On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory

Francis Y. C. Fung*
Princeton University, Princeton, NJ, USA
Received 17 November 2000; accepted 20 May 2002
Communicated by Pavel Etingof

Abstract

We describe the irreducible components of Springer fibers for hook and two-row nilpotent elements of $\mathfrak{g l}_{n}(\mathbb{C})$ as iterated bundles of flag manifolds and Grassmannians. We then relate the topology (in particular, the intersection homology Poincare polynomials) of the pairwise intersections of these components with the inner products of the Kazhdan-Lusztig basis elements of irreducible representations of the rational Iwahori-Hecke algebra of type A corresponding to the hook and two-row Young shapes.

(C) 2003 Elsevier Science (USA). All rights reserved.

MSC: 20C08 (primary); 20G05 (secondary)
Keywords: Springer fibers; General linear group; Type A; Kazhdan-Lusztig theory

1. Introduction

Let V be a finite-dimensional complex vector space. A nilpotent linear map N : $V \rightarrow V$ is said to fix a flag $F=\left\{F_{0} \subset F_{1} \subset \cdots \subset F_{n-1} \subset V\right\}$ if $N F_{i} \subseteq F_{i-1}$ for each i. The variety \mathscr{B}_{N} of all flags in the flag manifold $\mathrm{Fl}(V)$ fixed by a nilpotent map N is a Springer fiber. Such varieties arise as fibers of Springer's resolution of singularities of the nilpotent cone of a reductive algebraic group G.

[^0]Springer [25,27] discovered a method of constructing irreducible representations of Weyl groups on the top homology of \mathscr{B}_{N}. For each irreducible representation, his construction yields a distinguished basis given by homology classes of the components of the Springer fiber \mathscr{B}_{N}. However, since their mere existence yields the distinguished basis, it seems that efforts to understand them have not focused on computations of their internal topological structure or that of their pairwise intersections. Only a few papers (such as $[24,28,30,21,14]$) have studied the topology of the components of the Springer fibers \mathscr{B}_{N} and their pairwise intersections. We extend some of these results to describe the homological structure of components of \mathscr{B}_{N} and their pairwise intersection for certain types of nilpotent maps N (those corresponding to hook and two-row shape partitions). In these cases, the components are nonsingular, and in fact are iterated bundles of flag manifolds and Grassmannians. For more general nilpotent maps N, the components can be singular (see $[28,24]$) and much more complicated.

We also relate our computations to the structure of the Kazhdan-Lusztig bases of certain representations of Iwahori-Hecke algebras of type A. The inner products of these basis vectors, suitably normalized, are polynomials in t and t^{-1} that are invariant under the map $t \rightarrow t^{-1}$. We show that for irreducible representations labeled by a hook or two-row shape, the (suitably normalized) inner products equal the intersection homology [10,12] Poincaré polynomials of pairwise intersections of irreducible components of Springer fibers of the general linear group. We believe it would be very interesting to understand how our results might generalize to bases of other Kazhdan-Lusztig representations of type A.

2. Some properties of nilpotent maps and Springer fibers

We record some properties of nilpotent maps and of the space of all flags \mathscr{B}_{N} fixed by a nilpotent map N, which is called the Springer fiber of N. A theorem of Vargas and Spaltenstein $[24,28]$ decomposes the space \mathscr{B}_{N} into a disjoint union of locally closed subspaces, whose closures are the irreducible components of the space \mathscr{B}_{N}.

Let $N: V \rightarrow V$ be a nilpotent map of a vector space V over \mathbb{C}. Let b be the least positive integer for which $N^{b}=0$. Then we have two filtrations of subspaces on V : the image filtration im $N^{b}=0 \subset \operatorname{im} N^{b-1} \subset \operatorname{im} N^{b-2} \subset \cdots \subset \operatorname{im} N^{1} \subset V=\operatorname{im} N^{0}$ and the kernel filtration $\operatorname{ker} N^{0}=0 \subset \operatorname{ker} N \subset \operatorname{ker} N^{2} \subset \cdots \subset \operatorname{ker} N^{b-1} \subset V=\operatorname{ker} N^{b}$ (with proper inclusions).

Lemma 2.1. For a nilpotent map N, we have $N^{-1}\left(\operatorname{im} N^{k}\right)=\operatorname{ker} N+\operatorname{im} N^{k-1}$.
Proof. If $N(v) \in \operatorname{im} N^{k}$ then $N(v)=N^{k}(w)$ so $N\left(v-N^{k-1} w\right)=0$.
Note that if im N^{k-1} contains ker N then $N^{-1}\left(\operatorname{im} N^{k}\right)=\operatorname{im} N^{k-1}$; otherwise $N^{-1}\left(\operatorname{im} N^{k}\right)$ is strictly larger. Also note that $N\left(\operatorname{ker} N^{i+1}\right) \subseteq \operatorname{im} N \cap \operatorname{ker} N^{i}$.

Definition 2.1. Let F_{i} be a subspace of V that is taken into itself by the map N. Then there is a map $N_{i}: V / F_{i} \rightarrow V / F_{i}$ induced by N. We call the map N_{i} a quotient map of N.

Lemma 2.2. The image $\operatorname{im} N_{i}$ of the quotient map $N_{i}: V / F_{i} \rightarrow V / F_{i}$ is equal to $\left(\operatorname{im} N+F_{i}\right) / F_{i}$. Similarly, $\left(\operatorname{im} N^{k}+F_{i}\right) / F_{i}=\operatorname{im} N_{i}^{k}$.

Proof. If $N(v) \in \operatorname{im} N$ then $N(v)+F_{i} \in \operatorname{im} N_{i}$. On the other hand, if $w+F_{i} \in \operatorname{im} N_{i}$ then the coset $w+F_{i}$ equals the coset $N(v)+F_{i}$ for some $v \in V$, so $w+F_{i}$ is clearly in $\operatorname{im} N+F_{i}$. Then a subspace of V that contains F_{i} and whose projection to V / F_{i} is $\operatorname{im} N_{i}$ must be im $N+F_{i}$. The same holds true for the nilpotent map N^{k}.

Lemma 2.3. The kernel of the quotient map ker N_{i} equals $N^{-1}\left(F_{i}\right)$.
Proof. The kernel ker N_{i} is given by those vectors whose image under N_{i} is $0+F_{i}$, which is exactly $N^{-1}\left(F_{i}\right)$.

Lemma 2.4. We have the containment $\operatorname{ker} N \supseteq \operatorname{im} N^{b-1}$, but $\operatorname{ker} N \not \equiv \operatorname{im} N^{b-j}$ for $j>1$.
Proof. This is obvious from definition of b.
Lemma 2.5. If j is the largest integer for which im N^{j} is not contained in F_{i}, then j is the largest integer for which $\left(\mathrm{im} N^{j}+F_{i}\right) / F_{i}$ is a nonzero image of the quotient map N_{i}.

Proof. Suppose $v \in \operatorname{im} N^{j}$ but is not in F_{i}. Then $v+F_{i}$ is not zero in V / F_{i}, so $\left(\operatorname{im} N^{j}+F_{i}\right) / F_{i}$ is a nonzero image of N_{i}. Similarly, if $v+F_{i}$ is a nonzero element of $\left(\operatorname{im} N^{j}+F_{i}\right) / F_{i}$, then there exists an element $0 \neq w \in V$ with $w \in \operatorname{im} N^{j}$ and $w \in v+F_{i}$.

Now we discuss the Springer fiber \mathscr{B}_{N} of N, which is the variety of flags fixed by the nilpotent element N. The ranks of the Jordan blocks of the nilpotent map N determine a partition of n. We form a Young shape from this partition by using this partition as the lengths of the rows (opposite to the conventions of Vargas [28]). Let the number of columns of the Young shape be b; then $N^{b}=0$ and $N^{b-1} \neq 0$.

Definition 2.2. Given a flag F with subspaces $\{0\}=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n}=V$, we say that N fixes F if $N F_{i}$ is contained in F_{i-1} for all i.

Definition 2.3. We denote by \mathscr{B}_{N} the set of all flags fixed by N, and call it the Springer fiber of N. It is an algebraic subvariety of the flag manifold \mathscr{B}.

Recall that Young shape on n boxes is a collection of n boxes arranged in left justified rows of lengths $t_{1} \geqslant \cdots \geqslant t_{k}$. A standard tableau (or Young tableau) on a Young shape τ is constructed by filling in the n boxes with the numbers $1, \ldots, n$ such
that the numbers are decreasing from left to right in each row, and decreasing from top to bottom in each column. Note that many authors use increasing rows and columns. We typically use A and B to denote standard Young tableaux. Denote by A_{i} the tableau obtained by deleting the numbers $1, \ldots, i$ in the tableau A and subtracting i from the remaining numbers.

The following theorem of Vargas and Spaltenstein gives a decomposition of the Springer fiber \mathscr{B}_{N} into a disjoint union of locally closed subsets, whose closures comprise the irreducible components of \mathscr{B}_{N}.

Theorem 2.1 (Vargas [28], Spaltenstein [24]). Let N be a nilpotent map. Then given a standard tableau A on the Young shape of N, we construct a locally closed subset $\mathrm{SV}(A)$ of the Springer fiber \mathscr{B}_{N}, whose closure $\overline{\mathrm{SV}(A)}$ is an irreducible component of \mathscr{B}_{N}. We have a partition $\mathscr{B}_{N}=\bigcup_{A} \operatorname{SV}(A)$ of the Springer fiber into disjoint locally closed subsets. Thus the number of irreducible components of \mathscr{B}_{N} is equal to the number of standard tableaux on the Young shape of N. In addition, the components are all of the same dimension. In fact, if the lengths of the columns of the Young shape of N are $n_{1}, n_{2}, \ldots, n_{b}$, then the dimension of each component is

$$
\sum_{i} \frac{n_{i}\left(n_{i}-1\right)}{2}
$$

Proof. Suppose A is a Young tableau on the Young shape of N. Then we inductively specify a subset of \mathscr{B}_{N} corresponding to A, which we denote $\operatorname{SV}(A)$ (for Spaltenstein-Vargas), by describing how to choose F_{1}, then F_{2} / F_{1}, and so forth. A flag F is in the subset $\operatorname{SV}(A)$ if each subspace of F satisfies the following conditions.

Suppose the number i appears in the $c(i)$ th column in A. Then (recalling that $\left.F_{0}=0\right)$ the first subspace F_{1} must satisfy $F_{1} \subset\left(N^{-1}\left(F_{0}\right) \cap\left(\mathrm{im} N^{c(1)-1}-\mathrm{im} N^{c(1)}\right)\right.$. In other words, F_{1} must be in the kernel of N, and it must be in the $(c(1)-1)$ st image of N but not in any higher image.

Then, for any F_{1} satisfying the above condition, the induced map N_{1} : $V / F_{1} \rightarrow V / F_{1}$ will have the same Young shape; this shape is the shape obtained by deleting the number 1 in the tableau A.

We now choose $F_{2} / F_{1} \subset V / F_{1}$, using the above procedure with N_{1} in place of N and A_{1} in place of A. Note that $N_{1}^{-1}\left(0+F_{1}\right)=N^{-1}\left(F_{1}\right) / F_{1}$. We continue inductively, choosing F_{i+1} / F_{i} so that $F_{i+1} / F_{i} \subset\left(N^{-1}\left(F_{i}\right) / F_{i}\right) \cap\left(\operatorname{im} N_{i}^{c(i)-1}-\right.$ $\left.\operatorname{im} N_{i}^{c(i)}\right)$. Note that any such choice of F_{i+1} yields a quotient map N_{i+1} with Young shape A_{i+1}.

See Vargas [28] and Spaltenstein [24] for the proof that this constructs a locally closed subset of \mathscr{B}_{N} with the properties claimed in the theorem. The proof is essentially an explicit calculation with the Jordan form of N.

Vargas [28, Proposition 2.2] shows that this set $\operatorname{SV}(A)$ is exactly the set of flags such that

$$
\begin{aligned}
& F_{i} \subset N^{-1}\left(F_{i-1}\right), \\
& F_{i} \subset F_{i-1}+\operatorname{im} N^{c(i)-1}
\end{aligned}
$$

3. Determination of the topology of the irreducible components of Springer fibers for nilpotent maps of hook type for $\mathbf{G L}_{n}(\mathbb{C})$

Suppose N is a nilpotent map $V \rightarrow V$ whose Jordan form has at most one Jordan block of rank >1. Then N is said to be of hook type. For hook type nilpotent maps N, we can characterize the components of the Springer fiber \mathscr{B}_{N} entirely in terms of the image and kernel filtrations of V. The components and their pairwise intersections turn out to be nonsingular. In fact their homology Poincaré polynomials factor as products of Poincaré polynomials of Grassmannians and flag manifolds.

We will describe each component of the Springer fiber of a nilpotent map N of hook type by expressing the component as a sequence of fiber bundles with progressively simpler bases and fibers.

Definition 3.1. A space X_{1} is an iterated fiber bundle of base type $\left(B_{1}, \ldots, B_{n}\right)$ if there exist spaces $X_{1}, B_{1}, X_{2}, B_{2}, \ldots, X_{n}, B_{n}, X_{n+1}=p t$ and maps $p_{1}, p_{2}, \ldots, p_{n}$ such that p_{j} : $X_{j} \rightarrow B_{j}$ is a fiber bundle with typical fiber X_{j+1}.

The following two lemmas are straightforward.

Lemma 3.1. The flag manifold $\mathrm{Fl}(V)$ admits a map to the Grassmannian $G_{i}(V)$ via $F \mapsto F_{i}$. The fiber of this map is a product $\mathrm{Fl}\left(F_{i}\right) \times \mathrm{Fl}\left(V / F_{i}\right)$.

Lemma 3.2. Consider the variety of flags $X(I, K)$ in an n-dimensional vector space V such that F_{i} contains an a-dimensional subspace I and is contained in a b-dimensional subspace K. This variety $X(I, K)$ admits a map $p: X(I, K) \rightarrow G_{i-a}(K / I)$ via $F \mapsto F_{i} / I \subset K / I$ that makes $X(I, K)$ the total space of a fiber bundle. The typical fiber of the map p is a product $\mathrm{Fl}\left(F_{i}\right) \times \mathrm{Fl}\left(V / F_{i}\right)$. In particular, the variety $X(I, K)$ is nonsingular.

We define some notation to simplify our intersection homology computations. Define $[n]$ by

$$
[n]:=t^{-(n-1)}\left(1+t^{2}+t^{4}+\cdots+t^{2(n-1)}\right)
$$

Then we define

$$
[n]!:=[1][2] \ldots[n] \quad \text { and } \quad\binom{[n]}{[k]}:=\frac{[n]!}{[k]![n-k]!}
$$

The polynomial $[n]$ is essentially the t-analogue of the number n, but shifted to be symmetric around the degree 0 term. Thus the flag manifold $\mathrm{Fl}(V)$ has intersection homology Poincaré polynomial $[n]$! and $G_{k}(V)$ has intersection homology Poincaré polynomial $\binom{[n]}{[k]}$.

Corollary 3.1. Let $X(I)$ be the variety of flags in $\mathrm{Fl}(V)$ such that the subspace F_{i} contains an a-dimensional subspace I. Then $X(I)$ has intersection homology Poincaré polynomial $\binom{[n-a]}{[i-a]}[i]![n-i]!$.

Proof. Clear from Lemma 3.2, since complex flag manifolds and complex Grassmannians have only even-dimensional homology so the Leray-Serre spectral sequence for $p: X(I) \rightarrow G_{i-a}(V / I)$ with fiber $\operatorname{Fl}\left(F_{i}\right) \times \operatorname{Fl}\left(V / F_{i}\right)$ collapses.

Lemma 3.3. Let N be a nilpotent map of hook type with Jordan blocks of size $(b, 1, \ldots, 1)$. Then for all $0<i<b$, we have $\operatorname{im} N^{b-i}=\operatorname{ker} N^{i} \cap \mathrm{im} N$, which implies $N\left(\operatorname{ker} N^{i+1}\right) \subset \operatorname{im} N^{b-i}$.

Proof. This follows from inspection of the Jordan form of N.
We now decompose each component of the Springer fiber \mathscr{B}_{N} for a hook type nilpotent map N as an iterated bundle with nonsingular bases and fibers. Recall that the number b is the least positive integer with $N^{b}=0$. Let $b(i)$ be the least positive integer with $N_{i}^{b(i)}=0$.

Theorem 3.1. Suppose we are given a nilpotent map N of hook type and a Young tableau A on the Young shape of N with $n, i_{b-1}, \ldots, i_{1}$ on the top row (where by convention $i_{b}=n$ and $i_{0}=0$). Then the component K_{A} of the Springer fiber \mathscr{B}_{N} is an iterated bundle with $B_{2 j-1}=G_{i_{j}-i_{j-1}-1}\left(\operatorname{ker} N_{i_{j}} / \operatorname{im} N_{i_{j}}^{b\left(i_{j}\right)-1}\right)$ and $B_{2 j}=\operatorname{Fl}\left(F_{i_{j}} / F_{i_{j-1}}\right)$, where $j=1,2, \ldots, b-1$, and $B_{2 b-1}$ is a full flag manifold $\mathrm{Fl}\left(V / F_{i_{b-1}}\right)$.

The proof will be broken up into a series of lemmas and propositions.
Proposition 3.1 (Vargas [28]). Suppose we are given a nilpotent map N of hook type and a Young tableau A on the Young shape of N with $n, i_{b-1}, \ldots, i_{1}$ on the top row. Then the component $K_{A}=\overline{\operatorname{SV}(A)}$ of the Springer fiber \mathscr{B}_{N} consists of all flags F in
$\mathrm{Fl}(V)$ such that

$$
\begin{gathered}
\operatorname{im~} N^{b-1} \subseteq F_{i_{1}} \subseteq \operatorname{ker} N, \\
\text { im } N^{b-2} \subseteq F_{i_{2}} \subseteq \operatorname{ker} N^{2}, \\
\text { im } N^{b-3} \subseteq F_{i_{3}} \subseteq \operatorname{ker} N^{3}, \\
\ldots \\
\operatorname{im~} N^{1} \subseteq F_{i_{b-1}} \subseteq \operatorname{ker} N^{b-1} .
\end{gathered}
$$

Proof. This is Vargas [28, Theorem 4.1]. The proof consists of an explicit limiting argument using the structure of the Spaltenstein-Vargas subset $\operatorname{SV}(A)$.

Lemma 3.4. Let N be a nilpotent map of hook type, and let $F_{i_{1}}$ be a subspace of V with $N F_{i_{1}} \subset F_{i_{1}}$ and $\operatorname{im~} N^{b-1} \subset F_{i_{1}} \subset \operatorname{ker} N$. Then we have

$$
\begin{aligned}
& \operatorname{ker} N_{i_{1}}^{d}=\operatorname{ker} N^{d+1} / F_{i_{1}} \\
& \operatorname{im} N_{i_{1}}^{d}=\left(\operatorname{im} N^{d}+F_{i_{1}}\right) / F_{i_{1}} .
\end{aligned}
$$

Proof. We describe $\operatorname{ker} N_{i_{1}}^{d} \subseteq V / F_{i} \quad$ as follows. If $v \in \operatorname{ker} N^{d+1}$ then $N^{d}(v) \in \operatorname{im} N \cap \operatorname{ker} N=\operatorname{im} N^{b-1}$. Since $\operatorname{im} N^{b-1} \subseteq F_{i_{1}}$, we have $N^{d}(v) \in F_{i_{1}}$, so $v+$ $F_{i_{1}} \in \operatorname{ker} N_{i_{1}}^{d}$. On the other hand, if $N_{i_{1}}^{d}\left(v+F_{i_{1}}\right)=0+F_{i_{1}}$ then $N^{d}(v) \in F_{i_{1}}$. Now by Lemma 3.3, the subspace $F_{i_{1}}$ contains im N^{b-1} but no other element of im N. Thus $N^{d+1}(v)=0$, and so $v \in \operatorname{ker} N^{d+1}$. Thus if a subspace $W \subset V$ contains $F_{i_{1}}$ then $W / F_{i_{1}} \subseteq \operatorname{ker} N_{i_{1}}^{d}$ iff $W \subseteq \operatorname{ker} N^{d+1}$.

By Lemma $2.2 \mathrm{im}\left(N^{d}+F_{i_{1}}\right) / F_{i_{1}}=\operatorname{im} N_{i_{1}}^{d}$. Thus if $W \subset V$ contains $F_{i_{1}}$, then $W / F_{i_{1}}$ contains im $N_{i_{1}}^{d}$ iff W contains im N^{d}.

Lemma 3.5. Suppose we are given a nilpotent N of hook type and a Young tableau A on the Young shape of N with $n, i_{b-1}, \ldots, i_{1}$ on the top row (where by convention $i_{b}=n$ and $i_{0}=0$). Then the component K_{A} of the Springer fiber \mathscr{B}_{N} admits a map p_{1} to the Grassmannian $G_{i_{1}-1}\left(\operatorname{ker} N / \operatorname{im} N^{b-1}\right)$. The fiber X_{2} of the map p_{1} : $K_{A} \rightarrow G_{i_{1}-1}\left(\operatorname{ker} N / \operatorname{im} N^{b-1}\right)$ admits a map $p_{2}: X_{2} \rightarrow \mathrm{Fl}\left(F_{i_{1}}\right)$. The fiber of p_{2} can be identified with a component of a Springer fiber of the quotient map $N_{i_{1}}: V / F_{i_{1}} \rightarrow V / F_{i_{1}}$, where the component is associated to the standard tableau $A_{i_{1}}$.

Proof. The existence of the map p_{1} follows from Lemma 3.2 with $I=\operatorname{im} N^{b-1}$ (which is a one-dimensional space) and $K=\operatorname{ker} N$ (which is an $n-b+$

1-dimensional space containing im N^{b-1}). Let B_{1} be the Grassmannian $G_{i_{1}-1}\left(\operatorname{ker} N / \operatorname{im} N^{b-1}\right)$. The fiber X_{2} of the map $p_{1}: K_{A} \rightarrow B_{1}$ consists of all flags in the component with a fixed subspace $F_{i_{1}}$. We define the map $p_{2}: X_{2} \rightarrow \mathrm{Fl}\left(F_{i_{1}}\right)$ by taking $F \in X_{2}$ and forgetting all subspaces of F larger than $F_{i_{1}}$. By inspecting Proposition 3.1 we see that p_{2} is surjective and indeed a fiber bundle projection.

The fiber X_{3} of this map p_{2} is the set of all flags in the component K_{A} with fixed subspaces $F_{1}, \ldots, F_{i_{1}}$. Then X_{3} maps bijectively to a subset of $\operatorname{Fl}\left(V / F_{i_{1}}\right)$ via the map $F \rightarrow F^{\prime}$, where $F_{j}^{\prime}=F_{j+i_{1}} / F_{i_{1}}$. We now show that X_{3} is the component $K_{A_{i_{1}}}$ of the Springer fiber of the quotient map $N_{i_{1}}$ on $V / F_{i_{1}}$, by showing that X_{3} satisfies the characterization of Proposition 3.1.

By Lemma 3.4, the fiber X_{3} of p_{2} is in bijection with the set of flags $F^{\prime} \in \mathrm{Fl}\left(V / F_{i_{1}}\right)$ such that

$$
\begin{gathered}
\text { im } N_{i_{1}}^{b-2} \subseteq F_{i_{2}-i_{1}}^{\prime} \subseteq \operatorname{ker} N_{i_{1}} \\
\text { im } N_{i_{1}}^{b-3} \subseteq F_{i_{3}-i_{1}}^{\prime} \subseteq \operatorname{ker} N_{i_{1}}^{2} \\
\text { im } N_{i_{1}}^{b-4} \subseteq F_{i_{3}-i_{1}}^{\prime} \subseteq \operatorname{ker} N_{i_{1}}^{3}, \\
\ldots \\
\text { im } N_{i_{1}}^{1} \subseteq F_{i_{b-1}-i_{1}}^{\prime} \subseteq \operatorname{ker} N_{i_{1}}^{b-2} .
\end{gathered}
$$

Thus X_{3} is the component $K_{A_{i_{1}}}$ of the Springer fiber $\mathscr{B}_{N_{1}}$.

Proof of Theorem 3.1. A typical fiber X_{2} of the map $p_{2}: K_{A} \rightarrow \mathrm{Fl}\left(F_{i_{1}}\right)$ consists of flags $F \in K_{A}$ with fixed subspaces $F_{1}, \ldots, F_{i_{1}}$. This fiber X_{2} is in bijection with the set of flags in $V / F_{i_{1}}$ that are fixed by $N_{i_{1}}: V / F_{i_{1}} \rightarrow V / F_{i_{1}}$.

So we have exhibited the component $K_{A}=X_{1}$ of the Springer fiber \mathscr{B}_{N} as the total space of a bundle $p_{1}: X_{1} \rightarrow B_{1}$ with base $B_{1}=G_{i_{1}-1}\left(\operatorname{ker} N / \operatorname{im} N^{b-1}\right)$. The fiber X_{2} of p_{1} is the total space of another bundle $p_{2}: X_{2} \rightarrow B_{2}$ with base $B_{2}=$ $\mathrm{Fl}\left(V / F_{i_{1}}\right)$.

Successive applications of Lemma 3.5 prove that if $X_{2 j+1}$ is a component of the Springer fiber of $N_{i_{j}}: V / F_{i_{j}} \rightarrow V / F_{i_{j}}$, then $X_{2 j+3}$ is the corresponding component of the Springer fiber for $N_{i_{j+1}}: V / F_{i_{j+1}} \rightarrow V / F_{i_{j+1}}$.

Finally, since $\operatorname{im} N \subset F_{i_{b-1}}$, we see that the map $N_{i_{b-1}}: V / F_{i_{b-1}} \rightarrow V / F_{i_{b-1}}$ is the zero map. Thus the (unique) component of the Springer fiber for $N_{i_{b-1}}$ (which is $X_{2 b-1}$) is the flag manifold $\mathrm{Fl}\left(V / F_{i_{b-1}}\right)$.

Theorem 3.2. Let N be a nilpotent map of hook type, and let A be a standard tableau on the hook shape of N, with top row $n, i_{b-1}, \ldots, i_{1}$. Then the component K_{A} of the

Springer fiber \mathscr{B}_{N} has intersection homology Poincaré polynomial equal to

$$
\begin{aligned}
& {\left[i_{1}\right]!\binom{[n-b]}{\left[i_{1}-1\right]}\left[i_{2}-i_{1}\right]!\binom{\left[\left(n-i_{1}\right)-(b-1)\right]}{\left[i_{2}-i_{1}-1\right]}} \\
& \quad \ldots\left[i_{b-1}-i_{b-2}\right]!\binom{\left[n-i_{b-2}-2\right]}{\left[i_{b-1}-i_{b-2}-1\right]}\left[n-i_{b-1}\right]!.
\end{aligned}
$$

This polynomial equals

$$
[n-b]!\left[i_{1}\right]\left[i_{2}-i_{1}\right]\left[i_{3}-i_{2}\right] \ldots\left[i_{b-1}-i_{b-2}\right]\left[n-i_{b-1}\right] .
$$

Proof. We have already proven that the component in question is an iterated fiber bundle with $B_{2 j}$ a complex flag manifold, with $B_{2 j-1}$ a complex Grassmannian for $1 \leqslant j \leqslant b-1$, and with $X_{2 b-1}=B_{2 b-1}$ a complex flag manifold. So the bundle $p_{2 b-2}$: $X_{2 b-2} \rightarrow B_{2 b-2}$ with fiber $X_{2 b-1}$ has only even-dimensional homology in base and fiber. Therefore the Leray-Serre spectral sequence for $p_{2 b-2}$ collapses and the Poincare polynomial of $X_{2 b-2}$ is the product of those for $X_{2 b-1}$ and $B_{2 b-2}$; in particular, $X_{2 b-1}$ has only even-dimensional homology. Then we do the same for $p_{2 b-3}: X_{2 b-3} \rightarrow B_{2 b-3}$ with fiber $X_{2 b-2}$; since $B_{2 b-3}$ is a complex Grassmannian, the space $X_{2 b-3}$ also has only even-dimensional homology. So $X_{2 b-3}, X_{2 b-5}, \ldots$ have only even-dimensional homology and their homology Poincaré polynomials are products of Poincaré polynomials of flag manifolds and Grassmannians. This recursion thus unravels to give us the homology of X_{1} as stated above. Finally, since the space X_{1} is nonsingular, we need only shift the homology Poincare polynomial until it is invariant under $t \mapsto t^{-1}$, in order to obtain the intersection homology Poincaré polynomial.

Remark 3.1. We have proven that the closed subvariety of \mathscr{B}_{N} associated by Vargas' description to the tableau A is irreducible because this subvariety is a bundle of irreducible varieties; it also contains a Spaltenstein-Vargas set $\operatorname{SV}(A)$; hence it must be exactly the closure K_{A} of the Spaltenstein-Vargas set $\operatorname{SV}(A)$. This is an alternative proof that Vargas' descriptions indeed yield the components of the Springer fiber \mathscr{B}_{N}.

4. Structure of pairwise intersections of two components of hook type

Theorem 4.1. Let N be a nilpotent map of hook type. Suppose we have two standard tableaux A and B on the Young shape of N, where the standard tableau A has top row $n, i_{b-1}, \ldots, i_{1}$ and the standard tableau B has top row $n, i_{b-1}^{\prime}, \ldots, i_{1}^{\prime}$. Then the intersection of the two components $K_{A} \cap K_{B}$ is nonempty iff
$\beta_{j}=\max \left\{i_{j}, i_{j}^{\prime}\right\}<\min \left\{i_{j+1}, i_{j+1}^{\prime}\right\}=\alpha_{j+1}$, in which case $K_{A} \cap K_{B}$ is an iterated fiber bundle with

$$
\begin{aligned}
& B_{2 j-1}=G_{\beta_{j}-\beta_{j-1}-1}\left(\operatorname{ker} N_{\beta_{j}} / \operatorname{im} N_{\beta_{j}}^{b\left(\beta_{j}\right)}\right), \\
& B_{2 j}=\left\{F \in \operatorname{Fl}\left(F_{\beta_{j}} / F_{\beta_{j-1}}\right) \mid \operatorname{im} N_{j}^{b-j-1} \in F_{\alpha_{j}-\beta_{j-1}}\right\} .
\end{aligned}
$$

Proof. We proceed as in the proof of Theorem 3.1. Let $\alpha_{j}=\min \left\{i_{j}, i_{j}^{\prime}\right\}$ and $\beta_{j}=$ $\max \left\{i_{j}, i_{j}^{\prime}\right\}$. By superimposing the characterizations of the components K_{A} and K_{B}, we deduce that the intersection $K_{A} \cap K_{B}$ is given by those flags F in $\mathrm{Fl}(V)$ for which

$$
\begin{aligned}
& \text { im } N^{b-1} \subseteq F_{\alpha_{1}} \subseteq F_{\beta_{1}} \subseteq \operatorname{ker} N \\
& \text { im } N^{b-2} \subseteq F_{\alpha_{2}} \subseteq F_{\beta_{2}} \subseteq \operatorname{ker} N^{2}, \\
& \text { im } N^{b-3} \subseteq F_{\alpha_{3}} \subseteq F_{\beta_{3}} \subseteq \operatorname{ker} N^{3} \\
& \quad \ldots \\
& \operatorname{im~} N^{1} \subseteq F_{\alpha_{b-1}} \subseteq F_{\beta_{b-1}} \subseteq \operatorname{ker} N^{b-1}
\end{aligned}
$$

If there exists j for which $\max \left\{i_{j}, i_{j}^{\prime}\right\} \geqslant \min \left\{i_{j+1}, i_{j+1}^{\prime}\right\}$ then the flag $F_{\max \left\{i_{j}, i_{j}^{\prime}\right\}}$ would have to contain im N^{b-j-1} yet be contained in ker N^{j}, which is impossible by Lemma 3.3. This proves the emptiness assertion of the lemma.

Now we exhibit the intersection $K_{A} \cap K_{B}=X_{1}$ as an iterated bundle. Define a map $p_{1}: X_{1} \rightarrow B_{1}=G_{\beta_{1}-1}\left(\operatorname{ker} N / \operatorname{im} N^{b-1}\right)$ by $F \mapsto F_{\beta_{1}}$. The typical fiber X_{2} of the map p_{1} consists of all flags F with a fixed $F_{\beta_{1}}$ such that $F_{\alpha_{1}}$ contains the onedimensional space im N^{b-1}. Then there is a map taking X_{2} to the space B_{2}, which consists of all flags inside $F_{\beta_{1}}$ such that $F_{\alpha_{1}}$ contains im N^{b-1}, given by $F_{1} \subset F_{2} \subset \cdots \subset F_{n} \mapsto F_{1} \subset F_{2} \subset \cdots \subset F_{\beta_{1}}$. We described the structure and homology of the space B_{2} in Lemma 3.2 above.

Then the fiber of the map $p_{2}: X_{2} \rightarrow B_{2}$ is in bijection with a certain space of flags in $V / F_{\beta_{1}}$ satisfying (as in the previous theorem) a list of conditions with respect to the quotient map $N_{\beta_{1}}: V / F_{\beta_{1}} \rightarrow V / F_{\beta_{1}}$. As before, these conditions are exactly the ones that specify the intersection of two components of the Springer fiber for $N_{\beta_{1}}$ whose tableaux $A_{\beta_{1}}$ and $B_{\beta_{1}}$ have top rows $n-\beta_{1}, i_{b-1}-\beta_{1}, \ldots, i_{2}-\beta_{1}$ and $n-\beta_{1}, i_{b-1}^{\prime}-\beta_{1}, \ldots, i_{2}^{\prime}-\beta_{1}$, respectively. Thus by descending induction we have our result.

Corollary 4.1. The intersection of the two components in the above theorem has intersection homology Poincaré polynomial equal to

$$
\begin{aligned}
& \binom{[n-b]}{\left[\beta_{1}-1\right]}\left[\beta_{1}-\alpha_{1}\right]!\binom{\left[\beta_{1}-1\right]}{\left[\alpha_{1}-1\right]}\left[\alpha_{1}\right]! \\
& \binom{\left[n-\beta_{1}-b+1\right]}{\left[\beta_{2}-\beta_{1}-1\right]}\left[\beta_{2}-\alpha_{2}\right]!\binom{\left[\beta_{2}-\beta_{1}-1\right]}{\left[\alpha_{2}-\beta_{1}-1\right]}\left[\alpha_{2}-\beta_{1}\right]! \\
& \\
& \quad \ldots\binom{\left[n-\beta_{j-1}-b+j-1\right]}{\left[\beta_{j}-\beta_{j-1}-1\right]}\left[\beta_{j}-\alpha_{j}\right]!\binom{\left[\beta_{j}-\beta_{j-1}-1\right]}{\left[\alpha_{j}-\beta_{j-1}-1\right]}\left[\alpha_{j}-\beta_{j-1}\right]! \\
& \\
& \quad \cdots\binom{\left[n-\beta_{b-2}-2\right]}{\left[\beta_{b-1}-\beta_{b-2}-1\right]}\left[\beta_{b-1}-\alpha_{b-1}\right]!\binom{\left[\beta_{b-1}-\beta_{b-2}-1\right]}{\left[\alpha_{b-1}-\beta_{b-2}-1\right]}\left[\alpha_{b-1}-\beta_{b-2}\right]!\left[n-\beta_{b-1}\right]!
\end{aligned}
$$

This polynomial equals

$$
[n-b]!\left[\alpha_{1}\right]\left[\alpha_{2}-\beta_{1}\right]\left[\alpha_{3}-\beta_{2}\right] \ldots\left[\alpha_{b-1}-\beta_{b-2}\right]\left[n-\beta_{b-1}\right] .
$$

5. Determination of the topology of components of Springer fibers for nilpotent maps of two-row type for $\mathbf{G L}_{n}(\mathbb{C})$

In this section we study the Springer fibers of nilpotent maps N whose Young shapes have at most two rows. Thus N has at most two Jordan blocks. We will find that the components are iterated bundles with $\mathbb{C} \mathbb{P}^{1}$ as base spaces, and we will relate the intersection homology Poincare polynomials of their pairwise intersections to the inner products of the Kazhdan-Lusztig basis. In doing so, we will extend some results of Lorist [21] on the topology of the components of two-row shapes with two boxes in the lower row. We also correct a result of Wolper [30].

Let $N: V \rightarrow V$ be a nilpotent map of two-row type. Recall that a flag F with subspaces $0=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=V$ is fixed by N if for all i, we have $N F_{i} \subseteq F_{i-1}$. Recall that b is defined to be the least positive integer with $N^{b}=0$. Similarly let $b(i)$ be the least positive integer such that $N_{i}^{b(i)}=0$.

Definition 5.1. Suppose $N_{i}: V / F_{i} \rightarrow V / F_{i}$ is a quotient map of a nilpotent map N. Suppose that the subspace F_{j} / F_{i} contains im N_{i}^{k} but not im N_{i}^{k-1}. Then we call im N_{i}^{k} the lowest image contained in F_{j} / F_{i} and we denote this lowest image im N_{i}^{k} by $\operatorname{Lowim}_{i}\left(F_{j}\right)$. (Note that the image of a higher power of N_{i} is a smaller subspace of V / F_{i}.) Similarly, we denote the lowest image of N that is not contained in F_{j} by $\operatorname{Lowim}\left(F_{j}\right)$.

Lemma 5.1. Let N be a nilpotent map of two-row type. Let F_{i} be a subspace of V such that $F_{i} \subseteq \operatorname{im} N$ and $N F_{i} \subset F_{i}$. Then the quotient space $N^{-1}\left(F_{i}\right) / F_{i}$ is two dimensional.

Proof. Since $N F_{i} \subset F_{i}$, we see that indeed $F_{i} \subset N^{-1}\left(F_{i}\right)$. Then the dimensionality of $N^{-1}\left(F_{i}\right) / F_{i}$ is clear from the Jordan form of the map N, since $F_{i} \subseteq \operatorname{im} N$.

Lemma 5.2. Suppose N is a nilpotent map corresponding to a two-row Young shape τ. Let A be a standard tableau of shape τ with top row $n, i_{b-1}, \ldots, i_{1}$. Then every flag F in the Spaltenstein-Vargas subset $\operatorname{SV}(A)$ defined in Theorem 2.1 satisfies the following conditions: $F_{i} \subset N^{-1}\left(F_{i-1}\right)$ and im $N^{b-j} \subseteq F_{i_{j}}$.

Proof. Let the flag F be in the Spaltenstein-Vargas subset $\operatorname{SV}(A)$. Then by construction of SV (A), every subspace clearly satisfies the first condition.

Now we prove the second condition by inspecting the procedure used to specify the flag subspaces of F. Recall that if i is in the $c(i)$ th column of A, then F_{i} / F_{i-1} must lie in $\operatorname{ker} N_{i-1} \cap\left(\operatorname{im} N_{i-1}^{c(i)-1}-\operatorname{im} N_{i-1}^{c(i)}\right)$.

Now we show that if i is on the bottom row of A then, for any flag F in $\operatorname{SV}(A)$, $\operatorname{Lowim}\left(F_{i}\right)=\operatorname{Lowim}\left(F_{i-1}\right)$; in other words, the subspace F_{i} will never contain a lower image than F_{i-1} contains. There are two cases. First suppose the highest nonzero image im $N_{i-1}^{b_{i-1}-1}$ of N_{i-1} is two dimensional. Then F_{i} / F_{i-1} cannot exhaust $\operatorname{im} N_{i-1}^{b_{i-1}-1}$. On the other hand, if the highest image im $N_{i-1}^{b_{i-1}-1}$ is one dimensional, then since the number i is not on the top row of the tableau A, the subspace F_{i} / F_{i-1} must not equal im $N_{i-1}^{b_{i-1}-1}$.

Now note that $F_{1}, \ldots, F_{i_{1}-1}$ do not contain wholly any image of N. To stress our line of argument, note that these subspaces contain the same image of N as $F_{0}=\{0\}$ does. Therefore im $N_{i_{1}-1}^{b-1} \neq 0$. Then by construction, $F_{i_{1}} / F_{i_{1}-1}$ must contain im $N_{i_{1}-1}^{b-1}$. Since $F_{i_{1}}$ also contains $F_{i_{1}-1}$, we see by Lemma 2.2 that $F_{i_{1}}$ must contain im N^{b-1}.

Similarly, $F_{i_{j}}, \ldots, F_{i_{j+1}-1}$ all contain im N^{b-j} and no lower image of N, because each of these subspaces is constructed not to contain the highest image of the previous quotient map; and, as before, $F_{i_{j+1}}$ must contain im N^{b-j-1}. Thus the lemma is proved.

Remark 5.1. Note that the conditions of the lemma are closed and so are satisfied by the closure of the Spaltenstein-Vargas subset $\operatorname{SV}(A)$, which is the entire component K_{A} of the Springer fiber \mathscr{B}_{N}.

Theorem 5.1. Suppose that N is a nilpotent map of two-row type and that A is a standard tableau on the Young shape of N, with top row $n, i_{b-1}, \ldots, i_{1}$. For any i between 1 and n, denote by $T(i)$ and $B(i)$ the lengths of the top and bottom rows of the tableau obtained from A by deleting $1, \ldots, i$. Suppose the flag F is contained in the Spaltenstein-Vargas subset $\operatorname{SV}(A)$. Then the subspace F_{i} contains $\mathrm{im} N^{T(i)}$ and is contained in im $N^{B(i)}$.

Proof. The assertion about $T(i)$ is proven above. As to the assertion about $B(i)$, we proceed by induction on i. First note that F_{1} is contained in $N^{-1}\left(F_{0}\right)$ and therefore
must be contained in the lowest image that has nontrivial intersection with the kernel. By inspecting the Jordan form of N we see that this image is exactly im $N^{B(1)}$.

Now suppose F_{i} is contained in im $N^{B(i)}$. Then there are two possibilities for F_{i+1}. If $i+1$ is on the bottom, then F_{i+1} is within $N^{-1}\left(F_{i}\right) \subseteq N^{-1}\left(\mathrm{im} N^{B(i)}\right)$. Now by the Jordan form, we see that $B(i)$ cannot be greater than the power of the lowest image that contains $\operatorname{ker} N$, so im $N^{B(i)}$ contains ker N. Thus, by Lemma 2.1,

$$
N^{-1}\left(\operatorname{im} N^{B(i)}\right)=\operatorname{im} N^{B(i)-1}=\operatorname{im} N^{B(i+1)} .
$$

Now if $i+1$ is on the top row of the tableau A, then by Theorem 2.1, F_{i+1} / F_{i} is equal to $\left(\operatorname{im} N^{T(i+1)}+F_{i}\right) / F_{i}$. Since $T(i+1) \geqslant B(i)$, the subspace F_{i+1} is still contained in im $N^{B(i)}$.

Theorem 5.2. Let N be a nilpotent map of two-row type, and let A be a standard tableau on the Young shape of A with top row $n, i_{b-1}, \ldots, i_{1}$. Then the component K_{A} of the Springer fiber \mathscr{B}_{N} consists of all flags whose subspaces satisfy the following conditions:

$$
F_{i} \subset N^{-1}\left(F_{i-1}\right) \quad \text { for each } i
$$

and if i is on the top row of the tableau A and $i-1$ is on the bottom row, then

$$
F_{i}=N^{-1}\left(F_{i-2}\right) ;
$$

if i and $i-1$ are both in the top row of A, then if $F_{i-1}=N^{-d}\left(F_{r}\right)$ where r is on the bottom row then

$$
F_{i}=N^{-d-1}\left(F_{r-1}\right)
$$

and if $F_{i-1}=N^{-d}\left(\operatorname{im} N^{b-i}\right)$ where $0 \leqslant i<n-b$ then

$$
F_{i}=N^{-d}\left(\operatorname{im} N^{b-i-1}\right)
$$

The subspaces that are specified as inverse images of other spaces will be called dependent; note that they are exactly the subspaces whose indices are on the top row of the tableau A. The other subspaces are called independent.

Proof. Denote by $K(A)$ the closed subset of flags that satisfy the conditions of the theorem. Note that $K(A) \subseteq \mathscr{B}_{N}$. Let F be a flag in the Spaltenstein-Vargas subset $\operatorname{SV}(A)$. Then we prove by induction on i that each subspace F_{i} of F satisfies the above conditions, so that the flag F lies in $K(A)$. Then we will show below that the closed subset of the theorem is in fact irreducible and of the same dimension as the (nonempty) subset $\operatorname{SV}(A)$. Thus $K(A)$ is exactly the closure of the SpaltensteinVargas subset $\mathrm{SV}(A)$ and is thus the component K_{A} of the Springer fiber \mathscr{B}_{N}.

First we settle the $i=1$ case. Suppose that the number 1 is in the bottom row of A. Then for all F in the Spaltenstein-Vargas subset $\operatorname{SV}(A)$, it is the case that F_{1} must be
in ker N, which is exactly $N^{-1}\left(F_{0}\right)$. If 1 is in the top row then F_{1} must equal the highest image im N^{b-1}; note that $F_{0}=0=N^{-0}\left(\operatorname{im} N^{b}\right)$ so $F_{1}=N^{-0}\left(\mathrm{im} N^{b-1}\right)$. Also note that the highest image must indeed be one-dimensional in order for 1 to be in the top row. This settles the $i=1$ case.

Now suppose that F_{1}, \ldots, F_{i} satisfy the conditions of the theorem. Now the number $i+1$ is either on the bottom row of the tableau A, or on the top row of A. If $i+1$ is on the bottom row of A, then the Spaltenstein-Vargas procedure requires only that F_{i+1} / F_{i} be contained in ker N_{i}, which by Lemma 2.3 equals $N^{-1}\left(F_{i}\right)$.

Now suppose $i+1$ is on the top row of the tableau A. Then the number i is either on the bottom row of A or on the top row. First we will prove that if i is on the bottom row, then $F_{i+1}=N^{-1}\left(F_{i-1}\right)$.

Recall that $F_{i} \subset N^{-1}\left(F_{i-1}\right)$, and F_{i+1} / F_{i} must be the one-dimensional subspace of V / F_{i} which is the highest nonzero image of N_{i}. (Since i was on the bottom row, it is clear that the tableau obtained by deleting $1, \ldots, i$ is not rectangular so the highest image of N_{i} is not two dimensional.)

So F_{i} is in $N^{-1}\left(F_{i-1}\right)=N_{i-1}^{-1}\left(0+F_{i-1}\right)$ and by construction F_{i} / F_{i-1} cannot be all of the highest nonzero image of N_{i-1}. Therefore there must be other vectors $v \in N^{-1}\left(F_{i-1}\right)$ such that $v+F_{i} \neq 0+F_{i}$, and also $v+F_{i-1}$ is in the highest image of N_{i-1}, hence v is in the highest image of N which is in not in F_{i-1}. Then any such v must be in the highest image of N which is not contained in F_{i}. Since $N^{-1}\left(F_{i-1}\right) / F_{i}$ is one-dimensional, this proves that $N^{-1}\left(F_{i-1}\right) / F_{i}$ must be the highest image of N_{i} : $V / F_{i} \rightarrow V / F_{i}$.

Thus we have proven that if i is in the bottom row and $i+1$ is in the top row, then $F_{i+1}=N^{-1}\left(F_{i-1}\right)$.

Now suppose $i+1$ is on the top row, and i is also on the top row. Then by induction either $F_{i}=N^{-d}\left(F_{r}\right)$ where r is on the bottom row, or else $F_{i}=N^{-d}\left(\mathrm{im} N^{a}\right)$ (where $n-b<a \leqslant b$). If r is on the bottom row then, by Theorem 5.1, the lowest image that F_{r} contains is exactly the same as the lowest image that F_{r-1} contains. Therefore $N^{-1}\left(F_{r-1}\right)$ contains one lower image and is of dimension exactly one larger than that of F_{r}. Thus $N^{-d-1}\left(F_{r-1}\right)$ contains exactly one lower image and is of one larger dimension than $N^{-d}\left(F_{r}\right)$.

Otherwise $F_{i}=N^{-d}\left(\operatorname{im} N^{a}\right)$ for some $a>n-b$. Since $a>n-b$, the dimension of $\operatorname{im} N^{a-1}$ is exactly one larger than the dimension of im N^{a}. Thus $N^{-d}\left(\operatorname{im} N^{a-1}\right)$ contains one lower image and is one dimension larger than im N^{a}. So $N^{-d}\left(\operatorname{im} N^{a-1}\right) / F_{i}$ equals the highest nonzero image $\operatorname{im} N_{i}^{b(i)}$ and so $F_{i+1}=$ $N^{-d}\left(\operatorname{im~} N^{a-1}\right)$. Finally, we prove below that $K(A)=\overline{\mathrm{SV}(A)}=K_{A}$.

Proposition 5.1. The closed subset $K(A)$ is irreducible, and $K(A)$ is an iterated bundle of base type $\left(\mathbb{C P} \mathbb{P}^{1}, \ldots, \mathbb{C P} \mathbb{P}^{1}\right)$, where there are as many terms as there are numbers in the bottom row of the tableau A.

Proof. Suppose that the shape of N has exactly two rows (if it has only one row, then K_{A} is a point). Let F be a flag in the component K_{A} of the Springer fiber \mathscr{B}_{N}.

Suppose $F_{j_{1}}$ is the smallest independent subspace of the flag F. Then $F_{j_{1}-1}$ is some fixed subspace of V (necessarily in im N), and $F_{j_{1}} / F_{j_{1}-1}$ can be any point in the fixed space $\mathbb{P}\left(N^{-1}\left(F_{j_{1}-1}\right) / F_{j_{1}-1}\right)=\mathbb{C} \mathbb{P}^{1}$. Set $B_{1}=N^{-1}\left(F_{j_{1}-1}\right) / F_{j_{1}-1}$. The map $p_{1}: K_{A} \rightarrow B_{1}$ given by $F \mapsto F_{j_{1}} / F_{j_{1}-1}$ is then a fiber bundle (it is clearly a proper submersion). The typical fiber X_{2} of the map p_{1} consists of all flags F in K_{A} with the subspace F_{i} fixed, as well as with all subspaces of F that are dependent on $F_{j_{1}}$ fixed. Now find the smallest independent subspace $F_{j_{2}}$ in X_{2}. Again, all subspaces smaller then $F_{j_{2}}$ are dependent, and thus fixed. So we see that $F_{j_{2}} / F_{j_{2}-1}$ can be any point in the fixed space $\mathbb{P}\left(N^{-1}\left(F_{j_{2}-1}\right) / F_{j_{2}-1}\right)=B_{2}$, which defines the bundle projection $p_{2}: X_{2} \rightarrow B_{2}$, with fiber X_{3}. We continue until all independent subspaces are exhausted and the fiber consists of one flag with all subspaces fixed.

Theorem 5.3. Every component K_{A} of the Springer fiber for a nilpotent map of two-row type is an iterated bundle of base type $\left(\mathbb{C P}^{1}, \ldots, \mathbb{C P}^{1}\right)$, where there are as many terms as there are numbers in the bottom row of the tableau A.

Proof. The closed subset $K(A)$ is irreducible, contained in \mathscr{B}_{N}, and clearly has dimension $n-b$, which is the dimension of the nonempty Spaltenstein-Vargas subset $\operatorname{SV}(A)$. Therefore, by standard algebraic geometry, $K(A)$ must equal the component $K_{A}=\overline{\mathrm{SV}(A)}$.

Example 5.1. Consider the standard tableau

$$
\begin{array}{lll}
5 & 4 & 1 \\
3 & 2 &
\end{array}
$$

Then the corresponding component of \mathscr{B}_{N} is the set of flags with $F_{i} \subset N^{-1}\left(F_{i-1}\right)$, and the conditions $F_{1}=\operatorname{im} N^{2}$ and $F_{4}=N^{-1}\left(F_{2}\right)$, which we can write compactly as

$$
\operatorname{im} N^{2} \subset F_{2} \subset F_{3} \subset N^{-1}\left(F_{2}\right) \subset V
$$

Similarly, the standard tableau

$$
\begin{array}{lll}
5 & 3 & 2 \\
4 & 1 &
\end{array}
$$

corresponds to the component

$$
F_{1} \subset N^{-1}\left(F_{0}\right) \subset N^{-1}\left(\operatorname{im} N^{2}\right) \subset F_{4} \subset V .
$$

Example 5.2. Consider the standard tableau

Then the corresponding component of \mathscr{B}_{N} is the set of flags with $F_{i} \subset N^{-1}\left(F_{i-1}\right)$ and

$$
F_{1} \subset F_{2} \subset N^{-1}\left(F_{1}\right) \subset N^{-2}\left(F_{0}\right) \subset V .
$$

Similarly, the standard tableau

$$
\begin{array}{lll}
5 & 4 & 1 \\
3 & 2 &
\end{array}
$$

corresponds to the component with $F_{i} \subset N^{-1}\left(F_{i-1}\right)$ and

$$
\operatorname{im} N^{2} \subset F_{2} \subset F_{3} \subset N^{-1}\left(F_{2}\right) \subset V .
$$

Their intersection is the flag with $F_{i} \subset N^{-1}\left(F_{i-1}\right)$ and

$$
\operatorname{im} N^{2} \subset N^{-1}\left(F_{0}\right) \subset N^{-1}\left(\operatorname{im} N^{2}\right) \subset N^{-2}\left(F_{0}\right) \subset V
$$

In particular, the intersection is not empty, in contrast to the assertions of Wolper [30].

Example 5.3. Consider the standard tableau

$$
\begin{array}{cccccc}
10 & 9 & 8 & 7 & 4 & 3 \\
6 & 5 & 2 & 1 & &
\end{array}
$$

Then the corresponding component of \mathscr{B}_{N} is the set of flags with $F_{i} \subset N^{-1}\left(F_{i-1}\right)$ and

$$
\begin{aligned}
F_{1} & \subset F_{2} \subset N^{-1}\left(F_{1}\right) \subset N^{-2}\left(F_{0}\right) \subset F_{5} \subset F_{6} \\
& \subset N^{-1}\left(F_{5}\right) \subset N^{-4}\left(F_{0}\right) \subset N^{-4}\left(\operatorname{im} N^{5}\right) \subset V .
\end{aligned}
$$

Example 5.4. We show how to recover Lorist's description of the structure of components of Springer fibers of 2-regular nilpotent maps (that is, those nilpotent maps N whose Young shapes have two boxes in the second row). There are two types of components K_{A}, corresponding to whether the numbers on the bottom row of A are consecutive (yielding a non-trivial bundle) or not consecutive (yielding a trivial bundle). If the numbers in the bottom rows A are not consecutive, say $i<j$, then we get

$$
\begin{aligned}
& \operatorname{im} N^{b-1} \subset \operatorname{im} N^{b-2} \subset \operatorname{im} N^{b-i+1} \subset F_{i} \subset N^{-1}\left(\operatorname{im} N^{b-i+1}\right) \subset \cdots \\
& \quad \subset N^{-1}\left(\operatorname{im} N^{b-j+3}\right) \subset F_{j} \subset N^{-2}\left(\operatorname{im} N^{b-j+3}\right) \subset N^{-2}\left(\operatorname{im} N^{b-j+2}\right) \subset \cdots \subset F_{n}
\end{aligned}
$$

If the numbers are consecutive, say $i, i+1$, then we get

$$
\begin{aligned}
& \operatorname{im} N^{b-1} \subset \operatorname{im} N^{b-2} \subset \operatorname{im} N^{b-i+1} \subset F_{i} \subset F_{i+1} \subset N^{-1}\left(F_{i}\right) \subset N^{-2}\left(\operatorname{im} N^{b-i+1}\right) \\
& \quad \subset \cdots \subset F_{n} .
\end{aligned}
$$

Finally, we derive the scholium that the "dependence" on one subspace on another can be thought of as symmetric: if $F_{i}=N^{-d}\left(F_{r}\right)$ in the above theorem, then indeed F_{i} also determines F_{r}; so given either subspace, we can obtain the other. So "independent" can be thought of as "smallest in the chain of dependencies."

Proposition 5.2. Suppose F_{i} is specified as $N^{-d}\left(F_{r}\right)$ in Theorem 5.2. Then the map $N^{d}: F_{i} \rightarrow F_{r}$ is surjective. Thus the subspace F_{i} determines the subspace F_{r}.

Proof. In general, $N\left(N^{-1}(W)\right)=W \cap \operatorname{im} N$. Thus we need only ensure that if F_{i} is specified as $N^{-d}\left(F_{r}\right)$ then in fact $F_{r} \subseteq i m N^{d}$. First note that the process described in the proof of Theorem 5.2 never takes an inverse image of a subspace F_{i} unless $F_{i} \subset \operatorname{im} N$. Furthermore, if $F_{i}=N^{-d}\left(F_{r}\right)$ where F_{r} is independent and $r>0$, then (for F in $\operatorname{SV}(A)$) the subspace F_{r-1} is contained in one higher image of N than F_{r}. So if $N^{-d+1}\left(F_{r}\right) \subset \operatorname{im} N^{k}$, then also $N^{-d}\left(F_{r-1}\right) \subset \operatorname{im} N^{k}$. This last statement holds in the entire component K_{A}. Hence if $F_{i}=N^{-d}\left(F_{r}\right)$ then $F_{r} \subseteq \operatorname{im} N^{d}$, so $N^{d}\left(F_{i}\right)=F_{r}$.

6. Relationship with Kazhdan-Lusztig theory

Let W be a Coxeter group with simple reflections S. Denote the Chevalley-Bruhat order by $<$. Recall $[5,16,18,19]$ that the Kazhdan-Lusztig construction yields elements C_{w}^{\prime} in the Iwahori-Hecke algebra of W, which give distinguished bases for certain representations of the Iwahori-Hecke algebra, called left cell representations, which are associated to certain subsets \mathscr{C} of W called left cells. In particular, this construction yields a distinguished basis for each irreducible representation of the Iwahori-Hecke algebra \mathscr{H}_{n} of the symmetric group S_{n}.
Now recall [7,22] that every irreducible representation M of the Iwahori-Hecke algebra \mathscr{H}_{n} possesses a unique (up to a scalar) nondegenerate symmetric bilinear form \langle,$\rangle that is invariant under \mathscr{H}_{n}$, in the sense that for any $v, v^{\prime} \in M$, we have $\left\langle T_{w} v, v^{\prime}\right\rangle=\left\langle v, T_{w}^{*} v^{\prime}\right\rangle$. (Here, the involution ${ }^{*}: \mathscr{H}_{n} \rightarrow \mathscr{H}_{n}$ is defined by sending $T_{w} \mapsto T_{w^{-1}}$ and then extending linearly.)

Thus, we can consider the inner products of the Kazhdan-Lusztig basis vectors of an irreducible representation with respect to this inner product. We find that they satisfy equations very reminiscent of a possible application of the Beilinson-Bernstein-Deligne-Gabber Decomposition Theorem. To state these relations, first we determine the eigenvectors and eigenvalues of the elements C_{s}^{\prime} (for s a simple reflection) acting by left multiplication on \mathscr{H}_{n}.

Lemma 6.1. The eigenvectors of the map $\mathscr{H}_{n} \rightarrow \mathscr{H}_{n}$ given by left multiplication by C_{s}^{\prime} are given by

$$
C_{w}^{\prime} \quad \text { where } s w<w
$$

and

$$
C_{s}^{\prime} C_{w}^{\prime}-\left(t+t^{-1}\right) C_{w}^{\prime} \quad \text { where } s w>w
$$

Proof. The first follows immediately from the formula for $C_{s}^{\prime} C_{w}^{\prime}$ (see [26]). To see the second, we calculate

$$
C_{s}^{\prime} C_{s}^{\prime} C_{w}^{\prime}-\left(t+t^{-1}\right) C_{s}^{\prime} C_{w}^{\prime}=0
$$

Now note that these eigenvectors span the Iwahori-Hecke algebra \mathscr{H}_{n}.
Lemma 6.2. The eigenvectors for C_{s}^{\prime} on a left cell representation $M_{\mathscr{C}}$ are

$$
c_{w} \quad \text { where } s w<w
$$

and

$$
C_{s}^{\prime} c_{w}-\left(t+t^{-1}\right) c_{w} \quad \text { where } s w>w
$$

Proof. Immediate from Lemma 6.1.
Our equations follow from the following
Lemma 6.3. Let V be a representation of an algebra A. Suppose V is equipped with an invariant symmetric bilinear form \langle,$\rangle . Suppose we have an element a \in A$ with $a=a^{*}$, and let x and y be eigenvectors of a with different eigenvalues. Then x and y are orthogonal; i.e. $\langle x, y\rangle=0$.

Proof. Suppose x has eigenvalue λ and y has eigenvalue ρ under $a \in A$. Then $\langle a x, y\rangle=\lambda\langle x, y\rangle=\langle x, a y\rangle=\rho\langle x, y\rangle$ so if $\lambda \neq \rho$ then $\langle x, y\rangle=0$.

Theorem 6.1. Let \mathscr{C} be a left cell yielding a left cell representation $M_{\mathscr{C}}$. Let 〈, 〉be an invariant nondegenerate symmetric bilinear form on $M_{\mathscr{C}}$. Let s be a simple reflection for W. Then for each pair (x, w) with $s \in L(x)$ and $s \notin L(w)$ (so s descends x but not w), we have an equation between inner products

$$
\left(t+t^{-1}\right)\left\langle c_{x}, c_{w}\right\rangle=\left\langle c_{x}, C_{s}^{\prime} c_{w}\right\rangle
$$

Proof. Given a simple reflection s, we have a large supply of eigenvectors for C_{s}^{\prime} in $M_{\mathscr{G}}$ given by Lemma 6.2, namely c_{x} where $s x<x$ and $\left(t+t^{-1}\right) c_{w}-C_{s}^{\prime} c_{w}$ where $s w>w$. Then for each pair (x, w), we have two eigenvectors of C_{s}^{\prime} with different eigenvalues, so the eigenvectors are orthogonal. Therefore we have the equations as claimed.

In fact, these equations are equivalent to \mathscr{H}_{n}-invariance:
Proposition 6.1. If a bilinear form on a left cell representation satisfies the equations

$$
\left(t+t^{-1}\right)\left\langle c_{x}, c_{w}\right\rangle=\left\langle c_{x}, C_{s}^{\prime} c_{w}\right\rangle
$$

for each pair c_{x}, c_{w} where $s w>w$ and $s x<x$, then the inner product is invariant under the action of C_{s}^{\prime}.

Proof. The inner product of any two vectors can be expressed as a linear combination of inner products of basis vectors, so we are reduced to proving $\left\langle C_{s}^{\prime} c_{x}, c_{w}\right\rangle=\left\langle c_{x}, C_{s}^{\prime} c_{w}\right\rangle$ for each pair (x, w).

There are three cases. If both c_{x} and c_{w} are descended by s, then clearly

$$
\left\langle\left(t+t^{-1}\right) c_{x}, c_{w}\right\rangle=\left\langle c_{x},\left(t+t^{-1}\right) c_{w}\right\rangle
$$

If c_{x} is descended by s but c_{w} is not, then by the equations above

$$
\left\langle C_{s}^{\prime} c_{x}, c_{w}\right\rangle=\left\langle\left(t+t^{-1}\right) c_{x}, c_{w}\right\rangle=\left\langle c_{x}, C_{s}^{\prime} c_{w}\right\rangle
$$

Finally, suppose neither basis vector in $\left\langle c_{x}, c_{w}\right\rangle$ is descended by C_{s}^{\prime}. Then, recalling that $C_{s}^{\prime} c_{x}=\sum_{\substack{y \simeq_{L x} x}} \mu(x, y) c_{y}$, we have

$$
\left(t+t^{-1}\right)\left\langle C_{s}^{\prime} c_{x}, c_{w}\right\rangle=\left\langle C_{s}^{\prime} C_{s}^{\prime} c_{x}, c_{w}\right\rangle=\left\langle C_{s}^{\prime} c_{x}, C_{s}^{\prime} c_{w}\right\rangle
$$

since each term in $C_{s}^{\prime} c_{x}$ is descended by s. Then by a symmetric argument

$$
\left\langle C_{s}^{\prime} c_{x}, C_{s}^{\prime} c_{w}\right\rangle=\left\langle c_{x}, C_{s}^{\prime} C_{s}^{\prime} c_{w}\right\rangle=\left(t+t^{-1}\right)\left\langle c_{x}, C_{s}^{\prime} c_{w}\right\rangle
$$

This completes the proof.
The form of these equations is very similar to the conclusion of the Decomposition Theorem [1,4,11]. This analogy suggests an interpretation in terms of Poincaré polynomials: $\left\langle c_{x}, c_{w}\right\rangle$ as the intersection homology Poincare polynomial of the intersection of two spaces K_{A} and $K_{B},\left(t+t^{-1}\right)$ as a $\mathbb{C P}{ }^{1}$, the left side as a $\mathbb{C P}^{1}$ bundle over $K_{A} \cap K_{B}$, and the right side as terms from the Decomposition Theorem, applied to some map from the total space of the bundle to some space.

Thus, given a W-graph for a left cell representation, we can write down a set of equations that the Gram matrix entries of an \mathscr{H}_{n}-invariant inner product must satisfy, and which determine them up to a common scalar. If we can prove that the

Poincaré polynomials of some collection of spaces satisfy those equations, and we can calculate the Poincare polynomial of one of the spaces, then we can calculate the Poincare polynomials of all the spaces in the collection. We will now do this for Springer fibers of hook and two-row type, where the W-graphs are known explicitly.

The W-graphs for left cells with hook shapes are very easily determined because no two standard tableaux have the same descent set. (See [9, Fact 14] or [6].) Since all left cell representations of \mathscr{H}_{n} for a given Young shape are isomorphic [18, Theorem 1.4], we can label the Kazhdan-Lusztig basis vectors by their tableaux.

Definition 6.1. A standard tableau of hook shape B is adjacent to the standard tableau A via k if B can be obtained from A by exchanging k with either $k+1$ or $k-1$ in the tableau A. Note that exactly one of A and B will have k as a descent.

Note that for each standard tableau A and number k, there are at most two standard tableaux adjacent to A. We denote by $(k-1 k) A$ the tableau obtained by switching k and $k-1$ in A; similarly, $(k k+1) A$ is the tableau obtained from A by switching k and $k+1$.

Therefore, in the case of hook shapes, we can explicitly exhibit the set of equations that the inner products of the Kazhdan-Lusztig basis vectors must satisfy. Using the above description of the Poincare polynomials of the intersection homology of the components of the Springer fibers and their intersections, we will show that the intersection homology Poincaré polynomials of the intersections of the components satisfy the same equations. Since the equations determine the inner product up to a scalar by Proposition 6.1, we will be able to show that the inner product matrix of the Kazhdan-Lusztig basis vectors computes the intersection homology Poincaré polynomials for the pairwise intersections of the components of the Springer fibers for hook shapes.

Theorem 6.2. Suppose A is a hook shape tableau with top row $n, i_{b-1}, \ldots, k, \ldots, i_{1}$, so that the number k is not a descent of the tableau A. Then the Kazhdan-Lusztig basis vector c_{A} transforms as

$$
T_{(k k+1)} c_{A}=-c_{A}+t c_{(k k-1) A}+t c_{(k k+1) A} .
$$

If $(k k+1) A$ or $(k-1 k) A$ is not standard, then omit the corresponding term in the formula above.

If B is a standard tableau that does not have k in the top row then

$$
T_{(k k+1)} c_{B}=t^{2} c_{B}
$$

Proof. Given two different Young tableaux A and A^{\prime} of hook type, there exists a simple reflection that descends A but not A^{\prime}, and a different simple reflection that descends A^{\prime} but not A, because their first columns are distinct. Given a left cell \mathscr{C} of hook type, there is a W-graph for the left cell representation, indexed by elements
of \mathscr{C}. By Humphreys [16, Proposition 7.15], the only edges in the W-graph are those that connect elements of the form x and $s x$, with s a simple reflection. So in particular the only possible W-graph neighbors to A with k as a descent are $(k-1 k) A$ and $(k k+1) A$. Depending on which of $k-1, k+1$ can be interchanged with k in the tableau A, we arrive at the above possibilities.

Lemma 6.4. Given the above tableaux A, B the following are eigenvectors for the action of $C_{(k k+1)}^{\prime}$:

$$
\begin{aligned}
& \left(t+t^{-1}\right) c_{A}-c_{(k k-1) A}-c_{(k k+1) A} \text { with eigenvalue } 0 \\
& c_{B} \quad \text { with eigenvalue }\left(t+t^{-1}\right)
\end{aligned}
$$

If $(k k+1) A$ or $(k-1 k) A$ is not standard, then omit the corresponding term in the formula above.

Proof. This is immediate from Lemma 6.2 and the multiplication formula above.

Theorem 6.3. Suppose we are given a nilpotent map N on V with a Young shape τ of hook type. Let TOP be the standard tableau on the shape τ with top row $n, b-1$, $b-2, \ldots, 1$. Normalize the inner products of the Kazhdan-Lusztig basis vectors so that the norm $\left\langle c_{\mathrm{TOP}}, c_{\mathrm{TOP}}\right\rangle$ has the intersection homology Poincaré polynomial of the Springer fiber component $K_{\text {TOP }}$. Then the inner product $\left\langle c_{A}, c_{B}\right\rangle$ is equal to the intersection homology Poincaré polynomial of the intersection $K_{A} \cap K_{B}$.

To accomplish this, we define maps between certain spaces, from which the Decomposition Theorem asserts that these intersection homology Poincaré polynomials satisfy the equations of the Kazhdan-Lusztig inner products. We need some geometric preliminaries.

Definition 6.2. A subvariety X of the flag manifold $\mathrm{Fl}(V)$ is a union of lines of type k if whenever X contains a flag $F_{1} \subset \cdots \subset F_{k-1} \subset F_{k} \subset F_{k+1} \subset \cdots \subset F_{n}$, then X contains all flags of the form $F_{1} \subset \cdots \subset F_{k-1} \subset F_{k}^{\prime} \subset F_{k+1} \subset \cdots \subset F_{n}$ where F_{k}^{\prime} is between the given subspaces F_{k-1} and F_{k+1}. We will, by analogy with Weyl groups, also say that k is a descent of X. Some authors say that X is k-vertical.

Definition 6.3. Let X be a subvariety of the flag manifold of $\mathrm{GL}_{n}(\mathbb{C})$ and $1 \leqslant k \leqslant$ $n-1$. We will denote by $\mathbb{C P}^{1} \star X$ the variety of pairs

$$
\left\{\left(F_{k}^{\prime}, F\right) \text { where } F \in X \text { and } F_{k}^{\prime} \text { lies between } F_{k-1} \text { and } F_{k+1}\right\} .
$$

This variety admits a map $\phi: \mathbb{C} P^{1} \star X \rightarrow \mathrm{Fl}(V)$ given by mapping $\left(F_{k}^{\prime}, F\right)$ to the flag $F^{\prime}=F_{1} \subset \cdots \subset F_{k-1} \subset F_{k}^{\prime} \subset F_{k+1} \subset \cdots \subset F_{n}$.

Definition 6.4. The image $\phi\left(\mathbb{C P}{ }^{1} \star X\right) \subseteq \operatorname{Fl}(V)$ is called the k-saturation of X; this image is denoted $S_{k}(X)$.

So the k-saturation $S_{k}(X)$ is obtained roughly by taking all flags in X and allowing F_{k} to vary freely within them. Note that $\phi^{-1}(F)$ is a $\mathbb{C P}^{1}$ exactly when F is contained in a line of type k in X.

Lemma 6.5. The space $\mathbb{C P}^{1} \star X$ is a locally trivial fiber bundle over X with fiber $\mathbb{C P}^{1}$ via the obvious map $\left(F_{k}^{\prime}, F\right) \mapsto F$.

Proof. This is clear.

Remark 6.1. We can also rephrase this using a minimal parabolic subgroup P_{k} corresponding to the simple reflection $(k k+1)$. Then the map $\pi: G / B \rightarrow G / P_{k}$ forgets about F_{k}, so the preimage $\pi^{-1}(\pi(X))$ is equal to $\phi\left(\mathbb{C P}^{1} \star X\right)$.

Suppose we have two hook-type standard tableaux A with top row $n, i_{b-1}, \ldots, k=$ i_{j}, \ldots, i_{1} and B with top row $n, i_{b-1}^{\prime}, \ldots, \hat{k}, \ldots, i_{1}^{\prime}$ (that is, k is in the j th position from the right in A, but is not in the top row in B). Then k is a descent of the component K_{B} but not of the component K_{A}. Let the position of k in the top row of A be i_{j}. Then we have the adjacent components $K_{\left(k k_{k-1) A}\right.}$ and $K_{(k k+1) A}$ of the Springer fiber \mathscr{B}_{N} that have k as a descent. Then we shall show that the intersection homology Poincaré polynomial of the k-saturation of the intersection $K_{B} \cap K_{A}$ equals the sum of the intersection homology Poincaré polynomials of $K_{B} \cap K_{(k k-1) A}$ and $K_{B} \cap K_{(k k+1) A}$, and we shall show how this equality can be interpreted in terms of the Decomposition Theorem.

Theorem 6.4. Let N be a nilpotent map of hook type. Let A and B be two standard tableau on the Young shape of N such that k is a descent of B but not of A. Then the intersection $K_{A} \cap K_{B}$ of the two components K_{A} and K_{B} of the Springer fiber \mathscr{B}_{N} is not k-saturated. Then the map ϕ from $\mathbb{C P}^{1} \star\left(K_{A} \cap K_{B}\right)$ to the k-saturation $S_{k}\left(K_{A} \cap K_{B}\right)$ yields an equation of intersection homology Poincaré polynomials

$$
\operatorname{IP}\left(\mathbb{C P} \mathbb{P}^{1} \star\left(K_{B} \cap K_{A}\right)\right)=\operatorname{IP}\left(K_{(k k+1) A} \cap K_{B}\right)+\operatorname{IP}\left(K_{(k-1 k) A} \cap K_{B}\right)
$$

Remember that the intersection homology Poincaré polynomial IP is normalized so that the sum is centered around the degree 0 term.

If either $(k-1 k) A$ or $(k k+1) A$ is not standard, then omit the corresponding term in the above. If both are not standard then the intersection $K_{A} \cap K_{B}$ is empty.

Proof. Suppose that we have the intersection $K_{A} \cap K_{B}$ of two components K_{A} and K_{B} where k is a descent of B but not of A. Let $k=i_{j}$ in A. First, if neither $(k-1 k) A$ or $(k k+1) A$ is standard, then we can check by Theorem 4.1 that the intersection $K_{A} \cap K_{B}$ is empty. In fact, suppose $K_{A} \cap K_{B}$ is nonempty. Then if A has top row
$i_{j+1}=k+1, i_{j}=k$ and $i_{j-1}=k-1$, then $\beta_{j-1}=k-1$ and $\alpha_{j+1}=k+1$. Then in the tableau B, the entry i_{j}^{\prime} must satisfy $k-1<i_{j}^{\prime}<k+1$, but $i_{j}^{\prime} \neq k$ because k is a descent of B, which is a contradiction.

Suppose first that $(k k+1) A$ is standard. Then $i_{j}=k, i_{j-1}<k-1$ and $i_{j+1}>k+1$. Now the term i_{j}^{\prime} in B must satisfy either $i_{j}^{\prime}>k$ or $i_{j}^{\prime}<k$. Suppose now that $i_{j}^{\prime}>k$ (which is only possible when $(k k+1) A$ is standard), so that $k=\alpha_{j}$ and $i_{j}^{\prime}=\beta_{j}$. Then for any $F \in K_{A} \cap K_{B}$, the subspaces of F satisfy

$$
\operatorname{im} N^{b-j} \subset F_{k} \subset F_{k+1} \subset \cdots \subset F_{i_{j}^{\prime}} \subset \operatorname{ker} N^{j}
$$

Note that $K_{A} \cap K_{B}$ has a (Zariski) open subset of flags with im $N^{b-j} \subset F_{k}$ but im $N^{b-j} \not \subset F_{k-1}$. In such flags, F_{k} is determined by F_{k-1} (and im N^{b-j}), so the intersection $K_{A} \cap K_{B}$ is not a union of lines of type k.

So the k-saturation of the intersection $K_{A} \cap K_{B}$ consists of all flags $\cdots F_{k-1} \subset F_{k}^{\prime} \subset F_{k+1} \cdots$, where F_{k}^{\prime} is any subspace between F_{k-1} and F_{k+1}. In particular, F_{k}^{\prime} no longer need contain im N^{b-j}. However, the subspace F_{k+1} must still contain im N^{b-j} in all of the resulting flags. Therefore the k-saturation of $K_{A} \cap K_{B}$ is all flags with

$$
\operatorname{im} N^{b-j} \subseteq F_{k+1} \subset F_{i_{j}} \subseteq \operatorname{ker} N^{j}
$$

and all the other conditions unaffected. Therefore the k-saturation $S_{k}\left(K_{A} \cap K_{B}\right)$ is indeed $K_{(k k+1) A} \cap K_{B}$.

If $(k-1 k) A$ is also standard, then there will be a nonempty subset of $K_{A} \cap K_{B}$ consisting of those flags in the intersection for which

$$
\operatorname{im} N^{b-j} \subset F_{k-1} \subset F_{i_{j}} \subset \operatorname{ker} N^{j}
$$

which clearly corresponds to the intersection $K_{B} \cap K_{(k-1 k) A}$; this subset is a union of lines of type k. The subvariety $K_{B} \cap K_{(k-1 k) A}$ is of codimension 2 in $K_{B} \cap K_{(k k+1) A}$.

Therefore we have a map $\phi: \mathbb{C P}^{1} \star\left(K_{B} \cap K_{A}\right) \rightarrow K_{(k k+1) A} \cap K_{B}$. This map is generically $1-1$. The map ϕ is a semismall resolution, because the subvariety where ϕ has a $\mathbb{C P} \mathbb{P}^{1}$ fiber is exactly $K_{(k-1 k) A} \cap K_{B}$, which is of codimension 2 in the image space $K_{(k k+1) A} \cap K_{B}$, and the domain is nonsingular.

Therefore when we invoke the Decomposition Theorem for semismall maps [3,4], we find that the intersection homology Poincaré polynomial $\operatorname{IP}\left(\mathbb{C P} \mathbb{P}^{1} \star\left(K_{A} \cap K_{B}\right)\right)$ equals the intersection homology Poincare polynomial $\operatorname{IP}\left(K_{(k k+1) A} \cap K_{B}\right)$ of the range, plus the intersection homology $\operatorname{IP}\left(K_{(k-1 k) A} \cap K_{B}\right)$ of the smaller intersection. (Remember that the intersection homology Poincaré polynomial IP is normalized so that all of these sums will be centered around 0 .)

If $(k k+1) A$ is standard but $(k-1 k)$ is not, then $K_{(k-1 k) A} \cap K_{B}$ is empty, so its term is omitted. Finally, if $i_{j}^{\prime}<k$ so $k=\beta_{j}$ (which is only possible if $(k-1 k) A$ is
standard), then the roles of $K_{(k-1 k) A}$ and $K_{(k k+1) A}$ will be reversed in the above argument.

Example 6.1. We have an equality of IP's of the following spaces (where we denote the space K_{A} by its tableau A):

$$
\begin{aligned}
& \mathbb{C P}^{1} \star\left(\begin{array}{llllrlll}
7 & 6 & 3 & 2 & 7 & 5 & 3 & 1 \\
5 & & & & \begin{array}{l}
6 \\
4
\end{array} & & & \\
4 & & & & & & \\
1 & & & & & & &
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
7 & 6 & 3 & 2 & 7 & 6 & 3 & 1 \\
5 & & & & \bigcap_{5}^{5} & & & \\
4 & & & & & & \\
1 & & & & 2 & & &
\end{array}\right)+\left(\begin{array}{rrrrrrrr}
7 & 6 & 3 & 2 & 7 & 4 & 3 & 1 \\
5 & & & & \bigcap_{0} & & & \\
5 & & & & \\
4 & & & & & \\
1 & & & & & & &
\end{array}\right) .
\end{aligned}
$$

For the first intersection, we have

$$
\alpha_{1}=1, \quad \beta_{1}=2, \quad \alpha_{2}=3, \quad \beta_{2}=3, \quad \alpha_{3}=5, \quad \beta_{3}=6
$$

so the computation of the polynomials is

$$
\begin{aligned}
{[2] } & \times[1][7-4]![3-2][5-3][7-6] \\
& =[1][7-4]![3-2][6-3][7-6]+[1][7-4]![3-2][4-3][7-6] .
\end{aligned}
$$

7. Structure of intersections of components of two-row type and the relationship with Kazhdan-Lusztig theory

Now we compute the intersection homology Poincarè polynomials of pairwise intersections of components and then relate them to Kazhdan-Lusztig theory.

Let N be a nilpotent map with a two-row Young shape τ. In this section we prove that the intersection homology Poincare polynomials of the intersections of the components of the Springer fiber \mathscr{B}_{N} coincide with the (appropriately normalized) inner products of the Kazhdan-Lusztig basis vectors of the left cell representation of \mathscr{H}_{n} associated to the Young shape τ.

The Kazhdan-Lusztig inner product matrix has been studied for left cell representations of two-row type because they yield the representations of the socalled Temperley-Lieb algebra [29]. We shall understand how the combinatorics of the Temperley-Lieb algebra representations encodes the structure of the intersections of components of the Springer fiber.

First, let us review some notions from Temperley-Lieb theory [29].

Definition 7.1. Suppose we have the numbers 1 to n on a horizontal line, increasing to the right. Then an (n, p)-cup diagram consists of p cups on these numbers, where each cup connects two numbers, no two cups intersect each other, and no number is underneath a cup and yet not connected to any cup. The entire cup diagram must lie in one half-plane.

Lemma 7.1. Suppose τ is a Young shape with n boxes and $n-b$ boxes in the second row. Then there is a bijection between standard Young tableaux on τ and $(n, n-b)$-cup diagrams. This bijection is denoted $A \rightarrow \operatorname{CupD}(A)$.

Proof. Let A be a standard tableau of shape τ. We construct a cup diagram as follows. Begin at the number 1 on the horizontal line. Proceed from left to right, starting a cup at i if the number i is on the bottom row of A, and ending a cup if i is on the top row by matching the number i with the closest started cup that can be matched with i. All unpaired ends of cups are then left blank (these are called orphaned numbers). It is easily seen that this procedure produces a bijection between cup diagrams and two-row tableaux.

Example 7.1. The (7,3) cup diagram

corresponds to the standard Young tableau

$$
\begin{array}{llll}
7 & 5 & 4 & 3 \\
6 & 2 & 1 &
\end{array}
$$

Lemma 7.2. A two-row standard tableau A has a descent at i if and only if the associated cup diagram $\operatorname{CupD}(A)$ has a cup connecting i and $i+1$. Such a cup will be called a minimal cup.

Proof. The tableau A has a descent exactly when i is on the bottom row and $i+1$ is on the top row. This is the case exactly when there is cup connecting the numbers i and $i+1$ in the cup diagram $\operatorname{CupD}(A)$.

We shall exhibit a correspondence between the cup diagram $\operatorname{CupD}(A)$ and the dependencies among the subspaces of the flags in the component K_{A}. First, let us extend the cup diagram $\operatorname{CupD}(A)$ by adding the numbers $0,-1, \ldots,-(n-b)$ to the left of the numbers $1, \ldots, n$. Now match each orphaned number in the cup diagram, working from left to right, to the closest possible negative number. This creates an extended cup diagram that we label $\operatorname{ECupD}(A)$. Note that there are no additional
choices here so these extended cup diagrams are still in bijection with the standard tableaux. For a point i which is an endpoint of a cup, denote by $\sigma(i)$ the other endpoint of the cup.

Definition 7.2. Given a cup diagram $\operatorname{CupD}(A)$ and an index i at which a cup begins or ends, we denote by $\operatorname{Cup}_{A}(i)$ the cup that begins or ends at i.

Recall that a subspace F_{i} in a component K_{A} is called dependent if F is specified by Theorem 5.2 as the inverse image of some smaller subspace (equivalently, the number i is on the top row of A), and is said to depend on that smaller space. Otherwise the subspace is called independent.

Remark 7.1. For $-(n-b) \leqslant i<0$, we interpret F_{i} to mean im N^{b-i}.
Definition 7.3. A cup Cup_{1} lies directly beneath a cup Cup_{2} if Cup_{1} is beneath Cup_{2} and there are no other cups that lie both above Cup ${ }_{1}$ and below Cup_{2}.

Theorem 7.1. Consider a nilpotent map N and a two-row standard tableau A on the Young shape of N. Then the extended cup diagram $\operatorname{ECupD}(A)$ encodes the dependencies among the subspaces of the flags in K_{A} as follows. If a cup begins at i, then F_{i} is independent. If a cup ends at i then F_{i} is an inverse image of $F_{\sigma(i)-1}$ (interpreted using Remark 7.1).

Proof. Let $i>0$. First, note that F_{i} is independent iff the number i is on the bottom row of the tableau A. This is true iff i starts a cup in $\operatorname{ECupD}(A)$. The subspace F_{i} is dependent on a smaller subspace iff i ends a cup in $\operatorname{ECupD}(A)$.

Now suppose F_{i} is dependent. We apply the characterization of Theorem 5.2. Let us proceed by induction on the length $|\sigma(i)-i|$ of the cup $\operatorname{Cup}_{A}(i)$. If $i-1$ is independent, then F_{i} is equal to $N^{-1}\left(F_{i-2}\right)$. On the other hand, $i-1$ starts a cup and i ends the cup, so there must be a minimal cup connecting $i-1$ and i, and so $i-2=\sigma(i)-1$. This proves the $|\sigma(i)-i|=1$ case.

Now suppose that i is dependent and $i-1$ is also dependent. Then, since cups cannot cross, we see that $\sigma(i)<\sigma(i-1)$, so that the cup $\operatorname{Cup}_{A}(i-1)$ is shorter than the $\operatorname{cup} \operatorname{Cup}_{A}(i)$. Now note that all numbers under the cup $\operatorname{Cup}_{A}(i)$ must either begin or end a cup. So if $\sigma(i-1) \neq \sigma(i)+1$, then there must exist a sequence of adjacent cups directly beneath $\operatorname{Cup}_{A}(i)$ beginning at $\sigma(i)+1$ and ending at $\sigma(i-1)-1$. Then by induction, the space F_{i-1} depends on the independent subspace $F_{\sigma(i)}$, so by Theorem 5.2 the subspace F_{i} depends on the subspace $F_{\sigma(i)-1}$.

Proposition 7.1. Suppose $i>0$ begins a cup in $\operatorname{CupD}(A)$. If a subspace F_{j} depends on the (independent) subspace F_{i}, then $i<j<\sigma(i)$; that is, j lies strictly under the cup that begins at i. In fact, if j is the end of a cup that lies directly beneath $\operatorname{Cup}_{A}(i)$ then F_{j} depends in F_{i}.

Proof. Note first that $j>i$ since F_{j} depends on the independent subspace F_{i}. Recall that since F_{j} is dependent, j ends a cup, and F_{j} depends on the subspace $F_{\sigma(j)-1}$. Either that subspace is independent, or $\sigma(j)-1$ ends another cup so $F_{\sigma(j)-1}$ depends on $\sigma(\sigma(j)-1)-1$, and so forth.

If $j>i$ and j does not lie strictly under the cup starting at i then either $\sigma(j)<i$ or $\sigma(j)>\sigma(i)$ so $\sigma(j)-1$ cannot lie strictly under the cup either. If $\sigma(j)-1=\sigma(i)$ then F_{j} depends on F_{i-1} and thus not on F_{i}. So, $F_{\sigma(j)-1}$ cannot depend on F_{i} unless $i<j<\sigma(i)$.

As to the last assertion, note that if j ends a cup lying directly beneath $\operatorname{Cup}_{A}(i)$, then F_{j} must depend on $F_{\sigma(j)-1}$. Then $\sigma(j)-1$ must also end a cup lying directly beneath $\operatorname{Cup}_{A}(i)$ unless $\sigma(j)-1=i$. This completes the proof.

Now we demonstrate that the pairwise intersections of components of the Springer fiber \mathscr{B}_{N} satisfy the equations for the Kazhdan-Lusztig inner products. Suppose A is a standard tableau on the shape of N. Suppose i is not a descent of A (so it is not the case that i is on the bottom row and $i+1$ is on top). The assertion that i is not a descent is equivalent to the assertion that there is not a cup joining i and $i+1$. Then, we can manufacture a cup diagram having i as a descent.

Definition 7.4. Suppose $\operatorname{CupD}(A)$ is a cup diagram that does not have a minimal cup connecting i and $i+1$. Suppose $\sigma(i) \neq i$ and $\sigma(i+1) \neq i+1$. Then the cup diagram $\operatorname{CupD}\left(u_{i} A\right)$ is defined by deleting the cups with endpoints at i and $i+1$, then connecting i and $i+1$ with a minimal cup and connecting $\sigma(i)$ to $\sigma(i+1)$ with another cup. If exactly one of $\sigma(i)=i$ or $\sigma(i+1)=i+1$, then we only insert the cup between i and $i+1$. If both $\sigma(i)=i$ and $\sigma(i+1)=i+1$ then $\operatorname{CupD}\left(u_{i} A\right)$ does not exist. Note that this definition also defines a standard tableau $u_{i} A$.

In [29] it is proven that the tableau $u_{i} A$ gives the unique W-graph neighbor to A that has i as a descent; if this tableau $u_{i} A$ does not exist, then there are no neighbors to A in the W-graph with i as a descent. We now show that if we i-saturate the intersection $K_{A} \cap K_{B}$ (where K_{B} is descended by i) then we get the intersection $K_{u_{i} A} \cap K_{B}$.

Theorem 7.2. Let N be a nilpotent map of two-row type. Consider two standard tableaux A and B on the Young shape of N such that i descends B but not A. Suppose $u_{i} A$ is the unique W-graph neighbor to A that has i as a descent. Then the intersection Poincaré polynomials of the intersections satisfy the following equality:

$$
\left(t+t^{-1}\right) \operatorname{IP}\left(K_{A} \cap K_{B}\right)=\operatorname{IP}\left(K_{u_{i} A} \cap K_{B}\right)
$$

If there is no such neighbor $u_{i} A$ then the intersection $K_{A} \cap K_{B}$ is empty.
Proof. We shall show that the i-saturation $\mathbb{C P}^{1} \star\left(K_{A} \cap K_{B}\right)$ of the intersection $K_{A} \cap K_{B}$ has F_{i} independent, but all other dependencies among the other subspaces
are the same as in $K_{A} \cap K_{B}$. This will prove the theorem. We use the fact that if F_{j} depends on F_{i}, then we can also determine F_{i} from knowledge of F_{j} (Proposition 5.2).

There are several cases; first note that in all cases, $F_{i+1}=N^{-1}\left(F_{i-1}\right)$ because this dependency holds in K_{B}.

1. Suppose $\sigma(i+1)<\sigma(i)<i<i+1$ in A. First, for a flag F in the component K_{A}, we see that F_{i+1} depends on $F_{\sigma(i+1)-1}$. Because $F_{i+1}=N^{-1}\left(F_{i-1}\right)$ in K_{B}, we see that F_{i+1} must depend on F_{i-1}. Now in the component K_{A}, the number $i-1$ is either equal to $\sigma(i)$, or $i-1$ lies at the end of a cup lying directly under $\operatorname{Cup}_{A}(i)$. So the subspace F_{i-1} depends on the subspace for the start of the cup $\operatorname{Cup}_{A}(i)$, namely $F_{\sigma(i)}$. Thus F_{i+1} depends on $F_{\sigma(i)}$. Since F_{i+1} depends on $F_{\sigma(i+1)-1}$ in K_{A}, we see that $F_{\sigma(i)}$ must depend on $F_{\sigma(i+1)-1}$ in the intersection $K_{A} \cap K_{B}$.

Then in the transformed tableau $u_{i} A$, we now have a cup connecting $\sigma(i+1)$ to $\sigma(i)$ and one connecting i to $i+1$. This means that for any flag F in the component $K_{u_{i} A}, F_{\sigma(i)}$ is dependent on $F_{\sigma(i+1)-1}$. Thus the intersection $K_{u_{i} A} \cap K_{B}$ will have all the same dependencies between subspaces as $K_{A} \cap K_{B}$ does, except that $K_{u_{i} A} \cap K_{B}$ will be i-saturated.
2. Suppose $\sigma(i)<i<i+1<\sigma(i+1)$. Then in K_{A}, the subspace F_{i} depends on $F_{\sigma(i)-1}$, and $F_{\sigma(i+1)}$ depends on F_{i} and thus on $F_{\sigma(i)-1}$.

Now for any flag F in $K_{u_{i} A}$, the subspace $F_{\sigma(i+1)}$ depends on $F_{\sigma(i)-1}$ as well. No dependency is imposed on F_{i+1} that was not present in $K_{A} \cap K_{B}$.
3. Suppose $i<i+1<\sigma(i+1)<\sigma(i)$. Then for any flag F in the component K_{A}, the subspace $F_{\sigma(i)}$ depends on F_{i-1}, and the subspace $F_{\sigma(i+1)}$ depends on F_{i}. Also $\sigma(i+$ 1) -1 is either $i+1$ or is the end of a cup directly under $\operatorname{Cup}_{A}(i+1)$. So, by Proposition 7.1, the subspace $F_{\sigma(i+1)-1}$ depends on F_{i+1}. Thus in the intersection $K_{A} \cap K_{B}$, the subspace $F_{\sigma(i+1)-1}$ depends on F_{i-1}.

Then in $K_{u_{i} A}$, we have that $F_{\sigma(i)}$ depends on $F_{\sigma(i+1)-1}$. By the same chain of dependencies, $F_{\sigma(i+1)-1}$ depends on F_{i+1} and thus on F_{i-1}, so $F_{\sigma(i+1)-1}$ depends on F_{i-1}. Finally, the subspace $F_{\sigma(i+1)}$ (which in K_{A} depended on F_{i}) does not depend in $K_{u_{i} A}$ on F_{i}.
4. Note that the above two arguments are identical if exactly one of $\sigma(i)$ and $\sigma(i+1)$ is negative.
5. Finally, if both $\sigma(i)$ and $\sigma(i+1)$ are negative, then in the original cup diagram $\operatorname{CupD}(A)$, both i and $i+1$ are orphans. This is exactly the case where there is no W graph neighbor to A having i as a descent (see [29]). So we show that the intersection $K_{A} \cap K_{B}$ has to be empty. In the component K_{B} where i is a descent, $F_{i+1}=$ $N^{-1}\left(F_{i-1}\right)$ and so F_{i+1} is chosen to contain exactly one lower image than F_{i-1} as well as F_{i}.

On the other hand, consider a flag F in the component K_{A} where i is not a descent. In the original cup diagram $\operatorname{CupD}(A)$, both i and $i+1$ are orphans. Therefore F_{i-1} is also dependent (otherwise $i-1$ would have to connect to i). So F_{i} is chosen to contain exactly one lower image than F_{i-1}, and in fact $F_{i}=N^{-k}\left(\operatorname{im} N^{j}\right)$ for some j, k. Then F_{i+1} is chosen to contain exactly one lower image than F_{i} and in fact $F_{i}=$ $N^{-k}\left(\operatorname{im} N^{j-1}\right)$. Thus, in K_{A}, the subspace F_{i+1} must contain two lower images than
F_{i-1}. But in K_{B}, the subspace F_{i+1} must contain exactly one lower image then F_{i-1}. Therefore there are no flags in the intersection $K_{A} \cap K_{B}$.

The following diagram illustrates the possibilities; in each case, the relevant subdiagrams of the cup diagrams $\operatorname{CupD}(A)$ and $\operatorname{CupD}\left(u_{i} A\right)$ are on the top left and top right respectively. The relevant subdiagram of $\operatorname{CupD}(B)$ is on the bottom in all cases.

$$
5 \varlimsup_{i+l=\sigma(i+1)}
$$

\varnothing

Now we have demonstrated in all cases that the i-saturation of $K_{A} \cap K_{B}$ is indeed equal to $K_{u_{i} A} \cap K_{B}$. Since K_{A} is not a union of lines of type i, the conclusion of Theorem 5.2 ensures that K_{A} has no subvariety that consists of lines of type i. Thus the Decomposition Theorem yields the conclusion of the theorem.

As a complement, we describe the computation of the inner product matrix of the Kazhdan-Lusztig basis for a two-row shape.

Theorem 7.3 (Westbury [29], Graham-Lehrer [13]). Let τ be a two-row Young shape, and let A and B be two standard tableaux on the shape of τ. Consider the diagram formed by placing the cup diagram $\operatorname{CupD}(A)$ above the horizontal line, and $\operatorname{CupD}(B)$ below. Suppose the diagram contains r closed loops, and also that the endpoints of each open arc are pointing in opposite directions. Then the inner product of two KazhdanLusztig basis vectors c_{A} and c_{B} is $\left\langle c_{A}, c_{B}\right\rangle=\left(t+t^{-1}\right)^{r}$. If an open arc in the diagram has both ends pointing in the same direction, then the inner product is 0.

Proof. See Westbury [29, Sections 5 and 7] and Graham-Lehrer [13, Section 6]. Note that their answer differs from ours by a sign because they use the other KazhdanLusztig basis arising from the elements C_{w}.

Conjecture 7.1. Based on the strong evidence of the above calculations, we conjecture that the pairwise intersection of components of Springer fibers of two-row type are also iterated $\mathbb{C P}{ }^{1}$ bundles. It would suffice to show that each pairwise intersection admits a description of the same form as Theorem 5.2. Of course, Theorem 5.2 shows that the intersection of two components consists of all flags that satisfy the descriptions of both components simultaneously. So it remains to show that there is a single description of the same form for the intersection.

8. Further speculations

Much research into the relation between the Kazhdan-Lusztig basis and the Springer fibers for $\mathrm{GL}_{n}(\mathbb{C})$ has been stimulated by the conjecture in KazhdanLusztig [18, 6.3] which states that with the tableau labelings of the Springer fiber components and the Kazhdan-Lusztig basis vectors, the codimension 1 pairwise intersections of the components yield the edges of the left cell W-graphs. It was also conceivable that the Springer basis and the Kazhdan-Lusztig basis were the same at the level of S_{n}, and that perhaps there was a way to get an Iwahori-Hecke algebra action on the Springer basis [25].

Recent work of Kashiwara-Saito [17] disproved a conjecture concerning irreducibility of a certain characteristic variety, which implies that the Springer and Kazhdan-Lusztig bases are indeed different at the S_{n} level, and disproves Conjecture 6.3 in general.

For hook shapes, the Kazhdan-Lusztig basis is known to coincide with the Springer basis for S_{n} (see [14]); the Conjecture [18, 6.3] also holds for two-row shapes, because of the equations established in Section 5 and the work of LascouxSchützenberger [20] (see also [29,30]). In fact, for representations of S_{n} labeled by hooks and two-rows (and all left cells for which the Bruhat order coincides with the weak Bruhat order), Kazhdan and Lusztig [18, 6.3] is known in the sense that Hotta's transformation formula (see [2,15]) for the Springer basis coincides with the Kazhdan-Lusztig transformation formula (see [8]).

It is not yet clear how the results of this dissertation fit into the framework of the above results and counterexamples. The Kazhdan-Lusztig inner products, properly normalized, are always polynomials that are symmetric around 0 ; that is, invariant with respect to the map $t \rightarrow t^{-1}$. So we would like them to correspond to a method of associating a symmetric Poincaré polynomial to each component (and to each pairwise intersection of components) of the Springer fiber. In the cases in this work, all components and intersections were nonsingular, so the homology Poincare polynomials were already symmetric, once shifted appropriately. A natural choice for a symmetric Poincaré polynomial associated to a singular variety is the intersection homology Poincaré polynomial. In the nonsingular case, intersection homology coincides with ordinary homology, except for the shift. Also, intersection homology satisfies the crucial Decomposition Theorem [1]. However, it appears that the natural conjecture extending Theorems 6.2 and 7.2 using intersection homology
alone is not correct. The first example of a singular component arises in S_{6} (see $[24,28])$. This component X is specified in our notation by the tableau

$$
\begin{array}{ll}
6 & 4 \\
5 & 2 \\
3 & \\
1 &
\end{array}
$$

and X can be given the following description. The component X consists of flags F such that $F_{2} \subset \operatorname{ker} N, F_{2} \cap \mathrm{im} N$ has dimension at least 1, $F_{4} \cap$ ker N has dimension at least $3, F_{4} \subset N^{-1}\left(F_{2}\right)$, and $\operatorname{im} N \subset F_{4}$. In the Spaltenstein-Vargas subset for this component, $F_{2} \cap \mathrm{im} N$ is a one-dimensional space p and F_{4} is chosen in $N^{-1}(p)$ to contain im N. Since F_{4} and ker N are both four-dimensional subspaces of the fivedimensional space $N^{-1}(p)$, their intersection $F_{4} \cap \operatorname{ker} N=\mathrm{PL}$ must have at least dimension 3 and contain im N.

The singular set of the component X consists of those flags such that $F_{2}=\operatorname{im} N$ and $F_{4}=$ ker N. In those cases, the one-dimensional subspace p is no longer uniquely determined, nor is the three-dimensional space PL. If, for each flag in X, we choose a one-dimensional subspace in im $N \cap F_{2}$ and a three-dimensional subspace in $F_{4} \cap \operatorname{ker} N$, then the resulting space \tilde{X} of such triples is a resolution of singularities of X. Also, the fiber over a point in the singular set is a $\mathbb{C P}{ }^{1} \times \mathbb{C} \mathbb{P}^{1}$. The singular set has complex codimension 4. Thus the resolution is semismall.

We can see that space \tilde{X} has homology Poincaré polynomial equal to [2][2][2][2][2][2][2] as follows. The choice of a one-dimensional subspace p in im N is a $\mathbb{C P} \mathbb{P}^{1}$. Then the choice of a three-dimensional space PL in ker N, containing im N, is a $\mathbb{C P}{ }^{1}$. Then the choice of a two-dimensional space F_{2} containing p and contained in PL is a $\mathbb{C P}^{1}$. The choice of a space F_{4} containing PL and contained in the fivedimensional space $N^{-1}(p)$ is another $\mathbb{C P}{ }^{1}$. Finally, since X is a union of lines of types 1,3 , and 5 , the other choices each contribute a $\mathbb{C P}^{1}$. This exhibits \tilde{X} as an iterated fiber bundle.

The semismall Decomposition Theorem says that the intersection homology Poincare polynomial $\operatorname{IP}(\tilde{X})$ of the resolution \tilde{X} equals the sum of IP's of strata of X, each with multiplicity equal to the number of components of the fiber over the point in the stratum. So we can compute $\operatorname{IP}(X)$, since we know that the fiber over each point in the stratum $\mathbb{C P}^{1} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$. Thus $[2][2][2][2][2][2][2]=$ $\operatorname{IP}(X)+[2][2][2]$. However, the entry in our normalized inner product matrix is [2][2][2][2][2][2][2], which is larger than the homology Poincaré polynomial of \tilde{X}.

However, this suggests that perhaps the inner products correspond to some other semisimple perverse sheaves (see [23]) in the intersection $K_{A} \cap K_{B}$, since semisimple perverse sheaves also satisfy the Decomposition Theorem and have symmetric Poincare polynomials. We also have examples of inner products (from the same shape as the above example) that are the sum of intersection homology Poincare polynomials of multiple irreducible components of the corresponding intersection of
two components of the Springer fiber. This lends further weight to the idea of using semisimple perverse sheaves on the intersection $K_{A} \cap K_{B}$ of two components of the Springer fiber, since the appropriate Poincaré polynomial is obtained by summing the Poincaré polynomials of the irreducible components of the intersection $K_{A} \cap K_{B}$. The data also suggests that it would be worthwhile to investigate the structure of resolutions of singularities of components of Springer fibers.

There is now W-graph data available up to S_{15} (see [23]) and it would be interesting to compute the inner products of the Kazhdan-Lusztig basis vectors from them. For instance, one could check whether they satisfy the Hard Lefschetz theorem.

There is of course more to be done on the computation of the topology of the components of the Springer fibers. The techniques exposed here exploit the relative simplicity of the structures of the nilpotent maps for hook and two-row types. It would be interesting to understand these components better. Even in the two-row case, it would be worthwhile to gain more information on the structure of the fiber bundles, for instance extensions of Lorist's theorem [21] concerning the e-invariants of the nontrivial $\mathbb{C} \mathbb{P}^{1}$ bundles.

We believe that further study of the Kazhdan-Lusztig inner products and their relation to the components of Springer fibers will prove to be fruitful, and that there are many questions left to be answered here.

Acknowledgments

This paper represents part of a dissertation written under the direction of Professor Robert MacPherson at the Institute for Advanced Study. The author takes this opportunity to express gratitude for his unwavering support, guidance and enthusiasm. The author also acknowledges Tom Braden, Maria Fung, Mikhail Grinberg, Mark Goresky, Arun Ram, Tonny Springer, and the anonymous referee for many helpful discussions and comments. The author was partially supported by an NDSEG fellowship during his graduate studies at Princeton University.

References

[1] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171.
[2] W. Borho, J.-L. Brylinski, R. MacPherson, Primitive Ideals, Nilpotent Orbits, and Characteristic Classes, Birkhäuser, Boston, 1989.
[3] W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, in: Analyse et topologie sur les espaces singuliers, II, III (Luminy, 1981), Astérisque, Vols. 101-102, Soc. Math. France, Paris, 1983, pp. 23-74.
[4] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, New York, 1996.
[5] C.W. Curtis, Representations of Hecke algebras, in: Orbites unipotents et représentations, Astérisque, Vol. 168, Soc. Math. France, pp. 13-60.
[6] C.W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 81-116.
[7] R. Dipper, G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1) (1986) 20-52.
[8] J. Matthew Douglass, W-graphs and irreducible components of the flag variety, preprint.
[9] A.M. Garsia, T.J. McLarnan, Relations between Young's natural and the Kazhdan-Lusztig representations of S_{n}, Adv. in Math. 69 (1) (1988) 32-92.
[10] M. Goresky, R. MacPherson, Intersection homology theory, Topology 19 (2) (1980) 135-162.
[11] M. Goresky, R. MacPherson, On the topology of complex algebraic maps, Algebraic geometry (La Rábida, 1981), Lecture Notes in Mathematics, Vol. 961, Springer, Berlin-New York, 1982, pp. 119-129.
[12] M. Goresky, R. MacPherson, Intersection homology II, Invent. Math. 72 (1) (1983) 77-129.
[13] J.J. Graham, G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1) (1996) 1-34.
[14] J.J. Güemes, On the homology classes for the components of some fibres of Springer's resolution, in: Orbites Unipotentes et représentations III, Astérisque, Vols. 173-174, Soc. Math. France, Paris, 1989, pp. 257-269.
[15] R. Hotta, On Joseph's construction of Weyl group representations, Tôhoku Math. J. (2) 36 (1) (1984) 49-74.
[16] J.E. Humphreys, Reflection Groups and Coxeter Groups, in: Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.
[17] M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1) (1997) 9-36.
[18] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (2) (1979) 165-184.
[19] D. Kazhdan, G. Lusztig, Schubert varieties and Poincare duality, in: Geometry of the Laplace operator, Proceedings of the Symposium on Pure Mathematics, Vol. XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 185-203.
[20] A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan et Lusztig pour les grassmanniennes, in: Tableaux de Young et functors de Schur en algèbre et géométrie (Toruń, 1980), Astérisque, Vol. 87-88, Soc. Math. France, Paris, 1981, pp. 249-266.
[21] P. Lorist, The geometry of \mathscr{B}_{x}, Proc. Nederl. Akad. Wetensch. A 89 (4) (1986) 423-442.
[22] G.E. Murphy, The representations of Hecke algebras of type A_{n}, J. Algebra 173 (1995) 97-121.
[23] M. Ochiai, F. Kako, Computational construction of W-graphs of Hecke algebras $H(q, n)$ for n up to 15, Exp. Math. 4 (1) (1995) 61-67.
[24] N. Spaltenstein, The fixed point set of a unipotent transformation of the flag manifold, Proc. Kon. Ak. Wet. Amsterdam 79 (5) (1976) 452-456.
[25] T.A. Springer, Trigonometric sums, Green functions of finite groups, and representations of Weyl groups, Invent. Math. 36 (1976) 173-207.
[26] T.A. Springer, Quelques applications de la cohomologie d'intersection, in: Séminaire Bourbaki, Vol. 1981/1982, Astérisque, Vols. 92-93, Soc. Math. France, Paris, 1982, pp. 249-273.
[27] T.A. Springer, On representations of Weyl groups, in: Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj Prakashan Press, Madras, 1991, pp. 517-536.
[28] J.A. Vargas, Fixed points under the action of unipotent elements of $S L_{n}$ in the flag variety, Boll. Soc. Math. Mex. 24 (1) (1979) 1-14.
[29] B. Westbury, The representation theory of the Temperley-Lieb algebras, Math. Z. 219 (4) (1995) 539-565.
[30] J. Wolper, Some intersection properties of the fibres of Springer's resolution, Proc. Amer. Math. Soc. 91 (2) (1984) 182-188.

[^0]: *Current address: 1010 NE Kirsten Place, Corvallis, OR 97330, USA.
 E-mail address: fycfung@alumni.princeton.edu.

