
Discrete Applied Mathematics 158 (2010) 1745–1751

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A cops and robber game in multidimensional gridsI

Sayan Bhattacharya a, Goutam Paul b,∗, Swagato Sanyal c,1
a Department of Computer Science, Duke University, Durham, NC 27708, USA
b Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India
c Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India

a r t i c l e i n f o

Article history:
Received 29 May 2008
Received in revised form 28 May 2010
Accepted 28 June 2010
Available online 13 August 2010

Keywords:
Cops and robber
Game
Graph
Grid
Winning strategy

a b s t r a c t

We theoretically analyze the ‘cops and robber’ game for the first time in amultidimensional
grid. It is shown that in an n-dimensional grid, at least n cops are necessary if one wants to
catch the robber for all possible initial configurations.We also present a set of cop strategies
for which n cops are provably sufficient to catch the robber. Further, we revisit the game in
a two-dimensional grid and provide an independent proof of the fact that the robber can
be caught even by a single cop under certain conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The game of ‘cops and robber’ is played between a number of cops and a single robber on a predefined graph structure.
Each of the cops and the robber starts from some initial node and moves from one node to another as the game proceeds.
The cops win if they can ‘capture’ the robber in a finite time; otherwise the robber wins. In the literature, there are different
kinds of movements and various notions of capture (see Section 1.1 for details).
Several attempts have been made to analyze different variants of the cops and robber game in the last two decades.

However, there still remain many open problems in this domain, leading to continual research on the topic to date.

1.1. Background

Formal investigation into the problem of cops and robber and its variants dates back to early eighties. The works
[12,1,13,11,2] consider discretemovements of the cops and the robber in alternate steps, the cops choosing their initial posi-
tions first. The robber is assumed to be captured if her position coincides with that of any cop. In [12], an algorithm for deter-
miningwhether a given graph is cop-win is presented (a graph is cop-win if a single cop is sufficient to get hold of the robber).
In [1], the notion of the cop-number of a graph (the minimum number of cops needed to ensure that the robber is caught
under all possible circumstances) is introduced and a detailed analysis is performed for planar graphs. Later, the works
[13,11,2] explored the cop-numbers for different graphs and discovered some interesting bounds.
The game of cops and robber can also be generalized to directed graphs. Here the robber moves with an infinite speed,

although she is not permitted to run through a cop. The cops move in helicopters from one node to another node directly,

I This is a revised and extended version of the poster ‘‘On Necessary and Sufficient Number of Cops in the Game of Cops and Robber in Multidimensional
Grids’’ that was presented at the 8th Asian Symposium on Computer Mathematics (ASCM), December 15–17, 2007, Singapore.
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even if the two nodes are not adjacent. Optionally the robber may be considered to be invisible to the cops, but not vice
versa. In [9,3], variations of this scheme have been investigated, the main objective being to determine how may cops are
necessary to capture the robber.
Another version of the game deals with a two-dimensional grid [15,5,10,6]. The robber selects her initial position after

the cops have chosen theirs and then they keep on moving continuously through the edges of the grid. The robber has
complete information about the positions and strategies of all the cops. However, the visibility power of each cop is confined
to the nodes and edges in her current column (row). In [5,10], the cops win if at some point of time some cop can ‘see’
the robber, whereas in all other works winning is equivalent to capturing. This form of the game has applications in the
motion planning of multiple robots [15]. If the robber moves at most as fast as the cops, then according to [15], two cops
are necessary and sufficient to ensure a win for the cops. However, only one cop can always catch the robber if she moves
fast enough. Subsequent works [5,10] improved the bound on the minimum speed required by a single cop to ensure the
robber’s capture. Recently, the work [6] has revisited the study of [15] and presented algorithms for capture using one, two
or three pursuers having a constant maximum speed limit. Another recent work [7] considers the minimum number of
guards necessary to guarantee the capture of a fugitive who can move with arbitrary speed about the edges of a grid.
The work [4] also considers a two-dimensional grid model, where the cops and the robber choose their initial positions

randomly and then move alternately in discrete steps. In addition, the paper discusses applications of this model in the
domain of multi-agent systems.

1.2. Our contribution

To our knowledge, this is the first work on the game of cops and robber in a general n-dimensional grid paradigm. Most
of the existing works [15,5,10,4] focus only on a two-dimensional grid which is a special case with n = 2. As an example
of a three-dimensional scenario, one could imagine that the cops are chasing a robber inside a multi-storied apartment
complex, and model that with a three-dimensional grid and apply our results with n = 3. This may find applications in
three-dimensional motion planning for robots.
The works [15,5,10] consider that the cops and the robber move simultaneously in a continuous manner. The focus is

mainly on the speed requirements and the notion of capture is defined in terms of visibility. On the other hand, we follow
the samemodel as that of [4]. In our work, it is assumed that the cops and the robber choose their initial positions randomly
and their movements take place in discrete steps. The robber is considered to be caught if her position coincides with that
of any cop.
In [4], four predator agents (i.e., cops) chase a target agent (i.e. robber) in a square grid. Three related convergencemetrics

are introduced and an algorithm is presented based on one of them. Applying our general result in two dimensions, only
two predator agents can successfully capture the target agent. Thus our workmay be considered to be amajor improvement
over [4].
A few works [8,16] have considered variants of the problem in three dimensions. A topological framework is considered

in [8] that covers the case of a cube. The setting in [16] is a three-dimensional grid that requires at least five pursuers to
ensure capture of the evader. Our analysis and results for the n-dimensional grid are different from these works.
In Section 2, we rigorously formulate the problem and introduce some terminologies that will be used throughout this

paper. Section 3 shows that capture of the robber can never be guaranteed with less than n cops under certain constraints
on the initial starting positions. We also propose a set of cop strategies and prove that n cops operating in accordance with
these strategies will always be able to nab the robber.
Section 4 presents a strategy for a single cop in two dimensions. This strategy ensures a win for the copwith a probability

of 0.5, provided that the initial positions of the cop and the robber are determined uniformly at random. The main result of
this section (Theorem 3) can be deduced from the work of Sugihara and Suzuki [14, Corollary 2]. However, we present an
independent proof in this paper.

2. Mathematical formulation

Let there be m cops C0, C1, . . . , Cm−1 chasing a robber R. The term agent represents either a cop or the robber. Each
agent occupies some node of a given undirected graph G. A node may contain more than one agent. However, no agent can
simultaneously occupymore than one node. Like [4], we also assume that the initial positions of the cops and the robber are
decided arbitrarily. Whenever an agent moves from one node to an adjacent node, the movement is called a jump.
This paper considers the situationwhen the game is being played on an n-dimensional grid. Any node in an n-dimensional

d0 × d1 × · · · × dn−1 grid can be expressed as an n-tuple (u0, u1, . . . , un−1), where each ui is an integer belonging to the
closed interval [0, di − 1]. Two distinct nodes are adjacent if and only if exactly one of their n coordinates differs by 1, all
other coordinates remaining the same. In other words, the nodes (u0, u1, . . . , un−1) and (v0, v1, . . . , vn−1) are adjacent if
and only if ∃i ∈ {0, 1, . . . , n− 1} such that
(a) |ui − vi| = 1 and
(b) ∀j ∈ {0, 1, . . . , n− 1} \ {i}, uj = vj.

We also assume that di > 1 for i = 0, . . . , n−1. Otherwise, an n-dimensional gridmay degenerate into a lower dimensional
grid and some of the results discussed in subsequent sections may no longer be valid.
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If an agent occupies some node (u0, u1, . . . , un−1), then uj would be referred to as the coordinate j of the current position
of that agent, 0 ≤ j ≤ n − 1. Let R(t)j denote the value of coordinate j of the robber after she completes t jumps and
C (t)i,j denote the value of coordinate j of cop Ci after her tth jump, 0 ≤ j ≤ n − 1, 0 ≤ i ≤ m − 1, t ≥ 0. The vector
R(t) = (R(t)0 , R

(t)
1 , . . . , R

(t)
n−1) and the vector C

(t)
i = (C

(t)
i,0 , C

(t)
i,1 , . . . , C

(t)
i,n−1) denote the nodes occupied by the robber R and the

cop Ci after their t jumps, respectively. Thus, R(0) and C
(0)
i denote their initial positions. Whenever the number of jumps is

not important, for the sake of simplicity we omit the superscript t and use the notation R, Rj, Ci and Ci,j instead of R(t), R
(t)
j ,

C (t)i and C
(t)
i,j respectively. It will be clear from the context whether the symbols R and Ci denote a particular agent or her

position. The game continues in the following steps.
(1) t = 0.
(2) The robber jumps to R(t+1).
(3) Each cop jumps simultaneously. The new node occupied by cop Ci is C

(t+1)
i , i = 0, 1, . . . ,m− 1.

(4) t = t + 1. Go to Step 2.

Definition 1. A configuration is defined as the (m + 1)-tuple (C0, C1, . . . , Cm−1, R) and it specifies the position of each cop
and the robber at an instant.

Definition 2. A configuration is terminating if some cop occupies the same node as the robber.

Definition 3. A strategy for an agent is an algorithm that takes the current configuration as input and returns a node to
which the agent will take the next jump.

While taking a jump, each agent selects an adjacent node by applying her own strategy. Our basic objective is to develop
strategies for the cops so that eventually some terminating configuration is attained with minimum possible number of
cops.

Definition 4. A set of strategies for the cops is winning if and only if for all possible initial configurations and robber
strategies, some terminating configuration is achieved after a finite number of jumps.

3. Analysis of the game in an n-dimensional grid

In this section, we formally analyze the minimum number of cops required to ensure capture of the robber in an n-
dimensional grid. This number is independent of any cop or robber strategy. We also investigate a relevant question: that
of how to construct a set of cop strategies that uses exactly this minimum number of cops and therefore is optimal.

3.1. The necessary number of cops

We are going to prove that at least n cops are necessary, under certain constraints on the initial starting positions, if one
wants to guarantee the capture of the robber.

Definition 5. D0(t)i,j , |C
(t)
i,j − R

(t)
j |, and D

1(t)
i,j , |C

(t)
i,j − R

(t+1)
j |. Moreover, D0(t)i ,

∑n−1
j=0 D

0(t)
i,j , and D

1(t)
i ,

∑n−1
j=0 D

1(t)
i,j .

Note thatD0(t)i is theManhattan distance between cop Ci and the robber after each of them has taken t jumps. Similarly,D
1(t)
i

is the Manhattan distance between cop Ci and the robber after the robber has taken (t + 1) jumps and the cop has taken t
jumps. During each jump, an agent (the robber or some cop) changes exactly one of its coordinates by exactly one unit. We
thus have the following result.

Proposition 1. For each cop Ci and t ≥ 0,

(a) D1(t)i = D
0(t)
i ± 1.

(b) D0(t+1)i = D1(t)i ± 1.

Lemma 1. For each cop Ci and 0 ≤ t1 < t2 <∞; D
0(t1)
i and D0(t2)i are of the same parity.

Proof. From Proposition 1(a), D0(t1)i and D1(t1)i are of the opposite parity. From Proposition 1(b), D1(t1)i and D0(t1+1)i are of the
opposite parity. SoD0(t1)i andD0(t1+1)i are of the same parity. Similarly wemay prove thatD0(t1+1)i andD0(t1+2)i are of the same
parity. Continuing in this manner, we reach the desired result. �

Next, we are going to show (Theorem 1) that in an n-dimensional grid, n cops are necessary to guarantee capture of the
robber for certain initial configurations.

Theorem 1. In an n-dimensional grid, if the initial configuration is such that D0(0)i is of odd parity for each cop Ci, then there
exists a robber strategy for which the robber can never be caught with less than n cops.
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Proof. Lemma 1 implies that ∀t > 0 and ∀i ∈ {0, 1, . . . ,m − 1}, D0(t)i is of odd parity, m being the number of cops. The
configuration attained after the robber and all the cops have each taken t jumps can never be terminating; otherwise, there
would be some cop Cj occupying the same node as the robber, implying that D

0(t)
j = 0, an integer with even parity.

Since R(t) has at least n adjacent nodes and there are less than n cops, the robber may easily jump to a ‘free’ node v which
is not occupied by any cop. Thus, the configuration after the robber has taken t + 1 jumps and each cop has taken t jumps is
also non-terminating. Further, by the assumption of the oddness of the distances at time t , there is no cop within distance
1 of v, resulting in a non-terminating configuration at time t + 2. �

3.2. Winning sets of strategies and the sufficient number of cops

Analysis in the previous section poses a natural question for an n-dimensional grid: does there exist a winning set of
strategies for exactly n cops? Before addressing this issue, we present some general results that hold for all cop strategies.
These results will be required for subsequent analysis in this section.

Definition 6. J (t)R , the coordinate along which the robber makes a move in her tth jump. J (t)Ci , the coordinate along which
cop Ci makes a move in her tth jump.

We use the notation a • b to denote (a+ b)mod n, where a and b are integers.

Definition 7. Let j1 ∈ {0, 1, . . . , n − 1} be the smallest integer such that C
(t)
i,i•j1
6= R(t)i•j1 . Then, for all t ≥ 0, we say that the

(t + 1)th jump of the robber is favorable to cop Ci if and only if J
(t+1)
R 6∈ {i, i • 1, . . . , i • (j1 − 1)}.

Theword favorable, aswill be clear from the subsequent analysis, signifies that such a jump ‘‘favors’’ reaching the terminating
configuration.
Observe that if C (t)i,i 6= R

(t)
i , then j1 = 0 and {i, i•1, . . . , i• (j1−1)} reduces to the empty set. In such cases the next jump

of the robber will always be favorable to cop Ci.

Lemma 2. For p = 0, 1, . . . , n− 1, if the robber moves along coordinate p in her (t + 1)th jump, then that jump is favorable to
cop Cp•1.

Proof. We can safely assume that C (t)p•1 6= R
(t). (Otherwise the robber has already been captured.) Let j1 ∈ {0, 1, . . . , n− 1}

be the smallest integer such that C (t)p•1,(p•1)•j1 6= R
(t)
(p•1)•j1

. Now, J (t+1)R = p = (p • 1) • (n− 1) 6∈ {(p • 1), (p • 1) • 1, . . . , (p •
1) • (j1 − 1)}, since j1 − 1 ≤ n− 2. By Definition 7, the (t + 1)th jump of the robber is favorable to cop Cp•1. �

Algorithm 1 shows a set of cop strategies that will later be proved to be winning. The strategy for each cop Ci is denoted by
Si. The main idea is that each cop Ci tries to match as many coordinates as possible to those of the robber, starting from her
i-th coordinate.
A major advantage of this set of strategies is that a cop need not know the positions of other cops. Si determines C

(t+1)
i

based on C (t)i and R
(t+1) only. The purpose of the loop in Step 2 is to find the smallest integer j ∈ {0, 1, . . . , n − 1} such

that C (t)i,i = R
(t+1)
i , C (t)i,i•1 = R

(t+1)
i•1 , . . . , C (t)i,i•(j−1) = R

(t+1)
i•(j−1) and C

(t)
i,i•j 6= R

(t+1)
i•j . Either such an integer j exists, or C

(t)
i = R

(t+1).

In Step 3, j = n if and only if C (t)i = R
(t+1), indicating that a terminating configuration has already been achieved. Step 4

determines the node to which cop Ci is going to jump if the present configuration is not a terminating one.

Algorithm 1: Strategy Si of cop Ci for the (t + 1)-th jump
1. j← 0;
2. While (j 6= n)
2.1. If R(t+1)i•j 6= C

(t)
i,i•j then go to Step 3;

2.2. j← j+ 1;
3. If j = n then terminate the game;
4. Else
4.1. C (t+1)i ← C (t)i ;
4.2. If R(t+1)i•j < C (t)i,i•j then C

(t+1)
i,i•j ← C (t+1)i,i•j − 1;

4.3. Else C (t+1)i,i•j ← C (t+1)i,i•j + 1;

Lemma 3. In an n-dimensional d0× d1× · · · × dn−1 grid, if the robber has taken
∑n−1
j=0 dj jumps favorable to cop Ci and the cop

follows strategy Si, then the robber must have already been captured.



S. Bhattacharya et al. / Discrete Applied Mathematics 158 (2010) 1745–1751 1749

Table 1
Performance comparison of three different robber strategies.

Grid size Average No. of jumps by robber
Strategy 1 Strategy 2 Strategy 3

10× 10 8 11 13
15× 15 14 17 23
20× 20 19 24 32
25× 25 24 31 41
30× 30 30 37 50
35× 35 35 44 59
40× 40 40 51 69
45× 45 46 57 78
50× 50 51 64 87

Proof. We are going to show that if the robber has taken (di + di•1 + · · · + di•k) jumps favorable to cop Ci, then the
configuration Ri = Ci,i, Ri•1 = Ci,i•1, . . . , Ri•k = Ci,i•k has been reached. We use induction on k.

Base step (k = 0). Without any loss of generality, let R(0)i > C (0)i,i . Until Ri = Ci,i, every jump of the robber is favorable to cop
Ci. At each jump, the value of (Ri−Ci,i) changes by atmost 1. Initially (Ri−Ci,i) is positive. It cannot become negativewithout
touching 0 at some stage. And it cannot remain positive for more than di jumps of the robber. Otherwise, Ci,j is constantly
incremented by 1 more than di times, a contradiction.
Induction step. Let the statement be true for k = l. We start from the configuration Ri = Ci,i, Ri•1 = Ci,i•1, . . . , Ri•l = Ci,i•l.
Let Ri•(l+1) > Ci,i•(l+1). If a jump of the robber is not favorable to cop Ci, then the subsequent jump of the cop is used to
maintain the above mentioned equalities. Otherwise Ci,i•(l+1) is adjusted so as to get it closer to Ri,i•(l+1). Like for the Base
step, it may be shown that the configuration Ri = Ci,i, Ri•1 = Ci,i•1, . . . , Ri•l = Ci,i•l, Ri•(l+1) = Ci,i•(l+1) will be attained
within (di + di•1 + · · · + di•l + di•(l+1)) favorable robber-jumps.
Putting k = n− 1, the result follows. �

Theorem 2. In an n-dimensional grid, n cops are sufficient to ensure capture of the robber.

Proof. Suppose each cop Ci follows strategy Si. By Lemma 2, each jump of the robber is favorable to some cop. By the
pigeonhole principle, if the robber takes n

∑n−1
i=0 di jumps, then at least

∑n−1
i=0 di of them would be favorable to some

specific cop. By Lemma 3, this implies that a terminating configuration has been reached. Thus, the set of cop strategies
{Si | 0 ≤ i < n} guarantees capture of the robber. �

Since, for each of n
∑n−1
i=0 di jumps of the robber, the n cops take simultaneous jumps in O(1) time, the worst case run-time

of the set of cop strategies of Algorithm 1 is O(n
∑n−1
i=0 di).

The set of strategies outlined in Algorithm 1 is optimal in the sense that they guarantee the attainment of a terminating
configuration using the minimum number of cops.

3.3. Some experimental results for two dimensions

The robber cannot ensure evasion in two dimensions if two cops are chasing her. But she may want to delay her capture.
We empirically observe how many jumps are taken by the robber before she is caught. We consider three different robber
strategies (assuming that exactly two cops are present) described below. The cops move in accordance with the winning set
of strategies presented in this section.
Robber strategy 1: For each adjacent position (x, y), she evaluates the expression {(x−C0,0)2+ (y−C0,1)2}+{(x−C1,0)2+
(y− C1,1)2} and moves to the adjacent position for which the expression is maximized.
Robber strategy2: For each adjacent position (x, y), she evaluates the expression {|x−C0,0|+|y−C0,1|}+{|x−C1,0|+|y−C1,1|}
and moves to the adjacent position for which the expression is maximized.

Robber strategy 3: For each adjacent position (x, y), she evaluates the expression
√
(x− C0,0)2 + (y− C0,1)2 +√

(x− C1,0)2 + (y− C1,1)2 and moves to the adjacent position for which the expression is maximized.
Table 1 shows the average number of jumps for the three different robber strategies when the game is repeated 1000,000

times, each time with a random initial configuration.
As the table shows, Strategy 3 seems to be most effective for the robber.

4. Additional theoretical results for two dimensions

Consider a single cop chasing the robber in two dimensions. According to Theorem1, the robber can always evade capture
for certain bad initial configurations, that is, when D0(0)0 is odd. If the starting positions of the cop and the robber are chosen
uniformly at random, then the probability that a bad initial configuration will be encountered is 0.5. In all other situations,
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we show that the cop strategy S presented in Algorithm 2 guarantees capture of the robber. This scenario was analyzed
earlier in [14]. However, here we present an independent analysis and the proof.
Definition 5 takes the following form in a two-dimensional grid: D0(t)0 = D0(t)0,0 + D

0(t)
0,1 = |C

(t)
0,0 − R

(t)
0 | + |C

(t)
0,1 − R

(t)
1 |,

D1(t)0 = D
1(t)
0,0 + D

1(t)
0,1 = |C

(t)
0,0 − R

(t+1)
0 | + |C (t)0,1 − R

(t+1)
1 |.

Algorithm 2: Cop strategy S in 2D for the (t + 1)-th jump
1. C (t+1)0 ← C (t)0 ;
2. If | C (t)0,0 − R

(t+1)
0 |>| C (t)0,1 − R

(t+1)
1 | then

2.1 If C (t)0,0 > R
(t+1)
0 then C (t+1)0,0 ← C (t)0,0 − 1;

2.2 Else C (t+1)0,0 ← C (t)0,0 + 1;
3. Else if | C (t)0,0 − R

(t+1)
0 |< | C (t)0,1 − R

(t+1)
1 | then

3.1 If C (t)0,1 > R
(t+1)
1 then C (t+1)0,1 ← C (t)0,1 − 1;

3.2 Else C (t+1)0,1 ← C (t)0,1 + 1;
4. Else jump to any adjacent node;

Proposition 2. If |C0,0 − R0| becomes equal to |C0,1 − R1| at a stage when the cop and the robber have taken same number of
jumps, then from that point onwards the sign of C0,0 − R0 (as well as that of C0,1 − R1) does not change, provided the cop moves
in accordance with strategy S.

Proof. Let for some t , |C (t)0,0 − R
(t)
0 | = |C

(t)
0,1 − R

(t)
1 |. Without any loss of generality, let C

(t)
0,0 < R

(t)
0 and C

(t)
0,1 > R

(t)
1 . The robber

may now either increment (decrement) R0, or she may increment (decrement) R1. Irrespective of the choice she makes,
the cop following strategy S will move in such a fashion as to maintain the equality |C (t+1)0,0 − R

(t+1)
0 | = |C (t+1)0,1 − R

(t+1)
1 |.

Further, we shall have C (t+1)0,0 ≤ R(t+1)0 and C (t+1)0,1 ≥ R(t+1)1 . In other words, either C (t+1)0,0 = R(t+1)0 , C (t+1)0,1 = R(t+1)1 and the
game terminates; or we have C (t+1)0,0 < R(t+1)0 and C (t+1)0,1 > R(t+1)1 . The same way of reasoning may be repeated an arbitrary
number of times. �

Lemma 4. Consider an initial configuration such that D0(0)0 is of even parity. After the cop, who follows strategy S, moves along
coordinate i for the first time, the sign of the expression C0,i − Ri is never going to change, for i = 0, 1.

Proof. We validate the above statement only for coordinate 0. The case for coordinate 1 can be proved in a similar way. Let
the copmove along coordinate 0 for the first time in her (t1+1)th jump. SinceD

0(0)
0 is even, |C (t1)0,0 −R

(t1+1)
0 |−|C (t1)0,1 −R

(t1+1)
1 |

must be odd and hence nonzero. According to strategy S, |C (t1)0,0 −R
(t1+1)
0 |−|C (t1)0,1 −R

(t1+1)
1 | > 0.Without any loss of generality,

we assume that C (t1)0,0 < R
(t1+1)
0 and the cop increments C0,0 in her (t1 + 1)th jump.

If possible, let the sign of C0,0 − R0 become positive at some point of time after the cop has taken her (t1 + 1)th jump.
But prior to that, C0,0− R0 must touch the value 0, for C0,0− R0 changes by at most 1 during each step. When C0,0− R0 = 0,
|C0,0 − R0| − |C0,1 − R1| ≤ 0. The value of |C0,0 − R0| − |C0,1 − R1| also changes by at most 1 during each jump of the cop or
robber. Consequently the gamemust have gone through a stage where |C0,0−R0|−|C0,1−R1| = 0 and C0,0 ≤ R0. Moreover,
this particular stage must have been attained after the (t1 + 1)th jump by the cop and prior to the moment, when C0,0 − R0
becomes positive for the first time. Since D0(0)0 was even, the cop and the robber must have taken the same number (say t2)
of jumps before reaching the above mentioned stage. If C (t2)0,0 = R

(t2)
0 , then the game terminates immediately, ruling out the

option for C0,0 − R0 to become positive. Otherwise, if C
(t2)
0,0 < R(t2)0 , we apply Proposition 2 to show that C

(t2)
0,0 − R

(t2)
0 will

never become positive as the game proceeds. This leads to a contradiction. �

Theorem 3. If the initial configuration is such that D0(0)0 is even, then the strategy presented in Algorithm 2 ensures a win for the
cop.

Proof. Let D0(0)0 be even and assume that the cop fails to nab the robber. Lemma 4 implies that the cop will never backtrack
along any of its coordinates. Moreover, the cop has to take an infinite number of jumps. Since we only consider finite grids,
this leads to a contradiction. �

Note that the evenness of D0(0)0 does not necessarily ensure a win for the cop if the same strategy is extended in higher
dimensions. For example, consider a three-dimensional grid where the cop is distance 2 away from the robber. This means
that the cop and robber have the same coordinate in at least one dimension, say j. Whatever their positions, the robber can
alwaysmake amove that takes her away from the cop in dimension j, and their mutual distance now becomes 3. At the next
step, whatever the action taken by the cop, the distance will be at least 2. Thus, the robber can always evade capture.

Theorem 4. The cop strategy in Algorithm 2 succeeds in capturing the robber on average half the times the game is repeated,
given that the initial positions of the cop and the robber are decided uniformly at random.
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Proof. By definition, D0(0)0 = D0(0)0,0 + D
0(0)
0,1 = |C

(0)
0,0 − R

(0)
0 | + |C

(0)
0,1 − R

(0)
1 |. C

(0)
0,0 , R

(0)
0 , C

(0)
0,1 , and R

(0)
1 are each chosen uniformly

at random. Hence each of these is expected to be odd (or even) half of the times, and so will be each of |C (0)0,0 − R
(0)
0 | and

|C (0)0,1 − R
(0)
1 |, and their sum. Now the result follows immediately from Theorem 3. �

If D0(0)0 is even, then the cop always moves in a fixed direction along coordinate 0 (as well as along coordinate 1). The robber
will be caught within O(d0 + d1) jumps of the cop (recall that the game is being played in a d0 × d1 grid). A cop following
Algorithm 2 can decide, in constant time, where to jump. Hence the time complexity of strategy S is also O(d0 + d1). Here
we exclude all initial configurations with an odd value of D0(0)0 , as the robber can perpetually evade capture in such cases.
Now consider the situation, where initially the cop and the robber are situated at diagonally opposite corners of the grid

and the robber’s strategy dictates that she stays as close as possible to her initial position. Obviously the cop will have to
take at leastΩ(d0 + d1) jumps to catch the robber. We thus have the following result.

Theorem 5. Unless the initial configuration is such that the robber has the privilege of evading capture indefinitely, the cop
strategy in Algorithm 2 ensures a win for the cop in asymptotically optimal time.

5. Conclusion

We have analyzed the cops and robber game in an n-dimensional grid structure and show that n cops are both necessary
and sufficient for capturing the robber. We have presented a set of cop strategies which satisfy this sufficiency condition.
Moreover, in a two-dimensional grid, we have shown that even a single cop can catch the robber in certain cases. In our
future work, we plan to investigate whether such strategies exist in general in n dimensions, i.e., strategies that would
guarantee capture of the robber in some special cases with less than n cops.
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