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Abstract

We introduce new boundary conditions for large eddy simulation. These boundary conditions are based on an approximate
deconvolution approach. They are computationally efficient and general, which makes them appropriate for the numerical
simulation of turbulent flows with time-dependent boundary conditions. Numerical resultsare presented to demonstrate the new
boundary conditions in a simplified linear setting.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Large Eddy Simulation (LES) is one of the most successful techniques for the numerical simulation of turbulent
flow [1,2]. The goal of LES is to decompose the flow into large and small scales by convolving the flow with a
spatial filter [1,2]. Equations for the large scales (defined by a filter width parameter) are suitable for approximation
using discretizations that are computationally tractable. A number of issues arise in LES, including model closure
issues similar to those appearing in Reynolds averaging the Navier–Stokes equations [1]. However, one of the main
challenges for LES is specification of efficient, general boundary conditions for the filtered variables [3].

There are essentially two ways to treat boundary conditions in LES [1]. The first is to decrease the filter width to
zero at the boundaries. This popular approach, known as Near Wall Resolution (NWR) [1], captures the important
flow features near the boundary, but has high computational cost since it requires a fine mesh near the wall. The
second is referred to as Near Wall Modeling (NWM) [1]. The NWM boundary conditions are developed with the aid
of physical modeling such as ensuring conditions on the shearstress or reproducing the logarithmic law of the wall in
the mean. Although more ad hoc (and problem specific), the discretization near boundaries can remain coarse. Hence,
the NWM approach is a better candidate for LES of realistic turbulent flows.

In this work, we propose new boundary conditions for LES based onapproximate deconvolution. An advantage
of these Approximate Deconvolution Boundary Conditions (ADBC) is that they are suited for turbulent flows with
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time-dependent boundary conditions. There are numerous applications where the boundary conditions need to be time
accurate. One such example is flow control, where for example, blowing and suction on the surface of an airfoil can be
used to reduce the skin-friction drag. Note that currentLES boundary conditions are not up to this task: NWR would
lead to a prohibitively high computational cost and the needed boundary layer theory for NWM is not available. Our
new boundary conditions avoid these two roadblocks—they are efficient and general.

2. Approximate deconvolution boundary conditions

In order to developefficientLES algorithms, we consider a constant, and thus “large”, filter radiusδ near boundaries
(seeFig. 1). This approach avoids the high computational cost of NWR, whereδ (and thus the mesh spacingh)
→ 0 near the wall. Using superscriptsn andn + 1 to denote variables at current and next time-steps, respectively,

the challenge is to prescribe the boundary condition forthe filtered variables at the next time level,un+1(x0). Our
approach computes this from known quantities:un in the domain andun+1 on the boundary.

Our new boundary conditions are inspired by deconvolution approaches used in model closure [4,5]. The derivation
begins with the formula

un+1(x0) = Gδ(un+1)(x0) := (gδ ∗ un+1)(x0) =
∫
Ω

gδ(x0 − y)un+1(y) dy, x0 ∈ ∂Ω . (2.1)

The convolution integral is computed using given Dirichlet valuesun+1 on the boundary while approximation to
un+1 in the interior is performed using approximate deconvolution of the filtered variables. This may be implemented
explicitly (using un) or implicitly (using un+1). The approximate deconvolution uses the filtered velocity and pressure
(uk and pk, for k = n or n + 1) to construct an approximation to the original unfiltered variables (un+1 and pn+1) in
the interior:

un+1(x) = G−1
δ (un+1)(x) ≈ uk(x) − δ2

24
�uk(x) and (2.2)

pn+1(x) = G−1
δ (pn+1)(x) ≈ pk(x) − δ2

24
�pk(x). (2.3)

Since the ADBC filters through the boundaries, we need to account for theboundary commutation error(BCE)
term [6–9],∫

∂Ω
gδ(x − s)[Re−1∇u(s) n(s) − p(s) n(s)] ds, x ∈ Ω , (2.4)

wheren(s) is the outward unit vector normal to∂Ω at the points ∈ ∂Ω . BCE is a result of the non-smooth extension
of the flow variables outside the bounded domainΩ . This extension is needed in the filtering process, where the
convolution integral is computed over the entireR

3. For details on the BCE, the reader is referred to [9]. For the
numerical approximation of(2.4), we need to find approximations for∇un+1(s) and pn+1(s). Again, we choose to
use an approximate deconvolution approach, as in(2.2)and(2.3).

Quadrature is used in the ADBC method to approximate(2.1)for x0 ∈ ∂Ω :

un+1(x0) ≈
∑
i∈I

wi gδ(x0 − xi )

(
uk(xi ) − δ2

24
∆uk(xi )

)
+

∑
i∈B

wi gδ(x0 − xi )un+1(xi ), (2.5)

where{xi } represent quadrature points and{wi }, the corresponding weights. The index setsI andB represent interior
and boundary points, respectively. In practice, the rapid decay of thegδ function away fromx0 allows us to set
weights to zero outside of, for example, the shaded area inFig. 1. In our numerical experiments, we use an explicit
implementation for(2.5) (k = n). Complex flows may requirethe implicit formulation (k = n + 1) making the
implementation more challenging since they are nonlocal boundary conditions.

Explicit ADBC algorithm

Step 1. Compute an approximate deconvolution approximation forun at the mesh-points inside the shaded area in
Fig. 1not on the boundary.
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Fig. 1. Setting for the ADBC algorithm.

Step 2. Using the approximations in Step 1 and the exact values ofun+1 on the boundary, compute an approximation
for the BCE term(2.4).

Step 3. Compute the approximation toun+1(x0) using(2.5)(k = n).

The convolution inun+1(x0) in Step 3 is carried out in an efficient way:at the beginning of the simulation, we
pre-compute convolutions of the formgδ ∗ φ j , whereφ j are finite element basis functions corresponding to the
mesh-points inside the shaded area inFig. 1; then, at each time-step, we estimate theconvolution integral with simple
algebraic operations of the formun+1

j (gδ ∗ φ j ).

3. Numerical results

We use the heat equation to illustrate our approach. The advantage of considering this linear problem is that we
can use it to isolate the issue of boundary conditions from closure and commutation issuesassociated with nonlinear
PDEs such as the Navier–Stokes equations. We stress that this is just the first step in the numerical validation of the
ADBC method and that investigations in realistic turbulent flows are needed.

The heat equation in a domainΩ ⊂ R
3 has the following form:


ut − �u = f in Ω × (0, T],
u = g on∂Ω × (0, T],
u(x, 0) = u0(x) in Ω .

(3.1)

To convolve the above equation with a spatial filter, one needs to extendu, f, g and u0 to R
3. By following the

approach in [9], we obtain the space-averaged momentum equations

ut − �u −
∫

∂Ω
gδ(x − s) ∇u(s) · n(s) ds = f in R

3 × (0, T). (3.2)

wheren(s) is the outward unit vector normal to∂Ω at the points ∈ ∂Ω .
For simplicity, we consider the 1D heat equation withΩ = (0, 1) andT = 0.05. We choosef, g andu0 suchthat

u(x, t) = t + sin(2 π x) + sin(8 π x) (3.3)

be the exactsolution for (3.1). This yields f (x, t) = 1 + 4π2 sin(2π x) + 64π2 sin(8π x), g(t) = t , and
u0(x) = sin(2π x) + sin(8π x). The above functions need to be extended outside(0, 1) in order to convolve
equations(3.1) with gδ. We extendu by its values at the boundaries, that is,u(x, t) = t for x �∈ (0, 1). This yields
the extension for f andu0; f (x, t) = 1 andu0(x) = t for x �∈ (0, 1). We considergδ to be the Gaussian filter
gδ(x) = (6/πδ2)1/2 exp(−6x2/δ2), with δ = 0.2.

A finite element approximation of(3.1) with piecewise linear basis functions, and an explicit Euler time
discretization are used. The interval(0, 1) is divided into 20 equidistant subintervals (�x = 0.05). To compute the
convolutions with the Gaussian filer, we extend the computational domain(0, 1) to the left and to the right byδ = 0.2.
To eliminate effects of time integration (and our explicit implementation) we use a small time-step,�t = 0.0001.

The space-averaged momentum equations(3.2)have the following one-dimensional form:

ut − �u + gδ(x − 0)
∂u

∂x
(0, t) − gδ(x − 1)

∂u

∂x
(1, t) = f in R × (0, T). (3.4)
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Fig. 2. Error inu (top to bottom and left to right): exact Commutation Error, exact Boundary Conditions; no Commutation Error, exact Boundary
Conditions; approximate Commutation Error, exact Boundary Conditions; approximate Commutation Error, approximate Boundary Conditions.

The first challenge in a numerical implementation of(3.4) is that the terms∂u
∂x (0, t) and ∂u

∂x (1, t), which are the
one-dimensional form of the convolution integral in(3.2), arenot known a priori. A straightforward approximation to
these terms is by using finite differences:

∂u

∂x
(0, t) ≈ u(�x, t) − u(0, t)

�x
and

∂u

∂x
(1, t) ≈ u(1, t) − u(1 − �x, t)

�x
. (3.5)

Unfortunately, this approximation is based on the values ofu at the mesh-points near the boundary, which are not
known a priori either. The solution is to use an approximate deconvolution approach:

u(�x, t) ≈ u(�x) −
(

δ2

24

)
u(0) − 2 u(�x) + u(2�x)

�x2
, (3.6)

and similarly foru(1 − �x, t).

We conducted four sets of numerical experiments for(3.1). In all these experiments, we integrated in time for 500
time-steps. The errors in approximatingu in all four sets of experiments are plotted inFig. 2.
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Test 1: Exact Boundary Terms, Exact Boundary Conditions(Fig. 2, top left). This represents our benchmark.
Test 2: No Boundary Terms, Exact Boundary Conditions(Fig. 2, top right). This experiment was conducted to

illustrate the influence of the boundary term in(3.4). By dropping the boundary term in(3.4), we got an
increase bythree orders of magnitudein the error inu compared to that in Test1. This indicates that(2.4)
should be included in the LES model. These numerical results confirm the exquisite theoretical considerations
in [8].

Test 3: Approximate Boundary Terms, Exact Boundary Conditions(Fig. 2, bottom left). The boundary term is
approximated through a combined finite differences, approximate deconvolution approach(3.5) and(3.6).
The results are not as good as those in Test 1, since we do not use the exact boundary term any longer.
However, they are significantly better than those in Test 2 — there is afourfold reductionof the error inu.

Test 4: Approximate Boundary Terms, Approximate Boundary Conditions(Fig. 2, bottom right). Both the boundary
term and the boundary conditions are approximated. There is basically just a slight decrease of accuracy from
Test 3, especially at the boundary. This decrease, however, does not seem to degrade the overall accuracy.

4. Conclusions

We have introduced the ADBC algorithm, a new set ofboundary conditions for LES. The ADBC algorithm is
based on an approximate deconvolution approach. The new boundary conditions are computationally efficient and
general (they function in cases where the boundary layer theory is not available). These two features make the ADBC
algorithm well suited for turbulent flows with time-dependent boundary conditions, such as those in a closed-loop
flow control setting.

We testedADBC in a finite element discretization of the one-dimensional heat equation. We chose a linear problem
in order to decouple the boundary treatment from the closure problem (due to the nonlinearity in the Navier–Stokes
equations). The numerical results proved that the boundary commutation error term(2.4) should be included in the
LES model. They also suggested that our approximations to the boundary commutation error term(2.4)and boundary
conditions are appropriate.

The error inu in Tests 1and 2 in Section 3illustrate the importance of including the boundary commutation
error(2.4). Test 3 shows the appropriate treatment of(2.4) in ADBC. Finally, Test 4 shows the efficient treatment of
boundary conditions in ADBC.

These first numerical tests with ADBC were promising.We will continue our careful numerical validation of
ADBC in the numerical simulation of realistic turbulent flows,suchas turbulent channel flows with time-dependent
boundary conditions. We will also compare ADBC with classic NWM in the numerical simulation of statistically
steady-state turbulent flows.

Acknowledgments

We thank the two reviewers whose comments and suggestions improved the work.
The first author was partially supported by AFOSR grants F49620-00-1-0299, F49620-03-1-0243, and FA9550-

05-1-0449 and NSF grants DMS-0322852 and DMS-0513542. The second author was partially supported by
AFOSR grants F49620-03-1-0243, and FA9550-05-1-0449 and NSF grants DMS-0209309, DMS-0322852, and
DMS-0513542.

References

[1] S.B. Pope, Turbulent Flows, Cambridge University Press, 2000.
[2] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin, 2002.
[3] U. Piomelli, E. Balaras, Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech. 34 (2002) 349–374.
[4] L.C. Berselli, T. Iliescu, A higher-order subfilter-scale model for large eddy simulation, J. Comput. Appl. Math. 159 (2) (2003) 411–430.
[5] G.P. Galdi, W.J. Layton, Approximation of the larger eddies in fluidmotions. II. A model for space-filtered flow, Math. Models Methods Appl.

Sci. 10 (3) (2000) 343–350.
[6] S. Ghosal, P. Moin, The basic equations for the large eddy simulation of turbulent flows in complex geometry, J. Comput. Phys. 118 (1) (1995)

24–37.
[7] O.V. Vasilyev, T.S. Lund, P. Moin, A general class of commutative filters for LES in complex geometries, J. Comput. Phys. 146 (1998) 82–104.



740 J. Borggaard, T. Iliescu / Applied Mathematics Letters 19 (2006) 735–740

[8] L.C. Berselli, V. John, On the comparison of a commutation error andthe Reynolds stress tensor for flows obeying a wall law. Quaderno
2004/18 del Dipartimento di Matematica Applicata U. Dini, 2004.

[9] A. Dunca, V. John, W.J. Layton, The commutation error of the space averaged Navier–Stokes equations on a bounded domain, in: G.P. Galdi,
J.G. Heywood, R. Rannacher (Eds.), Contributionsto Current Challenges in Mathematical Fluid Mechanics, in: Advances in Mathematical
Fluid Mechanics, Birkh¨auser Verlag, 2004, pp. 53–78.


	Approximate deconvolution boundary conditions for large eddy simulation
	Introduction
	Approximate deconvolution boundary conditions
	Numerical results
	Conclusions
	Acknowledgments
	References


