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Abstract

We introduce new boundary conditions for large eddy simatatiThese boundary conditionseapased on an approximate
deconvolution approach. They are computationally efficient and general, which makes them appropriate for the numerical
simulation of turbulent flows with time-g@&ndent boundary conditions. Numerical resalts presented to demonstrate the new
boundary conditions in a sipfified linear setting.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Large Eddy Simulation (LES) is one of the most successful techniques for the numerical simulation of turbulent
flow [1,2]. The goal of LES is to decompose the flow into large and small scales by convolving the flow with a
spatial filter [L,2]. Equations for the large scales (defined by a filter width parameter) are suitable for approximation
using discretizations that are computationally tractable. A number of issues arise in LES, including model closure
isstes similar to those appearing in Reynolds averaging the Navier—Stokes equétidt®§ever, one of the main
challenges for LES is specification of efficient, gealdoundary conditions foht filtered variables3.

There are essentially two ways to treat boundary conditions in WES he first is to decreasthe fiter width to
zero at the boundaries. This popular approach, known as Near Wall Resolution (NYyVBaftures the important
flow features near the boundary, but has high computational cost since it requires a fine mesh near the wall. The
second is referred to as Near Wall Modeling (NWM].[The NWM boundary conditions are developed with the aid
of physical modeling such as ensuring conditions on the stexss or reproducing the logdamic law of the wall in
the mean. Although more ad hoc (and problem specific), the discretization near boundaries can remain coarse. Hence
the NWM approach is a better candidate for LES of realistic turbulent flows.

In this work, we propose new boundary conditions for LES basedppmoximate deconvolutioin adwantage
of these Approximate Deconvolution Boundary ConditioABBC) is that they are suitkfor turbulent flows with
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time-dependent boundary conditions. There are numemplikations where the boundary conditions need to be time
accurate. One such example is flow control, where for gptanblowing and suction on the surface of an airfoil can be
used to reduce the skin-friction drag. Note that curtdf® boundary conditions are not up to this task: NWR would
lead to a prohibitively high computational cost and the needed boundary layer theory for NWM is not available. Our
new boundary conditions avoid these two roadik—they are efficient and general.

2. Approximate deconvolution boundary conditions

In order to develogfficientLES algorithms, we consider a constant, and thus “large”, filter radgsr boundaries
(seeFig. 1). This approach avoids the high computational cost of NWR, whef@nd thus the mesh spaciing
— 0 near the wall. Using superscriptsandn + 1 to denote varidles at current and next time-steps, respectively,
the challenge is to prescribe the boundary conditiortfierfiltered variables at the next time leval™(xq). Our
approach computes this from known quantiti#sin the dormain andu™*! on the boundary.
Our new boundary conditions are inspired by de@bmtion approaches used in model closuk&]. The derivation
begins with the formula

" (x0) = Gs (U™ (x0) = (g5 * U™ (x0) = /Q oo —uy)dy,  xoe€dn. (2.1)

The convolution integral is computed using given Dirichlet valuBs! on the boundary while approximation to
u™t1in the interior is performed using appdmate deconvolution of the filtered variables. This may be implemented
explicitly (using ") or implicitly (using @"*1). The approximate deconvolution uses the filtered velocity and pressure
(@ andPX, for k = n orn + 1) to construct an approximation to the original unfiltered variahl&sY and p™*+1) in

the interior:

2
u"x) = Gt (0 ~ Tk (x) — %AU“(X) and (2.2)

82
P = G5 (P () & PH(X) — 2—4Abk<x). (2.3)

Since the ADBC filters through the boundaries, we need to account fdydhedary commutation errofBCE)
term [6-9,

f Os(X — s[Re1vu(s) n(s) — p(s) n(s)] ds, X € {2, (2.4)
Y0,

wheren(s) is the outwad unit vector normal t@ {2 at the points € 3(2. BCE is a result of the non-smooth extension
of the flow variables outside the bounded dom&inThis extension is needed in the filtering process, where the
convolution integral is computed over the entié. For detdls on the BCE, theeader is referred to9]. For the
numerical approximation of2.4), we reed to find approximations fovu"*+1(s) and p"*t1(s). Again, we choose to
use an approximate deconvolution approach, 2.i)and(2.3).

Quadrature is used in the ADBC method to approxinatt)for xo € 9(2:

2
T (x0) ~ ) wi G5(X0 — Xi) (Uk(xi) - %Aﬁk(xi )) + D wi G (xo —x)ux), (2.5)
ieZ ieB

where{x; } represent quadrature points gna }, the corresponding weights. The index se@ndB represent interior
and boundary points, resptively. In practice, the rapid decay of tige function away fromxg allows us to set
weights to zero outside of, for example, the shaded aréagnl In our numerical experiments, we use an explicit
implementation for(2.5) (k = n). Complex flows may requirthe implicit formulation kK = n + 1) making the
implementation more challenging sathey are nonlocal boundary conditions.

Explicit ADBC algorithm

Step 1. Conpute an approximate deconvolution approximationu®mat the mesh-points inside the shaded area in
Fig. 1not on the boundary.
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Fig. 1. Setting for the ADBC algorithm.

Step 2. Using the aproximations in Step 1 and the exact valueg'df! on the boundary, compute an approximation
for the BCE term(2.4).
Step 3. Conpute the approximation @' (xo) using(2.5) (k = n).

The convolution int™(xp) in Step 3 is carried out in an efficient wagt the beginning of the simulation, we
pre-compute convolutions of the form =+ ¢j, where¢; are finite element basis functions corresponding to the
mesh-points inside the shaded are&im 1; then, at each time-step, we estimate¢bavolution integral with simple
algebraic operations of the foruT“(gg *Pj).

3. Numerical results

We use the heat equation to illustrate our approach. The advantage of considering this linear problem is that we
can use it to isolate the issue of boundary conditions froraudboand commutation issuessociated with nonlinear
PDEs such as the Navier—Stokes equadi We stress that this is just the first step in the numerical validation of the
ADBC method and that investgions in realistic turbulent flows are needed.

The heat equation in a domaih ¢ R? has the following form:

u —Au=f in 2 x (0, T],
u=g onaf? x (0, T], (3.1)
u(x,0) = up(x) in f2.

To convolve the bhove equation Wth a spatial filter, one needs to extendf, g andug to R3. By following the
approach in 9], we obtain the space-avsged momentum equations

U — AU — f gs(X—9) Vu(s) -n(g)ds= f in RS x (0, T). (3.2)
a0

wheren(s) is the outwad unit vector normal t@ {2 at the points € 412.
For simgicity, we consider the 1D heat equation with= (0, 1) andT = 0.05. We choosd, g andug suchthat

ux,t)y =t +sin(2x x) +sin(8  x) (3.3)

be the exacsolution for (3.1). This yields f(x,t) = 1+ 472 sin(2x x) + 6472 sin8x x), g(t) = t, and
Uo(X) = sin(2x X) + sin(8x x). The almve functbns need to be extended outsi¢k 1) in order to convolve
equationg3.1)with gs. We extendu by its values at the boundaries, thatugy, t) = t for x ¢ (0, 1). This yields
the extesion for f andup; f(x,t) = 1 andug(x) =t for x ¢ (0, 1). We mnsidergs to be the Gaussian filter
gs(X) = (6/78%)1/2 exp(—6x2/82), with § = 0.2.

A finite element approximation of3.1) with piecewise linear basis functions, and an explicit Euler time
discretization are used. The intervéd, 1) is divided into 20 equidistant subintervaldaX = 0.05). To compute the
convolutions with the Gaussian filer, we extend the computational dof@aln to the left and to the right by = 0.2.

To diminate effects of time integration (and our explicit implementation) we use a small timeAstep,0.0001.

The space-averaged momentum equat{8r) have the following one-dimensional form:

Ui — AT+ gs(X — 0) g—i(o, t) — gs(X — 1) g—i(l, =T inRx(0,T). (3.4)
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Fig. 2. Error inu (top to bottom and left to right): exact Commutation Errom&xBoundary Conditions; no Commutation Error, exact Boundary
Conditions; approximate Commutation Error, exact Boundary Condjtapmsoximate Commutation Error, approximate Boundary Conditions.

The first challenge in a numerical implementation(®#) is that the term%—g(o, t) and g—g(l, t), which are the
one-dimensional form of the convolution integral$2), arenot known a priori. A straightforward approximation to
these terms is by using finite differences:

d AX,t) —u(0,t d
—u(O,t)%u( X,t) —u@.b and —u(l,t)~
ax AX daX

ud, t) —ul— Ax,t)

~ (3.5)

Unfortunately this goproximation is based on the valueswoft the mesh-points near the boundary, which are not
known a priori either. The solution is to use an approximate deconvolution approach:

82
U(AX, t) ~ U(AX) — (2—4)

T(0) — 2TU(AX) + T(2AX)
AX?

, (3.6)

and similarly foru(1 — Ax, t).

We conducted four sets of numerical experimentg(®L). In all these gperiments, we integrated in time for 500
time-steps. The errors in approximatitign all four sets of experiments are plottedriig. 2
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Test 1: Exact Boundary Terms, Exact Boundary Conditi¢fig. 2, top leff). This represents our benchmark.

Test 2: No Boundary Terms, Exact Boundary Conditioffsg. 2, top right). This experiment was conducted to
illustrate the influence of the boundary term(814). By dropping the boundary term i(8.4), we got an
increase bythree aders of nagnitudein the error inu compared to that in Tedt. This indicates thaf2.4)
should be included in the LES model. These numerical results confirm the exquisite theoretical considerations
in [8].

Test 3: Approximate Boundary Terms, Exact Boundary Conditifffig. 2, bottom left). The boundary term is
approximated through a combined finite differences, approximate deconvolution apf8dgadnd (3.6).

The results are not as good as those in Test 1, since we do not use the exact boundary term any longe
However, they are significantly tier than hose in Test 2 — there isfaurfold reductionof the error inu.

Test 4: Approximate Boundary Termspproximate Boundary Conditior{ig. 2, bottom right). Both the boundary
term and the boundary conditions are apgmated. There is basically just a slight decrease of accuracy from
Test 3, especially at the boundary. This decrease, however, does not seem to degrade the overall accuracy.

4. Conclusions

We have introduced the ADBC algorithm, a new setbaiundary conditions for LES. The ADBC algorithm is
based on an approximate deconvolution approach. Theboeindary conditions are comptionally efficient and
general (they function in cases where the boundary layerytie not available). These two features make the ADBC
algorithm well suited for turbuldrflows with time-dependent boundary conditiosach as those in a closed-loop
flow control setting.

We testedADBC in a finite element discretization of the onamgnsional heatauation. We chose a linear problem
in order to decouple the boundary treatment from the closure problem (due to the nonlinearity in the Navier—Stokes
equations). The numerical results proved that the boundary commutation errq2tdjshould be included in the
LES model. They also suggested that our approximations to the boundary commutation erf@r4g¢amd boundary
conditions are appropriate.

The error inU in Tests 1and 2 in Section 3illustrate the importance of including the boundary commutation
error(2.4) Test 3 showshte appropriate treatment (#£.4)in ADBC. Finally, Test 4 show the effigent treament of
boundary conditions in ADBC.

These first numerical tests with ADBC were promisittge will continue our careful numerical validation of
ADBC in the numerical simulation of realistic turbulentits, suchas turbulent channel flows with time-dependent
boundary conditions. We will also compare ADBC with classiWM in the numerical simiation of statistically
steady-sta turbulent flows.
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