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D The domain Prop [11, 30] is a conceptually simple and elegant abstract do- 
main to compute groundness information for Prolog programs, where ab- 
stract substitutions are represented by Boolean functions. Prop has raised 
much theoretical interest recently, but little is known about the practical 
accuracy and efficiency of this domain. Experimental evaluation of Prop 
is particularly important since Prop theoretically needs to solve a co-NP- 
Complete problem. However, this complexity issue may not matter much 
in practice because the size of the abstract substitutions is bounded since 
Prop would only work on the clause variables in many frameworks. The 
purpose of this paper is to study the performance of domain Prop. Its first 
contribution is to describe an implementation of the domain Prop and to 
use it to instantiate a generic abstract interpretation algorithm [17, 23, 27]. 
A key feature of the implementation is the use of ordered binary decision 
graphs to provide a compact representation of many Boolean functions. 
Its second contribution is to describe the design and implementation of a 
new domain, Pat  (Prop),  combining the domain Prop with structural infor- 
mation about the subterms. This new domain may significantly improve 
the accuracy of the domain Prop on programs manipulating difference- 
lists. Both implementations (resp. 6000 and 12,000 lines of C) have been 
evaluated systematically, and their efficiency and accuracy for groundness 
inference have been compared with several other abstract domains. The 
interest of Pat  (Prop) and Prop for on-line analysis is also investigated. <3 
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1. I N T R O D U C T I O N  

Abstract interpretation of Prolog has attracted many researchers in recent years. 
This effort is motivated by the need of optimization in Prolog compilers to be 
competitive with procedural languages and the declarative nature of the language 
which makes it more amenable to static analysis. Considerable progress has been 
realized in this area in terms of the frameworks (e.g., [1, 2, 5, 9, 28, 29, 32, 41]), 
the algorithms (e.g., [2, 8, 21, 23, 36]), the abstract domains (e.g., [20, 3, 34]), and 
the implementations (e.g., [17, 19, 39, 27]). 

An abstract domain which has raised much interest in recent years is the do- 
main Prop proposed by Marriott and Sondergaard [30]. The domain is intended 
to compute groundness information in Prolog programs. It is conceptually simple 
and elegant since abstract substitutions are represented by Boolean functions built 
using the logical connectives ¢*, V, A. The domain has been further investigated in 
[11] and related to other abstract domains in [12]. 

Although the domain is properly understood from a theoretical standpoint, many 
practical questions regarding its efficiency and accuracy remain to be answered. In 
particular, the efficiency of Prop has been subject to much debate. On the one 
hand, it requires the solving of a co-NP-Complete problem (i.e., equivalence of 
two Boolean functions). On the other hand, in many frameworks, Prop would 
only deal with the variables appearing in the clauses whose number should be, in 
general, reasonably small. The accuracy of Prop is also an interesting problem 
since sophisticated dependencies between the variables can compensate the fact 
that  Prop does not keep track of functors. Note also that  the study of Prop has 
a broader interest since many domains (e.g., nonlinearity) can be expressed using 
Boolean formulas. Hence, performance results on Prop may provide us with useful 
information on the use of Boolean functions to represent abstract substitutions. 

The purpose of this paper is to study the performance of domain Prop. Its first 
contribution is to describe an implementation of the domain Prop and to use it 
to instantiate a generic abstract interpretation algorithm [17, 23, 27]. A key lea- 
ture of the implementation is the use of ordered binary decision graphs to provide 
a compact representation of many Boolean functions. Its second contribution is 
to describe the design and implementation of a new domain, Pat  (Prop),  combin- 
ing the domain Prop with structural information about the subterms. This new 
domain may significantly improve the accuracy of the domain Prop on programs 
manipulating difference-lists. 

Both implementations (resp. 6000 and 12,000 lines of C) have been evaluated 
systematically, and their efficiency and accuracy for groundness inference have been 
compared with several other abstract domains: the domain Mode (mode, same- 
value, sharing), the domain P a t t e r n  (mode, same-value, sharing, pattern),  and 
the domains Mode and P a t t e r n  used inside reexecution algorithm [25] to improve 
accuracy. These last two algorithms are denoted by Mode-reex and by P a t - r e e x  
in the following. The interest of Pat  (Prop) and Prop for on-line 1 analysis [15] are 
also investigated. 

The rest of the paper is organized as follows. The first section gives an overview 
of the abstract interpretation framework. The second section describes the concrete 

iOn- l ine  analysis is also known in the  logic programming communi ty  as goM-independent  or 
condensing analysis [18~ 20]. 
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semantics. The third section presents the domain Prop,  illustrates the analysis on 
a simple example, and discusses the implementation of Boolean functions. The 
fourth section presents the new domain Pat  (Prop) as an instantiation of a generic 
pa t tern  domain presented in [13]. The fifth section reports experimental results on 
Prop and P a t ( P r o p ) .  The experimental results include accuracy for groundness 
inference, efficiency, and various statistics on the use of Boolean functions. I t  also 
discusses the use of Prop and Pat  (Prop) for on-line analysis and the impact  of 
caching on the efficiency. The last section draws the conclusions of this research 
and suggests directions for future work. 

2. O V E R V I E W  OF T H E  A B S T R A C T  I N T E R P R E T A T I O N  F R A M E W O R K  

In this section, we briefly review our abstract  interpretation framework. A detailed 
theoretical presentation of the framework can be found in [22] and [33]. This last 
reference also contains all the correctness proofs. The framework is close to the 
work of Marriott  and Sondergaard [28] and Winsborough [40]. It  follows the tradi- 
tional approach to abstract  interpretation [14]. The generic abstract  interpretation 
algorithm GhIh is presented in detail in [27] and more formally but more briefly in 
[23]. 

CONCRETE SEMANTICS. As is traditional in abstract  interpretation, the start-  
ing point of the analysis is a collecting semantics for the programming language. 
Our concrete semantics is a collecting fixpoint semantics which captures the top- 
down execution of logic programs using a left-to-right computat ion rule and ignores 
the clause selection rule. The semantics manipulates sets of substitutions which 
are of the form {xl ~ t l , . . .  ,Xn ~ tn} for some n > 0. Two main operations are 
performed on substitutions: unification and projection. The semantics associates 
with each of the predicate symbol p in the program a set of tuples of the form 
((~in, P, Oo~t) which can be interpreted as follows: 

"the execution of p(x l , . . .  ,x~)O with 0 E Oin produces a sequence of 
substitutions 01 , . . . ,  On,.. . ,  all of which belongs to Oo~t." 

ABSTRACT SEMANTICS. The second step of the methodology is the abstrac- 
tion of the concrete semantics. Our abstract  semantics consists of abstracting a set 
of substi tutions by a single abstract  substitution, i.e., an abstract  substitution rep- 
resents a set of substitutions. As a consequence, the abstract  semantics associates 
with each predicate symbol p a set of tuples of the form (~in,p, Pout) which can be 
read informally as follows: 

"the execution o f p ( x l , . . . ,  xn)O with 0 satisfying the property described 
by ~m produces a sequence of substitutions 01 , . . . ,  On,.. . ,  all of which 
satisfying the property described by/3o~t." 

The abstract  semantics assumes a number of operations on abstract  substitutions, 
in particular, unification, projection, and upper bound. The first two operations 
are simply consistent approximations of the corresponding concrete operations. 
The upper bound operation is a consistent abstraction of the union of sets of 
substitutions. 
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THE FIXPOINT ALGORITHM. The last step of the methodology consists of com- 
puting the least fixpoint or a postfixpoint of the abstract semantics. The fixpoint 
algorithm CAIA [27] is a top-down fixpoint algorithm computing a small, but suf- 
ficient, subset of least fixpoint (or of a postfixpoint) necessary to answer a user 
query. The algorithm uses memoization, a dependency graph to avoid redundant 
computation, the abstract operations of the abstract semantics, and the ordering 
relation on the abstract domain. It has many similarities with PLAI [35], and can be 
seen either as an implementation of Bruynooghe's framework [2] or as an instance 
of a general fixpoint algorithm [24]. 

3. T H E  C O N C R E T E  S E M A N T I C S  

The purpose of this section is to present the concrete semantics which is the basis of 
the analysis. It sets up the terminology necessary to specify the abstract operations, 
and helps in understanding the experimental results by presenting the concrete 
transformation which is then abstracted. The concrete semantics is a collecting 
fixpoint semantics. It is defined on normalized programs [2] which are defined 
in Section 3.1. The main semantic objects manipulated are sets of substitutions 
which are defined in Section 3.2. The main operations on sets of substitutions are 
described informally in Section 3.3. They will be specified formally in Section 4.2, 
together with their abstractions. The concrete semantics is described in Section 3.4. 

3.1. Normalized Programs 

We assume the existence of sets Fi and Pi (i > 0) denoting sets of functors and 
predicate symbols of arity i and of an infinite set P V  of program variables. Variables 
in P V  are ordered and denoted by the x l , x 2 , . . .  , x i , . . . .  

Normalized programs contain clauses with heads of the form p ( x l , . . . ,  x~) where 
n > 0 and p c Pn- Normalized clauses also contain bodies of the form 11,. •.,  l~ 
(n > 0) where the li are either procedure calls of the form p ( x i , , . . . ,  xin) where 
xil , .  • -, xi, are all distinct variables and p E P~ or built-in predicates of one of the 
forms xi = xj (i ~ j )  or x~ -~ g ( x j l , . . . , x j , , )  where i, j l , . . . , j n  are all distinct 
indices and g c Fn. 

The motivation behind these definitions is to allow the result of any predicate 
p/n  to be expressed as a set of substitutions on program variables x l , . .  •, x~. Nor- 
malization may induce some loss of precision in abstract domains which are sensitive 
to the syntactical form of the programs, as discussed later. 

3.2. Concrete Domain 

The concrete semantics is defined in terms of sets of concrete substitutions. We 
provide the necessary notions here. 

We assume the existence of another infinite set R V  of renaming variables. We 
distinguish two kinds of substitutions: program substitutions, denoted by 0, whose 
domain and codomain are subsets of P V  and RV,  respectively, and standard sub- 
stitutions, denoted by o, whose domain and codomain are subsets of RV.  The 
domain of a substitution 0 = {xl  ~- t l , . . . ,  Xn +-- An}, denoted by dora(O), is sim- 
ply {Xl, . . .  ,xn}.  In the following, PS denotes the set of program substitutions, 
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P S D  denotes the set of program substitutions, the domain of which is D, and SS 
denotes the set of standard substitutions. 

Let 0 be a program substitution and D C_ dora(O). The restriction 01 of 0 to 
D, denoted 0/~, is the substitution such that dom(O I) = D and xiO = xiO I for all 
x i C D .  

The definitions of substi tution composition and most  general unifier are the usual 
ones, but are only used for standard substitutions. Program substitutions and 
standard substitutions can only be combined by applying a standard substitution 

to a program substitution 0. The result, denoted by 0or, is defined by dom(Oa) = 
dora(O) and x(Oa) = (x0)a for all x e dora(O). For program substitutions, the 
notion of free variable is nonstandard to avoid clashes between variables during 
renaming. A free variable is represented by a binding to a renaming variable that  
appears nowhere else. As a consequence, the domain of a substitution is invariant 
under renaming. 

We say that a substitution 0 grounds a syntactic object o when var(oO) is empty, 
where var( t )  is the set of variables in t. 

Let 8 be asubse t  o f P S .  8 is complete if and only if, for allO c 8,  0 and 0 / 
are variant 2 implies that  0 / E 8. Let D be a finite subset of P V .  CSD = { 8  : 
VO ~ 8 dora(O) = D and 8 is complete}. CSD is a complete lattice w.r.t, set 
inclusion C. 

3.3. Concrete Operations 

We now provide an informal presentation of the concrete operations. They are 
specified formally together with their abstractions in Section 4.2. The concrete 
semantics uses the following operations. 

• UNION(81,... ,  8,,) where the Oi are a set of substitutions on the same do- 
main: this operation returns sets of substitutions which is the union of all 
8i .  It is used to compute the output of a procedure given the outputs for its 
clauses. 

• AI_VAR(O) where 0 is a set of substitutions with domain {xl,x2}: this oper- 
ation returns the set of substitutions obtained by unifying the terms bound 
to xi and x2 in each substitution of 8.  It is used for literals of the form 
x~ = xj in normalized programs. 

• AI_FUNC(8, g) where 8 is a set of substitutions with domain {Xl , . . . , xn}  
and g is a function symbol of arity n - 1: this operation returns the set of 
substitutions obtained by unifying in each substitution 0 E (9 the terms tl 
and g ( t 2 , . . . ,  tn) where t~ is the term bound to xi in O. It is used for literals 
xil  = g(x~2, . . . , x~. ) in normalized programs. 

• EXTC(c, 8)  where 8 is a set of substitutions with domain {Xl , . . . , xn}  and 
c is a clause containing variables {Xl , . . . , xm} (m  > n): this operation re- 
turns a set of substitutions obtained by extending each substitution in 8 to 
accommodate the new free variables of the clause. It is used at the entry of 
a clause to include the variables in the body not present in the head. 

• RESTRC(c, 8)  where 8 is a set of substitutions on the variables { x l , . . . , x m }  
and { x l , . . . ,  Xn} are the head variables of clause c (n < m): this operation 

2 T h i s  i m p l i e s  t h a t  t h e r e  ex i s t  a, s i g m a  ~ E S S  s u c h  t h a t  0 r = 0 a  a n d  0 = 0~a r. 
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returns the set of subst i tut ions obtained by project ing each subst i tu t ion in 
(9 on variables { X l , . . . ,  xn}. It  is used at the exit of a clause to restrict  the  
subst i tu t ion to the head variables only. 
RESTRG(I, O) where (9 is a set of subst i tut ions on domain D = { x ~ , . . . ,  xn}, 
and l is a literal p(x~, . . . ,x i , , , )  (or xi~ = xz 2 or x~ = g(x~2,...,xi,,)): this 
opera t ion returns the set of subst i tut ions obtained by 

1. project ing each subst i tut ion 0 E (9 on { X i l , . . . ,  xi,,, } obta ining 0'; 
2. expressing 0' in terms of { X l , . . . ,  x,~} by mapping  xik to xk. 

It  is used before the execution of a literal in the b o d y  of a clause. The  
subst i tut ions in the resulting set are expressed in terms of { x l , . . . ,  Xm}, i.e., 
as subst i tut ions for p/m. 
EXTG(I, (9, (9') where (9 is a set of subst i tut ions on D = { x l , . .  •, xn}, the vari- 

' ables of the clause where l appears,  l is a literal p(x~ , . . .  ,xi,,,.) (or Xix = xi~ 
or x~ = g(xi2,...,xi,,,)) with {x i , , . . . , x i , , , }  C_ D, and (9' is a set of  sub- 
st i tut ions on { X l , . . . ,  Xm} representing the result of p(x~, . . . ,  xm) (9" where 
(9"=RESTRG(I, (9): this operat ion returns the set of  subst i tut ions obta ined 
by instant ia t ing each subst i tut ion 0 E (9 to take into account  each result ing 
subst i tu t ion 0' E (9' of the literal l. I t  is used after the execution of a literal 
to propagate  the results of the literal to  all variables of the clause. 

3.4. Concrete Semantics 

We are now in a position to define the concrete semantics. 

SETS OF CONCRETE TUPLES. We assume in the following an under lying pro- 
gram P .  The  semantics of P is captured by a set of concrete tuples of  the form 
((gin,p, (9o~t) where (9o~t is intended to represent the  set of ou tpu t  subst i tu t ions  
obta ined by executing p(xl , . . . ,x ,~)  on the set of input  subst i tut ions (gin and 
Oin, Oo~t E CSD with D = { x l , . . .  ,x,~}. We only consider functional sets sct of 
concrete tuples, implying tha t  for all ((9,p), there exists at most  one set (9' such 
tha t  ((9,p, (9') E sct. This set is denoted by sct((9,p), dom(sct) is the set of pairs 
((9,p) for which there exists an (9~ such tha t  ((9,p, (9') E sct. We call underlying 
domain UD the set of pairs ((9,p) where p is a predicate symbol of ar i ty n in P ,  
D = { x l , . . .  ,xn}  and (9 E CSD. We denote by S C T  the  set of all monotonic sets 
of concrete tuples, i.e., those satisfying (91 C (92 ~ sct((91,p) c_ sct((92,p), each 
t ime sct((91,p) and sct(O2,p) are defined. We denote by S C T T  the set of all total 
sets of  concrete tuples. S C T T  is endowed with a s t ructure  of cpo (i.e., complete  
part ial  order) by defining 

• ± = { ( ( 9 , p , O ) :  ( ( 9 , p )  c UD}; 
. set <_ set' - V((9,p) E UD sct(O,p) C_ sct'((9,p). 

CONCRETE TRANSFORMATION. The concrete semantics is defined in terms of 
one function and one t ransformat ion given in Figure 1. We assume an underlying 
program P.  p, c, g, and 1 denote, respectively, a procedure name, a clause, a 
sequence of literals, and a literal, using only predicate symbols from P.  

Informal ly  speaking, the first rule of T defines a procedure  execution, the  second 
rule defines a clause execution, while the third rule defines a clause suffix execution. 
A procedure  is executed by executing its clauses and taking the union of their 
results. A clause is executed by extending its subst i tut ions to  take into account  
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TSCT(scI)  = {(O,p ,O ' ) :  (O,p) e UD and O ' =  T(O,p,  sct)}. 

T ( O ,  p. sct)  = u~IoN(01  . . . . .  On)  
where  O, = T(O, c,, sct), 

c l , . . . , c ,  are the clauses of p. 

T(O, c, sc t )=  RESTRC(c, 0 ' )  
where  O' = T(EXTC(c, 0),  g, scQ, 

g is the body of c. 

T(O, <>,set)  = O. 
T(O, t.g, set) = T(O3,g, set) 
where  Oa = EXTG(I,O, O2), 

O~ = sct(O~,p) 
AI_VAR(O, ) 
AI_FUNC(O1, g) 

Oa = RESTRO(I, 0). 

if I is p ( . . . )  
i f l i s  x , = x ~  
if I is x, = g(...), 

F I G U R E  1. The  semantic t ransformation.  

the  local variables, executing its body, and project ing its local variables. A suffix is 
executed by restricting the subst i tut ions to the variables of the first goal, applying 
the  goal, extending the result on all the variables of the clause, and executing the 
rest of the  suffix. The  execution of a goal is either a unification or a lookup in the 
set of results (procedure call). 

CONCRETE SEMANTICS. The  t ransformat ion  and functions are monotonic  and 
cont inuous w.r.t. S C T T  and the canonical ordering on the  Cartesian p roduc t  
C S D  × S C T T ,  respectively. Since S C T T  is a cpo, the concrete semantics of  
a p rogram is defined as the least fixpoint of the t ransformat ion T S C T ,  denoted 
# ( T S C T ) .  This fixpoint can be shown to be consistent w.r.t. SLD-resolut ion in 
the  following sense: 

Theorem 3.1. Let P be a program, I = p ( x l , . . . ,  Xn) be a literal, Oin be a program 
subst i tut ion with dom(Oin) = { x l , . . . , x ~ } ,  sct be # ( T S C T ) ,  and e i n  = {O e 
P S  : O and Oin are variant}. The following s ta tement  is true (we assume that 
SLD-re fu ta t ion  uses renaming variables belonging to SS): 

i f  ~ is an answer-subst i tut ion of  SLD-refutat ion applied to P U {+-- loin}, then 
there exists a substi tution Oo~t E sc t (Oin ,p)  such that Oo~t = Oin~ r. 

4. T H E  D O M A I N  PROP 

We now show how the concrete semantics can be abstracted using the  domain  Prop.  
Intuitively, the abst ract ion consists of replacing the concrete domain (e.g., sets of  
subst i tu t ions)  by an abs t rac t  domain (e.g., Boolean formula), and of defining ab- 
s t rac t  operat ions  which are consistent approximat ions  of each concrete operat ion.  
Section 4.1 describes the abs t rac t  domain.  Section 4.2 describes the abs t rac t  opera- 
t ions as consistent approximat ions  of the concrete operations.  Section 4.3 sketches 
the abs t rac t  semantics.  Section 4.5 describes some implementa t ion details. Sec- 
t ion 4.4 gives an example of analysis. 
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4.1. Abstract Domain  

In Prop,  a set of concrete substitutions over D = {Xl , . . .  ,x~} is represented by 
a Boolean function using variables from D, that  is, an element of (D --~ Bool)  --+ 
Bool,  where Bool = { fa l se ,  true}.  In the following, we denote a Boolean function 
by any of the propositional formulas which represent it. We also use ± to denote 
the abstract  substitution fa lse .  

Definition 4.1. The domain Prop over D = {Xl, . . . ,x ,~},  denoted PropD, is the 
poset of Boolean functions that  can be represented by propositional formulas 
constructed from D, the Boolean t ruth  values, and the logical connectives and 
ordered by implication. 

I t  is easy to see that  PropD is a finite lattice where the greatest lower bound is 
given by conjunction and the least upper bound by disjunction. Our implementa- 
tion uses ordered binary decision graphs (OBDG) to represent Boolean functions 
since they allow many Boolean functions to have compact representations. See 
Section 4.5 for more discussion of OBDD. 

Definition 4.2. A t ru th  assignment over D is a function I : D --~ Bool.  The value 
of a Boolean function f w.r.t, a t ru th  assignment I is denoted I ( f ) .  When 
I ( f )  = true, we say that  I satisfies f .  

The basic intuition behind the domain Prop is that  a substitution 0 is abstracted 
by a Boolean function f over D iff, for all instances 0 ~ of 8, the t ru th  assignment I 
defined by 

I ( x i )  : true iff ~ grounds xi(1 < i < n) 

satisfies f .  For instance, xl ¢=~ x2 abstracts the substitutions { x l / Y l , X 2 / y l } ,  
{ x l / a ,  x2 /a} ,  but not { x l / a ,  x2 / y }  nor { x l / y l ,  x2/Y2}. 

Definition 4.3. The concretization function for P r O p D  is a function Cc : PropD --~ 
CSD defined as follows: 

Ce(f )  : {8 e PSD ] Vcr e SS  : (assign ( ~ ) ) ( f )  : t rue}  

where ass ign  : PSD ---+ D --* Bool is defined by ass ign  0 xi : t rue  iff 
grounds xi. 

The following definitions will be used later. 

Definition 4.~. The valuation of a function f w.r.t, a variable xi and a t ru th  value 
b, denoted fizz=b, is the function obtained by replacing xi by b in f .  

Definition 4.5. The dependence set D f  of a Boolean function f is the set 

D~ : {x~ I fLx,=,~e ¢* flx,:satso} 

Definition 4.6. The normalization of a function f w.r.t. [xil,. --,  x~]  is the Boolean 
function obtained by replacing simultaneously x i l , . . . ,  x~,, by Xl . . . .  ,xn in f .  
This normalization is denoted norm  f [x~l , . . . ,  xi,.]. 
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Def in i t ion  ~.Z The denormalization of a function f w.r.t. [x~l,...,x~,,] is the 
Boolean function obtained by replacing simultaneously Xl, . .  •, x~ by x i l , . . . ,  xi,, 
in f .  This denormalization is denoted d e n o r m  f [ x ~ , , . . . ,  x,,,]. 

4.2. Abstract  Operations 

We now describe the abstract operations as consistent approximations of the con- 
crete operations. Recall that  if oc : (CSDI × . . .  × C S D . )  --~ CSD and oa : 
(PrOPD 1 × . . .  X ProPD.)  ~ ProPD are corresponding concrete and abstract op- 
erations, Oa is a consistent approximation of oc if and only if 

Vfl  E ProPD 1 : ' '  "Vfn E ProPD,~ : oc (Cc( f l ) , . . . ,  Ce(fn)) C Ce(oa( f l , . . .  ,riO)" 

For each operation, we give both its concrete version and its abstract version 
and overload the names of the operations by dropping the subscripts. The informal 
presentation of the operation was given in Section 3.3, but we repeat some of them 
here for clarity. 

UNION (UPPER BOUND). Operation UNION is used to collect the results of the 
clauses of a procedure to define the result of the procedure. Its concrete version is 
specified as follows, assuming that O1 , . . . ,  On E CSD: 

UNION(O] , . . . ,  On) = 01 U ' "  U O n. 

Its abstract version is obtained by taking the disjunction of the Boolean formula: 

UNION(fl,. . . ,  fn) = f l  V ' - -  V fn- 

It is important to note that this abstraction is very precise and almost never loses 
precision in practice. It is not optimal, however, as the following example (adapted 
from one of the reviews) shows. Let 0 = {Xl ~-- y, x2 ~-- z} where y, z E R V  and y 
and z are distinct. We have 

0 ~ Ce(Xl) ~ 0 ~ Cc(x I ~ x2). 

Since xl V (Xl ~ x2) is logically equivalent to true, we also have 

e Cc(xl V (x 1 ~ x2) ) : Cc(t?"ue). 

A practical program leading to the above example is as follows: 

p(Xl,X2) : -  Xl=g(X3,X2). 

p(Xl,X2) : -  X l = a .  

The loss of precision can be removed by using sets of Boolean functions or an algo- 
rithm based on OLDT-resolution. It remains to see if this would yield a practical 
analysis. 
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UNIFICATION OF TWO VARIABLES Operat ion AI_VAR performs the unification 
of the  terms bound to variables Xl, x2. Its concrete version is specified as follows, 
assuming tha t  D = {xl ,x2}  and (9 E CSD: 

AI_VAR(e) = {0o':  0 C e ~z cr E SS & ~ C mgu(xlO, X20)}. 

Its abs t rac t  version is defined by adding an equivalence between Xl and x2 in the  
input  abs t rac t  substi tut ion:  

AI_VAR(f):f  A (XlC~X2). 

UNIFICATION OF A VARIABLE AND A FUNCTOR Operat ion AI_FUNC unifies the 
terms t l  with g(t2,. • •, tn), where ti are the terms bound xi in the subst i tut ions.  Its 
concrete version is specified as follows, assuming tha t  D = { X l , . . . ,  Xn}, 0 C CSD, 
and g E Fn-l: 

AI_FUNC(O,g)={0a:  0 E O & a E as & ~r E mgu(xlO, g(x2,...,xn)O)}. 

Its abstract version also adds an equivalence which is slightly more complex than 

in the previous operation. 

AI_FUNC(f,t)= f A (xl ¢:> x2 A . . .  Axn). 

RESTRICTION OF A CLAUSE SUBSTITUTION. Opera t ion  RESTRC restricts a set 
of subst i tut ions expressed on all the clause variables to  a subst i tu t ion expressed on 
the head variables. It  is used at the end of a clause execution. I ts  concrete version 
is specified as follows, assuming tha t  c is a clause, D '  is the set of  variables in the  
head, and D is the set of variables of c: 

RESTRC(c, e ) =  {0/,), : 0 C e } .  

The abs t rac t  version simply restricts the Boolean function to the variables appear-  
ing in the head. Let { X n + l , . . . ,  Xm} be the variables appear ing only in the  b o d y  of 
c: 

RESTRC(c, f )  = e l i m _ a l l  [ x , + l , . . . ,  xm]f 

where 

elim_all [] f=f 

elim_all [xj,..., Xm] f= 

elim_all [Xj+l~...,Xm] (flx~=true V flx~=false) (n < j <__ m). 

Note that this operation is one of the operations where precision can be lost in 
practice. 

EXTENSION OF A CLAUSE SUBSTITUTION. Operation EXTC extends a set of 

substitutions expressed on variables in the head of a clause to a set of substituions 
expressed on all variables in the clause. It is used at the beginning of a clause 

execution. Its concrete version is specified as follows, assuming that c is a clause, 

D t is the set of variables in the head, and D is the set of variables of c. 

EXTC(c,O) ={0:dora(0) = D &  O/D , E ( ~ & V x c D \ D  t, x i s  free in 0}. 
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T h e  abs t r ac t  version is trivial: 

E X T C ( c , f ) = f  

RESTRICTION OF A SUBSTITUTION BEFORE A LITERAL. Opera t ion  RESTRG is 
used before execut ing a literal l. I t  expresses a set of subs t i tu t ions  O in t e rms  of the  
formal  p a r a m e t e r s  X l , . . . ,  x~ of the literal 1 by project ing the  variables not  appear -  
ing in I and m a p p i n g  the remaining var iables  x i l , . . . ,  xi,,, to the formal  p a r a m e t e r s  
x l , . . . ,  x~, I ts  concrete  version can be specified as follows: 

R E S T R G ( l , ~ ) = { O : d o m ( O ) = D ' & 3 0 ' C O : x j O = x i , j O '  ( l < j  < n ) } .  

I t s  abs t rac t  version amounts  to e l iminat ing from the Boolean funct ion all var iables  
not  appea r ing  in the literal and normaliz ing the result ing function. Let  S be the  
list of variables  in D f  \ { x i ~ , . . . ,  xi,, }: 

RESTRG(/, f )  = norm [xil . . . .  , xi,,] ( e l i m _ a l l  S f ) .  

Note  tha t ,  once again, this  opera t ion  may  lose precision. 

EXTENSION OF A SUBSTITUTION AFTER A LITERAL. Opera t ion  EXTG is used 
after  the  execut ion of a literal l to extend the result  of I (expressed on its variables)  
to  all clause variables.  More precisely, EXTG extends  a set of subs t i tu t ions  (~ wi th  
a set of subs t i tu t ions  (~t represent ing the result  of executing a literal l on O. I ts  
concrete  version is specified as follows, assuming tha t  D is the  domain  of O, D t~ = 
{xil  , . . . ,  xi,, } is the  set of variables appear ing  in 1 exact ly  in t ha t  order,  and D ~ = 

EXTG(/ ,O,~ ' )  = { 0 ~ : 0 E O ,  ~ E S S & 0 ' ~ E O ' & d o m ( c r )  Ccodom(O')  & 

( codom ( O ) \ codom ( O' ) ) N codom ( cr ) = 0 & 

dom(O') = D' & xjO' = xi~O (1 < j < n)}. 

I ts  abs t r ac t  version amoun t s  to denormalizing the  subst i tu t ion and t ak i r  
junc t ion  wi th  the  clause subst i tu t ion.  

EXTG(I, f ,  f ' )= f A denorm [ x i l , . . . ,  xi,,,] f ' .  

4.3. Abstract Semantics  

T h e  abs t rac t  semant ics  can be ob ta ined  easily by replacing sets 
abs t r ac t  subs t i tu t ions  and each concrete  opera t ion  by its abs t '  
a t r ans fo rma t ion  TSAT.  T h e  abs t rac t  semantics  is then  def  
the  least  f ixpoint of T S A T .  Moreover,  the semantics  can be 
the  concrete  semantics .  

Theorem 4.1. Let P be a program, T S A T  and T S r  
formations,  sat = # ( T S A T ) ,  and sct = # ( T S C  
D = {Xl , . . . , x ,~}  where n ~s the arity ofp.  

fl E PropD ~ sct( Cc(/3),p) ( 
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qsort(Xl , X2 ) "- 

x 3  = [ ] ,  

qsort( Xl , X2 , X3 ). 

q s o r t ( X l  , X2 , X3 ) : -  

x l  = [ 3 ,  

X3 = X2. 

qsort(Xi , X2 , X3 ) "- 

x l  = [ x 4  I x s  ] , 

partition( X5 , X4 , X6 , X7 ), 

XS = [ X4 i X9 ] , 

qsort( X6 , X2 , X8 ), 

qsort( X7 , X9 , X3 ). 

F I G U R E  2. Quicksort on differ- 
ence lists in normalized form. 

~.~. An Example 

F~gure 3 depicts the analysis of a quicksort algorithm using difference lists, whose 
normalized form is shown in Figure 2. Note that  the first recursive call is performed 
with an open-ended list which makes the program difficult to analyze (i.e., many 
domains would lose precision). The trace of the execution shows the various abstract 
operations and their associated substitutions. Parts of the trace have been removed 
for clarity. In particular, the trace for the call to p a r t i t i o n  is omitted (line 16), as 
well as part of the first iteration of the second clause for one of the recursive calls to 
q s o r t / 3  (line 29) since it returns _l_ and is shown during the second iteration (lines 
34-40). The Boolean functions are shown in a 'readable form. This is a slightly 
edited version of the output  of our system which depicts formulas in disjunctive 
normal form, although the canonical form used by the algorithm is different. Also, 
we use A ¢~ B ¢:~ C to abbreviate (A ¢~ B) A (B ¢=> C). The abstract interpretation 
algorithm used to obtain the trace is the so-called prefix optimization algorithm 
which avoids reconsidering clauses and prefixes of clauses by keeping an advanced 
dependency graph [17]. The initial query has a first argument which is ground and 
a second argument which is a variable. This is abstracted by the formula xl in the 
trace. 

q s o r t / 2  simply calls q s o r t / 3  (line 4) whose first clause returns the substitution 
x3 A x2 A xl,  indicating that  all its arguments are ground (line 9). The second 
clause calls q s o r t / 3  with a substitution xl (line 20), and this call restarts a new 
subcomputation. The result of this subcomputation is xl A (x2 ¢~ x3) (line 43). 
This means that  xl  and x2 will be ground as soon as x3 will be ground, and 
reciprocally. The second recursive call simply returns _1_ for the first iteration (line 
46) and x3 A x2 A xl for the second iteration (line 53). As a consequence, all 
arguments of q s o r t / 3  are ground at the exit of the clause (line 58), and q s o r t / 2  
returns a ground argument for its second argument. 

The really interesting point in this example is the substitution returned by the 
nested call to q s o r t / 3  which preserves an equivalence between the second and 
third arguments. This enables the domain Prop to achieve maximal precision in 
this example without keeping track of functors and working only on the clause 
variables. 
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1 Try  c l a u s e  1 
2 E x i t  E X T C  x l  
3 E x i t  A I - F U N C  x3 ^ x l  
4 Cal l  P R O - G O A L  q s o r t / 3  x3 h x l  
5 T r y  c l a u s e  1 
6 E x i t  E X T C  x3 a x l  
7 E x i t  A I - F U N C  x3 ^ x l  
8 E x i t  A I - V A R x 3  A x2 n x l  
9 Exit RESTRC x3 A x2 h xl 
l0  E x i t  U N I O N  x3  A x2 A x l  
11 E x i t  c l a u s e  1 
12 T r y  c l a u s e  2 
13 E x i t  E X T C  x3 ^ x l  
14 E x i t  A I - F U N C  x5 A x4 ^ x3 ^ x l  
15 Cal l  P R O - G O A L  p a r t i t i o n  x2 A x l  
16 
17 E x i t  P R O - G O A L  p a r t i t i o n  x4 ^ x3 ^ x2 ^ x l  
18 E x i t  E X T G  x7  ^ x6 A x5 ^ x4 n x3  ^ x l  
19 Ex i t  A I - F U N C  (x9  ¢~, xS)  ^ x7 A x6 ^ x5 A x4 A x3 A x l  
20 Cal l  P R O - G O A L  q s o r t / 3  xl  
21 T r y  c l a u s e  1 
22 Ex i t  E X T C  xl  
23 E x i t  A I - F U N C  xl  
24 E x i t  A I - V A R  (x3  ¢~ x2 )  ^ x l  
25 E x i t  R E S T R C  (x3  ¢~. x2)  a x l  
26 E x i t  U N I O N  (x3  ¢~ x2)  A x l  
27 E x i t  c l a u s e  1 
28 T r y  c l a u s e  2 
29 
30 E x i t  R E S T R C  .L 
31 E x i t  U N I O N  (x3  ¢~ x2)  A x l  
32 E x i t  c l a u s e  2 
33 T r y  c l a u s e  2 
34 Call  P R O - G O A L  q s o r t / 3  x l  
35 E x i t  P R O - G O A L  q s o r t / 3  (x3  ¢~ x2)  A x l  
36 E x i t  E X T G  (x9  ¢~ x8 ¢~ x2 )  A x7  ^ x6 ^ x5 A x4 ^ x l  
37 Cal l  P R O - G O A L  q s o r t / 3  x l  
38 E x i t  P R O - G O A L  (x3  ~ x2 )  ^ x l  
39 E x i t  E X T G  (x9  o x8 ¢~ x3  ~ x2 )  ^ x7 A x6 A x5 A x4 A x l  
40 E x i t  RESTRC ( x 3 0  x2 )  ^ x l  
41 E x i t  U N I O N  ( x 3  ¢~ x2)  A x l  
42 E x i t  c l a u s e  2 
43 E x i t  P R O - G O A L  (x3  ~ .  x2)  ^ x l  
44 E x i t  E X T G  (x9 ¢~ x8  ¢~ x2 )  ^ x7  A x6 ^ x5 A x4 ^ x3 A x l  
45 Cal l  PRO-GOAL q s o r t / 3  x3 h x l  
46 Exi t  P R O - G O A L  q s o r t / 3  3_ 
47 E x i t  E X T G  .k 
48 E x i t  R E S T R C  .1. 
49 E x i t  U N I O N  x3 ^ x2 ^ x l  
50 E x i t  c l a u s e  2 
51 Try clause 2 
52 (.;all PRO-GOAL qsort/3 x3 A xl 
53 Exit PRO-GOAL qsort/3 x3 ^ x2 A xl 
54 Exit EXTG x9 A x8 A x7 ^ x6 A x5 ^ x4 A x3 A x2 A xl 
55 E x i t  R E S T R C  x3  ^ x2 A x l  
56 E x i t  U N I O N  x3  ^ x2 A x l  
57 E x i t  c l a u s e  2 
58 E x i t  P R O - G O A L  q s o r t / 3  x3 ^ x2 A x l  
59 E x i t  E X T G  x3 ^ x2 ^ x l  
60 E x i t  R E S T R C  x2 A x l  
61 E x i t  U N I O N  x2 ^ x l  
62 E x i t  c l a u s e  1 

FIGURE 3. AnMysis of qsort/2 using Prop. 
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4.5. Implementation 

Our implementation of the domain Prop uses ordered binary decision graphs (OBDG) 
as a canonical form for Boolean functions [6]. OBDGs require a total ordering on 
the variables. The ordering can have a significant impact on the size of Boolean 
functions. Since there is no obvious good ordering for abstract interpretation, our 
implementation simply uses xl < x2 < " '  < xn. The data structure underlying 
OBDGs is a binary tree with a number of restrictions. 

Definition 4.8 [6]. A function graph is a rooted, directed graph with vertex set 
V containing two types of vertices. A nonterminal vertex v has as attributes 
an index index(v) E { x l , . . . , x n }  and two children low(v) and high(v) from 
V. A terminal vertex v has as attribute a value value(v) E {false,  true}. 
Furthermore, for any nonterminal vertex v, if low(v) is also nonterminal, then 
index(v) > index(low(v)).  Similarly, if high(v) is nonterminal, then index(v) > 
index(high(v)). 

The correspondence between function graphs and Boolean functions is given by 
the following definitions. 

Definition 4.9 [6]. A function graph G having root vertex v denotes a function fv 
defined recursively as 

1. if v is a terminal vertex, then fv = true if value(v) = true. fv = fa l se  
otherwise. 

2. if v is a nonternfinal vertex with index(v) = x~, then f ,  is the function 

f v ( X l , . . . , x n )  = xi A f tow(v)(Xl , . . . ,Xn) V ~xi A fhigh(v)(Xl, . . . ,Xn).  

OBDGs are simply function graphs where redundant vertices and duplicated sub- 
graphs have been removed. 

Definition 4.10 [6]. A function graph G is an ordered binary decision graph iff it 
contains no vertex v with low(v) = high(v) nor does it contain distinct vertices 
v and v t such that the subgraph rooted by v and v t are isomorphic. 3 

Reference [6] describes several algorithms for the reduction, restriction, and com- 
position of OBDGs. Other algorithms (e.g., elimination, comparison) can be de- 
signed along the same principles. The main complexity results are given in Table 1. 
Contrary to the implementation of Bryant, our implementation uses hashtables 
instead of two-dimensional arrays, and avoids the sorting step of the reduce  op- 
eration, further reducing the complexity. In the complexity results, we assume 
that  hashing takes constant time. We also note Gi, the OBDG associated with a 
Boolean function fi, and note IGI, the number of vertices in the graph G. Although 
each operation is polynomial, it is important to realize that  the size of the resulting 
graph can be significantly larger than the inputs of the operation. A sequence of 
operations can thus lead to a graph whose size is exponential in terms of the inputs. 

3Informally, two graphs are isomorphic if their structures and attributes match with the same 
order of children. 
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T A B L E  1, Complexity results of the basic operations on graphs. 

Procedure Result Time Complexity 

Reduce G reduced in canonical form O(IOI) 
Apply f l  <op) f2 O(lallIG21) 
Valuate flxi=b O(lal) 
Compose fl Ix~=S2 o(lal 12 la2 I) 
Compare true iff f l  = f2 O(min(IGll, la21)) 
Eliminate flz=true V flx=fazs~ O(IGI 2) 

This is to be expected since Boolean satisfiability is an NP-complete problem. An 
important  measure in the experiments will thus be the size of the graphs in practice. 

5. T H E  D O M A I N  PAT(PROP) 

The domain Prop presented in the previous section may lose accuracy since it only 
works on the clause variables. In this section, we lift up this limitation and consider 
an infinite abstract  domain integrating Prop with a pat tern  component  preserving 
structural  information about  terms. This new domain is interesting for a number 
of reasons. On the one hand, it is likely to improve the accuracy of the analysis, 
since even more sophisticated relationships between variables will be maintained. 
On the other hand, its computational  cost is not bounded in the same way as the 
domain Prop. It  is thus particularly important  to identify whether the execution 
of the analysis remains reasonable under these conditions. 

The new domain can be obtained by instantiating the generic pa t tern  domain 
proposed in [13] to Prop. The generic pat tern domain upgrades any domain ex- 
pressed on clause variables, called the N-domain, into an abstract  domain combining 
the N-domain and a pat tern  component. 

The presentation of the generic domain and its associated algorithms is outside 
the scope of this paper, but the reader can refer to [13] for a comprehensive overview 
of this approach. In the rest of this section, we briefly review the semantic part  of 
the generic domain Pat  (N) and the operations it requires from the N-domain. We 
also show how to define these operations for the domain Prop to obtain Pat  (Prop) .  

The rest of this section is organized as follows. Section 5.1 gives some basic 
intuitions about  the generic domain. Section 5.2 describes the generic domain 
Pat  (N),  including its concretization function. Section 5.3 defines Pat  (Prop) as an 
instantiation of Pat  (N). Section 5.4 describes the concrete and abstract  versions 
of the operations needed for the instantiation. Sections 5.2 and 5.3 can be skipped 
in a first reading. 

5.1. Informal Overview 

The key concept in the representation of the substitutions in this generic domain 
is the notion of subterm. With each subterm appearing in a substitution, the 
generic abstract  domain may associate a pattern which specifies the main functor, 
as well as the subterms which are its arguments. In addition, it associates with 
each subterm its properties. These properties (e.g., sharing, groundness, freeness) 



252 P. VAN H E N T E N R Y C K  E T  AL. 

are left unspecified and are represented in the X-domain. Moreover, each variable 
in the domain of the substitution is associated with one of the subterms. Note that  
this information enables us to express that two arguments have the same value 
(and hence that two variables are bound together) by associating two arguments 
with the same subterm. To identify the subterms in an unambiguous way, an index 
is associated with each of them. If there are n subterms, we make use of indices 
1 , . . . ,  n. For instance, the substitution 

{xl ~-- t* a ,  x2 +--- a ,  x3 ~ y] \ []} 

will have seven subterms. The association of indices to them could be, for instance, 

{ (1 , t*a) , (2 ,  t),(3, a),(4, a),(5, yl \ [ ]), (6, yl), (7, [ ])}. 

The pattern component (possibly) assigns to an index an expression g ( i l , . . .  ,in) 
where g is a function symbol of arity n and i l , . . . ,  in are indices. If it is omitted, 
the pattern is said to be undefined. In our example, the pattern component makes 
the following associations: 

{(1, 2 • 3), (2, t), (3, a), (4, a), 6 \ 7), (7, [ ])}. 

The same value component, in this example, maps xl to 1, x2 to 4, and x3 to 5. 
The properties of each of the subterms are stored by the X-domain. The ~- 

domain has no knowledge about the pattern component. This allows the X-domain 
to be viewed as working on clause variables. The identification of subterms (and 
hence the link between the structural component and the X-domain) is a somewhat 
arbitrary choice. In the following, we identify the subterms with integer indices, say 
1 . . .  n if n subterms are considered. The ~-domain thus represents properties of 
the subterms by using these indices. For instance, when the X-domain corresponds 
to Prop,  the Boolean formula1 A 2 A 3 A (5¢=~6) A 7 c a n b e u s e d  to store 
information on the above substitution. 

NOTATION. In the following, we denote by Ip the set of indices {1, . . .  ,p}, by 
STp the set of tuples of terms ( t l , . . . ,  tp), and by S T  the set of all sets STp for 
some p > 0. 

5.2. The Generic Domain P a t t e r n  

An abstract substitution in Pa t (X)  over the P V  variables x l , . . .  ,xn is a triple 
( f rm ,  sv, g), where sv (the same value component) is a total function, f r m  (the 
pattern component) is a partial function, and ~ is an element of the X-domain. The 
meaning of the pattern, same value, and X-domain components is as follows. 

5.2.1. THE PATTERN COMPONENT. The pattern component associates with 
some of the indices in Ip an expression g ( i l , . . . ,  iq) where g is a function symbol 
of arity q and { i l , . . . , i q }  C Ip. The pattern component is a partial function 
f r m  : Ip 74 Fp, where Fp is the set of all patterns on Ip, satisfying the following 
condition: let Gfrm be the graph whose nodes belong to Ip and whose arcs are 
the pairs (i , j)  such that f rm( i )  = g(. . .  , j , . . . ) .  G/r m must  be an acyclic graph. 
We take the convention of denoting by f rm( i )  = under  the fact that  no pattern 
is associated with i. The meaning of the component is given by the concretization 
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func t ion  t h a t  specifies t h a t  the  componen t  represents  all p_tuples  of t e rms  t h a t  
sa t i s fy  s imu l t aneous ly  all p a t t e r n  cons t ra in ts :  

Cc( f rm)  = { ( t l , . . . , t p )  I Vi, i l , . . . , i q  E Ip : 

I rm( i )  = g ( i l , . . . , i q )  ~ t i=g( t~ l , . . . , t i , , ) } .  

T h e  cond i t ion  on Gfrm ensures  t h a t  Cc( f rm)  is not  empty.  In  the  following, we 
deno te  by  FRMp the  set of all funct ions  f r m  for a fixed p and by  F R M  the  union 
of all FRMp (p >_ 0). 

5.2 .2 .  THE SAME VALUE COMPONENT. The  second componen t  assigns a sub-  
t e r m  to each var iable  in the  subs t i tu t ion .  Given a set D of p r o g r a m  var iables  and a 
set  of indices I ~ ,  th is  componen t  is a sur ject ive  funct ion sv : D --~ Im. I ts  mean ing  
is given by  a concre t i za t ion  funct ion t h a t  makes  sure t ha t  two var iables  ass igned 
to  the  same  index have the  same value: 

Cc(sv) = {0 I dora(O) = D and Vxi, xj E D:  sv(xi) = s v ( 3 2 j )  :=~ x i O  = XjO}. 

We deno te  by SVD,m the  set of all same value funct ions for fixed D and ra and  by  
S V  the  union of all sets  SVD.~ for any D and m. 

5 .2 .3 .  THE ~-DOMAIN AND ITS BASIC OPERATIONS. The  ~ - c o m p o n e n t  of t he  
gener ic  d o m a i n  is a doma in  ~p t h a t  gives in format ion  on a set of t e rms  < t l , . . . ,  tp}. 
T h e  d o m a i n  is a ssumed  to sa t i s fy  t r a d i t i o n a l  requirements .  For  ins tance,  t he  SRp 
m a y  be a cpo wi th  an order  < ~ ,  an upper  bound  opera t ion ,  and  a m o n o t o n e  
conc re t i za t ion  funct ion w.r . t .  <~.4  In the  following, we denote  by  N the  set of all  
~p (p > 0). 

T h e  ~ - d o m a i n  needs a nmnber  of basic  opera t ions ,  i.e., T_UNION, T_AI_VAR, 
T_ AI_FUNC, PROJ, INTR, JOIN, REN, in t e rms  of which the  s t a n d a r d  ope ra t i ons  are  
imp lemen ted .  T h e  i m p l e m e n t a t i o n  of the  s t a n d a r d  ope ra t ions  in t e rms  of those  
bas ic  ope ra t i ons  is ou ts ide  the  scope of th is  paper ,  bu t  the  reader  m a y  consul t  [13] 
for more  deta i ls .  The  basic  ope ra t ions  will be specified la ter ,  t oge the r  wi th  the i r  
a b s t r a c t  versions.  

5 .2 .4 .  THE GENERIC ABSTRACT DOMAIN. We are now in a pos i t ion  to specify  
t he  a b s t r a c t  domain .  

Definition 5.1. Let  D be a finite set of p rog ra m variables .  The  set of a b s t r a c t  
subs t i t u t i ons  P a t  (N) is the  subse t  of F R M  x S V  x N consis t ing  of e lements  
(frm, sv, l> sa t i s fy ing the  following condi t ions:  

i. Brn, p E N, p >_ m & ~ c Np & sv c SVD,m & f r m  c FRMp; 
ii. V i : m < i < p : ? j : l  < j < p :  f r m ( j ) = g ( . . . , i , . . . ) .  

Formal ly ,  the  mean ing  of an a b s t r a c t  subs t i t u t i on  3 = ( f rm,  sv, g) is given by  
the  following concre t i za t ion  function:  

Cc(~) 
= {O:dora(O) = D & 3(tl . . . . .  tp) E Cc(~) N C c ( f r m )  :Vx E D : xO = tsv(z)}. 

4Some of these requirements can be lifted up. See [24] for more details. 
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5.3. The Domain  P a t ( P r o p )  

We now consider the domain Pa t  (Prop)  as an instant iat ion of Pa t  (~ )  to  Prop.  
The  basic idea is to associate a variable i with each te rm ti. The  concret izat ion 
function is easily generalized to tuples of terms as follows. 

Defini t ion 5.2. The concretization function for Prop1,, is a function Cc : Propi, ,  ---+ 
STp defined as follows: 

C c ( f )  = {<t l , . . .  ,tp} I Vcr E S S :  ass ign  ( ( r i o , . . .  , tpcr))( f )  = t rue}  

where ass ign  : STp --, Ip -~ Bool is defined by ass ign  <Q, . . . ,  tp) i = t rue  iff ti 
is ground. 

5.4. Abstract  Operations 

We now specify the abstract ion of the N-domain operat ions for Pa t  (Prop) .  As for 
P rop ,  we give the concrete and abstract  versions for each operat ion,  the abs t rac t  
version being a consistent approximat ion of the concrete version. 

The  concrete operat ions are of two kinds. First, there are a certain number  
of operat ions  which are similar to the t radi t ional  operations,  but  on sets of tu- 
ples instead of on sets of substi tutions.  These are operat ions  T_UNION, T_ AI_VAR, 
T_AI_FUNC. Second, there are a number  of operat ions mot ivated by the  need for 
introducing, removing, and renaming terms as the computa t ion  proceeds. Let us 
explain informally why some of them are needed. Operat ion INTR is used each t ime 
new terms are being introduced in a substi tution.  This is the case at  clause en t ry  
(operat ion EXTC) as well as during the unification operat ions  (operations AI_VAR, 
AI_FUNC, EXTG). Opera t ion  PROJ is used each t ime some terms should be removed 
from a substi tut ion.  This occurs in many  operations,  including clause exit (,~ESTRC) 
and procedure entry (RESTRG). Operat ion JOIN is used to join two tuples in opera-  
t ion EXTG just  before calling the general unification algorithm. We now tu rn  to the 
operat ions  whose implementat ions are conceptual ly simple in the case of P rop  and 
are closely related to those of the Prop domain. 

UNION. This operat ion takes the union of two sets of tuples. Its concrete 
version is specified as follows: 

T-UNION((I)I, ffP2) = (1)1 U (I) 2. 

Its abs t rac t  version uses disjunction once again: 

T_UNION(/1, f2) -- f l  V f2. 

UNIFICATION OF TWO VARIABLES. This operat ion is very close to the s tan-  
dard operation.  The  concrete version of operat ion T_AI_VAR is as follows: 

T_AI_VAR((I),i,j) = { <r io- , . . .  ,tpO'> i < t l , ' ' "  ,tp> C (I) (~g 

a E mgu(t~, t j )  & a E SS  }. 

Its abs t rac t  version is given as follows. 

T_AI_VAR(f , i , j )  = f A (i ¢=~ j ) .  
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UNIFICATION OF A VARIABLE AND A FUNCTOR. This opera t ion is very close 
to  the  s tandard  operation.  The  concrete version of operat ion T_AI_FUNC is as 
follows: 

T_ AI_ FUNC(~, i, { j~ , . . . ,  j~ }, 9) : { <t l~ , . . . , t ,~> I <t~,...,tp> • ~ 
• mgu( t i , g ( t j l , . . .  , t j . . ) )  ~ (7 • S S  }. 

I ts  abs t rac t  version adds an equivalence, as was the case for unification in Prop:  

W_AI_FUI~C(f , i ,{ j l , . . . , jn} ,g)=f  A ( i c a j l  A . . .  A jn). 

PROJECTION. This operat ion projects out  of term tj. Its concrete version is 
specified as follows: 

pa0J(~, j) = { ( t l , . . . ,  t j_ , ,  t j + l , . . . ,  tp> I ( t l , . . . ,  tp> • • }. 

I ts  abs t rac t  version is s imply 

PROJ(f , j )  = denorm [ 1 , . . . , j  - 1 , p , j , . . . , p -  1] fly=true V fli=false" 

INTRODUCTION OF VARIABLES. This operat ion introduces k variables in loca- 
t ions m + 1 , . . . ,  m + k. Its concrete version can be specified as follows: 

INTR(~P, m, k) = { ( t l , . . . ,  tin, Y l , . . . ,  Yk, tin-I-I,..., tp) I <tl , ' ' ' ,  tp) E (~ 
Yl,-- •, Yk are new distinct variables}. 

I ts  abs t rac t  version is obtained by shifting the indices of the last p - m variables 
by k positions. 

INWR(f,m, k) -- d e n o r m [ 1 , . . . , m , m  + 1 + k , m  + 2 + k , . . .  ,p  + k] f .  

JOIN. This operat ion concatenates  tuples of terms coming from two different 
sets. I ts  concrete version is given as follows: 

. , t~ , t i ,  . , t ~ >  I <t~,. ~1 

Its abs t rac t  version is given in terms of conjunction.  Let f l  • Props,,, f2 • Prop1,,: 

JOIN(f l , f2 )  = f l  A denorm [ p +  1 . . . . .  P+q] f2. 

RENAMING OF VARIABLES. The ~-domain  also needs a renaming operat ion.  
Let  r : Ip -* Ip be a renaming of indices. The  concrete version can be specified as 
follows: 

REN(ffP, r) = {( t r (1) , . - . ,  tr(p)} I ( t i , ' ' ' ,  ~:P> • (~}" 

Its  abs t rac t  version is implemented by using the denorm function previously defined: 

REN(/, t) = denorm [t(1) . . . . .  t(p)] f .  
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6. E X P E R I M E N T A L  E V A L U A T I O N  

In this section, we report experimental results about the efficiency and accuracy of 
Prop and P a t ( P r o p )  and compare them with other abstract  domains. Section 6.1 
describes the preliminaries, including a description of the benchmarks and the do- 
mains and algorithms used in the experiments. Sections 6.2 and 6.3 describe, re- 
spectively, the accuracy and efficiency of Prop and Pat  (Prop) .  Section 6.4 discusses 
the use of Prop and Pat  (Prop) for on-line analysis, while Section 6.5 discusses the 
impact  of caching on this domain. 

It  is important  to stress that  the experiments were not chosen to obtain as 
many ground arguments as possible to improve efficiency. In fact, the on-line (or 
condensing or goal-independent) analysis makes no assumption on the queries, and 
hence manipulates mostly nonground substitutions. Hence, the experiments cover 
well the possible cases that  may occur in practice. 

6.1. Preliminaries 

THE PROGRAMS TESTED. The programs we use are hopefully representative of 
"pure" logic programs (i.e., without the use of dynamic predicates such as a s s e r t  
and r e t r a c t ) .  They are taken from a number of authors and used for various 
purposes from compiler writing to equation-solvers, combinatorial problems, and 
theorem-proving. Hence, they should be representative of a large class of programs. 
In order to accommodate  the many built-ins provided in Prolog implementations 
and not supported in our current implementation, some programs have been ex- 
tended with some clauses achieving the effect of the built-ins. Examples are the 
predicates to achieve input /output ,  meta-predicates such as s e t o f ,  b a g o f ,  a r g ,  
and f u n c t o r .  The clauses containing a s s e r t  and r e t r a c t  have been dropped in 
the one program containing them (i.e., Syntax error handling in the reader pro- 
gram). 

The program k a l a h  is a program which plays the game of kalah. It  is taken 
from [37] and implements an a lpha-be ta  search procedure. The program p r e s s l  
is a symbolic equation-solver program taken from [37] as well. P r e s s2  is the same 
program, but one literal is repeated to improve precision. 5 The program cs is a 
cutting-stock program taken from [38]. It  is a program used to generate a number of 
configurations representing various ways of cutting a wood board into small shelves. 
The program uses, in various ways, the nondeterminism of Prolog. The program 
Dis j  is taken from [16], and is the generate and test equivalent of a constraint 
program used to solve a disjunctive scheduling problem. This is also a program 
using the nondeterminism of Prolog. The program Read is the tokenizer and reader 
written by R. O'Keefe and D.H.D. Warren for Prolog. It  is mainly a deterministic 
program, with mutually recursive procedures. The program PC is a program writ ten 
by W. Older to solve a specific mathematical  problem. The program G a b r i e l  is the 
Browse program taken from Gabriel benchmark. The program P lan  (PL for short) 
is a planning program taken from Sterling and Shapiro. The program Queens is 
a simple program to solve the n-queens problem. Peep is a program writ ten by 
S.Debray to carry out the peephole optimization in the SB-Prolog compiler. It  is 
a deterministic program. We also use the traditional concatenation and quicksort 

5That is, to simulate the effect of the reexecution strategy [25]. 
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programs, say Append (with input modes ( v a r ,  v a r ,  ground))  and 0 s o r t  (difference 
lists sorting the small elements first). 

THE DOMAIN Pattern. The abstract  domain Pattern contains pat terns  (i.e., 
for each subterm, the main functor and a reference to its arguments are stored), 
sharing, same-value, and mode components. It  is best viewed as an abstract ion of 
the domain of Bruynooghe and Janssens [3] where a pat tern component  has been 
added. The domain is fully described in [33], which also contains the proofs of 
monotonici ty and consistency. 

As for the generic domain Pat  (N) presented before, which is in fact a gener- 
alization of P a t t e r n ,  the key concept in the representation of the substitutions 
is the notion of subterm. Given a substitution on a set of variables, an abstract  
substi tut ion associates with each subterm the following information: 

• its mode (e.g., Gro, Var, Ngv (i.e., neither ground nor variable)); 
• its pattern which specifies the main functor as well as the subterms which are 

its arguments.  Note tha t  the pattern is optional. If it is omitted, the pa t te rn  
is said to be undefined; 

• its possible sharin 9 with other subterms. 

The correspondence between each variable in the domain of the substitution and 
one of the subterms is provided by a function called same value, which behaves as 
in Pa t  (N). 

If  we consider again the substitution presented in Section 5.1, the association of 
indices is the same, giving the pat tern representation 

{(1, 2 * 3), (2, t), (3, a), (4, a), (5, 6\7), (7, [])}. 

Each index is associated with a mode taken from 

{±, Gro, Var, Ngv, Novar, Gv, Nogro, Any}. 

In the example, we have the following associations: 

{(1, Gro), (2, Gro), (3, Gro), (4, Gro), (5, Ngv), (6, Var), (7, Gro)}. 

Finally, the sharing component  specifies which indices, not associated with a pat-  
tern, may possibly share variables. We only restrict our at tention to indices with 
no pat tern  since the other pat terns already express some sharing information and 
we do not want to introduce inconsistencies between the components. The actual 
sharing relation can be derived from these two components. In our particular ex- 
ample, the only sharing is the couple (6, 6) which expresses that  variable Yl shares 
a variable with itself. 

Note that  all components of this domain are not useful for a groundness analysis. 
If  only groundness is important ,  the mode component could be simplified to contain 
only two modes: any and ground. If only pure programs are used, then sharing 
could be omit ted as well. The same-value and structural information are, however, 
fundamental  to obtain a good precision. Hence, the efficiency results given in the 
following would be bet ter  if those components were omitted, but the present results 
give an idea of how well Prop and Pat  (Prop) compare with other domains. 
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THE DOMAIN Mode. The domain of [33] is a reformulation of the domain of 
[2]. The domain could be viewed as a simplification of the elaborate domain where 
the pattern information has been omitted and the sharing has been simplified to 
an equivalence relation. Only three modes are considered: ground,  var ,  and any. 
Equality constraints can only hold between program variables (and not between 
subterms of the terms bound to them). The same restriction applies to sharing 
constraints. Moreover, algorithms for primitive operations are significantly differ- 
ent. They are much simpler and the loss of accuracy is significant. Note once 
again that  the mode and sharing components can be simplified if only groundness 
information would be important. 

THE GENERIC ABSTRACT INTERPRETATION ALGORITHM. The algorithm used 
in the experimental results is the so-called "prefix optimization" algorithm [17]. It 
is essentially our original algorithm [23, 27] augmented with an advanced depen- 
dency graph to avoid recomputing clauses or prefixes of clauses that  would not bring 
additional information. The original algorithm is a top-down algorithm computing 
a subset of the least fixpoint, small but sufficient to answer the query. It works at 
a fine granularity, i.e., it keeps multiple input /output  patterns for each predicate. 
Both algorithms can be seen as particular implementations of Bruynooghe's op- 
erational framework [2] or, alternatively, as instantiations of a universal top-down 
fixpoint algorithm [24] to the abstraction of the semantics depicted in Figure 1. 

We also use the reexecution algorithm of [25]. This algorithm is essentially simi- 
lar to the previous one, except that  procedure calls and built-ins are systematically 
reexecuted to gain precision, exploiting the referential transparency of logic pro- 
gramming languages. This algorithm only deals with Prolog programs not using 
side-effects (e.g., a s s e r t ) .  The reexecution is also local to a clause. Reexecution 
turns out to be a versatile tool to keep the domain simple and increase precision 
substantially. 

6.2. The Domain Prop 

6.2.1. ACCURACY. In this section, we compare Mode, Mode-reex,  P a t t e r n ,  
and Prop with respect to their precision in computing groundness information. 
All domains allow to compute other interesting information: freeness and sharing 
information is computed by Mode and P a t t e r n ,  as well as pattern information for 
P a t t e r n .  Covering information can be computed by Prop and P a t t e r n .  We only 
concentrate on the groundness information here. 

Tables 2 and 3 compare Mode and Prop for the input and output  modes of all 
predicates. The first column reports the total number of arguments in procedure 
heads, the next two columns, G-Hod and G-Pro,  the number of arguments inferred 
ground by Mode and Prop,  the fourth column, B-Hod, reports the number of cases 
where Mode infers ground for an argument while Prop does not infer groundness, 
and the fifth column is just the opposite measure. The last columns compare the 
results at the level of the procedures (instead of at the level of arguments). These 
two domains were compared since they both work on the variables of the clauses 
and do not keep track of functors in the abstract domain. The results indicate that  
Prop is more precise than Mode. Mode never infers more information than Prop and 
loses precision compared to Prop in almost all programs. 

Tables 4 and 5 report the same comparison for Prop and P a t t e r n .  Contrary to 
Prop,  P a t t e r n  keeps track of the f.unctors and works at the level of subterms. As a 
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T A B L E  2. A c c u r a c y  of  t h e  a n a l y s i s  on  i n p u t s :  C o m p a r i s o n  of  Mode a n d  P rop .  

Program Args G-Mod G-Pro B-Mod B-Pro Procs B-Mod-P B-Pro-P 

Append 3 1 1 0 0 1 0 0 

CS 94 19 56 0 37 34 0 20 

D i s j  60 11 38 0 27 30 0 17 

G a b r i e l  59 18 18 0 0 20 0 0 

Kalah 123 35 79 0 44 44 0 36 

Peep 63 22 39 0 17 19 0 9 

PG 31 8 20 0 12 10 0 6 

P l a n  32 5 20 0 15 13 0 9 

P r e s s l  143 9 15 0 6 52 0 4 

P r e s s 2  143 9 15 0 6 52 0 4 

QSort 9 1 4 0 3 3 0 2 

Queens 11 2 7 0 5 5 0 4 

Read 122 34 34 0 0 43 0 0 

T A B L E  3. A c c u r a c y  of  t h e  a n a l y s i s  on  o u t p u t s :  C o m p a r i s o n  of  Mode a n d  P rop .  

Program Args G-Mod G-Pro B-Mod B-Pro Procs B-Mod-P B-Pro-P 

Append 3 2 3 0 1 1 0 1 

CS 94 28 94 0 66 34 0 30 

D i s j  60 24 60 0 36 30 0 20 

G a b r i e l  59 22 22 0 0 20 0 0 

Kalah 123 55 121 0 66 44 0 36 

Peep 63 30 55 0 25 19 0 13 

PG 31 8 31 0 23 10 0 10 

P l a n  32 7 31 0 24 13 0 10 

P r e s s l  143 26 39 0 13 52 0 8 

P r e s s 2  143 26 39 0 13 52 0 8 

QSort 9 1 7 0 6 3 0 3 

Queens 11 2 11 0 9 5 0 5 

Read 122 68 70 0 2 43 0 2 

consequence, the size of its substitutions is not bounded a priori.  The experimental 
results are particularly interesting, and indicate that Prop and P a t t e r n  are very 
close in accuracy to compute groundness information in the benchmark programs. 
p a t t e r n  is slightly better on the input modes since it infers more groundness on 
P re s s2 ,  all other results being the same. The loss of precision in Prop comes from 
the fact that  it loses track of the functors. Boolean functions on the clause variables 
are not enough in this case. The results on the output modes indicate that  Prop is 
more accurate in some programs, Peep 6 and Qsor t ,  while it loses precision in other 
programs, Read, P r e s s l ,  and Press2.  All other programs give the same results. 
The gain of precision in Qsort comes from the inherent loss of precision in P a t t e r n  
when different clauses defining a predicate return results with different patterns. 

6The  gain in accuracy  is Peep is somewha t  unreal  since it is due to  an imprecis ion in one of 
the  ope ra t ions  of P a t t e r n  which can be corrected easi ly [27]. 
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T A B L E  4. Accuracy  of the  analys is  on  inputs :  C o m p a r i s o n  of Prop a n d  Pattern. 

Program Args G-Pro G-Pat B-Pro B-Pat Procs B-Pro-P B-Pat-P 

Append 3 i 1 0 0 i 0 0 

CS 94 56 56 0 0 34 0 0 

Disj 60 38 38 0 0 30 0 0 

Gabriel 59 18 18 0 0 20 0 0 

Kalah 123 79 79 0 0 44 0 0 

Peep 63 39 39 0 0 19 0 0 
PG 31 20 20 0 0 10 0 0 
Plan 32 20 20 0 0 13 0 0 
P r e s s i  143 15 15 0 0 52 0 0 
Press2 143 15 99 0 84 52 0 50 
QSort 9 4 4 0 0 3 0 0 
Queens 11 7 7 0 0 5 0 0 
Read 122 34 34 0 0 43 0 0 

T A B L E  5. Accuracy  of the  Analys is  on  O u t p u t s :  C o m p a r i s o n  of  Prop  a n d  P a t t e r n .  

Program Args G-Pro G-Pat B-Pro B-Pat Procs B-Pro-P B-Pat-P 

Append 3 3 3 0 0 1 0 0 
CS 94 94 94 0 0 34 0 0 
Disj  60 60 60 0 0 30 0 0 
g a b r i e l  59 22 22 0 0 20 0 0 
ga lah  123 121 121 0 0 44 0 0 
Peep 63 55 53 2 0 19 2 0 
PG 31 31 31 0 0 10 0 0 
Plan 32 31 31 0 0 13 0 0 
P r e s s l  143 39 40 0 1 52 0 0 
Press2 143 39 140 0 101 52 0 47 
QSort 9 7 6 1 0 3 1 0 
Queens 11 l l  11 0 0 5 0 0 
Read 122 70 74 0 4 43 0 4 

P r o p  a v o i d s  t h e  d r a w b a c k  in t h i s  e x a m p l e  b y  k e e p i n g  d e p e n d e n c i e s  b e t w e e n  t h e  

v a r i a b l e s ,  as  e x p l a i n e d  p r e v i o u s l y  in  t h e  t r a c e .  T h e  loss o f  p r e c i s i o n  in  P r o p  is 

a l w a y s  d u e  t o  t h e  f ac t  t h a t  i t  o n l y  w o r k s  o n  t h e  c l a u s e  v a r i a b l e s  a n d  n o t  o n  s u b t e r m s  

of  t h e  t e r m s  b o u n d  t o  t h e m .  

T a b l e s  6 a n d  7 r e p o r t  t h e  s a m e  r e s u l t s  in  p e r c e n t a g e .  T h e y  i n d i c a t e  t h a t  b o t h  

d o m a i n s  in fe r  a h i g h  p e r c e n t a g e  o f  g r o u n d  a r g u m e n t s  o n  t h e  b e n c h m a r k s .  O n  m a n y  

p r o g r a m s ,  t h e y  in fe r  m o r e  t h a n  80% of g r o u n d  a r g u m e n t s .  

No  t a b l e  is g i v e n  for t h e  c o m p a r i s o n  o f  P r o p  a n d  M o d e - R e e x  s i n c e  a l l  r e s u l t s  

a r e  e x a c t l y  t h e  s a m e .  T h e r e  is n o  w a y  t o  d i s t i n g u i s h  t h e  p r e c i s i o n  of  t h e  a lgo-  

r i t h m s  o n  o u r  b e n c h m a r k .  T h i s  r e s u l t  is e x p l a i n e d  b y  t h e  f ac t  t h a t  r e e x e c u t i o n ,  in  

fac t ,  l o ca l l y  " s i m u l a t e s "  P r o p  s i n c e  b l o d e - R e e x  i m p l i c i t l y  k e e p s  all  e q u a t i o n s  a n d  

p r o p a g a t e s  g r o u n d n e s s  u s i n g  t h e m .  N e v e r t h e l e s s ,  P r o p  is b e t t e r  t h a n  M o d e - R e e x ,  

in  t h e o r y ,  b e c a u s e  n o n l o c a l  l i t e r a l s  a re  n o t  r e e x e c u t e d  i n s i d e  a c l ause .  H e r e  is a n  

a r t i f i c i a l  e x a m p l e  of  a p r o g r a m  w h e r e  P r o p  wil l  d e r i v e  g r o u n d n e s s  o f  t h e  o u t p u t ,  



EVALUATION OF THE DOMAIN PROP 261 

T A B L E  6. Accuracy  of the  analysis  on  inputs :  C o m p a r i s o n  of Prop  a n d  P a t t e r n  in 
percen tage .  

Program Args G-Pro G-Pat B-Pro B-Pat 

Append 3 33.33 33.33 0.00 0.00 
CS 94 59.57 59.57 0.00 0.00 
Disj  60 63.33 63.33 0.00 0.00 
Gabriel 59 30.50 30.50 0.00 0.00 
Kalah 123 64.22 64.22 0.00 0.00 
Peep 63 61.90 61.90 0.00 0.00 
PG 31 64.51 64.51 0,00 0.00 
Plan 32 62.50 62.50 0.00 0.00 
Press  1 143 10.48 10.48 0.00 0.00 
Press2  143 10.48 69.23 0.00 58.74 
QSort 9 44.44 44.44 0.00 0.00 
Queens 11 63.63 63.63 0.00 0.00 
Read 122 27.86 27.86 0.00 0.00 

but  Mode-Reex will not: 

q ( X l )  : -  Xl  = f ( X 2 , X 3 ) ,  p ( X 1 , X 2 , X 3 ) .  

p ( X I , X 2 , X 3 )  : -  X l = a .  

p ( X 1 , X 2 , X 3 )  : - X 2 = b  , X3=c.  

M o d e - r e e x  d o e s  n o t  d e t e c t  g r o u n d n e s s  s ince  i t  n e v e r  c o n s i d e r s  t h e  r e e x e c u t i o n  of  

Xl  = f (X2 , X3) d u r i n g  t h e  s o l v i n g  of  p / 3  a n d  t h e  g r o u n d n e s s  i n f o r m a t i o n  is l o s t  

b y  t h e  UNION o p e r a t i o n .  N o t e  t h a t  g l o b a l  r e e x e c u t i o n  (or  p r o p a g a t i o n )  [4, 31] is 

a b l e  t o  d e t e c t  g r o u n d n e s s  in  t h i s  case  as  well.  

I n  c o n c l u s i o n ,  t h e  e x p e r i m e n t a l  r e s u l t s  i n d i c a t e  t h a t  P r o p  h a s  a r e m a r k a b l e  a c c u -  

racy,  a l t h o u g h  i t  d o e s  n o t  keep  t r a c k  of  f u n c t o r s .  I t  o u t p e r f o r m s  Mode a n d  c o m p a r e s  

wel l  w i t h  P a t t e r n .  I n  m a n y  cases ,  t h e  r e s u l t s  a re  o p t i m a l  or  c lose  t o  o p t i m a l  (i .e. ,  

T A B L E  7. Accuracy  of t he  analysis  on ou tpu t s :  C o m p a r i s o n  of Prop and  P a t t e r n .  

Program Args G-Pro G-Pat B-Pro B-Pat 

Append 3 100.00 100.00 0.00 0.00 
CS 94 100.00 100.00 0.00 0.00 
Dis3 60 I00.00 I00.00 0.00 0.00 

Gabriel 59 37.28 37.28 0.00 0.00 
Kalah 123 98.37 98,37 0.00 0.00 
Peep 63 87.30 84.12 3.17 0.00 
PG 31 100.00 100.00 0.00 0.00 
Plan 32 96.87 96.87 0.00 0.00 
P r e s s /  143 27.27 27.97 0.00 0.60 
Press2  143 27.27 97.90 0.00 70.62 
QSort 9 0.77 0.66 0.ii 0.00 

Queens 11 100.00 100.00 0.00 0.00 
Read 122 57.37 60.65 0.00 3.27 
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TABLE 8. Efficiency results for the domain Prop. 

P r o g r a m  Time G-Iter C-Iter G-Iter/Time C-Iter/Time 

CS 1.34 50 94 37.31 70.15 

Dis3 1.01 45 88 44.55 87.13 

G a b r i e l  0.47 47 114 100.00 242.55 

Kalah 0.93 65 129 69.89 138.71 

Peep 1.16 36 249 31.03 214.66 

PG 0.16 16 31 100.00 193.75 

P l a n  0.12 19 41 158.33 341.67 

P r e s s t  5.96 287 866 48.15 145.30 

P r e s s 2  6.03 287 878 47.60 145.61 

QSort 0.05 7 15 140.00 300.00 

Queens 0.04 9 17 225.00 425.00 

Read 1.66 76 311 45.78 187.35 

Mean  87.31 207.66 

all groundness information is inferred correctly). Loss of precision appears only on 
the p r e s s  programs and on read. It also achieves exactly the same precision as the 
reexecution algorithm on mode on the benchmark programs. This positive result 
is due to the ability of preserving sophisticated relationships between variables in 
Prop. 

6.2.2. EFFICIENCY. We now turn to the efficiency of Prop. Efficiency results 
about Prop were important to obtain since, on the one hand, equivalence of Boolean 
functions (i.e., determining if two Boolean expressions define the same function) is a 
co-NP-complete problem and, on the other hand, the complexity of Prop is bounded 
because our algorithm only works on the variables in the clauses. 

Experimental results on Prop are given in Table 8. We report the computation 
times in seconds on a Sun Sparc SS10/30 workstation, the number of procedure 
iterations and the number of clause iterations, and a number of ratios. The results 
indicate that  the computation times are very reasonable. No program takes more 
than 6.5 s, and most programs are under 1.5 s. The most time-consuming programs 
are P r e s s l  and Press2 ,  which are also the programs where Prop loses accuracy. 
Prop performs about 88 goal iterations per second on the average. In contrast, 
P a t t e r n  and Mode perform about 112 and 191 iterations per second, indicating 
that  the abstract operations in Prop are more expensive. This last result should 
be interpreted with care, however, since, on the one hand, the first iteration of a 
goal is generally (but not always) more time consuming than the subsequent ones 
due to the prefix optimization and, on the other hand, Pat  (Prop) converges more 
quickly than the other domains. 

We compare the efficiency results of Prop with P a t t e r n ,  Mode, and Node-Reex. 
Table 9 compares the efficiency of Prop,  P a t t e r n ,  Node, and Mode-Reex. It indi- 
cates that  Prop takes 77% of the time of P a t t e r n  on the average, is 1.56 as slow as 
Mode, and requires 122% of the time of Mode-Reex. Prop is faster than P a t t e r n  
on all programs but Press2  where Prop loses precision compared to P a t t e r n .  On 
many programs, Prop is twice as fast as P a t t e r n  and three times as fast on Read. 
The last result is explained by the fact that  no argument is ground in the sec- 
ond part of the program, and hence P a t t e r n  makes many more iterations due to 
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T A B L E  9. Computation times: Comparison of the domains. 

P r o g r a m  Prop:Pr  P a t t e r n : P a  Mode:Mo Mode-Reex:Mr P r / P a  Pr/Mo Pr/Mr 

CS 1.34 2.00 1.29 1,67 0.67 1.04 0.80 

D i s j  1.01 1.12 0.74 1.01 0.90 1.36 1.00 

G a b r i e l  0.47 0.69 0.31 0.40 0.68 1.52 1.18 

Kalah  0.93 1.86 0.72 0.81 0.50 1.29 1.15 

Peep 1.16 2.14 1.11 1.28 0.54 1.05 0.91 

PG 0.16 0.27 0.16 0.13 0.59 1.00 1.23 

P l a n  0.12 0.20 0.11 0.08 0.60 1.09 1.50 

P r e e s l  5.96 8.80 1.51 3.12 0.68 3.95 1.91 

P r e s s 2  6.03 2.77 1.55 3.09 2.18 3.89 1.95 

0Sort 0.05 0.06 0.08 0.05 0.83 0.63 1.00 

Queens 0.04 0.05 0.06 0.04 0.80 0.67 1.00 

Read 1.66 5.29 1.39 1.58 0.31 1.19 1.05 

Mean 0.77 1.56 1.22 

other information that  it needs to compute (i.e., patterns and sharing). P a t t e r n  
is also about twice as fast as Prop on Press2.  Prop is almost always slower than 
Mode-Reex. In general, the differences between the two programs are small; Prop 
is, however, twice as slow as Mode-Reex on the Press  programs. The case of CS 
can easily be explained by the fact that  it contains very many unifications and that  
Prop abstracts the information in a better way. 

Table 10 compares the goal iterations of Prop,  P a t t e r n ,  Mode, and Mode-Reex. 
Informally speaking, the goal iterations are the number of iterations of the semantic 
function T used with a procedure as second argument. It indicates that, on the 
average, Prop makes about 60% of the iterations of P a t t e r n ,  63% of the iterations 
of Mode, and 76% of the iterations of Mode-Reex. Prop makes fewer iterations 
than P a t t e r n  on all programs but Press2.  This result is important, and seems to 
indicate that  Prop converges more quickly than the other domains. Its operations, 
however, seem to be more expensive, as mentioned previously, although this should 
be interpreted with care, as stated before. 

Table 11 gives some results on the sizes of the abstract substitutions. We collect 
information each time an abstract operation is executed. The information collected 
concerns the variables that may occur in the clause substitution and the size of 
the graph at a call point. In the table, 0p denotes the number of call points, V the 
summation of the number of variables over all operations, MV the maximum number 
of variables over all operations, and AV the average number of variables. S is the 
summation of all sizes of the graph (i.e., the number of nodes in the graph) over 
all operations, MS the maximal size of a graph, and AS the mean of all sizes. We 
also give two ratios, MS/MV and AS/AV, the last one giving the number of nodes 
used per variable. The results indicate that the maximum size of a graph on all 
programs is 123, while the theoretical maximum is 242. On the average, a graph 
uses 1.13 nodes per variable with a maximum of 1.30 over all programs. The ratio 
MS/MY is also never greater than 8. The results clearly indicate the compactness of 
the representation and explain the behavior of Prop. 

Finally, Table 12 gives the repartition of the time between the various abstract 
operations. It indicates that 80% of the time is spent in the abstract operations for 
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T A B L E  10.  Goa l  i te ra t ion:  C o m p a r i s o n  of  the  d o m a i n s .  

Program Prop:Pr.  P a t t e r n : P a  Mode:Mo Mode-Reex:Mr Pr /Pa  Pr/Mo Pr/Mr 

CS 50 85 81 64 0.58 0.61 0.78 

Disj  45 68 62 53 0.66 0.72 0.84 

Gabr ie l  47 81 80 84 0.58 0.58 0.55 

Kalah 65 117 91 80 0.55 0.71 0.81 

Peep 36 94 75 59 0.38 0.48 0.61 

PG 16 38 34 20 0.42 0.47 0.80 

Plan 19 36 46 29 0.52 0.41 0.65 

P r e s s i  287 552 238 350 0.51 1.20 0.82 

Press2  287 210 238 350 1.36 1.20 0.82 

QSort 7 13 26 12 0.53 0.30 0.58 

Queens 9 15 23 11 0.60 0.39 0.81 

Read 76 209 119 115 0.36 0.63 0.66 

Mean 0.59 0.63 0.76 

this domain. The most consuming operations are RESTRG (about 19%), AI_FUNC 
(about 16%), while SMALLERE0, RESTRC, and EXTG are all above 10%. 

In summary, the efficiency of Prop is somewhat intermediary between Mode and 
P a t t e r n ,  but less efficient than Mode-Reex. The result is rather positive since 
Prop has roughly the same precision as P a t t e r n  for groundness analysis. On our 
benchmarks, Mode-Reex and Prop are really close in accuracy and efficiency (with 
an advantage in efficiency for Mode-Reex). It  is useful at this point to mention tha t  
the on-line analysis presented in Section 6.4 will show tha t  the efficiency is not too 
dependent on the fact that  the results are ground at the end of the computat ion in 
many programs. 

T A B L E  11. S ta t i s t i c s  on  the  s u b s t i t u t i o n s :  S t a n d a r d  ana lys i s .  

Program Op V MV AV S MS AS MS/MY AS/AV 

CS 2122 16530 42 7.79 17,437 107 8.22 2.55 1.06 

Dis j  2095 14047 25 6.71 13,443 38 6.42 1.52 0.96 

Gabr ie l  1621 7950 19 4.90 9754 31 6.02 1.63 1.23 

Kalah 3446 18,314 19 5.31 18,845 35 5.47 1.84 1.03 

Peep 4549 23,984 15 5.27 24,603 29 5.41 1.93 1.03 

PG 727 3569 16 4.91 3845 30 5.29 1.88 1.08 

P lan  972 3024 8 3.11 3921 13 4.03 1.63 1.30 

P r e s s l  20,259 89,201 17 4.40 114,554 123 5.61 7.24 1.28 

P res s2  20,528 90,601 17 4.41 115,778 123 5.64 7.24 1.28 

QSort 360 1474 9 4.09 1588 18 4.41 2.00 1.08 

Queens 352 1122 10 3.19 1372 14 3.90 1.4 1.22 

Read 6325 34300 22 5.42 34,383 79 5.44 3.59 1.00 

Mean 5279.67 25,343 18.25 4.96 29,960 53.33 5.49 2.87 1.13 
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T A B L E  12. Statistics on the time of the operations for Prop. 

Program RG AIF RC EG AIT AIV EC LEQ LUB ToT 

CS 27.70 19.85 15.11 9.78 1.33 0.30 0.30 10.81 5.19 90.37 

D i s j  37.30 16.01 10.72 8.37 0.59 0.29 0.15 10.57 4.55 88.55 

G a b r i e l  14.09 14.85 10.91 12.18 1.27 1.40 0.13 12.44 9.26 76.52 

Kalah  17.96 19.40 10.78 10.34 2.73 0.72 0.43 13.94 6.18 82.47 

Peep 14.45 27.14 12.68 6.78 0.29 2.51 0.29 11.50 5.16 80.83 

PG 19.50 16.74 9.40 9.06 1.26 1.26 0.11 16.40 6.77 80.50 

P l a n  17.50 13.84 5.09 14.51 0.66 0.22 0.22 18.38 8.19 78.63 

P r e s s l  18.26 18.57 14.46 13.39 0.91 0.61 0.30 16.89 6.39 89.80 

P r e s s 2  18.35 18.05 14.14 13.53 0.90 0.60 0.30 15.94 6.17 87.97 

QSort 16.79 6.76 7.67 9.49 0.65 0.65 0.00 11.44 3.77 57.22 

Queens 10.50 9.8 5.9 5.5 1.6 0.00 0.3 13.20 19.70 66.50 

Read 21.47 14.56 12.35 12.06 1.62 0.88 0.29 12.21 5.59 81.03 

Mean 19.49 16.30 10.77 10.42 1.15 0.79 0.24 13.64 7.24 80.03 

6.3. The Domain Pat (Prop)  

6.3.1. ACCURACY. Tables 13 and 14 compare Prop and Pa t (Prop)  for the in- 
put and output  arguments. The results indicate that Pat  (Prop) improves on Prop 
on the p r e s s  programs as far as inputs are concerned and on the p r e s s  programs 
and read  for the outputs. The improvement comes from the better handling of 
difference-lists provided by Pat (Prop). Note also that, the increase in precision 
is substantial for the p r e s s  program. Tables 15 and 16 compare P a t t e r n  with 
Pat  (Prop).  The results indicate that Pat (Prop) improves on P a t t e r n  on the pro- 
gram p r e s s l ,  once again due to its better handling of difference-lists. We also com- 
pared Pat  (Prop) with P a t - r e e x ,  i.e., the reexecution algorithm on P a t t e r n .  Once 
again, the results were exactly the same as was the case for Prop and Mode-reex. 
Note also that,  in theory, Pat  (Prop) is more accurate than P a t - r e e x ,  as the fol- 
lowing example demonstrates. 

t e s t  

p(X) 
p(X) 
q(X) 

q(X) 

(X) :- p(X),q(X). 

:- X = g(Y,Z),Y = f(Z). 

:- X = g(Y,Z),Z = f(Y). 

:- X = g(Y,Z),Y = a. 

:- X = g(Y,Z),Z = a. 

Informally speaking, the key to understanding this example is to notice that  
p/1 returns the term g(A, B) with the function A ~ B, while q/1 gives the term 
9(A, B) with the function A V B. The result of Pat (Prop) is thus the term f(A, B) 
with A A B. P a t - r e e x  would not be able to infer groundness in this case since 
groundness is lost in operation UNION. 

In summary, Pa t (Prop)  and P a t - r e e x  are more accurate than all the other 
domains and produce improvements on programs with sophisticated handling of 
difference-lists. On our benchmarks, Pat  (Prop) produces optimal results on all 
programs but read. We were not able to detect if the results were optimal for 
r ead  since only the source of the program was at our disposal (no specification 
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T A B L E  13.  A c c u r a c y  of  t he  ana lys i s  on  inpu t s :  C o m p a r i s o n  of  P r o p  a n d  P a t  ( P r o p ) .  

P rogram Args G-Pro G-PPr B-Pro B-PPr Procs B-Pro-P B-PPr-P 

CS 94 56 56 0 0 34 0 0 

Dis j  60 38 38 0 0 30 0 0 

Gabr ie l  59 18 18 0 0 20 0 0 

Kalah 123 79 79 0 0 44 0 0 

Peep 63 39 39 0 0 19 0 0 

PG 31 20 20 0 0 i0 0 0 

Plan 32 20 20 0 0 13 0 0 

P r e s s l  143 15 99 0 84 52 0 50 

P res s2  143 15 99 0 84 52 0 50 

QSort 9 4 4 0 0 3 0 0 

Queens 11 7 7 0 0 5 0 0 

Read 122 34 34 0 0 43 0 0 

T A B L E  14. A c c u r a c y  of  t he  ana lys i s  on  o u t p u t s :  C o m p a r i s o n  of  P r o p  a n d  P a t  ( P r o p ) .  

P rogram Args G-Pro G-PPr B-Pro B-PPr Procs B-Pro-P B-PPr-P 

CS 94 94 94 0 0 34 0 0 

Disj 60 60 60 0 0 30 0 0 

Gabriel 59 22 22 0 0 20 0 0 

Kalah 123 121 121 0 0 44 0 0 

Peep 63 55 55 0 0 19 0 0 

PG 31 31 31 0 0 I0 0 0 

Plan 32 31 31 0 0 13 0 0 

P r e s s l  143 39 140 0 101 52 0 47 

Press2  143 39 140 0 101 52 0 47 

QSort 9 7 7 0 0 3 0 0 

Queens 11 11 11 0 0 5 0 0 

Read 122 70 74 0 4 43 0 4 

T A B L E  15.  A c c u r a c y  of  t he  ana lys i s  on  inpu t s :  C o m p a r i s o n  of  P a t t e r n  a n d  P a t  ( P r o p ) .  

P rogram Args G-Pat G-PPr B-Pat B-PPr Procs B-Pat-P B-PPr-P 

CS 94 56 56 0 0 34 0 0 

Disj 60 38 38 0 0 30 0 0 

Gabriel 59 18 18 0 0 20 0 0 

Kalah 123 79 79 0 0 44 0 0 

Peep 63 39 39 0 0 19 0 0 

PG 31 20 20 0 0 i0 0 0 

Plan 32 20 20 0 0 13 0 0 

Pressl 143 15 99 0 84 52 0 50 

Press2 143 99 99 0 0 52 0 0 

QSort 9 4 4 0 0 3 0 0 

Queens 11 7 7 0 0 5 0 0 

Read 122 34 34 0 0 43 0 0 
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T A B L E  16. Accuracy of the analysis on outputs: Comparison of P a t t e r n  and Pat (Prop). 

Program Args G-Pat G-PPr B-Pat B-PPr Procs B-Pat-P B-PPr-P 

CS 94 94 94 0 0 34 0 0 

Disj 60 60 60 0 0 30 0 0 

Gabriel 59 22 22 0 0 20 0 0 

Kalah 123 121 121 0 0 44 0 0 

Peep 63 53 55 0 2 19 0 2 
PG 31 31 31 0 0 i0 0 0 

Plan 32 31 31 0 0 13 0 0 

Pressl 143 40 140 0 i00 52 0 47 

Press2 143 140 140 0 0 52 0 0 

QSort 9 6 7 0 1 3 0 1 
Queens 11 11 11 0 0 5 0 0 
Read 122 74 74 0 0 43 0 0 

T A B L E  17. Efficiency results for the domain Pat (Prop). 

Program Time G-Iter C-Iter G-Iter/Time C:Iter/Time 

CS 20.95 84 166 4.01 7.92 
Disj 9.59 68 134 7.09 13.97 
Gabriel 11.98 62 141 5.18 11.77 
Kalah 22.52 117 236 5.20 10.48 
Peep 15.98 76 410 4.76 25.66 
PG 2.42 36 76 14.88 31.40 
Plan 2.50 31 67 12.40 26.80 
Presel 34.26 190 631 5.55 18.42 
Press2 34.85 192 655 5.51 18.79 
QSort 0.31 10 22 32.26 70.97 
Queens 0.32 15 29 46.88 90.63 
Read 182.07 178 804 0.98 4.42 

Mean 12.06 27.60 

or exp lana t ion  were available). We also believe t h a t  Pa t  (Prop)  produces  a lmost  

op t ima l  results  on a lmost  all Prolog programs,  but  this  remains  to be va l ida ted  

exper imenta l ly .  

6 .3 .2 .  EFFICIENCY. Table  17 depicts  the  efficiency results  of P a t ( P r o p ) .  All 

bu t  one p rog ram are below 35 s, and most  of t h e m  are below 20 s. T h e  mos t  

demand ing  p rog ram is clearly r e a d ,  which takes about  3 min. The  average number  

of goal i te ra t ions  per seconds is 12, which is significantly less t han  the  87 i te ra t ions  

per seconds of Prop.  It  follows tha t  the cost of the  opera t ions  in Pa t  (Prop)  is much 

higher  t h a n  in Prop.  
Table  18 compares  the  efficiency of Pa t  ( P r o p ) ,  P a t - r e e x ,  P a t t e r n ,  and Prop.  

T h e  results  indicate  tha t ,  on the  average, Pa t  (Prop)  is, respectively,  6, 11, and 22 
t imes  slower t h a n  P a t - r e e x ,  P a t t e r n ,  and Prop.  Most  programs are also close to  

the  average. This  indicates  t h a t  the  addi t ional  accuracy provided by Pa t  (Prop)  
comes at  a price since the  increase in compu ta t ion  t ime  is significant. P a t  (Prop)  is 
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TABLE 18. Computation times: Comparison of the domains with Pat (Prop). 

Program A:Pat(Prop) B:Pat-reex C:Pattern D:Prop A/B A/C A/D 

CS 20.95 5.83 2.00 1.34 3.59 10.48 15.63 

Disj 9.59 2.56 1.12 1.01 3.75 8.56 9.50 

Gabriel 11.98 1.52 0.69 0.47 7.88 17.36 25.49 

galah 22.52 3.12 1.86 0.93 7.22 12.11 24.22 

Peep 15.98 3.57 2.14 1.16 4.48 7.47 13.78 
PG 2.42 0.34 0.27 0.16 7.12 8.96 15.13 
Plan 2.50 0.24 0.20 0.12 10.42 12.50 20.83 
Pressl 34.26 4.28 8.80 5.96 8.00 3.89 5.75 
Press2 34.85 4.58 2.77 6.03 7.61 12.58 5.78 
QSort 0.31 0.14 0.06 0.05 2.21 5.17 6.20 
Queens 0.32 0.06 0.05 0.04 5.33 6.40 8.00 
Read 182.07 28.29 5.29 1.66 6.44 34.42 109.68 

Mean 6.17 11.66 21.66 

thus appropriate for a very highly optimizing option or for programs relying heavily 
on difference-lists, since those programs would not be handled well by Prop. 

Table 19 compares the goal iterations for the same programs. Interestingly, they 
indicate that Pat  (Prop) makes only 1.6 more iterations than Prop and makes fewer 
iterations than P a t - r e e x  and Pa t t e rn .  This seems to indicate that the cost of the 
operations in Pat (Prop) is significantly higher. Table 20 gives some information 
on the number of operations on Boolean formulas performed by Pat (Prop) and 
the size of the graphs manipulated. The results indicate that  the average size of 
a graph in Pat (Prop) is about 17 nodes on 12 variables, giving an average of 1.35 
nodes per variable. The maximal size is 419 on program cs and the maximum 
number of variables is 81. Table 21 compares these results with those of Prop. 
They indicate that Pat (Prop) performs about 4.5 more operations than Prop on 
graphs whose sizes are about three times larger. This clearly explains where the 
time goes in Pat (Prop). We also measured the time spent in the various operations 
related to the Boolean expressions. The most interesting result is probably the fact 
that  Pat  (Prop) spends about 80% of its time on only these operations. The most 
costly operations are PROJ and REN, taking, respectively, about 27 and 22% of the 
computing time. 

6.4. On-Line Analysis 

We now consider the use of Prop and Pat (Prop) for an on-line analysis [15]. On- 
line analyses are also called condensing analyses [20] and goal-independent analyses 
[18] in the logic programming community. The key idea consists of performing the 
analysis without any assumption on the queries. The result for a given query can 
then be obtained by specializing the on-line results with the input query. On-line 
analyses are thus particularly appropriate for compositional or modular analyses. 
The key benefit of on-line analyses is that  a predicate can be analyzed once (in a 
general fashion), and then specialized for various specific uses. It is important to 
stress, however, that  on-line analyses put additional requirements on the domain 
to enable an effective specialization. 
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T A B L E  19.  Goa l  i te ra t ion:  C o m p a r i s o n  of  t he  d o m a i n s  w i t h  P a t ( P r o p ) .  

P rog ram A:Pat (Prop)  B :Pa t - r eex  C : P a t t e r n  D:Prop A/B A/C A/D 

CS 84 152 85 50 0.55 0.99 1.68 

Disj 68 115 68 45 0.59 1.00 1.51 

Gabriel 62 133 81 47 0.47 0.77 1.32 

Kalah 117 153 117 65 0.76 1.00 1.80 

Peep 76 122 94 36 0,62 0.81 2.11 

PG 36 48 38 16 0,75 0.95 2.25 

Plan 31 44 36 19 0,70 0.86 1.63 

P r e s s l  190 322 552 287 0.59 0.34 0.66 

P re s s2  192 331 210 287 0,58 0.91 0.67 

QSort 10 24 13 7 0,42 0.77 1.43 

Queens 15 17 16 9 0.88 1.00 1.67 

Read 178 595 209 76 0.30 0.85 2.34 

Mean 0.60 0.85 1.59 

Prop and Pat(Prop) are potentially interesting domains for on-line analysis 
since it is possible to obtain a specialized output pattern by taking the conjunc- 
tion of the input pattern and the general output pattern. For instance, in Prop, 
append(xl ,x2,x3) returns x3 ~ x2 A Xl, and qso r t (x l ,x2 )  returns Xl ¢* x2, 
which can both be specialized optimally. In the case of Prop and Pat (Prop),  the 
specialization simply amounts to making the conjunction of the input queries and 
the result. For instance, if append is called with the last argument being ground, 
the specialization is simply 

(x  3 ~ x 2 A Xl)  A x 3 

which is equivalent to 
x 1 A X 2 A X 3 . 

T A B L E  20 .  S ta t i s t i c s  on  the  s u b s t i t u t i o n s  for Pa t  ( P r o p ) .  

Program Op MV AV MS AS MS/MV AS/AV 

CS 13,143 81 20.92 419 24.01 5.17 1.15 

Disj 10,256 41 16.87 67 17.57 1.63 1.04 

Gab r i e l  7046 43 12.05 285 26.47 6.63 2.20 

Kalah 20,264 48 16.45 84 17.48 1.75 1.06 

Peep 25,460 23 10,14 53 10.84 2.30 1.07 

PG 4454 30 11.01 34 12.34 1.13 1.12 

Plan 4059 27 9,18 39 11.31 1.44 1.23 

Pressl 38,146 44 11.95 128 14.05 2.91 1.18 

Pre s s2  39,235 44 11.86 128 13.95 2.91 1.18 

QSort 791 15 7.63 30 9.16 2.00 1.20 

Queens 1048 13 7.41 20 8.28 1.54 1.12 

Read 60,080 44 13.24 1601 34.51 36.39 2.61 

Mean 18695.17 37.75 12.39 240.67 16.66 5.48 1.35 
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T A B L E  21. Statistics on the substitutions: Ratio Pat  (Prop) /Prop.  

Program Op Y MV AV S MS AS MS/MV AS/AV 

CS 6.19 16.64 1.93 2.69 18.09 3.92 2.92 2.03 1.09 
Disj 4.90 12.32 1.64 2.51 13.40 1.76 2.74 1.08 1.09 
Gabriel 4.35 10.68 2.26 2.46 19.12 9.19 4.40 4.06 1.79 
Kalah 5.98 18.53 2.53 3.10 19.13 2.40 3.20 0.95 1.03 
Peep 5.60 10.77 1.53 1.92 11.22 1.83 2.00 1.19 1.04 
PG 6.13 13.74 1.88 2.24 14.29 1.13 2.33 0.60 1.04 
Plan 4.18 12.32 3.38 2.95 11.71 3.00 2.81 0.89 0.95 
Pressl  1.88 5.11 2.59 2.72 4.68 1.04 2.50 0.40 0.92 
Press2 1.91 5.14 2.59 2.69 4.73 1.04 2.47 0.40 0.92 
QSort 2.20 4.10 1.67 1.87 4.56 1.67 2.08 1.00 1.11 
Queens 2.98 6.92 1.30 2.32 6.32 1.43 2.12 1.10 0.91 
Read 9.50 23.20 2.00 2.44 60.30 20.27 6.34 10.13 2.60 

Mean 4.65 11.62 2.11 2.49 15.63 4.06 2.99 1.99 1.21 

In the  rest  of this  section,  we give expe r imen ta l  resul ts  on the  use of P r o p  and 
P a t  (P rop )  for on-l ine analysis .  Al l  p rog rams  have been run  wi thou t  any  a s sumpt ion  
on the  inpu t  p a t t e r n s  ( a n d / o r  the  da t abase )  and have been specia l ized a f t e rwards  
wi th  t he  i npu t  pa t t e rns .  The  execut ion  is exac t ly  s imi lar  to  the  s t a n d a r d  analys is ,  
except  t h a t  the  ini t ia l  inpu t  p a t t e r n  is true, as are the  resul ts  of  t he  d a t a b a s e  
predica tes .  7 

THE DOMAIN Prop .  Table  22 depic ts  t he  efficiency resul ts  on the  use of  P rop  
for on-l ine analys is  and  compares  t hem to the  s t a n d a r d  analysis .  T h e  c o m p u t a t i o n  
t imes  for the  on-l ine analysis  are 1.81 slower t han  the  s t a n d a r d  analysis .  T h e  peak  
is reached on p rog ram d i s  j ,  which is abou t  four t imes  slower. On  the  average,  the  
on- l ine  analysis  takes  a b o u t  1.3 more  i t e ra t ions  t h a n  the  t r a d i t i o n a l  analysis .  Tab le  
23 dep ic t s  the  s ta t i s t ics  on the  var ious  graphs  dur ing  the  c ompu ta t i on .  T h e  average  
size of a g raph  for the  on-l ine analysis  is 7.85 ( ins tead of 5.49 for t he  s t a n d a r d  
analys is) ,  while the  ra t io  AS/AV is 1.30 ( ins tead of 1.13). The  efficiency of P r o p  
for on-l ine analysis  r emains  reasonable .  I t  should  be clear  t h a t  the  on- l ine  analys is  
deals  w i th  p rog rams  wi th  few ground  arguments ;  the  only  g round  a rgumen t s  come 
from bui l t - ins  or genera tors  of values.  Table  24 compares  the  number  of g round  
a rgumen t s  in the  s t a n d a r d  and on-l ine analyses  and the  execut ion  t imes  of t he  
analyses .  G r o - o n  and  G r o - s t  give the  number  of o u t p u t  g round  a rgumen t s  in t he  
on- l ine  and s t a n d a r d  analysis ,  respectively.  The  resul ts  ind ica te  t h a t  t he  n u m b e r  
of  g round  o u t p u t s  decreases  by  a factor  of a b o u t  4.5 on the  average in t he  on- l ine  
analysis ,  while t he  efficiency only  slows down by a factor  of 1.81 on the  average.  Th is  
seems to ind ica te  t h a t  the  previous  expe r imen ta l  resul ts  were no t  t oo  d e p e n d e n t  
on the  fact  t h a t  the  resul ts  are ground  a t  the  end of  the  c o m p u t a t i o n  in m a n y  
programs .  An  in teres t ing  theore t i ca l  issue is to  unde r s t a nd  why  th is  is indeed 
the  case, and  whe the r  s t a t i c  analysis  of Pro log  has some special  p rope r t i e s  w.r . t .  
Boolean  formulas.  

7It is possible to make an on-line analysis for all predicates at the same time, but this requires 
modifying the fixpoint algorithm slightly. This is outside the scope of this paper. 
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T A B L E  2 2 .  O n - l i n e  a n a l y s i s :  Ef f i c iency  r e s u l t s  o f  P rop .  

P r o g r a m  Time-on:TO Iter-on:lO Time-st:TS Iter-st:IS TO/TS IO/IS 

CS 3.05 61 1.34 50 2.28 1.22 

D i s j  4.06 64 1.01 45 4.02 1.42 

Kalah 0.99 72 0.93 65 1.06 1.11 

Peep 2.94 61 1.16 36 2.53 1.69 

PG 0.16 17 0.16 16 1.00 1.06 

P l a n  0.16 27 0.12 19 1.33 1.42 

P r e s s l  6.00 287 5.96 287 1.01 1.00 

P r e s s 2  6.22 287 6.03 287 1.03 1.00 

QSort 0.12 12 0.05 7 2.40 1.71 

Queens 0.09 15 0.04 9 2.25 1.67 

Read 1.66 77 1.66 76 1.00 1.01 

Mean  2.31 89.09 1.68 81.55 1.81 1.30 

T A B L E  2 3 .  O n - l i n e  a n a l y s i s :  S t a t i s t i c s  o n  t h e  s u b s t i t u t i o n s  for P rop .  

Program Op Y MY AV S MS AS MS/MV AS/AV 

CS 2390 24,419 42 10.22 33,125 271 13.86 6,45 1.36 

D i s j  1889 17,751 25 9.40 39,717 223 21.03 8.92 2.24 

Kalah 2770 16,933 19 6.11 18,332 53 6.62 2,79 1.08 

Peep 5870 38,584 15 6.57 47,199 62 8.04 4.13 1.22 

PG 699 3533 16 5.05 3828 30 5.48 1.88 1.09 

P l a n  1074 3788 8 3.53 4951 ~3 4.61 2.88 1.31 

P r e s s l  20,276 89,360 17 4.41 113,671 123 5.61 7.24 1.27 

P r e s s 2  20,545 90,760 17 4.42 115,895 j23 5.64 7.24 1.28 

QSort 667 2861 9 4.29 3127 25 4.69 2.78 1.09 

Queens 463 1847 10 3.99 2456 25 5.30 2.50 1.33 

Read 6326 34,300 22 5.42 34,385 79 5.43 3.59 1.00 
i 

Mean 5724.45 29,466 18.18 5.76 37,880.55 94.27 7.85 4.58 1.30 

As far as the accuracy is concerned, the quality of the r~esults was rather surpris- 
ing. We performed an on-line analysis on the whole program,t and specialized the 
result of the top-level goal with the input query. On all programs, the specialization 
of the on-line analysis with the input pat tern gave the same result for the top-level 
goal as the traditional analysis with Prop. s This indicates that  Prop is appropriate  
for on-line analysis. 

I t  is interesting to compare this result with the domain P a t t e r n  for this kind 
of analysis. The on-line analysis of P a t t e r n ,  specialized with the input queries, 
only gives the same result as the traditional analysis on four programs (ka lah ,  
peep ,  pg, q s o r t ) ,  and two of these (i.e., peep,  q s o r t )  do not produce optimal 
results, as shown before. On all other programs, there was a loss of accuracy in the 
top-level goal, i.e., the analysis would give any and novar  instead of ground. 

The main reason is that  the domain does not keep sophisticated dependencies 

8Recall,  however,  t h a t  Prop loses precision on p rog rams  p r e s s l  and  p r e s s 2 .  
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T A B L E  24. On-line versus s tandard  analysis: Groundness and efficiency results of Prop. 

Program Gro-on Gro-st Gro-st/Gro-on Time-on Time-st Time-on/Time-st 

CS 32 94 2.93 3.05 1.34 2.28 
Disj 8 60 7.50 4.06 1.O1 4.02 
galah 38 121 3.18 0.99 0.93 1.06 
Peep 8 63 7.87 2.94 1.16 2.53 
PG 13 31 2.38 0.16 0.16 1.O0 
Plan 4 31 7.75 0.16 0.12 1.33 
Press i  29 39 1.34 6.00 5.96 1.01 
Press2 29 39 1.34 6.22 6.03 1.03 
OSort 3 7 2.33 0.12 0.05 2.40 
Queens 1 11 11.00 0.09 0.04 2.25 
Read 32 70 2.18 1.66 1.66 1.00 

Mean 4.50 2.31 1.68 1.81 

T A B L E  25. On-line analysis: Efficiency results of Pat  (Prop).  

Program Time-on:TO Iter-on:lO Time-st:TS Iter-st:IS TO/TS IO/IS 

CS 39.12 99 20.95 84 1.87 1.18 
Disj 53.14 74 9.59 68 5.54 1.09 
Kalah 34.80 130 22.52 117 1.55 1.11 
Peep 36.93 80 15.98 76 2.31 1.05 
PG 2.66 37 2.42 36 1.10 1.03 
Plan 3.27 40 2.50 31 1.31 1.29 
Press /  33.85 190 34.26 190 0.99 1.00 
Press2 34.35 192 34.85 192 0.99 1.00 
QSort 0.43 11.00 0.31 10.00 1.39 1.10 
0ueens 0.65 16.00 0.32 15.00 2.03 1.07 
Read 182.07 179.00 182.07 178.00 1.00 1.01 

Mean 38.30 95.27 29.62 90.64 1.82 1.08 

b e t w e e n  t h e  var iab les .  N o t e  also t h a t  t h e  s a m e  resu l t  ho lds  for t h e  o t h e r  d o m a i n s  

as wel l  s ince t h e y  essen t i a l ly  c o n t a i n  t h e  s a m e  i n f o m m t i o n  in t h e  d o m a i n .  

T H E  DOMAIN P a t ( P r o p ) .  T a b l e  25 dep ic t s  t h e  eff ic iency re su l t s  on t h e  use 

of  P a t  ( P r o p )  for on- l ine  ana lys i s  and  c o m p a r e s  t h e m  to  t h e  s t a n d a r d  analys is .  

In t e res t ing ly ,  t h e  c o m p u t a t i o n  t i m e s  for t h e  on- l ine  ana lys i s  a re  1.82 s lower  t h a n  

t h e  s t a n d a r d  analys is ,  con f i rming  t h e  resu l t s  on P rop .  T h e  p e a k  is r e ached  o n c e  

aga in  on  p r o g r a m  d i s j ,  wh ich  is a b o u t  5.5 t i m e s  slower.  O n  t h e  ave rage ,  t h e  on-  

l ine ana lys i s  t akes  a b o u t  1.08 m o r e  i t e r a t i o n s  t h a n  t h e  t r a d i t i o n a l  analys is .  T a b l e  

26 dep ic t s  t h e  s t a t i s t i c s  on t h e  va r ious  g r a p h s  d u r i n g  t h e  c o m p u t a t i o n .  T h e  a v e r a g e  
size of  a g r a p h  for t h e  on- l ine  ana lys i s  is 22.43 ( ins t ead  of  16.66 for t h e  s t a n d a r d  

ana lys i s ) ,  whi le  t h e  r a t io  AS/AV is 1.74 ( ins tead  of  1.35). T h e  ef f ic iency of  P a t  ( P r o p )  

for on- l ine  ana lys i s  r e m a i n s  r easonab le ,  i n d i c a t i n g  once  aga in  t h a t  t h e  p r e v i o u s  

e x p e r i m e n t a l  r esu l t s  were  no t  t o o  d e p e n d e n t  on t h e  fact  t h a t  t h e  r e su l t s  a re  g r o u n d  

a t  t h e  end  of  t h e  c o m p u t a t i o n  in m a n y  p rog rams .  
As  far as t h e  a c c u r a c y  is conce rned ,  t h e  q u a l i t y  of  t h e  resu l t s  was  also r a t h e r  
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T A B L E  26 .  On-line analysis: Statistics on the substitutions for Pat (Prop). 

Program Op MV AV MS AS MS/MV AS/AV 

CS 17,914 87 21.15 784 30.98 9.01 1.46 

Dis3 11,202 41 16.88 1485 59.62 36.22 3.53 

ga l ah  20,658 48 16.45 255 25.09 5.31 1.53 

Peep 25,828 23 10.07 214 18.20 9.30 1.81 

PG 4478 30 10.98 51 12.61 1.70 1.15 

P lan  4589 27 9.07 83 12.47 3.07 1.37 

P r e s s l  38,159 44 11.96 128 14.05 2.91 1.17 

P re s s2  39,248 44 11.87 128 13.96 2.91 1.18 

QSort 814 15 7.54 47 12.24 3.13 1.62 

Queens 1021 13 7.57 73 12.98 5.62 1.71 

Read 60,096 44 13.24 1601 34.50 36.39 2.61 

Mean 20,364.27 37.82 12.43 440.82 22.43 10.51 1.74 

surprising. On all programs, the specialization of the on-line analysis with the input 
pat tern gives the same result for the top-level goal as the traditional analysis with 
Pat  (Prop).  This indicates that  Pat  (Prop) is really a domain of choice for on-line 
analysis. 

6. 5. The Impact of Caching 

In this section, we evaluate the impact of the caching optimization [17] on the 
performance of Prop and Pat  (Prop).  This is an interesting issue to investigate 
since the hashing function and the copy of abstract substitution are much more 
expensive in Pat  (Prop) and Prop than in Mode and P a t t e r n .  Table 27 reports the 
results of the prefix algorithm augmented with caching on Prop and Pat  (Prop) .  
Recall that  all results given previously in the paper were obtained using the prefix 
algorithm without caching. 

The results indicate that  caching brings an additional improvement over the pre- 
fix optimization for Pat  (P rop) ,  although this improvement is small. This indicates 
that  cach ing  is even better in this domain than it was for P a t t e r n ,  where caching 
brought about 30% improvement over the original version, but none over the prefix 
version. On the order hand, for Prop,  caching does not bring any improvement. 

7. C O N C L U S I O N  

Prop is an elegant and conceptually simple abstract domain proposed by Marriott  
and Sondergaard to compute groundness information in Prolog programs. In par- 
ticular, abstract substitutions in Prop are represented by Boolean functions using 
the logical connectives ¢=>, V, A only. Although Prop was well understood from 
a theoretical standpoint, many open practical issues remained to be answered. In 
particular, the efficiency of Prop has been subject to much debate since, on the one 
hand, it requires the solving of a co-NP-Complete problem (i.e., equivalence of two 
Boolean functions), but  on the other hand, many frameworks only deal with the 
variables appearing in the clauses whose number should be, in general, reasonably 
small. 
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T A B L E  2T. Efficiency: The impact of caching. 

Program C-Prop : CP Prop :P CP/P C-Pat (Prop) : CPP Pat (Prop) : PP CPP/PP 

CS 1.61 1.34 1.20 21.29 20.95 1.02 

D i s j  1.23 1.01 1.22 10.23 9.59 1.07 

G a b r i e l  0.62 0.47 1.32 12.61 11.98 1.05 

g a l a h  1.10 0.93 1.18 18.99 22.52 0.84 

Peep 1.39 1.16 1.20 16.66 15.98 1.04 

PG 0.16 0.16 1.00 2.43 2.42 1.00 

P l a n  0.13 0.12 1.08 2.25 2.50 0.90 

P r e s s l  6.51 5.96 1.09 30.94 34.26 0.90 

P r e s s 2  6.56 6.03 1.09 31.51 34.95 0.90 

OSort 0.01 0.05 0.20 0.31 0.31 1.00 

Queens 0.01 0.04 0.25 0.31 0.32 0.97 

Read 2.10 1.66 1.27 179.64 182.07 0.99 

Mean 1.79 1.58 1.01 27.26 28.15 0.97 

The purpose of this paper was to s tudy the performance of domain Prop. I ts  
first contribution is to describe an implementation of the domain Prop and to use 
it to instantiate a generic abstract  interpretation algorithm [17, 23, 27]. A key lea- 
ture of the implementation is the use of ordered binary decision graphs to provide 
a compact  representation of many Boolean functions. Its second contribution is 
to describe the design and implementation of a new domain, Pat  (P rop ) ,  combin- 
ing the domain Prop with structural information about  the subterms. This new 
domain may significantly improve the efficiency of the domain Prop on programs 
manipulating difference-lists. 

Both implementations (resp. 6000 and 12,000 lines of C) have been evaluated sys- 
tematically, and their efficiency and accuracy for groundness inference have been 
compared with several other abstract  domains: the domain Mode (mode, same- 
value, sharing), the domain P a t t e r n  (mode, same-value, sharing, pattern),  and 
the domains Mode and P a t t e r n  used inside a reexecution algorithm [25] to im- 
prove accuracy. The interest of Pat  (Prop) and Prop for on-line analysis are also 
investigated. 

Various domains have been compared in this paper. As far as accuracy is con- 
cerned, the following two orderings summarize the results on our benchmarks: 

{Mode}< {Mode-reex,Prop} < {Pat(Prop),Pat-reex} 

{ Mode} < {Pattern} < {Pat(Prop),Pat-reex}. 

Mode is clearly the least accurate algorithm, while Pat  (Prop) and P a t - r e e x  are 
the most accurate. An interesting result of these experiments is the fact tha t  
the reexecution algorithm on Mode and P a t t e r n  have the same accuracy as the 
standard algorithm on Prop and Pat  (Prop) .  An interesting open issue is to find 
practical programs for which Prop and Pat  (Prop) would outperform M o d e - r e e x  
and P a t - r e e x .  We also believe that ,  on almost all practical programs, Pa t  (Prop)  
should produce close to optimal groundness information. 

As far as efficiency is concerned, the results can be summarized by the following 
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orderings: 

Mode < Mode-reex < Prop < Pattern < Pat-reex < Pat(Prop). 

This result indicates tha t  there is a price to pay for the additional accuracy  pro- 
vided by Prop  and Pa t  (Prop) .  This price is very reasonable for Prop  and less so 
for Pa t  (P rop) .  Note also that ,  when only groundness information is desired, the 
domains  Mode and P a t t e r n  could be simplified, further improving their efficiencies. 

W h e n  efficiency and accuracy are considered, it is not  clear which approach 
is best  since the choice mainly depends upon the tradeoff between efficiency and 
accuracy  to be achieved. However, it seems tempt ing  to consider tha t  Mode-reex  
and P a t - r e e x  are to be preferred to Prop and Pa t  (Prop) .  This is t rue on our 
benchmarks ,  but  this result needs to be interpreted with care for several reasons. 

1. The  Prop-based domains are part icularly well suited for on-line analysis, and 
should outper form the other  domains significantly for this application. Our  
experimental  results indicate t ha t  Pa t  (prop)  is as precise in on-line mode as 
in s tandard  analysis, while Prop  is close to being as accurate.  Moreover, the 
analysis t ime remains reasonable, and can be factored out  between several 
applications. 

2. The  Prop-based domains are theoretically more precise. In practice, Prop  
should certainly bring addit ional accuracy over Node - r eex  for some programs,  
and hence may be preferred. The  case of P a t - r e e x  and Pa t  (Prop)  is more 
difficult since the  programs seem much more contrived. An interesting issue 
is to characterize the class of programs for which the additional theoretical  
expressiveness of the Prop-based domains would produce bet ter  practical  re- 
sults. 

3. The  Prop-based  domains are easier to apply when nonlogical features are 
taken into account.  

I t  is wor th  stressing tha t  the implementat ion techniques of Prop and Pa t  (Prop)  
can be reused in other  contexts such as, for instance, nonlinearity and sharing. 
Hence, our results also give some ideas of the applicability of Boolean formulas for 
representing abs t rac t  substi tut ions.  

Finally, note tha t ,  since the submission of this work, two new implementat ions  
of P rop  [7, 10] have emerged, confirming the results of this paper  and extending 
them. Both  of these works use a bo t tom-up  framework. Reference [10] uses a gen- 
eralization of O B D D  representat ion of Boolean formulas to symbolic finite domains 
inside the  constraint  language T o u p i e ,  while [7] compiles the abstract  semantics 
to  a data log program and uses some deductive database  technology. 

Olivier Degimbe and Laurent Michel helped in implementing the caching version of the algorithms. 
The comments of the reviewers were very helpful in improving the presentation of the paper. We 
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to show the impact of ground predicates on performance. This research was partly supported by 
the National Science Foundation under Grant CCR-9108032 and the National Young Investigator 
Award, the Office of Naval Research under Grant N00014-91-J-4052 ARPA Order 8225, and the 
Belgian National Incentive-Program for fundamental Research in Artificial Intelligence. 
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