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We find a class of asymptotically flat slowly rotating charged black hole solutions of Einstein–Maxwell-
dilaton theory with arbitrary dilaton coupling constant in higher dimensions. Our solution is the correct
one generalizing the four-dimensional case of Horne and Horowitz [J.H. Horne, G.T. Horowitz, Phys. Rev. D
46 (1992) 1340]. In the absence of a dilaton field, our solution reduces to the higher-dimensional slowly
rotating Kerr–Newman black hole solution. The angular momentum and the gyromagnetic ratio of these
rotating dilaton black holes are computed. It is shown that the dilaton field modifies the gyromagnetic
ratio of the black holes.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

General Relativity in higher dimensions has been the subject of
increasing attention in recent years. There are several motivations
for studying higher-dimensional Einstein’s theory, and in particular
its black hole solutions. First of all, string theory contains gravity
and requires more than four dimensions. In fact, the first suc-
cessful statistical counting of black hole entropy in string theory
was performed for a five-dimensional black hole [1]. This exam-
ple provides the best laboratory for the microscopic string the-
ory of black holes. Besides, the production of higher-dimensional
black holes in future colliders becomes a conceivable possibil-
ity in scenarios involving large extra dimensions and TeV-scale
gravity. Furthermore as mathematical objects, black hole space-
times are among the most important Lorentzian Ricci-flat mani-
folds in any dimension. While the non-rotating black hole solu-
tion to the higher-dimensional Einstein–Maxwell gravity was found
several decades ago [2], the counterpart of the Kerr–Newman so-
lution in higher dimensions, that is the charged generalization
of the Myers–Perry solution [3] in higher-dimensional Einstein–
Maxwell theory, still remains to be found analytically. Indeed,
the case of charged rotating black holes in higher dimensions
has been discussed in the framework of supergravity theories
and string theory [4–6]. Recently, charged rotating black hole so-
lutions in higher dimensions with a single rotation parameter
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in the limit of slow rotation has been constructed in [7] (see
also [8,9]).

On the other hand, a scalar field called the dilaton appears in
the low energy limit of string theory. The presence of the dila-
ton field has important consequences on the causal structure and
the thermodynamic properties of black holes. Thus much interest
has been focused on the study of the dilaton black holes in recent
years. While exact static dilaton black hole solutions of Einstein–
Maxwell-dilaton (EMd) gravity have been constructed by many au-
thors (see e.g. [10–13]), exact rotating dilaton black hole solutions
have been obtained only for some limited values of the dilaton
coupling constant [14–16]. For general dilaton coupling constant,
the properties of charged rotating dilaton black holes only with
infinitesimally small charge [17] or small angular momentum in
four [18–20] and five dimensions have been investigated [21]. Re-
cently, one of us has constructed a class of charged slowly rotating
dilaton black hole solutions in arbitrary dimensions [22]. However,
in contrast to the four-dimensional Horne and Horowitz solution,
these solutions [22] have unusual asymptotics. They are neither
asymptotically flat nor (A)dS. Besides, they are ill-defined for the
string case where α = 1. The purpose of the present Letter is
to generalize the four-dimensional Horne and Horowitz solution
with sensible asymptotics, to arbitrary dimensions. These asymp-
totically flat solutions describe an electrically charged, slowly ro-
tating dilaton black hole with an arbitrary value of the dilaton
coupling constant in various dimensions. It is worth noting that
in this Letter, we restrict ourself to the rotation in one plane, so
our black hole has only one angular momentum parameter. We
also investigate the effects of the dilaton field on the angular mo-
mentum and the gyromagnetic ratio of these rotating dilaton black
holes.
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2. Field equations and solutions

We consider the n-dimensional (n � 4) theory in which gravity
is coupled to dilaton and Maxwell field with an action

S = 1

16π

∫
M

dnx
√−g

(
R − 4

n − 2
∂μΦ∂μΦ − e− 4αΦ

n−2 Fμν F μν

)

− 1

8π

∫
∂M

dn−1x
√

−hΘ(h), (1)

where R is the scalar curvature, Φ is the dilaton field, Fμν =
∂μ Aν − ∂ν Aμ is the electromagnetic field tensor, and Aμ is the
electromagnetic potential. α is an arbitrary constant governing the
strength of the coupling between the dilaton and the Maxwell
field. The last term in Eq. (1) is the Gibbons–Hawking boundary
term which is chosen such that the variational principle is well-
defined. The manifold M has metric gμν and covariant derivative
∇μ . Θ is the trace of the extrinsic curvature Θab of any boundary
∂M of the manifold M, with induced metric hab . The equations of
motion can be obtained by varying the action (1) with respect to
the gravitational field gμν , the dilaton field Φ and the gauge field
Aμ which yields the following field equations

Rμν = 4

n − 2
∂μΦ∂νΦ

+ 2e
−4αΦ

n−2

(
Fμη F η

ν − 1

2(n − 2)
gμν Fλη F λη

)
, (2)

∇2Φ = −α

2
e

−4αΦ
n−2 Fλη F λη, (3)

∂μ

(√−ge
−4αΦ

n−2 F μν
) = 0. (4)

We would like to find n-dimensional rotating solutions of the
above field equations. For small rotation, we can solve Eqs. (2)–(4)
to first order in the angular momentum parameter a. Inspection
of the n-dimensional Kerr solutions shows that the only term in
the metric that changes to the first order of the angular momen-
tum parameter a is gtφ . Similarly, the dilaton field does not change
to O (a) and Aφ is the only component of the vector potential
that changes. Therefore, for infinitesimal angular momentum we
assume the metric being of the following form

ds2 = −U (r)dt2 + dr2

W (r)
− 2af (r) sin2 θ dt dφ

+ r2 R2(r)
(
dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

n−4

)
, (5)

where dΩ2
n−4 denotes the metric of a unit (n − 4)-sphere. The

functions U (r), W (r), R(r) and f (r) should be determined. In the
particular case a = 0, this metric reduces to the static and spheri-
cally symmetric cases. For small a, we can expect to have solutions
with U (r) and W (r) still functions of r alone. The t component of
the Maxwell equations can be integrated immediately to give

Ftr =
√

U (r)

W (r)

Q e
4αΦ
n−2

(rR)n−2
, (6)

where Q , an integration constant, is the electric charge of the
black hole. In general, in the presence of rotation, there is also
a vector potential in the form

Aφ = −aQ C(r) sin2 θ. (7)

Asymptotically flat static (a = 0) black hole solutions of the above
field equations was found in [23]. Here we are looking for the
asymptotically flat solutions in the case a �= 0. Our strategy for ob-
taining the solution is the perturbative method suggested in [18].
Inserting the metric (5), the Maxwell fields (6) and (7) into the
field equations (2)–(4), one can show that the static part of the
metric leads to the following solutions [23]

U (r) =
[

1 −
(

r+
r

)n−3][
1 −

(
r−
r

)n−3]1−γ (n−3)

, (8)

W (r) =
[

1 −
(

r+
r

)n−3][
1 −

(
r−
r

)n−3]1−γ

, (9)

R(r) =
[

1 −
(

r−
r

)n−3]γ /2

, (10)

Φ(r) = n − 2

4

√
γ (2 + 3γ − nγ ) ln

[
1 −

(
r−
r

)n−3]
, (11)

while the rotating part of the metric admits a solution

f (r) = (n − 3)

(
r+
r

)n−3[
1 −

(
r−
r

)n−3] n−3−α2

n−3+α2

+ (α2 − n + 1)(n − 3)2

α2 + n − 3
rn−3− r2

[
1 −

(
r−
r

)n−3]γ

×
∫ [

1 −
(

r−
r

)n−3]γ (2−n) dr

rn
, (12)

C(r) = 1

rn−3
. (13)

We can also perform the integration and express the solution in
terms of hypergeometric function

f (r) = (n − 3)

(
r+
r

)n−3[
1 −

(
r−
r

)n−3] n−3−α2

n−3+α2

+ (α2 − n + 1)(n − 3)2

(1 − n)(α2 + n − 3)

(
r−
r

)n−3[
1 −

(
r−
r

)n−3]γ

× 2 F1

([
(n − 2)γ ,

n − 1

n − 3

]
,

[
2n − 4

n − 3

]
,

(
r−
r

)n−3)
. (14)

Here r+ and r− are the event horizon and Cauchy horizon of the
black hole, respectively. The constant γ is

γ = 2α2

(n − 3)(n − 3 + α2)
. (15)

The charge Q is related to r+ and r− by

Q 2 = (n − 2)(n − 3)2

2(n − 3 + α2)
rn−3+ rn−3− , (16)

and the physical mass of the black hole is obtained as follows [24]

M = Ωn−2

16π

[
(n − 2)rn−3+ + n − 2 − p(n − 4)

p + 1
rn−3−

]
, (17)

where Ωn−2 denotes the area of the unit (n − 2)-sphere and the
constant p is

p = (2 − n)γ

(n − 2)γ − 2
. (18)

The metric corresponding to (8)–(14) is asymptotically flat. In the
special case n = 4, the static part of our solution reduces to

U (r) = W (r) =
(

1 − r+
r

)(
1 − r−

r

) 1−α2

1+α2

, (19)

R(r) =
(

1 − r−
r

) α2

1+α2

, (20)

Φ(r) = α

(1 + α2)
ln

(
1 − r−

r

)
, (21)
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while the rotating part reduces to

f (r) = r2(1 + α2)2(1 − r−
r )

2α2

1+α2

(1 − α2)(1 − 3α2)r2−

−
(

1 − r−
r

) 1−α2

1+α2
(

1 + (1 + α2)2r2

(1 − α2)(1 − 3α2)r2−

+ (1 + α2)r

(1 − α2)r−
− r+

r

)
, (22)

which is the four-dimensional charged slowly rotating dilaton black
hole solution of Horne and Horowitz [18]. One may also note that
in the absence of a non-trivial dilaton (α = 0 = γ ), our solutions
reduce to

U (r) = W (r)

=
[

1 −
(

r+
r

)n−3][
1 −

(
r−
r

)n−3]
, (23)

f (r) = (n − 3)

[
rn−3− + rn−3+

rn−3
−

(
r+r−

r2

)n−3]
, (24)

which describe n-dimensional Kerr–Newman black hole in the
limit of slow rotation [7].

Next, we calculate the angular momentum and the gyromag-
netic ratio of these rotating dilaton black holes which appear in
the limit of slow rotation parameter. The angular momentum of
the dilaton black hole can be calculated through the use of the
quasilocal formalism of the Brown and York [25]. According to the
quasilocal formalism, the quantities can be constructed from the
information that exists on the boundary of a gravitating system
alone. Such quasilocal quantities will represent information about
the spacetime contained within the system boundary, just like the
Gauss’s law. In our case the finite stress-energy tensor can be writ-
ten as

T ab = 1

8π

(
Θab − Θhab), (25)

which is obtained by variation of the action (1) with respect to the
boundary metric hab . To compute the angular momentum of the
spacetime, one should choose a spacelike surface B in ∂M with
metric σi j , and write the boundary metric in ADM form

γab dxa dxa = −N2 dt2 + σi j
(
dϕ i + V i dt

)(
dϕ j + V j dt

)
,

where the coordinates ϕ i are the angular variables parameteriz-
ing the hypersurface of constant r around the origin, and N and
V i are the lapse and shift functions respectively. When there is
a Killing vector field ξ on the boundary, then the quasilocal con-
served quantities associated with the stress tensors of Eq. (25) can
be written as

Q (ξ) =
∫
B

dn−2ϕ
√

σ Tabnaξb, (26)

where σ is the determinant of the metric σi j , ξ and na are, re-
spectively, the Killing vector field and the unit normal vector on
the boundary B. For boundaries with rotational (ς = ∂/∂ϕ) Killing
vector field, we can write the corresponding quasilocal angular
momentum as follows

J =
∫
B

dn−2ϕ
√

σ Tabnaςb, (27)

provided the surface B contains the orbits of ς . Finally, the angular
momentum of the black holes can be calculated by using Eq. (27).
We find

J = aΩn−2

8π

(
rn−3+ + (n − 3)(n − 1 − α2)rn−3−

(n − 3 + α2)(n − 1)

)
. (28)
Fig. 1. The behaviour of the gyromagnetic ratio g versus α in various dimensions for
r− = 1, r+ = 2. n = 4 (bold line), n = 5 (continuous line), and n = 6 (dashed line).

For a = 0, the angular momentum vanishes, and therefore a is the
rotational parameter of the dilaton black hole. In the case n = 4,
the angular momentum reduces to

J = a

2

(
r+ + 3 − α2

3(1 + α2)
r−

)
, (29)

which restores the angular momentum of the four-dimensional
Horne and Horowitz solution [18], while in the absence of dila-
ton field (α = 0), the angular momentum reduces to

J = aΩn−2

8π

(
rn−3+ + rn−3), (30)

which is the angular momentum of the n-dimensional Kerr–
Newman black hole. Next, we calculate the gyromagnetic ratio of
this rotating dilaton black holes. The magnetic dipole moment for
this asymptotically flat slowly rotating dilaton black hole can be
defined as

μ = Q a. (31)

The gyromagnetic ratio is defined as a constant of proportionality
in the equation for the magnetic dipole moment

μ = g
Q J

2M
. (32)

Substituting M and J from Eqs. (17) and (28), the gyromagnetic
ratio g can be obtained as

g = (n − 1)(n − 2)[(n − 3 + α2)rn−3+ + (n − 3 − α2)rn−3− ]
(n − 1)(n − 3 + α2)rn−3+ + (n − 3)(n − 1 − α2)rn−3−

. (33)

It was argued in [18] that the dilaton field modifies the gyromag-
netic ratio of the asymptotically flat four-dimensional black holes.
Our general result here in n-dimensions confirms their arguments.
We have shown the behaviour of the gyromagnetic ratio g of the
dilatonic black holes versus α in Fig. 1. From this figure we find
out that the gyromagnetic ratio decreases with increasing α in any
dimension. In the absence of a non-trivial dilaton (α = 0 = γ ), the
gyromagnetic ratio reduces to

g = n − 2, (34)

which is the gyromagnetic ratio of the n-dimensional Kerr–
Newman black hole (see e.g. [7]). When n = 4, Eq. (33) reduces
to

g = 2 − 4α2r−
(3 − α2)r− + 3(1 + α2)r+

, (35)

which is the gyromagnetic ratio of the four-dimensional Horne and
Horowitz dilaton black hole.
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3. Summary and conclusion

To sum up, we found a class of asymptotically flat slowly rotat-
ing charged dilaton black hole solutions in higher dimensions. Our
strategy for obtaining this solution was the perturbative method
suggested by Horne and Horowitz [18] and solving the equations
of motion up to the linear order of the angular momentum param-
eter. We stared from the asymptotically flat non-rotating charged
dilaton black hole solutions in n-dimensions [23]. Then, we consid-
ered the effect of adding a small amount of rotation parameter a to
the solution. We discarded any terms involving a2 or higher pow-
ers in a. Inspection of the Kerr–Newman solutions shows that the
only term in the metric which changes to O (a) is gtφ . Similarly,
the dilaton field does not change to O (a). The vector potential
is chosen to have a non-radial component Aφ = −aQ C(r) sin2 θ

to represent the magnetic field due to the rotation of the black
hole. As expected, our solution f (r) reduces to the Horne and
Horowitz solution for n = 4, while in the absence of dilaton field
(α = 0 = γ ), it reduces to the n-dimensional Kerr–Newman modi-
fication thereof for small rotation parameter [7]. We calculated the
angular momentum J and the gyromagnetic ratio g which appear
up to the linear order of the angular momentum parameter a. In-
terestingly enough, we found that the dilaton field modifies the
value of the gyromagnetic ratio g through the coupling parame-
ter α which measures the strength of the dilaton-electromagnetic
coupling. This is in agreement with the arguments in [18].

In this Letter we only considered the higher-dimensional gen-
eralization of the Horowitz and Horne solution with a single rota-
tion parameter. In general, in more than three spatial dimensions,
black holes can rotate in different orthogonal planes, so the gen-
eral solution has several angular momentum parameters. Indeed,
an n-dimensional black hole can have N = [(n − 1)/2] indepen-
dent rotation parameters, associated with N orthogonal planes of
rotation where [x] denotes the integer part of x. The generaliza-
tion of the present Letter to the case with more than one rotation
parameter and arbitrary dilaton coupling constant is now under
investigation and will be addressed elsewhere.
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