6.92 1.30 2.32 6.32 1.43 2.12 1.10 0.91
Read 9.50 23.20 2.00 2.44 60.30 20.27 6.34 10.13 2.60

Mean 4.65 11.62 2.11 2.49 15.63 4.06 2.99 1.99 1.21

In the rest of this section, we give expe r imen ta l resul ts on the use of P r o p and
P a t (P rop) for on-l ine analysis . Al l p rog rams have been run wi thou t any a s sumpt ion
on the inpu t p a t t e r n s (a n d / o r the da t abase) and have been specia l ized a f t e rwards
wi th t he i npu t pa t t e rns . The execut ion is exac t ly s imi lar to the s t a n d a r d analys is ,
except t h a t the ini t ia l inpu t p a t t e r n is true, as are the resul ts of t he d a t a b a s e
predica tes . 7

THE DOMAIN Prop . Table 22 depic ts t he efficiency resul ts on the use of P rop
for on-l ine analys is and compares t hem to the s t a n d a r d analysis . T h e c o m p u t a t i o n
t imes for the on-l ine analysis are 1.81 slower t han the s t a n d a r d analysis . T h e peak
is reached on p rog ram d i s j , which is abou t four t imes slower. On the average, the
on- l ine analysis takes a b o u t 1.3 more i t e ra t ions t h a n the t r a d i t i o n a l analysis . Tab le
23 dep ic t s the s ta t i s t ics on the var ious graphs dur ing the c ompu ta t i on . T h e average
size of a g raph for the on-l ine analysis is 7.85 (ins tead of 5.49 for t he s t a n d a r d
analys is) , while the ra t io AS/AV is 1.30 (ins tead of 1.13). The efficiency of P r o p
for on-l ine analysis r emains reasonable . I t should be clear t h a t the on- l ine analys is
deals w i th p rog rams wi th few ground arguments ; the only g round a rgumen t s come
from bui l t - ins or genera tors of values. Table 24 compares the number of g round
a rgumen t s in the s t a n d a r d and on-l ine analyses and the execut ion t imes of t he
analyses . G r o - o n and G r o - s t give the number of o u t p u t g round a rgumen t s in t he
on- l ine and s t a n d a r d analysis , respectively. The resul ts ind ica te t h a t t he n u m b e r
of g round o u t p u t s decreases by a factor of a b o u t 4.5 on the average in t he on- l ine
analysis , while t he efficiency only slows down by a factor of 1.81 on the average. Th is
seems to ind ica te t h a t the previous expe r imen ta l resul ts were no t t oo d e p e n d e n t
on the fact t h a t the resul ts are ground a t the end of the c o m p u t a t i o n in m a n y
programs . An in teres t ing theore t i ca l issue is to unde r s t a nd why th is is indeed
the case, and whe the r s t a t i c analysis of Pro log has some special p rope r t i e s w.r . t .
Boolean formulas.

7It is possible to make an on-line analysis for all predicates at the same time, but this requires
modifying the fixpoint algorithm slightly. This is outside the scope of this paper.

EVALUATION OF THE DOMAIN PROP 271

T A B L E 2 2 . O n - l i n e a n a l y s i s : Ef f i c iency r e s u l t s o f P rop .

P r o g r a m Time-on:TO Iter-on:lO Time-st:TS Iter-st:IS TO/TS IO/IS

CS 3.05 61 1.34 50 2.28 1.22

D i s j 4.06 64 1.01 45 4.02 1.42

Kalah 0.99 72 0.93 65 1.06 1.11

Peep 2.94 61 1.16 36 2.53 1.69

PG 0.16 17 0.16 16 1.00 1.06

P l a n 0.16 27 0.12 19 1.33 1.42

P r e s s l 6.00 287 5.96 287 1.01 1.00

P r e s s 2 6.22 287 6.03 287 1.03 1.00

QSort 0.12 12 0.05 7 2.40 1.71

Queens 0.09 15 0.04 9 2.25 1.67

Read 1.66 77 1.66 76 1.00 1.01

Mean 2.31 89.09 1.68 81.55 1.81 1.30

T A B L E 2 3 . O n - l i n e a n a l y s i s : S t a t i s t i c s o n t h e s u b s t i t u t i o n s for P rop .

Program Op Y MY AV S MS AS MS/MV AS/AV

CS 2390 24,419 42 10.22 33,125 271 13.86 6,45 1.36

D i s j 1889 17,751 25 9.40 39,717 223 21.03 8.92 2.24

Kalah 2770 16,933 19 6.11 18,332 53 6.62 2,79 1.08

Peep 5870 38,584 15 6.57 47,199 62 8.04 4.13 1.22

PG 699 3533 16 5.05 3828 30 5.48 1.88 1.09

P l a n 1074 3788 8 3.53 4951 ~3 4.61 2.88 1.31

P r e s s l 20,276 89,360 17 4.41 113,671 123 5.61 7.24 1.27

P r e s s 2 20,545 90,760 17 4.42 115,895 j23 5.64 7.24 1.28

QSort 667 2861 9 4.29 3127 25 4.69 2.78 1.09

Queens 463 1847 10 3.99 2456 25 5.30 2.50 1.33

Read 6326 34,300 22 5.42 34,385 79 5.43 3.59 1.00
i

Mean 5724.45 29,466 18.18 5.76 37,880.55 94.27 7.85 4.58 1.30

As far as the accuracy is concerned, the quality of the r~esults was rather surpris-
ing. We performed an on-line analysis on the whole program,t and specialized the
result of the top-level goal with the input query. On all programs, the specialization
of the on-line analysis with the input pat tern gave the same result for the top-level
goal as the traditional analysis with Prop. s This indicates that Prop is appropriate
for on-line analysis.

I t is interesting to compare this result with the domain P a t t e r n for this kind
of analysis. The on-line analysis of P a t t e r n , specialized with the input queries,
only gives the same result as the traditional analysis on four programs (ka lah ,
peep , pg, q s o r t) , and two of these (i.e., peep, q s o r t) do not produce optimal
results, as shown before. On all other programs, there was a loss of accuracy in the
top-level goal, i.e., the analysis would give any and novar instead of ground.

The main reason is that the domain does not keep sophisticated dependencies

8Recall, however, t h a t Prop loses precision on p rog rams p r e s s l and p r e s s 2 .

272 P. VAN HENTENRYCK ET AL.

T A B L E 24. On-line versus s tandard analysis: Groundness and efficiency results of Prop.

Program Gro-on Gro-st Gro-st/Gro-on Time-on Time-st Time-on/Time-st

CS 32 94 2.93 3.05 1.34 2.28
Disj 8 60 7.50 4.06 1.O1 4.02
galah 38 121 3.18 0.99 0.93 1.06
Peep 8 63 7.87 2.94 1.16 2.53
PG 13 31 2.38 0.16 0.16 1.O0
Plan 4 31 7.75 0.16 0.12 1.33
Press i 29 39 1.34 6.00 5.96 1.01
Press2 29 39 1.34 6.22 6.03 1.03
OSort 3 7 2.33 0.12 0.05 2.40
Queens 1 11 11.00 0.09 0.04 2.25
Read 32 70 2.18 1.66 1.66 1.00

Mean 4.50 2.31 1.68 1.81

T A B L E 25. On-line analysis: Efficiency results of Pat (Prop).

Program Time-on:TO Iter-on:lO Time-st:TS Iter-st:IS TO/TS IO/IS

CS 39.12 99 20.95 84 1.87 1.18
Disj 53.14 74 9.59 68 5.54 1.09
Kalah 34.80 130 22.52 117 1.55 1.11
Peep 36.93 80 15.98 76 2.31 1.05
PG 2.66 37 2.42 36 1.10 1.03
Plan 3.27 40 2.50 31 1.31 1.29
Press / 33.85 190 34.26 190 0.99 1.00
Press2 34.35 192 34.85 192 0.99 1.00
QSort 0.43 11.00 0.31 10.00 1.39 1.10
0ueens 0.65 16.00 0.32 15.00 2.03 1.07
Read 182.07 179.00 182.07 178.00 1.00 1.01

Mean 38.30 95.27 29.62 90.64 1.82 1.08

b e t w e e n t h e var iab les . N o t e also t h a t t h e s a m e resu l t ho lds for t h e o t h e r d o m a i n s

as wel l s ince t h e y essen t i a l ly c o n t a i n t h e s a m e i n f o m m t i o n in t h e d o m a i n .

T H E DOMAIN P a t (P r o p) . T a b l e 25 dep ic t s t h e eff ic iency re su l t s on t h e use

of P a t (P r o p) for on- l ine ana lys i s and c o m p a r e s t h e m to t h e s t a n d a r d analys is .

In t e res t ing ly , t h e c o m p u t a t i o n t i m e s for t h e on- l ine ana lys i s a re 1.82 s lower t h a n

t h e s t a n d a r d analys is , con f i rming t h e resu l t s on P rop . T h e p e a k is r e ached o n c e

aga in on p r o g r a m d i s j , wh ich is a b o u t 5.5 t i m e s slower. O n t h e ave rage , t h e on-

l ine ana lys i s t akes a b o u t 1.08 m o r e i t e r a t i o n s t h a n t h e t r a d i t i o n a l analys is . T a b l e

26 dep ic t s t h e s t a t i s t i c s on t h e va r ious g r a p h s d u r i n g t h e c o m p u t a t i o n . T h e a v e r a g e
size of a g r a p h for t h e on- l ine ana lys i s is 22.43 (ins t ead of 16.66 for t h e s t a n d a r d

ana lys i s) , whi le t h e r a t io AS/AV is 1.74 (ins tead of 1.35). T h e ef f ic iency of P a t (P r o p)

for on- l ine ana lys i s r e m a i n s r easonab le , i n d i c a t i n g once aga in t h a t t h e p r e v i o u s

e x p e r i m e n t a l r esu l t s were no t t o o d e p e n d e n t on t h e fact t h a t t h e r e su l t s a re g r o u n d

a t t h e end of t h e c o m p u t a t i o n in m a n y p rog rams .
As far as t h e a c c u r a c y is conce rned , t h e q u a l i t y of t h e resu l t s was also r a t h e r

EVALUATION OF THE DOMAIN PROP 273

T A B L E 26 . On-line analysis: Statistics on the substitutions for Pat (Prop).

Program Op MV AV MS AS MS/MV AS/AV

CS 17,914 87 21.15 784 30.98 9.01 1.46

Dis3 11,202 41 16.88 1485 59.62 36.22 3.53

ga l ah 20,658 48 16.45 255 25.09 5.31 1.53

Peep 25,828 23 10.07 214 18.20 9.30 1.81

PG 4478 30 10.98 51 12.61 1.70 1.15

P lan 4589 27 9.07 83 12.47 3.07 1.37

P r e s s l 38,159 44 11.96 128 14.05 2.91 1.17

P re s s2 39,248 44 11.87 128 13.96 2.91 1.18

QSort 814 15 7.54 47 12.24 3.13 1.62

Queens 1021 13 7.57 73 12.98 5.62 1.71

Read 60,096 44 13.24 1601 34.50 36.39 2.61

Mean 20,364.27 37.82 12.43 440.82 22.43 10.51 1.74

surprising. On all programs, the specialization of the on-line analysis with the input
pat tern gives the same result for the top-level goal as the traditional analysis with
Pat (Prop). This indicates that Pat (Prop) is really a domain of choice for on-line
analysis.

6. 5. The Impact of Caching

In this section, we evaluate the impact of the caching optimization [17] on the
performance of Prop and Pat (Prop). This is an interesting issue to investigate
since the hashing function and the copy of abstract substitution are much more
expensive in Pat (Prop) and Prop than in Mode and P a t t e r n . Table 27 reports the
results of the prefix algorithm augmented with caching on Prop and Pat (Prop) .
Recall that all results given previously in the paper were obtained using the prefix
algorithm without caching.

The results indicate that caching brings an additional improvement over the pre-
fix optimization for Pat (P rop) , although this improvement is small. This indicates
that cach ing is even better in this domain than it was for P a t t e r n , where caching
brought about 30% improvement over the original version, but none over the prefix
version. On the order hand, for Prop, caching does not bring any improvement.

7. C O N C L U S I O N

Prop is an elegant and conceptually simple abstract domain proposed by Marriott
and Sondergaard to compute groundness information in Prolog programs. In par-
ticular, abstract substitutions in Prop are represented by Boolean functions using
the logical connectives ¢=>, V, A only. Although Prop was well understood from
a theoretical standpoint, many open practical issues remained to be answered. In
particular, the efficiency of Prop has been subject to much debate since, on the one
hand, it requires the solving of a co-NP-Complete problem (i.e., equivalence of two
Boolean functions), but on the other hand, many frameworks only deal with the
variables appearing in the clauses whose number should be, in general, reasonably
small.

274 P. VAN HENTENRYCK ET AL.

T A B L E 2T. Efficiency: The impact of caching.

Program C-Prop : CP Prop :P CP/P C-Pat (Prop) : CPP Pat (Prop) : PP CPP/PP

CS 1.61 1.34 1.20 21.29 20.95 1.02

D i s j 1.23 1.01 1.22 10.23 9.59 1.07

G a b r i e l 0.62 0.47 1.32 12.61 11.98 1.05

g a l a h 1.10 0.93 1.18 18.99 22.52 0.84

Peep 1.39 1.16 1.20 16.66 15.98 1.04

PG 0.16 0.16 1.00 2.43 2.42 1.00

P l a n 0.13 0.12 1.08 2.25 2.50 0.90

P r e s s l 6.51 5.96 1.09 30.94 34.26 0.90

P r e s s 2 6.56 6.03 1.09 31.51 34.95 0.90

OSort 0.01 0.05 0.20 0.31 0.31 1.00

Queens 0.01 0.04 0.25 0.31 0.32 0.97

Read 2.10 1.66 1.27 179.64 182.07 0.99

Mean 1.79 1.58 1.01 27.26 28.15 0.97

The purpose of this paper was to s tudy the performance of domain Prop. I ts
first contribution is to describe an implementation of the domain Prop and to use
it to instantiate a generic abstract interpretation algorithm [17, 23, 27]. A key lea-
ture of the implementation is the use of ordered binary decision graphs to provide
a compact representation of many Boolean functions. Its second contribution is
to describe the design and implementation of a new domain, Pat (P rop) , combin-
ing the domain Prop with structural information about the subterms. This new
domain may significantly improve the efficiency of the domain Prop on programs
manipulating difference-lists.

Both implementations (resp. 6000 and 12,000 lines of C) have been evaluated sys-
tematically, and their efficiency and accuracy for groundness inference have been
compared with several other abstract domains: the domain Mode (mode, same-
value, sharing), the domain P a t t e r n (mode, same-value, sharing, pattern), and
the domains Mode and P a t t e r n used inside a reexecution algorithm [25] to im-
prove accuracy. The interest of Pat (Prop) and Prop for on-line analysis are also
investigated.

Various domains have been compared in this paper. As far as accuracy is con-
cerned, the following two orderings summarize the results on our benchmarks:

{Mode}< {Mode-reex,Prop} < {Pat(Prop),Pat-reex}

{ Mode} < {Pattern} < {Pat(Prop),Pat-reex}.

Mode is clearly the least accurate algorithm, while Pat (Prop) and P a t - r e e x are
the most accurate. An interesting result of these experiments is the fact tha t
the reexecution algorithm on Mode and P a t t e r n have the same accuracy as the
standard algorithm on Prop and Pat (Prop) . An interesting open issue is to find
practical programs for which Prop and Pat (Prop) would outperform M o d e - r e e x
and P a t - r e e x . We also believe that , on almost all practical programs, Pa t (Prop)
should produce close to optimal groundness information.

As far as efficiency is concerned, the results can be summarized by the following

EVALUATION OF THE DOMAIN PROP 275

orderings:

Mode < Mode-reex < Prop < Pattern < Pat-reex < Pat(Prop).

This result indicates tha t there is a price to pay for the additional accuracy pro-
vided by Prop and Pa t (Prop) . This price is very reasonable for Prop and less so
for Pa t (P rop) . Note also that , when only groundness information is desired, the
domains Mode and P a t t e r n could be simplified, further improving their efficiencies.

W h e n efficiency and accuracy are considered, it is not clear which approach
is best since the choice mainly depends upon the tradeoff between efficiency and
accuracy to be achieved. However, it seems tempt ing to consider tha t Mode-reex
and P a t - r e e x are to be preferred to Prop and Pa t (Prop) . This is t rue on our
benchmarks , but this result needs to be interpreted with care for several reasons.

1. The Prop-based domains are part icularly well suited for on-line analysis, and
should outper form the other domains significantly for this application. Our
experimental results indicate t ha t Pa t (prop) is as precise in on-line mode as
in s tandard analysis, while Prop is close to being as accurate. Moreover, the
analysis t ime remains reasonable, and can be factored out between several
applications.

2. The Prop-based domains are theoretically more precise. In practice, Prop
should certainly bring addit ional accuracy over Node - r eex for some programs,
and hence may be preferred. The case of P a t - r e e x and Pa t (Prop) is more
difficult since the programs seem much more contrived. An interesting issue
is to characterize the class of programs for which the additional theoretical
expressiveness of the Prop-based domains would produce bet ter practical re-
sults.

3. The Prop-based domains are easier to apply when nonlogical features are
taken into account.

I t is wor th stressing tha t the implementat ion techniques of Prop and Pa t (Prop)
can be reused in other contexts such as, for instance, nonlinearity and sharing.
Hence, our results also give some ideas of the applicability of Boolean formulas for
representing abs t rac t substi tut ions.

Finally, note tha t , since the submission of this work, two new implementat ions
of P rop [7, 10] have emerged, confirming the results of this paper and extending
them. Both of these works use a bo t tom-up framework. Reference [10] uses a gen-
eralization of O B D D representat ion of Boolean formulas to symbolic finite domains
inside the constraint language T o u p i e , while [7] compiles the abstract semantics
to a data log program and uses some deductive database technology.

Olivier Degimbe and Laurent Michel helped in implementing the caching version of the algorithms.
The comments of the reviewers were very helpful in improving the presentation of the paper. We
are especially grateful to reviewer 2 who suggested the example for operation UNION in Prop, and to
reviewer 3 who suggested including the groundness results of all predicates in the on-line analysis
to show the impact of ground predicates on performance. This research was partly supported by
the National Science Foundation under Grant CCR-9108032 and the National Young Investigator
Award, the Office of Naval Research under Grant N00014-91-J-4052 ARPA Order 8225, and the
Belgian National Incentive-Program for fundamental Research in Artificial Intelligence.

276 P. VAN HENTENRYCK ET AL.

R E F E R E N C E S

1. Barbuti, R., Giacobazzi, R., and Levi, G., A general framework for semantics-based
bottom-up abstract interpretation of logic programs, ACM Transactions on Program-
ming Languages and Systems 15(1):133-181 (Jan. 1993).

2. Bruynooghe, M., A practical framework for the abstract interpretation of logic pro-
grams, Yournal of Logic Programming 10(2):91-124, (Feb. 1991).

3. Bruynooghe, M. and Janssens, G., An instance of abstract interpretation: integrat-
ing type and mode inferencing, in: Proc. Fifth International Conference on Logic
Programming, Seattle, WA, Aug. 1988, pp. 669-683, MIT Press, Cambridge.

4. Bruynooghe, M. and Janssens, G., Propagation: A new operation in a framework
for abstract interpretation of logic programs, in: A. Pettorossi, ed., Proc. of Meta-
Programming in Logic (META '92), no. 649 in Lecture Notes in Computer Science,
Springer-Verlag, 1992, pp. 294-307.

5. Bruynooghe, M., Janssens, G., Callebaut, A., and Demoen, B., Abstract interpreta-
tion: Towards the global optimization of Prolog programs, in: Proc. 1987 Symposium
on Logic Programming, San Francisco, CA, August 1987, pp. 192-204, IEEE, New
York.

6. Bryant, R. E., Graph based algorithms for Boolean function manipulation, IEEE
Transactions on Computers C-35(8):677-691, (1986).

7. Codish, M. and Demoen, B., Analysing logic programs using "Prop"-ositional logic
programs and a magic wand, in: Proc. of the International Symposium on Logic
Programming (ILPS'93), Vancouver, Canada, (Nov. 1993).

8. Codognet, C., Codognet, P., and Corsini, J. M., Abstract interpretation of concur-
rent logic languages, in: Proceedings of the North American Conference on Logic
Programming (NACLP-90), Austin, TX, Oct. 1990, MIT Press, Cambridge.

9. Corsini, A. and Fil~, G., A complete framework for the abstract interpretation of
logic programs: Theory and applications, Research Report, Department of Computer
Science, University of Padova, Italy, 1989.

10. Corsini, M., Musumbu, K., Rauzy, A., and Le Charlier, B., Efficient bottom-up ab-
stract interpretation of Prolog by means of constraint solving over symbolic finite
domains, in: Proc. Fifth International Conference on Programming Language Imple-
mentation and Logic Programming, Tallinn, Estonia, (Aug. 1993).

11. Cortesi, A., Fil@, G., and Winsborough, W., Prop revisited: Propositional formulas
as abstract domain for groundness analysis, in: Proc. Sixth Annual IEEE Symposium
on Logic in Computer Science (LICS'91), 1991, pp. 322-327.

12. Cortesi, A., Fil~, G., and Winsborough, W., Comparison of abstract interpretations,
in: Proc. 19th International; Colloquium on Automata, Languages and Programming
(ICALP'92), 1992.

13. Cortesi, A., Le Charlier, B., and Van Hentenryck, P., Combinations of abstract do-
mains for logic programming, in: 21st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, OR, Jan. 1994.

14. Cousot, P. and Cousot, R., Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in: New York
ACM Press, ed., Conf. Record of Fourth A CM Symposium on Programming Languages
(POPL'77), Los Angeles, CA, Jan. 1977 pp. 238-252.

15. Deutsch, A., A-storeless model of aliasing and its abstraction using finite representa-

EVALUATION OF THE DOMAIN PROP 277

tions of right-regular equivalence relations, in: Fourth IEEE International Conference
on Computer Languages (ICCL'92), San Francisco, CA, (Apr. 1992).

16. Dincbas, M., Simonis, H., and Van Hentenryck, P., Solving large combinatorial prob-
lems in logic programming, Journal of Logic Programming 8(1-2):75-93, (Jam/Mar.
1990).

17. Englebert, V., Le Charlier, B., Roland, D., and Van Hentenryck, P., Generic ab-
stract interpretation algorithms for Prolog: Two optimization techniques and their
experimental evaluation, Software Practice and Experience 23(4), (Apr. 1993).

18. Gabbrielli, M., Giacobazzi, R., and Levi, G., Goal independency and call patterns
in the analysis of logic programs, Technical Report, Dipartimento di Informatica,
Universita di Pisa, 1993.

19. Hermenegildo, M., Warren, R., and Debray, S., Global flow analysis as a practical
compilation tool, Journal of Logic Programming 13(4):349-367, (Aug. 1992).

20. Jacobs D. and Langen, A., Accurate and efficient approximation of variable aliasing in
logic programs, in: Proceedings of the North-American Conference on Logic Program-
ruing (NACLP-89), Cleveland, OH., Oct. 1989, pp. 154-165, MIT Press, Cambridge.

21. Kanamori, T. and Kawamura, T., Analysing success patterns of logic programs by
abstract hybrid interpretation, Technical Report, ICOT, 1987.

22. Le Charlier, B., Musumbu, K., and Van Hentenryck, P., Efficient and accurate algo-
rithms for the abstract interpretation of prolog programs, Research Paper RP-90/9,
Department of Computer Science, University of Namur, Aug. 1990.

23. Le Charlier, B., Musumbu, K., and Van Hentenryck, P., A generic abstract interpre-
tation algorithm and its complexity analysis (extended abstract), in: Eighth Inter-
national Conference on Logic Programming (ICLP-91), Paris, France, June 1991, pp
64-78, MIT Press, Cambridge.

24. Le Charlier, B. and Van Hentenryck, P., A universM top-down fixpoint algorithm,
Technical Report CS-92-25, CS Department, Brown University, 1992.

25. Le Charlier, B. and Van Hentenryck, P., Reexecution in abstract interpretation of
Prolog, in: Proceedings of the International Joint Conference and Symposium on
Logic Programming (JICSLP-92), Washington, DC, Nov. 1992. To appear in Acta
lnformatica. ',

26. Le Charlier, B. and Van Hentenryck, P., Groundness analysis for Prolog: Implemen-
tation and evaluation of the domain Prop, in: Proceedings of the ACM Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM93), Copen-
hagen, Denmark, June 1993.

27. Le Charlier, B. and Van Hentenryck, P., Experimental evaluation of a generic abstract
interpretation algorithm for Prolog, ACM Transactions on Programming Languages
and Systems 16(1):35-101, (Jan. 1994).

28. Marriott, K. and Sondergaard, H., Notes for a tutorial on abstract interpretation of
logic programs, North American Conference on Logic Programming, Cleveland, OH,
Oct. 1989.

29. Marriott, K. and Sondergaard, H., Semantics-based dataflow anMysis of logic pro-
grams, in: Information Processing-Sg, San Francisco, CA, 1989, pp. 601-606.

30. Marriott, K. and Sondergaard, H., Analysis of constraint logic programs, in: Proceed-
ings of the North American Conference on Logic Programming (NACLP-90), Austin,
TX, Oct. 1990.

31. Marriott, K. and Sondergaard, H., Propagation and reexecution reexamined, in: ILPS

278 P. VAN HENTENRYCK E7 AI,.

Workshop on Global Compilation, Vancouver, Canada, Nov. 1993.
32. Mellish, C., Abstract Interpretation of Prolog Programs, Ellis H orwood, Chichest~r,

1987, pp. 181-198.
33. Musumbu, K., Interpretation Abstraite de Programmes Prolog, Ph.D. Dissertation,

Department of Computer Science, University of Namur, Belgium, Sept. 1990.
34. Muthukumar, K. and Hermenegildo, M., Determination of variable dependence in-

formation through abstract interpretation, in: Proceedings of the North American
Conference on Logic Programming (NACLP-89), Cleveland, OH, Oct. 1989, pp. 166-
188, MIT Press, Cambridge.

35. Muthukumar, K. and Hermenegildo, M., Compile-time derivation of variable depen-
dency using abstract interpretation, Journal of Logic Programming 13(2-3):315-347,
(Aug. 1992).

36. O'Keefe, R.A., Finite fixed-point problems, in: J.-L. Lassez, ed., Fourth International
Conference on Logic Programming, Melbourne, Australia, 1987, pp. 729-743.

37. Sterling, L. and Shapiro, E., The Art of Prolog: Advanced Programming Techniques,
MIT Press, Cambridge, MA, 1986.

38. Van Hentenryck, P., Constraint Satisfaction in Logic Programming, Logic Program-
ming Series, The MIT Press, Cambridge, MA, 1989.

39. Warren, R., Hermedegildo, M., and Debray, S. L., On the practicality of global flow
analysis of logic programs, in: Proc. Fifth International Conference on Logic Pro-
gramming, Seattle, WA, Aug. 1988, pp. 684-699, MIT Press, Cambridge.

40. Winsborough, W., Multiple specialization using minimal-function graph semantics,
Journal of Logic Programming 13(4), (July 1992).

41. Winsborough, W. H., A minimal function graph semantics for logic programs, Tech-
nical Report TR-711, Computer Science Department, University of Wisconsin at
Madison, Aug. 1987.

