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Abstract

We describe the irreducible components of Springer fibers for hook and two-row nilpotent

elements of glnðCÞ as iterated bundles of flag manifolds and Grassmannians. We then relate

the topology (in particular, the intersection homology Poincaré polynomials) of the pairwise

intersections of these components with the inner products of the Kazhdan–Lusztig basis

elements of irreducible representations of the rational Iwahori–Hecke algebra of type A

corresponding to the hook and two-row Young shapes.
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1. Introduction

Let V be a finite-dimensional complex vector space. A nilpotent linear map N :
V-V is said to fix a flag F ¼ fF0CF1C?CFn�1CVg if NFiDFi�1 for each i: The
variety BN of all flags in the flag manifold FlðVÞ fixed by a nilpotent map N is a
Springer fiber. Such varieties arise as fibers of Springer’s resolution of singularities of
the nilpotent cone of a reductive algebraic group G:
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Springer [25,27] discovered a method of constructing irreducible representations of
Weyl groups on the top homology of BN : For each irreducible representation, his
construction yields a distinguished basis given by homology classes of the
components of the Springer fiber BN : However, since their mere existence yields
the distinguished basis, it seems that efforts to understand them have not focused on
computations of their internal topological structure or that of their pairwise
intersections. Only a few papers (such as [24,28,30,21,14]) have studied the topology
of the components of the Springer fibers BN and their pairwise intersections. We
extend some of these results to describe the homological structure of components of
BN and their pairwise intersection for certain types of nilpotent maps N (those
corresponding to hook and two-row shape partitions). In these cases, the
components are nonsingular, and in fact are iterated bundles of flag manifolds
and Grassmannians. For more general nilpotent maps N; the components can be
singular (see [28,24]) and much more complicated.
We also relate our computations to the structure of the Kazhdan–Lusztig bases of

certain representations of Iwahori–Hecke algebras of type A: The inner products of

these basis vectors, suitably normalized, are polynomials in t and t�1 that are

invariant under the map t-t�1:We show that for irreducible representations labeled
by a hook or two-row shape, the (suitably normalized) inner products equal the
intersection homology [10,12] Poincaré polynomials of pairwise intersections of
irreducible components of Springer fibers of the general linear group. We believe it
would be very interesting to understand how our results might generalize to bases of
other Kazhdan–Lusztig representations of type A:

2. Some properties of nilpotent maps and Springer fibers

We record some properties of nilpotent maps and of the space of all flags BN fixed
by a nilpotent map N; which is called the Springer fiber of N: A theorem of Vargas
and Spaltenstein [24,28] decomposes the space BN into a disjoint union of locally
closed subspaces, whose closures are the irreducible components of the space BN :
Let N : V-V be a nilpotent map of a vector space V over C: Let b be the least

positive integer for which Nb ¼ 0: Then we have two filtrations of subspaces on V :

the image filtration imNb ¼ 0CimNb�1Cim Nb�2C?Cim N1CV ¼ im N0 and

the kernel filtration ker N0 ¼ 0Cker NCker N2C?Cker Nb�1CV ¼ ker Nb (with
proper inclusions).

Lemma 2.1. For a nilpotent map N, we have N�1ðim NkÞ ¼ ker N þ im Nk�1:

Proof. If NðvÞAim Nk then NðvÞ ¼ NkðwÞ so Nðv � Nk�1wÞ ¼ 0:

Note that if imNk�1 contains ker N then N�1ðim NkÞ ¼ im Nk�1; otherwise

N�1ðim NkÞ is strictly larger. Also note that Nðker Niþ1ÞDim N-ker Ni:
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Definition 2.1. Let Fi be a subspace of V that is taken into itself by the map N:
Then there is a map Ni : V=Fi-V=Fi induced by N: We call the map Ni a quotient

map of N:

Lemma 2.2. The image im Ni of the quotient map Ni : V=Fi-V=Fi is equal to

ðim N þ FiÞ=Fi: Similarly, ðimNk þ FiÞ=Fi ¼ im Nk
i :

Proof. If NðvÞAim N then NðvÞ þ FiAimNi: On the other hand, if w þ FiAim Ni

then the coset w þ Fi equals the coset NðvÞ þ Fi for some vAV ; so w þ Fi is clearly in
im N þ Fi: Then a subspace of V that contains Fi and whose projection to V=Fi is

im Ni must be imN þ Fi: The same holds true for the nilpotent map Nk: &

Lemma 2.3. The kernel of the quotient map ker Ni equals N�1ðFiÞ:

Proof. The kernel ker Ni is given by those vectors whose image under Ni is 0þ Fi;

which is exactly N�1ðFiÞ: &

Lemma 2.4. We have the containment ker N+imNb�1; but ker NKim Nb�j for j41:

Proof. This is obvious from definition of b: &

Lemma 2.5. If j is the largest integer for which im Nj is not contained in Fi; then j is the

largest integer for which ðim Nj þ FiÞ=Fi is a nonzero image of the quotient map Ni:

Proof. Suppose vAim Nj but is not in Fi: Then v þ Fi is not zero in V=Fi; so

ðim Nj þ FiÞ=Fi is a nonzero image of Ni: Similarly, if v þ Fi is a nonzero element of

ðim Nj þ FiÞ=Fi; then there exists an element 0awAV with wAim Nj and
wAv þ Fi: &

Now we discuss the Springer fiber BN of N; which is the variety of flags fixed by
the nilpotent element N: The ranks of the Jordan blocks of the nilpotent map N

determine a partition of n: We form a Young shape from this partition by using this
partition as the lengths of the rows (opposite to the conventions of Vargas [28]). Let

the number of columns of the Young shape be b; then Nb ¼ 0 and Nb�1a0:

Definition 2.2. Given a flag F with subspaces f0g ¼ F0DF1D?DFn ¼ V ; we say
that N fixes F if NFi is contained in Fi�1 for all i:

Definition 2.3. We denote by BN the set of all flags fixed by N; and call it the
Springer fiber of N: It is an algebraic subvariety of the flag manifold B:

Recall that Young shape on n boxes is a collection of n boxes arranged in left
justified rows of lengths t1X?Xtk: A standard tableau (or Young tableau) on a
Young shape t is constructed by filling in the n boxes with the numbers 1;y; n such
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that the numbers are decreasing from left to right in each row, and decreasing from
top to bottom in each column. Note that many authors use increasing rows and
columns. We typically use A and B to denote standard Young tableaux. Denote by
Ai the tableau obtained by deleting the numbers 1;y; i in the tableau A and
subtracting i from the remaining numbers.
The following theorem of Vargas and Spaltenstein gives a decomposition of the

Springer fiber BN into a disjoint union of locally closed subsets, whose closures
comprise the irreducible components of BN :

Theorem 2.1 (Vargas [28], Spaltenstein [24]). Let N be a nilpotent map. Then

given a standard tableau A on the Young shape of N, we construct a locally closed

subset SVðAÞ of the Springer fiber BN ; whose closure SVðAÞ is an irreducible

component of BN : We have a partition BN ¼
S

A SVðAÞ of the Springer fiber

into disjoint locally closed subsets. Thus the number of irreducible components of

BN is equal to the number of standard tableaux on the Young shape of N. In

addition, the components are all of the same dimension. In fact, if the lengths of the

columns of the Young shape of N are n1; n2;y; nb; then the dimension of each

component is

X
i

niðni � 1Þ
2

:

Proof. Suppose A is a Young tableau on the Young shape of N: Then we inductively
specify a subset of BN corresponding to A; which we denote SVðAÞ (for
Spaltenstein–Vargas), by describing how to choose F1; then F2=F1; and so forth.
A flag F is in the subset SVðAÞ if each subspace of F satisfies the following
conditions.
Suppose the number i appears in the cðiÞth column in A: Then (recalling that

F0 ¼ 0) the first subspace F1 must satisfy F1CðN�1ðF0Þ-ðim Ncð1Þ�1 � im Ncð1ÞÞ: In
other words, F1 must be in the kernel of N; and it must be in the (cð1Þ � 1)st image of
N but not in any higher image.
Then, for any F1 satisfying the above condition, the induced map N1 :

V=F1-V=F1 will have the same Young shape; this shape is the shape obtained by
deleting the number 1 in the tableau A:
We now choose F2=F1CV=F1; using the above procedure with N1 in place of N

and A1 in place of A: Note that N�1
1 ð0þ F1Þ ¼ N�1ðF1Þ=F1: We continue

inductively, choosing Fiþ1=Fi so that Fiþ1=FiCðN�1ðFiÞ=FiÞ-ðim N
cðiÞ�1
i �

im N
cðiÞ
i Þ: Note that any such choice of Fiþ1 yields a quotient map Niþ1 with Young

shape Aiþ1:
See Vargas [28] and Spaltenstein [24] for the proof that this constructs a locally

closed subset of BN with the properties claimed in the theorem. The proof is
essentially an explicit calculation with the Jordan form of N:
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Vargas [28, Proposition 2.2] shows that this set SVðAÞ is exactly the set of flags
such that

FiCN�1ðFi�1Þ;

FiCFi�1 þ im NcðiÞ�1: &

3. Determination of the topology of the irreducible components of Springer fibers for

nilpotent maps of hook type for GLnðCÞ

Suppose N is a nilpotent map V-V whose Jordan form has at most one Jordan
block of rank 41: Then N is said to be of hook type. For hook type nilpotent maps
N; we can characterize the components of the Springer fiber BN entirely in terms of
the image and kernel filtrations of V : The components and their pairwise
intersections turn out to be nonsingular. In fact their homology Poincaré
polynomials factor as products of Poincaré polynomials of Grassmannians and flag
manifolds.
We will describe each component of the Springer fiber of a nilpotent map N of

hook type by expressing the component as a sequence of fiber bundles with
progressively simpler bases and fibers.

Definition 3.1. A space X1 is an iterated fiber bundle of base type ðB1;y;BnÞ if there
exist spaces X1;B1;X2;B2;y;Xn;Bn;Xnþ1 ¼ pt and maps p1; p2;y; pn such that pj :
Xj-Bj is a fiber bundle with typical fiber Xjþ1:

The following two lemmas are straightforward.

Lemma 3.1. The flag manifold FlðVÞ admits a map to the Grassmannian GiðVÞ via

F/Fi: The fiber of this map is a product FlðFiÞ � FlðV=FiÞ:

Lemma 3.2. Consider the variety of flags XðI ;KÞ in an n-dimensional vector space V

such that Fi contains an a-dimensional subspace I and is contained in a b-dimensional

subspace K. This variety X ðI ;KÞ admits a map p : X ðI ;KÞ-Gi�aðK=IÞ via

F/Fi=ICK=I that makes XðI ;KÞ the total space of a fiber bundle. The typical

fiber of the map p is a product FlðFiÞ � FlðV=FiÞ: In particular, the variety X ðI ;KÞ is

nonsingular.

We define some notation to simplify our intersection homology computations.
Define ½n
 by

½n
 :¼ t�ðn�1Þð1þ t2 þ t4 þ?þ t2ðn�1ÞÞ:
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Then we define

½n
! :¼ ½1
½2
y½n
 and
½n

½k


 !
:¼ ½n
!

½k
!½n � k
!:

The polynomial ½n
 is essentially the t-analogue of the number n; but shifted to be
symmetric around the degree 0 term. Thus the flag manifold FlðVÞ has intersection
homology Poincaré polynomial ½n
! and GkðVÞ has intersection homology Poincaré

polynomial ð½n
½k
Þ:

Corollary 3.1. Let X ðIÞ be the variety of flags in FlðVÞ such that the subspace Fi

contains an a-dimensional subspace I. Then XðIÞ has intersection homology Poincaré

polynomial ð½n�a

½i�a
Þ½i
!½n � i
!:

Proof. Clear from Lemma 3.2, since complex flag manifolds and complex
Grassmannians have only even-dimensional homology so the Leray–Serre
spectral sequence for p : X ðIÞ-Gi�aðV=IÞ with fiber FlðFiÞ � FlðV=FiÞ
collapses. &

Lemma 3.3. Let N be a nilpotent map of hook type with Jordan blocks of size

ðb; 1;y; 1Þ: Then for all 0oiob; we have imNb�i ¼ ker Ni-imN; which implies

Nðker Niþ1ÞCim Nb�i:

Proof. This follows from inspection of the Jordan form of N: &

We now decompose each component of the Springer fiber BN for a hook type
nilpotent map N as an iterated bundle with nonsingular bases and fibers. Recall that

the number b is the least positive integer with Nb ¼ 0: Let bðiÞ be the least positive
integer with N

bðiÞ
i ¼ 0:

Theorem 3.1. Suppose we are given a nilpotent map N of hook type and a Young

tableau A on the Young shape of N with n; ib�1;y; i1 on the top row (where by

convention ib ¼ n and i0 ¼ 0). Then the component KA of the Springer fiber BN is an

iterated bundle with B2j�1 ¼ Gij�ij�1�1ðker Nij=imN
bðijÞ�1
ij

Þ and B2j ¼ FlðFij=Fij�1Þ;
where j ¼ 1; 2;y; b � 1; and B2b�1 is a full flag manifold FlðV=Fib�1Þ:

The proof will be broken up into a series of lemmas and propositions.

Proposition 3.1 (Vargas [28]). Suppose we are given a nilpotent map N of hook

type and a Young tableau A on the Young shape of N with n; ib�1;y; i1 on the top row.

Then the component KA ¼ SVðAÞ of the Springer fiber BN consists of all flags F in
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FlðVÞ such that

im Nb�1DFi1Dker N;

im Nb�2DFi2Dker N2;

im Nb�3DFi3Dker N3;

?

im N1DFib�1Dker Nb�1:

Proof. This is Vargas [28, Theorem 4.1]. The proof consists of an explicit limiting
argument using the structure of the Spaltenstein–Vargas subset SVðAÞ:

Lemma 3.4. Let N be a nilpotent map of hook type, and let Fi1 be a subspace of V with

NFi1CFi1 and im Nb�1CFi1Cker N: Then we have

ker Nd
i1
¼ ker Ndþ1=Fi1 ;

im Nd
i1
¼ ðim Nd þ Fi1Þ=Fi1 :

Proof. We describe ker Nd
i1
DV=Fi as follows. If vAker Ndþ1 then

NdðvÞAimN-ker N ¼ imNb�1: Since imNb�1DFi1 ; we have NdðvÞAFi1 ; so v þ
Fi1Aker Nd

i1
: On the other hand, if Nd

i1
ðv þ Fi1Þ ¼ 0þ Fi1 then NdðvÞAFi1 : Now by

Lemma 3.3, the subspace Fi1 contains im Nb�1 but no other element of im N: Thus

Ndþ1ðvÞ ¼ 0; and so vAker Ndþ1: Thus if a subspace WCV contains Fi1 then

W=Fi1Dker Nd
i1
iff WDker Ndþ1:

By Lemma 2.2 im ðNd þ Fi1Þ=Fi1 ¼ im Nd
i1
: Thus if WCV contains Fi1 ; then W=Fi1

contains im Nd
i1
iff W contains im Nd : &

Lemma 3.5. Suppose we are given a nilpotent N of hook type and a Young tableau A

on the Young shape of N with n; ib�1;y; i1 on the top row (where by convention ib ¼ n

and i0 ¼ 0). Then the component KA of the Springer fiber BN admits a map p1 to

the Grassmannian Gi1�1ðker N=im Nb�1Þ: The fiber X2 of the map p1 :

KA-Gi1�1ðker N=im Nb�1Þ admits a map p2 : X2-FlðFi1Þ: The fiber of p2 can be

identified with a component of a Springer fiber of the quotient map Ni1 : V=Fi1-V=Fi1 ;
where the component is associated to the standard tableau Ai1 :

Proof. The existence of the map p1 follows from Lemma 3.2 with I ¼ im Nb�1

(which is a one-dimensional space) and K ¼ ker N (which is an n � bþ
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1-dimensional space containing im Nb�1). Let B1 be the Grassmannian

Gi1�1ðker N=im Nb�1Þ: The fiber X2 of the map p1 : KA-B1 consists of all flags
in the component with a fixed subspace Fi1 : We define the map p2 : X2-FlðFi1Þ
by taking FAX2 and forgetting all subspaces of F larger than Fi1 : By in-
specting Proposition 3.1 we see that p2 is surjective and indeed a fiber bundle
projection.
The fiber X3 of this map p2 is the set of all flags in the component KA with fixed

subspaces F1;y;Fi1 : Then X3 maps bijectively to a subset of FlðV=Fi1Þ via the map
F-F 0; where F 0

j ¼ Fjþi1=Fi1 : We now show that X3 is the component KAi1
of the

Springer fiber of the quotient map Ni1 on V=Fi1 ; by showing that X3 satisfies the
characterization of Proposition 3.1.
By Lemma 3.4, the fiber X3 of p2 is in bijection with the set of flags F 0AFlðV=Fi1Þ

such that

im Nb�2
i1

DF 0
i2�i1

Dker Ni1 ;

im Nb�3
i1

DF 0
i3�i1

Dker N2
i1
;

im Nb�4
i1

DF 0
i3�i1

Dker N3
i1
;

?

im N1
i1
DF 0

ib�1�i1
Dker Nb�2

i1
:

Thus X3 is the component KAi1
of the Springer fiber BN1

: &

Proof of Theorem 3.1. A typical fiber X2 of the map p2 : KA-FlðFi1Þ consists of flags
FAKA with fixed subspaces F1;y;Fi1 : This fiber X2 is in bijection with the set of
flags in V=Fi1 that are fixed by Ni1 : V=Fi1-V=Fi1 :
So we have exhibited the component KA ¼ X1 of the Springer fiber BN as the

total space of a bundle p1 : X1-B1 with base B1 ¼ Gi1�1ðker N=im Nb�1Þ: The
fiber X2 of p1 is the total space of another bundle p2 : X2-B2 with base B2 ¼
FlðV=Fi1Þ:
Successive applications of Lemma 3.5 prove that if X2jþ1 is a component of the

Springer fiber of Nij : V=Fij-V=Fij ; then X2jþ3 is the corresponding component of

the Springer fiber for Nijþ1 : V=Fijþ1-V=Fijþ1 :

Finally, since im NCFib�1 ; we see that the map Nib�1 : V=Fib�1-V=Fib�1 is the zero

map. Thus the (unique) component of the Springer fiber for Nib�1 (which is X2b�1) is
the flag manifold FlðV=Fib�1Þ: &

Theorem 3.2. Let N be a nilpotent map of hook type, and let A be a standard tableau

on the hook shape of N, with top row n; ib�1;y; i1: Then the component KA of the
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Springer fiber BN has intersection homology Poincaré polynomial equal to

½i1
!
½n � b

½i1 � 1


 !
½i2 � i1
!

½ðn � i1Þ � ðb � 1Þ

½i2 � i1 � 1


 !

y½ib�1 � ib�2
!
½n � ib�2 � 2


½ib�1 � ib�2 � 1


 !
½n � ib�1
!:

This polynomial equals

½n � b
!½i1
½i2 � i1
½i3 � i2
y½ib�1 � ib�2
½n � ib�1
:

Proof. We have already proven that the component in question is an iterated fiber
bundle with B2j a complex flag manifold, with B2j�1 a complex Grassmannian for

1pjpb � 1; and with X2b�1 ¼ B2b�1 a complex flag manifold. So the bundle p2b�2 :
X2b�2-B2b�2 with fiber X2b�1 has only even-dimensional homology in base and
fiber. Therefore the Leray-Serre spectral sequence for p2b�2 collapses and the
Poincaré polynomial of X2b�2 is the product of those for X2b�1 and B2b�2; in
particular, X2b�1 has only even-dimensional homology. Then we do the same for
p2b�3 : X2b�3-B2b�3 with fiber X2b�2; since B2b�3 is a complex Grassmannian, the
space X2b�3 also has only even-dimensional homology. So X2b�3;X2b�5;y have only
even-dimensional homology and their homology Poincaré polynomials are products
of Poincaré polynomials of flag manifolds and Grassmannians. This recursion thus
unravels to give us the homology of X1 as stated above. Finally, since the space X1 is
nonsingular, we need only shift the homology Poincaré polynomial until it is

invariant under t/t�1; in order to obtain the intersection homology Poincaré
polynomial. &

Remark 3.1. We have proven that the closed subvariety of BN associated by
Vargas’ description to the tableau A is irreducible because this subvariety is a bundle
of irreducible varieties; it also contains a Spaltenstein–Vargas set SVðAÞ; hence it
must be exactly the closure KA of the Spaltenstein–Vargas set SVðAÞ: This is an
alternative proof that Vargas’ descriptions indeed yield the components of the
Springer fiber BN :

4. Structure of pairwise intersections of two components of hook type

Theorem 4.1. Let N be a nilpotent map of hook type. Suppose we have two standard

tableaux A and B on the Young shape of N, where the standard tableau A has

top row n; ib�1;y; i1 and the standard tableau B has top row n; i0b�1;y; i01:
Then the intersection of the two components KA-KB is nonempty iff
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bj ¼ max fij; i0jgomin fijþ1; i
0
jþ1g ¼ ajþ1; in which case KA-KB is an iterated fiber

bundle with

B2j�1 ¼ Gbj�bj�1�1ðker Nbj
=im N

bðbjÞ
bj

Þ;

B2j ¼ fFAFlðFbj
=Fbj�1Þ j im N

b�j�1
j AFaj�bj�1g:

Proof. We proceed as in the proof of Theorem 3.1. Let aj ¼ min fij; i0jg and bj ¼
max fij; i0jg: By superimposing the characterizations of the components KA

and KB; we deduce that the intersection KA-KB is given by those flags F in FlðVÞ
for which

im Nb�1DFa1DFb1Dker N;

im Nb�2DFa2DFb2Dker N2;

im Nb�3DFa3DFb3Dker N3;

?

im N1DFab�1DFbb�1Dker Nb�1:

If there exists j for which max fij; i0jgXmin fijþ1; i0jþ1g then the flag Fmax fij ;i0jg

would have to contain im Nb�j�1 yet be contained in ker Nj ; which is impossible by
Lemma 3.3. This proves the emptiness assertion of the lemma.
Now we exhibit the intersection KA-KB ¼ X1 as an iterated bundle. Define a

map p1 : X1-B1 ¼ Gb1�1ðker N=im Nb�1Þ by F/Fb1 : The typical fiber X2 of the

map p1 consists of all flags F with a fixed Fb1 such that Fa1 contains the one-

dimensional space im Nb�1: Then there is a map taking X2 to the space B2; which

consists of all flags inside Fb1 such that Fa1 contains im Nb�1; given by

F1CF2C?CFn/F1CF2C?CFb1 : We described the structure and homology of

the space B2 in Lemma 3.2 above.
Then the fiber of the map p2 : X2-B2 is in bijection with a certain space of

flags in V=Fb1 satisfying (as in the previous theorem) a list of conditions with respect

to the quotient map Nb1 : V=Fb1-V=Fb1 : As before, these conditions are exactly the

ones that specify the intersection of two components of the Springer fiber for Nb1
whose tableaux Ab1 and Bb1 have top rows n � b1; ib�1 � b1;y; i2 � b1 and

n � b1; i0b�1 � b1;y; i02 � b1; respectively. Thus by descending induction we have

our result. &
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Corollary 4.1. The intersection of the two components in the above theorem has

intersection homology Poincaré polynomial equal to

½n � b

½b1 � 1


 !
½b1 � a1
!

½b1 � 1

½a1 � 1


 !
½a1
!

½n � b1 � b þ 1

½b2 � b1 � 1


 !
½b2 � a2
!

½b2 � b1 � 1

½a2 � b1 � 1


 !
½a2 � b1
!

y

½n � bj�1 � b þ j � 1

½bj � bj�1 � 1


 !
½bj � aj 
!

½bj � bj�1 � 1

½aj � bj�1 � 1


 !
½aj � bj�1
!

y
½n � bb�2 � 2


½bb�1 � bb�2 � 1


 !
½bb�1 � ab�1
!

½bb�1 � bb�2 � 1

½ab�1 � bb�2 � 1


 !
½ab�1 � bb�2
!½n � bb�1
!

This polynomial equals

½n � b
!½a1
½a2 � b1
½a3 � b2
y½ab�1 � bb�2
½n � bb�1
:

5. Determination of the topology of components of Springer fibers for nilpotent maps

of two-row type for GLnðCÞ

In this section we study the Springer fibers of nilpotent maps N whose Young
shapes have at most two rows. Thus N has at most two Jordan blocks. We will find

that the components are iterated bundles with CP1 as base spaces, and we will relate
the intersection homology Poincaré polynomials of their pairwise intersections to the
inner products of the Kazhdan–Lusztig basis. In doing so, we will extend some
results of Lorist [21] on the topology of the components of two-row shapes with two
boxes in the lower row. We also correct a result of Wolper [30].
Let N : V-V be a nilpotent map of two-row type. Recall that a flag F with

subspaces 0 ¼ F0CF1C?CFn ¼ V is fixed by N if for all i; we have NFiDFi�1:

Recall that b is defined to be the least positive integer with Nb ¼ 0: Similarly let bðiÞ
be the least positive integer such that N

bðiÞ
i ¼ 0:

Definition 5.1. Suppose Ni : V=Fi-V=Fi is a quotient map of a nilpotent map N:

Suppose that the subspace Fj=Fi contains im Nk
i but not im Nk�1

i : Then we call imNk
i

the lowest image contained in Fj=Fi and we denote this lowest image im Nk
i by

LowimiðFjÞ: (Note that the image of a higher power of Ni is a smaller subspace of

V=Fi:) Similarly, we denote the lowest image of N that is not contained in Fj by

LowimðFjÞ:

Lemma 5.1. Let N be a nilpotent map of two-row type. Let Fi be a subspace of V such

that FiDim N and NFiCFi: Then the quotient space N�1ðFiÞ=Fi is two dimensional.
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Proof. Since NFiCFi; we see that indeed FiCN�1ðFiÞ: Then the dimensionality of

N�1ðFiÞ=Fi is clear from the Jordan form of the map N; since FiDim N: &

Lemma 5.2. Suppose N is a nilpotent map corresponding to a two-row Young shape t:
Let A be a standard tableau of shape t with top row n; ib�1;y; i1: Then every flag F in

the Spaltenstein–Vargas subset SVðAÞ defined in Theorem 2.1 satisfies the following

conditions: FiCN�1ðFi�1Þ and im Nb�jDFij :

Proof. Let the flag F be in the Spaltenstein–Vargas subset SVðAÞ: Then by
construction of SVðAÞ; every subspace clearly satisfies the first condition.
Now we prove the second condition by inspecting the procedure used to specify

the flag subspaces of F : Recall that if i is in the cðiÞth column of A; then Fi=Fi�1 must

lie in ker Ni�1-ðim N
cðiÞ�1
i�1 � im N

cðiÞ
i�1Þ:

Now we show that if i is on the bottom row of A then, for any flag F in SVðAÞ;
LowimðFiÞ ¼ LowimðFi�1Þ; in other words, the subspace Fi will never contain a
lower image than Fi�1 contains. There are two cases. First suppose the highest

nonzero image im Nbi�1�1
i�1 of Ni�1 is two dimensional. Then Fi=Fi�1 cannot exhaust

im Nbi�1�1
i�1 : On the other hand, if the highest image im Nbi�1�1

i�1 is one dimensional,

then since the number i is not on the top row of the tableau A; the subspace Fi=Fi�1
must not equal imNbi�1�1

i�1 :

Now note that F1;y;Fi1�1 do not contain wholly any image of N: To stress our
line of argument, note that these subspaces contain the same image of N as F0 ¼ f0g
does. Therefore imNb�1

i1�1a0: Then by construction, Fi1=Fi1�1 must contain imNb�1
i1�1:

Since Fi1 also contains Fi1�1; we see by Lemma 2.2 that Fi1 must contain im Nb�1:

Similarly, Fij ;y;Fijþ1�1 all contain im Nb�j and no lower image of N; because each

of these subspaces is constructed not to contain the highest image of the previous

quotient map; and, as before, Fijþ1 must contain im Nb�j�1: Thus the lemma is

proved. &

Remark 5.1. Note that the conditions of the lemma are closed and so are satisfied by
the closure of the Spaltenstein–Vargas subset SVðAÞ; which is the entire component
KA of the Springer fiber BN :

Theorem 5.1. Suppose that N is a nilpotent map of two-row type and that A is a

standard tableau on the Young shape of N, with top row n; ib�1;y; i1: For any i

between 1 and n; denote by TðiÞ and BðiÞ the lengths of the top and bottom rows of the

tableau obtained from A by deleting 1;y; i: Suppose the flag F is contained in the

Spaltenstein–Vargas subset SVðAÞ: Then the subspace Fi contains im NTðiÞ and is

contained in im NBðiÞ:

Proof. The assertion about TðiÞ is proven above. As to the assertion about BðiÞ; we
proceed by induction on i: First note that F1 is contained in N�1ðF0Þ and therefore
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must be contained in the lowest image that has nontrivial intersection with the

kernel. By inspecting the Jordan form of N we see that this image is exactly im NBð1Þ:

Now suppose Fi is contained in im NBðiÞ: Then there are two possibilities for Fiþ1:

If i þ 1 is on the bottom, then Fiþ1 is within N�1ðFiÞDN�1ðim NBðiÞÞ: Now by the
Jordan form, we see that BðiÞ cannot be greater than the power of the lowest image

that contains ker N; so im NBðiÞ contains ker N: Thus, by Lemma 2.1,

N�1ðim NBðiÞÞ ¼ im NBðiÞ�1 ¼ im NBðiþ1Þ:

Now if i þ 1 is on the top row of the tableau A; then by Theorem 2.1, Fiþ1=Fi is

equal to ðim NTðiþ1Þ þ FiÞ=Fi: Since Tði þ 1ÞXBðiÞ; the subspace Fiþ1 is still

contained in im NBðiÞ: &

Theorem 5.2. Let N be a nilpotent map of two-row type, and let A be a standard

tableau on the Young shape of A with top row n; ib�1;y; i1: Then the component KA of

the Springer fiber BN consists of all flags whose subspaces satisfy the following

conditions:

FiCN�1ðFi�1Þ for each i

and if i is on the top row of the tableau A and i � 1 is on the bottom row, then

Fi ¼ N�1ðFi�2Þ;

if i and i � 1 are both in the top row of A, then if Fi�1 ¼ N�dðFrÞ where r is on the

bottom row then

Fi ¼ N�d�1ðFr�1Þ

and if Fi�1 ¼ N�dðim Nb�iÞ where 0pion � b then

Fi ¼ N�dðimNb�i�1Þ:

The subspaces that are specified as inverse images of other spaces will be called

dependent; note that they are exactly the subspaces whose indices are on the top row of

the tableau A: The other subspaces are called independent:

Proof. Denote by KðAÞ the closed subset of flags that satisfy the conditions of the
theorem. Note that KðAÞDBN : Let F be a flag in the Spaltenstein–Vargas subset
SVðAÞ: Then we prove by induction on i that each subspace Fi of F satisfies the
above conditions, so that the flag F lies in KðAÞ: Then we will show below that
the closed subset of the theorem is in fact irreducible and of the same dimension as
the (nonempty) subset SVðAÞ: Thus KðAÞ is exactly the closure of the Spaltenstein–
Vargas subset SVðAÞ and is thus the component KA of the Springer fiber BN :
First we settle the i ¼ 1 case. Suppose that the number 1 is in the bottom row of A:

Then for all F in the Spaltenstein–Vargas subset SVðAÞ; it is the case that F1 must be
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in ker N; which is exactly N�1ðF0Þ: If 1 is in the top row then F1 must equal the

highest image im Nb�1; note that F0 ¼ 0 ¼ N�0ðimNbÞ so F1 ¼ N�0ðimNb�1Þ: Also
note that the highest image must indeed be one-dimensional in order for 1 to be in
the top row. This settles the i ¼ 1 case.
Now suppose that F1;y;Fi satisfy the conditions of the theorem. Now the

number i þ 1 is either on the bottom row of the tableau A; or on the top row of A: If
i þ 1 is on the bottom row of A; then the Spaltenstein–Vargas procedure requires

only that Fiþ1=Fi be contained in ker Ni; which by Lemma 2.3 equals N�1ðFiÞ:
Now suppose i þ 1 is on the top row of the tableau A: Then the number i is either

on the bottom row of A or on the top row. First we will prove that if i is on the

bottom row, then Fiþ1 ¼ N�1ðFi�1Þ:
Recall that FiCN�1ðFi�1Þ; and Fiþ1=Fi must be the one-dimensional subspace of

V=Fi which is the highest nonzero image of Ni: (Since i was on the bottom row, it is
clear that the tableau obtained by deleting 1;y; i is not rectangular so the highest
image of Ni is not two dimensional.)

So Fi is in N�1ðFi�1Þ ¼ N�1
i�1ð0þ Fi�1Þ and by construction Fi=Fi�1 cannot be all

of the highest nonzero image of Ni�1: Therefore there must be other vectors

vAN�1ðFi�1Þ such that v þ Fia0þ Fi; and also v þ Fi�1 is in the highest image of
Ni�1; hence v is in the highest image of N which is in not in Fi�1: Then any such v

must be in the highest image of N which is not contained in Fi: Since N�1ðFi�1Þ=Fi is

one-dimensional, this proves that N�1ðFi�1Þ=Fi must be the highest image of Ni :
V=Fi-V=Fi:
Thus we have proven that if i is in the bottom row and i þ 1 is in the top row, then

Fiþ1 ¼ N�1ðFi�1Þ:
Now suppose i þ 1 is on the top row, and i is also on the top row. Then by

induction either Fi ¼ N�dðFrÞ where r is on the bottom row, or else Fi ¼ N�dðim NaÞ
(where n � boapb). If r is on the bottom row then, by Theorem 5.1, the lowest
image that Fr contains is exactly the same as the lowest image that Fr�1 contains.

Therefore N�1ðFr�1Þ contains one lower image and is of dimension exactly one larger
than that of Fr: Thus N�d�1ðFr�1Þ contains exactly one lower image and is of one

larger dimension than N�dðFrÞ:
Otherwise Fi ¼ N�dðimNaÞ for some a4n � b: Since a4n � b; the dimension of

im Na�1 is exactly one larger than the dimension of im Na: Thus N�dðim Na�1Þ
contains one lower image and is one dimension larger than im Na: So

N�dðim Na�1Þ=Fi equals the highest nonzero image imN
bðiÞ
i and so Fiþ1 ¼

N�dðim Na�1Þ: Finally, we prove below that KðAÞ ¼ SVðAÞ ¼ KA: &

Proposition 5.1. The closed subset KðAÞ is irreducible, and KðAÞ is an iterated bundle

of base type ðCP1;y;CP1Þ; where there are as many terms as there are numbers in the

bottom row of the tableau A.

Proof. Suppose that the shape of N has exactly two rows (if it has only one row, then
KA is a point). Let F be a flag in the component KA of the Springer fiber BN :
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Suppose Fj1 is the smallest independent subspace of the flag F : Then Fj1�1 is some
fixed subspace of V (necessarily in im N), and Fj1=Fj1�1 can be any point in the fixed

space PðN�1ðFj1�1Þ=Fj1�1Þ ¼ CP1: Set B1 ¼ N�1ðFj1�1Þ=Fj1�1: The map p1 : KA-B1

given by F/Fj1=Fj1�1 is then a fiber bundle (it is clearly a proper submersion). The

typical fiber X2 of the map p1 consists of all flags F in KA with the subspace Fi fixed,
as well as with all subspaces of F that are dependent on Fj1 fixed. Now find

the smallest independent subspace Fj2 in X2: Again, all subspaces smaller then Fj2 are

dependent, and thus fixed. So we see that Fj2=Fj2�1 can be any point in the fixed space

PðN�1ðFj2�1Þ=Fj2�1Þ ¼ B2; which defines the bundle projection p2 : X2-B2; with

fiber X3: We continue until all independent subspaces are exhausted and the fiber
consists of one flag with all subspaces fixed. &

Theorem 5.3. Every component KA of the Springer fiber for a nilpotent map of two-row

type is an iterated bundle of base type ðCP1;y;CP1Þ; where there are as many terms

as there are numbers in the bottom row of the tableau A.

Proof. The closed subset KðAÞ is irreducible, contained in BN ; and clearly has
dimension n � b; which is the dimension of the nonempty Spaltenstein–Vargas
subset SVðAÞ: Therefore, by standard algebraic geometry, KðAÞ must equal the

component KA ¼ SVðAÞ: &

Example 5.1. Consider the standard tableau

5 4 1

3 2

Then the corresponding component of BN is the set of flags with FiCN�1ðFi�1Þ; and
the conditions F1 ¼ im N2 and F4 ¼ N�1ðF2Þ; which we can write compactly as

im N2CF2CF3CN�1ðF2ÞCV :

Similarly, the standard tableau

5 3 2

4 1

corresponds to the component

F1CN�1ðF0ÞCN�1ðimN2ÞCF4CV :

Example 5.2. Consider the standard tableau

5 4 3

2 1
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Then the corresponding component of BN is the set of flags with FiCN�1ðFi�1Þ and

F1CF2CN�1ðF1ÞCN�2ðF0ÞCV :

Similarly, the standard tableau

5 4 1

3 2

corresponds to the component with FiCN�1ðFi�1Þ and

im N2CF2CF3CN�1ðF2ÞCV :

Their intersection is the flag with FiCN�1ðFi�1Þ and

im N2CN�1ðF0ÞCN�1ðimN2ÞCN�2ðF0ÞCV :

In particular, the intersection is not empty, in contrast to the assertions of
Wolper [30].

Example 5.3. Consider the standard tableau

10 9 8 7 4 3

6 5 2 1

Then the corresponding component of BN is the set of flags with FiCN�1ðFi�1Þ and

F1CF2CN�1ðF1ÞCN�2ðF0ÞCF5CF6

CN�1ðF5ÞCN�4ðF0ÞCN�4ðimN5ÞCV :

Example 5.4. We show how to recover Lorist’s description of the structure of
components of Springer fibers of 2-regular nilpotent maps (that is, those nilpotent
maps N whose Young shapes have two boxes in the second row). There are two
types of components KA; corresponding to whether the numbers on the bottom row
of A are consecutive (yielding a non-trivial bundle) or not consecutive (yielding a
trivial bundle). If the numbers in the bottom rows A are not consecutive, say ioj;
then we get

im Nb�1CimNb�2Cim Nb�iþ1CFiCN�1ðim Nb�iþ1ÞC?

CN�1ðim Nb�jþ3ÞCFjCN�2ðim Nb�jþ3ÞCN�2ðim Nb�jþ2ÞC?CFn:
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If the numbers are consecutive, say i; i þ 1; then we get

imNb�1Cim Nb�2Cim Nb�iþ1CFiCFiþ1CN�1ðFiÞCN�2ðim Nb�iþ1Þ

C?CFn:

Finally, we derive the scholium that the ‘‘dependence’’ on one subspace on

another can be thought of as symmetric: if Fi ¼ N�dðFrÞ in the above theorem, then
indeed Fi also determines Fr; so given either subspace, we can obtain the other. So
‘‘independent’’ can be thought of as ‘‘smallest in the chain of dependencies.’’

Proposition 5.2. Suppose Fi is specified as N�dðFrÞ in Theorem 5.2. Then the map

Nd : Fi-Fr is surjective. Thus the subspace Fi determines the subspace Fr:

Proof. In general, NðN�1ðWÞÞ ¼ W-im N: Thus we need only ensure that if Fi is

specified as N�dðFrÞ then in fact FrDim Nd : First note that the process described in
the proof of Theorem 5.2 never takes an inverse image of a subspace Fi unless

FiCim N: Furthermore, if Fi ¼ N�dðFrÞ where Fr is independent and r40; then (for
F in SVðAÞ) the subspace Fr�1 is contained in one higher image of N than Fr: So if

N�dþ1ðFrÞCim Nk; then also N�dðFr�1ÞCimNk: This last statement holds in the

entire component KA: Hence if Fi ¼ N�dðFrÞ then FrDimNd ; so NdðFiÞ ¼ Fr: &

6. Relationship with Kazhdan–Lusztig theory

Let W be a Coxeter group with simple reflections S: Denote the Chevalley–Bruhat
order by o: Recall [5,16,18,19] that the Kazhdan–Lusztig construction yields
elements C0

w in the Iwahori–Hecke algebra of W ; which give distinguished bases for

certain representations of the Iwahori–Hecke algebra, called left cell representations,
which are associated to certain subsets C of W called left cells. In particular, this
construction yields a distinguished basis for each irreducible representation of the
Iwahori–Hecke algebra Hn of the symmetric group Sn:
Now recall [7,22] that every irreducible representation M of the Iwahori–Hecke

algebra Hn possesses a unique (up to a scalar) nondegenerate symmetric bilinear
form /; S that is invariant under Hn; in the sense that for any v; v0AM; we have
/Twv; v0S ¼ /v;Tn

wv0S: (Here, the involution * : Hn-Hn is defined by sending

Tw/Tw�1 and then extending linearly.)
Thus, we can consider the inner products of the Kazhdan–Lusztig basis vectors of

an irreducible representation with respect to this inner product. We find that they
satisfy equations very reminiscent of a possible application of the Beilinson–
Bernstein–Deligne–Gabber Decomposition Theorem. To state these relations, first
we determine the eigenvectors and eigenvalues of the elements C0

s (for s a simple

reflection) acting by left multiplication on Hn:
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Lemma 6.1. The eigenvectors of the map Hn-Hn given by left multiplication by C0
s

are given by

C0
w where swow

and

C0
sC

0
w � ðt þ t�1ÞC0

w where sw4w:

Proof. The first follows immediately from the formula for C0
sC

0
w (see [26]). To see the

second, we calculate

C0
sC

0
sC

0
w � ðt þ t�1ÞC0

sC
0
w ¼ 0:

Now note that these eigenvectors span the Iwahori–Hecke algebra Hn: &

Lemma 6.2. The eigenvectors for C0
s on a left cell representation MC are

cw where swow

and

C0
scw � ðt þ t�1Þcw where sw4w:

Proof. Immediate from Lemma 6.1. &

Our equations follow from the following

Lemma 6.3. Let V be a representation of an algebra A. Suppose V is equipped with an

invariant symmetric bilinear form /;S: Suppose we have an element aAA with a ¼ an;
and let x and y be eigenvectors of a with different eigenvalues. Then x and y are

orthogonal; i.e. /x; yS ¼ 0:

Proof. Suppose x has eigenvalue l and y has eigenvalue r under aAA: Then
/ax; yS ¼ l/x; yS ¼ /x; ayS ¼ r/x; yS so if lar then /x; yS ¼ 0: &

Theorem 6.1. Let C be a left cell yielding a left cell representation MC: Let / ; S be

an invariant nondegenerate symmetric bilinear form on MC: Let s be a simple reflection

for W. Then for each pair ðx;wÞ with sALðxÞ and seLðwÞ (so s descends x but not w),
we have an equation between inner products

ðt þ t�1Þ/cx; cwS ¼ /cx;C0
scwS:
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Proof. Given a simple reflection s; we have a large supply of eigenvectors for C0
s in

MC given by Lemma 6.2, namely cx where sxox and ðt þ t�1Þcw � C0
scw where

sw4w: Then for each pair ðx;wÞ; we have two eigenvectors of C0
s with different

eigenvalues, so the eigenvectors are orthogonal. Therefore we have the equations as
claimed. &

In fact, these equations are equivalent to Hn-invariance:

Proposition 6.1. If a bilinear form on a left cell representation satisfies the equations

ðt þ t�1Þ/cx; cwS ¼ /cx;C0
scwS

for each pair cx; cw where sw4w and sxox; then the inner product is invariant under

the action of C0
s:

Proof. The inner product of any two vectors can be expressed as a linear
combination of inner products of basis vectors, so we are reduced to proving
/C0

scx; cwS ¼ /cx;C0
scwS for each pair ðx;wÞ:

There are three cases. If both cx and cw are descended by s; then clearly

/ðt þ t�1Þcx; cwS ¼ /cx; ðt þ t�1ÞcwS:

If cx is descended by s but cw is not, then by the equations above

/C0
scx; cwS ¼ /ðt þ t�1Þcx; cwS ¼ /cx;C

0
scwS:

Finally, suppose neither basis vector in /cx; cwS is descended by C0
s: Then,

recalling that C0
scx ¼

P
yCLx
syoy

mðx; yÞcy; we have

ðt þ t�1Þ/C0
scx; cwS ¼ /C0

sC
0
scx; cwS ¼ /C0

scx;C0
scwS;

since each term in C0
scx is descended by s: Then by a symmetric argument

/C0
scx;C0

scwS ¼ /cx;C0
sC

0
scwS ¼ ðt þ t�1Þ/cx;C0

scwS:

This completes the proof. &

The form of these equations is very similar to the conclusion of the Decomposition
Theorem [1,4,11]. This analogy suggests an interpretation in terms of Poincaré
polynomials: /cx; cwS as the intersection homology Poincaré polynomial of the

intersection of two spaces KA and KB; ðt þ t�1Þ as a CP1; the left side as a CP1

bundle over KA-KB; and the right side as terms from the Decomposition Theorem,
applied to some map from the total space of the bundle to some space.
Thus, given a W -graph for a left cell representation, we can write down a set of

equations that the Gram matrix entries of an Hn-invariant inner product must
satisfy, and which determine them up to a common scalar. If we can prove that the
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Poincaré polynomials of some collection of spaces satisfy those equations, and we
can calculate the Poincaré polynomial of one of the spaces, then we can calculate the
Poincaré polynomials of all the spaces in the collection. We will now do this for
Springer fibers of hook and two-row type, where the W -graphs are known explicitly.
The W -graphs for left cells with hook shapes are very easily determined because

no two standard tableaux have the same descent set. (See [9, Fact 14] or [6].) Since all
left cell representations ofHn for a given Young shape are isomorphic [18, Theorem
1.4], we can label the Kazhdan–Lusztig basis vectors by their tableaux.

Definition 6.1. A standard tableau of hook shape B is adjacent to the standard
tableau A via k if B can be obtained from A by exchanging k with either k þ 1 or
k � 1 in the tableau A: Note that exactly one of A and B will have k as a descent.

Note that for each standard tableau A and number k; there are at most two
standard tableaux adjacent to A: We denote by ðk � 1 kÞA the tableau obtained
by switching k and k � 1 in A; similarly, ðk k þ 1ÞA is the tableau obtained from A

by switching k and k þ 1:
Therefore, in the case of hook shapes, we can explicitly exhibit the set of equations

that the inner products of the Kazhdan–Lusztig basis vectors must satisfy. Using
the above description of the Poincaré polynomials of the intersection homology of
the components of the Springer fibers and their intersections, we will show that the
intersection homology Poincaré polynomials of the intersections of the components
satisfy the same equations. Since the equations determine the inner product up to a
scalar by Proposition 6.1, we will be able to show that the inner product matrix of
the Kazhdan–Lusztig basis vectors computes the intersection homology Poincaré
polynomials for the pairwise intersections of the components of the Springer fibers
for hook shapes.

Theorem 6.2. Suppose A is a hook shape tableau with top row n; ib�1;y; k;y; i1; so

that the number k is not a descent of the tableau A. Then the Kazhdan–Lusztig basis

vector cA transforms as

Tðk kþ1ÞcA ¼ �cA þ tcðk k�1ÞA þ tcðk kþ1ÞA:

If ðk k þ 1ÞA or ðk � 1 kÞA is not standard, then omit the corresponding term in the

formula above.
If B is a standard tableau that does not have k in the top row then

Tðk kþ1ÞcB ¼ t2cB:

Proof. Given two different Young tableaux A and A0 of hook type, there exists a
simple reflection that descends A but not A0; and a different simple reflection that
descends A0 but not A; because their first columns are distinct. Given a left cell C of
hook type, there is a W -graph for the left cell representation, indexed by elements
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of C: By Humphreys [16, Proposition 7.15], the only edges in the W -graph are those
that connect elements of the form x and sx; with s a simple reflection. So in
particular the only possible W -graph neighbors to A with k as a descent are
ðk � 1 kÞA and ðk k þ 1ÞA: Depending on which of k � 1; k þ 1 can be interchanged
with k in the tableau A; we arrive at the above possibilities. &

Lemma 6.4. Given the above tableaux A, B the following are eigenvectors for the

action of C0
ðk kþ1Þ:

ðt þ t�1ÞcA � cðk k�1ÞA � cðk kþ1ÞA with eigenvalue 0

cB with eigenvalue ðt þ t�1Þ:

If ðk k þ 1ÞA or ðk � 1 kÞA is not standard, then omit the corresponding term in the

formula above.

Proof. This is immediate from Lemma 6.2 and the multiplication formula
above. &

Theorem 6.3. Suppose we are given a nilpotent map N on V with a Young shape t of

hook type. Let TOP be the standard tableau on the shape t with top row n; b � 1;
b � 2;y; 1: Normalize the inner products of the Kazhdan–Lusztig basis vectors so that

the norm /cTOP; cTOPS has the intersection homology Poincaré polynomial of the

Springer fiber component KTOP: Then the inner product /cA; cBS is equal to the

intersection homology Poincaré polynomial of the intersection KA-KB:

To accomplish this, we define maps between certain spaces, from which the
Decomposition Theorem asserts that these intersection homology Poincaré
polynomials satisfy the equations of the Kazhdan–Lusztig inner products. We need
some geometric preliminaries.

Definition 6.2. A subvariety X of the flag manifold FlðVÞ is a union of lines of type k

if whenever X contains a flag F1C?CFk�1CFkCFkþ1C?CFn; then X contains
all flags of the form F1C?CFk�1CF 0

kCFkþ1C?CFn where F 0
k is between the

given subspaces Fk�1 and Fkþ1: We will, by analogy with Weyl groups, also say that
k is a descent of X : Some authors say that X is k-vertical.

Definition 6.3. Let X be a subvariety of the flag manifold of GLnðCÞ and 1pkp
n � 1: We will denote by CP1%X the variety of pairs

fðF 0
k;FÞ where FAX and F 0

k lies between Fk�1 and Fkþ1g:

This variety admits a map f : CP1%X-FlðVÞ given by mapping ðF 0
k;FÞ to the flag

F 0 ¼ F1C?CFk�1CF 0
kCFkþ1C?CFn:
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Definition 6.4. The image fðCP1%X ÞDFlðVÞ is called the k-saturation of X ; this
image is denoted SkðX Þ:

So the k-saturation SkðX Þ is obtained roughly by taking all flags in X and allowing

Fk to vary freely within them. Note that f
�1ðFÞ is a CP1 exactly when F is contained

in a line of type k in X :

Lemma 6.5. The space CP1%X is a locally trivial fiber bundle over X with fiber CP1

via the obvious map ðF 0
k;FÞ/F :

Proof. This is clear. &

Remark 6.1. We can also rephrase this using a minimal parabolic subgroup Pk

corresponding to the simple reflection ðk k þ 1Þ: Then the map p : G=B-G=Pk

forgets about Fk; so the preimage p�1ðpðXÞÞ is equal to fðCP1%XÞ:

Suppose we have two hook-type standard tableaux A with top row n; ib�1;y; k ¼
ij;y; i1 and B with top row n; i0b�1;y; k̂;y; i01 (that is, k is in the jth position from

the right in A; but is not in the top row in B). Then k is a descent of the component
KB but not of the component KA: Let the position of k in the top row of A be ij: Then

we have the adjacent components Kðk k�1ÞA and Kðk kþ1ÞA of the Springer fiber BN

that have k as a descent. Then we shall show that the intersection homology Poincaré
polynomial of the k-saturation of the intersection KB-KA equals the sum of the
intersection homology Poincaré polynomials of KB-Kðk k�1ÞA and KB-Kðk kþ1ÞA;

and we shall show how this equality can be interpreted in terms of the
Decomposition Theorem.

Theorem 6.4. Let N be a nilpotent map of hook type. Let A and B be two standard

tableau on the Young shape of N such that k is a descent of B but not of A. Then the

intersection KA-KB of the two components KA and KB of the Springer fiber BN is not

k-saturated. Then the map f from CP1%ðKA-KBÞ to the k-saturation SkðKA-KBÞ
yields an equation of intersection homology Poincaré polynomials

IPðCP1%ðKB-KAÞÞ ¼ IPðKðk kþ1ÞA-KBÞ þ IPðKðk�1 kÞA-KBÞ:

Remember that the intersection homology Poincaré polynomial IP is normalized so that

the sum is centered around the degree 0 term.
If either ðk � 1 kÞA or ðk k þ 1ÞA is not standard, then omit the corresponding term

in the above. If both are not standard then the intersection KA-KB is empty.

Proof. Suppose that we have the intersection KA-KB of two components KA and
KB where k is a descent of B but not of A: Let k ¼ ij in A: First, if neither ðk � 1 kÞA
or ðk k þ 1ÞA is standard, then we can check by Theorem 4.1 that the intersection
KA-KB is empty. In fact, suppose KA-KB is nonempty. Then if A has top row

ARTICLE IN PRESS
F.Y.C. Fung / Advances in Mathematics 178 (2003) 244–276 265



ijþ1 ¼ k þ 1; ij ¼ k and ij�1 ¼ k � 1; then bj�1 ¼ k � 1 and ajþ1 ¼ k þ 1: Then in the

tableau B; the entry i0j must satisfy k � 1oi0jok þ 1; but i0jak because k is a descent

of B; which is a contradiction.
Suppose first that ðk k þ 1ÞA is standard. Then ij ¼ k; ij�1ok � 1 and ijþ14k þ 1:

Now the term i0j in B must satisfy either i0j4k or i0jok: Suppose now that i0j4k (which

is only possible when ðk k þ 1ÞA is standard), so that k=aj and i0j ¼ bj: Then for any

FAKA-KB; the subspaces of F satisfy

im Nb�jCFkCFkþ1C?CFi0
j
Cker Nj:

Note that KA-KB has a (Zariski) open subset of flags with im Nb�jCFk but

im Nb�jgFk�1: In such flags, Fk is determined by Fk�1 (and im Nb�j), so the
intersection KA-KB is not a union of lines of type k:
So the k-saturation of the intersection KA-KB consists of all flags

?Fk�1CF 0
kCFkþ1?; where F 0

k is any subspace between Fk�1 and Fkþ1: In

particular, F 0
k no longer need contain im Nb�j: However, the subspace Fkþ1 must

still contain im Nb�j in all of the resulting flags. Therefore the k-saturation of
KA-KB is all flags with

im Nb�jDFkþ1CFijDker Nj;

and all the other conditions unaffected. Therefore the k-saturation SkðKA-KBÞ is
indeed Kðk kþ1ÞA-KB:

If ðk � 1 kÞA is also standard, then there will be a nonempty subset of KA-KB

consisting of those flags in the intersection for which

im Nb�jCFk�1CFijCker Nj

which clearly corresponds to the intersection KB-Kðk�1 kÞA; this subset is a union of

lines of type k: The subvariety KB-Kðk�1 kÞA is of codimension 2 in KB-Kðk kþ1ÞA:

Therefore we have a map f : CP1%ðKB-KAÞ-Kðk kþ1ÞA-KB: This map is

generically 1� 1: The map f is a semismall resolution, because the subvariety where

f has a CP1 fiber is exactly Kðk�1 kÞA-KB; which is of codimension 2 in the image

space Kðk kþ1ÞA-KB; and the domain is nonsingular.

Therefore when we invoke the Decomposition Theorem for semismall maps [3,4],

we find that the intersection homology Poincaré polynomial IPðCP1%ðKA-KBÞÞ
equals the intersection homology Poincaré polynomial IPðKðk kþ1ÞA-KBÞ of the

range, plus the intersection homology IPðKðk�1 kÞA-KBÞ of the smaller intersection.
(Remember that the intersection homology Poincaré polynomial IP is normalized so
that all of these sums will be centered around 0.)
If ðk k þ 1ÞA is standard but ðk � 1 kÞ is not, then Kðk�1 kÞA-KB is empty, so its

term is omitted. Finally, if i0jok so k ¼ bj (which is only possible if ðk � 1 kÞA is
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standard), then the roles of Kðk�1 kÞA and Kðk kþ1ÞA will be reversed in the above

argument. &

Example 6.1. We have an equality of IP’s of the following spaces (where we denote
the space KA by its tableau A):

CP1%

7 6 3 2

5

4

1

\ 7 5 3 1

6

4

2

0
BBB@

1
CCCA

¼

7 6 3 2

5

4

1

\ 7 6 3 1

5

4

2

0
BBB@

1
CCCAþ

7 6 3 2

5

4

1

\ 7 4 3 1

6

5

2

0
BBB@

1
CCCA:

For the first intersection, we have

a1 ¼ 1; b1 ¼ 2; a2 ¼ 3; b2 ¼ 3; a3 ¼ 5; b3 ¼ 6;

so the computation of the polynomials is

½2
 � ½1
½7� 4
!½3� 2
½5� 3
½7� 6


¼ ½1
½7� 4
!½3� 2
½6� 3
½7� 6
 þ ½1
½7� 4
!½3� 2
½4� 3
½7� 6
:

7. Structure of intersections of components of two-row type and the relationship with

Kazhdan–Lusztig theory

Now we compute the intersection homology Poincarè polynomials of pairwise
intersections of components and then relate them to Kazhdan–Lusztig theory.
Let N be a nilpotent map with a two-row Young shape t: In this section we prove

that the intersection homology Poincaré polynomials of the intersections of the
components of the Springer fiber BN coincide with the (appropriately normalized)
inner products of the Kazhdan–Lusztig basis vectors of the left cell representation of
Hn associated to the Young shape t:
The Kazhdan–Lusztig inner product matrix has been studied for left cell

representations of two-row type because they yield the representations of the so-
called Temperley–Lieb algebra [29]. We shall understand how the combinatorics of
the Temperley–Lieb algebra representations encodes the structure of the intersec-
tions of components of the Springer fiber.
First, let us review some notions from Temperley–Lieb theory [29].
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Definition 7.1. Suppose we have the numbers 1 to n on a horizontal line, increasing
to the right. Then an ðn; pÞ-cup diagram consists of p cups on these numbers, where
each cup connects two numbers, no two cups intersect each other, and no number is
underneath a cup and yet not connected to any cup. The entire cup diagram must lie
in one half-plane.

Lemma 7.1. Suppose t is a Young shape with n boxes and n � b boxes in the second

row. Then there is a bijection between standard Young tableaux on t and ðn; n � bÞ-cup

diagrams. This bijection is denoted A-CupDðAÞ:

Proof. Let A be a standard tableau of shape t: We construct a cup diagram as
follows. Begin at the number 1 on the horizontal line. Proceed from left to right,
starting a cup at i if the number i is on the bottom row of A; and ending a cup if i is
on the top row by matching the number i with the closest started cup that can be
matched with i: All unpaired ends of cups are then left blank (these are called
orphaned numbers). It is easily seen that this procedure produces a bijection between
cup diagrams and two-row tableaux. &

Example 7.1. The ð7; 3Þ cup diagram

1 2 3 4 6 75

corresponds to the standard Young tableau

7 5 4 3

6 2 1

Lemma 7.2. A two-row standard tableau A has a descent at i if and only if the

associated cup diagram CupDðAÞ has a cup connecting i and i þ 1: Such a cup will be

called a minimal cup.

Proof. The tableau A has a descent exactly when i is on the bottom row and i þ 1 is
on the top row. This is the case exactly when there is cup connecting the numbers i

and i þ 1 in the cup diagram CupDðAÞ: &

We shall exhibit a correspondence between the cup diagram CupDðAÞ and the
dependencies among the subspaces of the flags in the component KA: First, let us
extend the cup diagram CupDðAÞ by adding the numbers 0;�1;y;�ðn � bÞ to the
left of the numbers 1;y; n: Now match each orphaned number in the cup diagram,
working from left to right, to the closest possible negative number. This creates an
extended cup diagram that we label ECupDðAÞ: Note that there are no additional
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choices here so these extended cup diagrams are still in bijection with the standard
tableaux. For a point i which is an endpoint of a cup, denote by sðiÞ the other
endpoint of the cup.

Definition 7.2. Given a cup diagram CupDðAÞ and an index i at which a cup begins
or ends, we denote by CupAðiÞ the cup that begins or ends at i:

Recall that a subspace Fi in a component KA is called dependent if F is specified by
Theorem 5.2 as the inverse image of some smaller subspace (equivalently, the
number i is on the top row of A), and is said to depend on that smaller space.
Otherwise the subspace is called independent.

Remark 7.1. For �ðn � bÞpio0; we interpret Fi to mean im Nb�i:

Definition 7.3. A cup Cup1 lies directly beneath a cup Cup2 if Cup1 is beneath Cup2
and there are no other cups that lie both above Cup1 and below Cup2:

Theorem 7.1. Consider a nilpotent map N and a two-row standard tableau A on the

Young shape of N. Then the extended cup diagram ECupDðAÞ encodes the

dependencies among the subspaces of the flags in KA as follows. If a cup begins at i,
then Fi is independent. If a cup ends at i then Fi is an inverse image of FsðiÞ�1
(interpreted using Remark 7.1).

Proof. Let i40: First, note that Fi is independent iff the number i is on the bottom
row of the tableau A: This is true iff i starts a cup in ECupDðAÞ: The subspace Fi is
dependent on a smaller subspace iff i ends a cup in ECupDðAÞ:
Now suppose Fi is dependent. We apply the characterization of Theorem 5.2. Let

us proceed by induction on the length jsðiÞ � ij of the cup CupAðiÞ: If i � 1 is

independent, then Fi is equal to N�1ðFi�2Þ: On the other hand, i � 1 starts a cup and
i ends the cup, so there must be a minimal cup connecting i � 1 and i; and so
i � 2 ¼ sðiÞ � 1: This proves the jsðiÞ � ij ¼ 1 case.
Now suppose that i is dependent and i � 1 is also dependent. Then, since

cups cannot cross, we see that sðiÞosði � 1Þ; so that the cup CupAði � 1Þ is
shorter than the cup CupAðiÞ: Now note that all numbers under the cup CupAðiÞ
must either begin or end a cup. So if sði � 1ÞasðiÞ þ 1; then there must exist a
sequence of adjacent cups directly beneath CupAðiÞ beginning at sðiÞ þ 1 and
ending at sði � 1Þ � 1: Then by induction, the space Fi�1 depends on the independent
subspace FsðiÞ; so by Theorem 5.2 the subspace Fi depends on the subspace

FsðiÞ�1: &

Proposition 7.1. Suppose i40 begins a cup in CupDðAÞ: If a subspace Fj depends on

the (independent) subspace Fi; then iojosðiÞ; that is, j lies strictly under the cup that

begins at i. In fact, if j is the end of a cup that lies directly beneath CupAðiÞ then Fj

depends in Fi:
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Proof. Note first that j4i since Fj depends on the independent subspace Fi: Recall

that since Fj is dependent, j ends a cup, and Fj depends on the subspace FsðjÞ�1:

Either that subspace is independent, or sðjÞ � 1 ends another cup so FsðjÞ�1 depends

on sðsðjÞ � 1Þ � 1; and so forth.
If j4i and j does not lie strictly under the cup starting at i then either sðjÞoi or

sðjÞ4sðiÞ so sðjÞ � 1 cannot lie strictly under the cup either. If sðjÞ � 1 ¼ sðiÞ then
Fj depends on Fi�1 and thus not on Fi: So, FsðjÞ�1 cannot depend on Fi unless

iojosðiÞ:
As to the last assertion, note that if j ends a cup lying directly beneath CupAðiÞ;

then Fj must depend on FsðjÞ�1: Then sðjÞ � 1 must also end a cup lying directly

beneath CupAðiÞ unless sðjÞ � 1 ¼ i: This completes the proof. &

Now we demonstrate that the pairwise intersections of components of the Springer
fiber BN satisfy the equations for the Kazhdan–Lusztig inner products. Suppose A is
a standard tableau on the shape of N: Suppose i is not a descent of A (so it is not the
case that i is on the bottom row and i þ 1 is on top). The assertion that i is not a
descent is equivalent to the assertion that there is not a cup joining i and i þ 1: Then,
we can manufacture a cup diagram having i as a descent.

Definition 7.4. Suppose CupDðAÞ is a cup diagram that does not have a minimal cup
connecting i and i þ 1: Suppose sðiÞai and sði þ 1Þai þ 1: Then the cup diagram
CupDðuiAÞ is defined by deleting the cups with endpoints at i and i þ 1; then
connecting i and i þ 1 with a minimal cup and connecting sðiÞ to sði þ 1Þ with
another cup. If exactly one of sðiÞ ¼ i or sði þ 1Þ ¼ i þ 1; then we only insert the cup
between i and i þ 1: If both sðiÞ ¼ i and sði þ 1Þ ¼ i þ 1 then CupDðuiAÞ does not
exist. Note that this definition also defines a standard tableau uiA:

In [29] it is proven that the tableau uiA gives the unique W -graph neighbor to A

that has i as a descent; if this tableau uiA does not exist, then there are no neighbors
to A in the W -graph with i as a descent. We now show that if we i-saturate the
intersection KA-KB (where KB is descended by i) then we get the intersection
KuiA-KB:

Theorem 7.2. Let N be a nilpotent map of two-row type. Consider two standard

tableaux A and B on the Young shape of N such that i descends B but not A. Suppose

uiA is the unique W-graph neighbor to A that has i as a descent. Then the intersection

Poincaré polynomials of the intersections satisfy the following equality:

ðt þ t�1ÞIPðKA-KBÞ ¼ IPðKuiA-KBÞ:

If there is no such neighbor uiA then the intersection KA-KB is empty.

Proof. We shall show that the i-saturation CP1%ðKA-KBÞ of the intersection
KA-KB has Fi independent, but all other dependencies among the other subspaces
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are the same as in KA-KB: This will prove the theorem. We use the fact that if Fj

depends on Fi; then we can also determine Fi from knowledge of Fj (Proposition 5.2).

There are several cases; first note that in all cases, Fiþ1 ¼ N�1ðFi�1Þ because this
dependency holds in KB:
1. Suppose sði þ 1ÞosðiÞoioi þ 1 in A: First, for a flag F in the component KA;

we see that Fiþ1 depends on Fsðiþ1Þ�1: Because Fiþ1 ¼ N�1ðFi�1Þ in KB; we see that

Fiþ1 must depend on Fi�1: Now in the component KA; the number i � 1 is either
equal to sðiÞ; or i � 1 lies at the end of a cup lying directly under CupAðiÞ: So the
subspace Fi�1 depends on the subspace for the start of the cup CupAðiÞ; namely FsðiÞ:

Thus Fiþ1 depends on FsðiÞ: Since Fiþ1 depends on Fsðiþ1Þ�1 in KA; we see that FsðiÞ
must depend on Fsðiþ1Þ�1 in the intersection KA-KB:

Then in the transformed tableau uiA; we now have a cup connecting sði þ 1Þ to
sðiÞ and one connecting i to i þ 1: This means that for any flag F in the component
KuiA; FsðiÞ is dependent on Fsðiþ1Þ�1: Thus the intersection KuiA-KB will have all the

same dependencies between subspaces as KA-KB does, except that KuiA-KB will be

i-saturated.
2. Suppose sðiÞoioi þ 1osði þ 1Þ: Then in KA; the subspace Fi depends on

FsðiÞ�1; and Fsðiþ1Þ depends on Fi and thus on FsðiÞ�1:

Now for any flag F in KuiA; the subspace Fsðiþ1Þ depends on FsðiÞ�1 as well. No

dependency is imposed on Fiþ1 that was not present in KA-KB:
3. Suppose ioi þ 1osði þ 1ÞosðiÞ: Then for any flag F in the component KA; the

subspace FsðiÞ depends on Fi�1; and the subspace Fsðiþ1Þ depends on Fi: Also sði þ
1Þ � 1 is either i þ 1 or is the end of a cup directly under CupAði þ 1Þ: So, by
Proposition 7.1, the subspace Fsðiþ1Þ�1 depends on Fiþ1: Thus in the intersection

KA-KB; the subspace Fsðiþ1Þ�1 depends on Fi�1:

Then in KuiA; we have that FsðiÞ depends on Fsðiþ1Þ�1: By the same chain of

dependencies, Fsðiþ1Þ�1 depends on Fiþ1 and thus on Fi�1; so Fsðiþ1Þ�1 depends on

Fi�1: Finally, the subspace Fsðiþ1Þ (which in KA depended on Fi) does not depend in

KuiA on Fi:
4. Note that the above two arguments are identical if exactly one of sðiÞ and

sði þ 1Þ is negative.
5. Finally, if both sðiÞ and sði þ 1Þ are negative, then in the original cup diagram

CupDðAÞ; both i and i þ 1 are orphans. This is exactly the case where there is no W -
graph neighbor to A having i as a descent (see [29]). So we show that the intersection

KA-KB has to be empty. In the component KB where i is a descent, Fiþ1 ¼
N�1ðFi�1Þ and so Fiþ1 is chosen to contain exactly one lower image than Fi�1 as well
as Fi:
On the other hand, consider a flag F in the component KA where i is not a descent.

In the original cup diagram CupDðAÞ; both i and i þ 1 are orphans. Therefore Fi�1 is
also dependent (otherwise i � 1 would have to connect to i). So Fi is chosen to

contain exactly one lower image than Fi�1; and in fact Fi ¼ N�kðim NjÞ for some j; k:

Then Fiþ1 is chosen to contain exactly one lower image than Fi and in fact Fi ¼
N�kðimNj�1Þ: Thus, in KA; the subspace Fiþ1 must contain two lower images than
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Fi�1: But in KB; the subspace Fiþ1 must contain exactly one lower image then Fi�1:
Therefore there are no flags in the intersection KA-KB:
The following diagram illustrates the possibilities; in each case, the relevant

subdiagrams of the cup diagrams CupDðAÞ and CupDðuiAÞ are on the top left and
top right respectively. The relevant subdiagram of CupDðBÞ is on the bottom in all
cases.

σ (i) σ (i+1) σ (i)

σ (i) σ (i)σ (i+1) (i+1)σ 

σ (i+1) σ (i) σ (i+1) σ (i)

σ (i) σi+1= (i+1) σ (i) σ (i+1)i+1=

i+1=σ (i+1)σ = i(i)

σ (i+1) i i+1 i i+1

i i+1 i i+1

i i+1 i i+1

i i

5

4

3

2

1

Now we have demonstrated in all cases that the i-saturation of KA-KB is indeed
equal to KuiA-KB: Since KA is not a union of lines of type i; the conclusion of

Theorem 5.2 ensures that KA has no subvariety that consists of lines of type i: Thus
the Decomposition Theorem yields the conclusion of the theorem. &

As a complement, we describe the computation of the inner product matrix of the
Kazhdan–Lusztig basis for a two-row shape.

Theorem 7.3 (Westbury [29], Graham-Lehrer [13]). Let t be a two-row Young shape,
and let A and B be two standard tableaux on the shape of t: Consider the diagram

formed by placing the cup diagram CupDðAÞ above the horizontal line, and CupDðBÞ
below. Suppose the diagram contains r closed loops, and also that the endpoints of each

open arc are pointing in opposite directions. Then the inner product of two Kazhdan–

Lusztig basis vectors cA and cB is /cA; cBS ¼ ðt þ t�1Þr: If an open arc in the diagram

has both ends pointing in the same direction, then the inner product is 0.

Proof. See Westbury [29, Sections 5 and 7] and Graham-Lehrer [13, Section 6]. Note
that their answer differs from ours by a sign because they use the other Kazhdan–
Lusztig basis arising from the elements Cw: &
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Conjecture 7.1. Based on the strong evidence of the above calculations, we conjecture

that the pairwise intersection of components of Springer fibers of two-row type are also

iterated CP1 bundles. It would suffice to show that each pairwise intersection admits a

description of the same form as Theorem 5.2. Of course, Theorem 5.2 shows that the

intersection of two components consists of all flags that satisfy the descriptions of both

components simultaneously. So it remains to show that there is a single description of

the same form for the intersection.

8. Further speculations

Much research into the relation between the Kazhdan–Lusztig basis and the
Springer fibers for GLnðCÞ has been stimulated by the conjecture in Kazhdan–
Lusztig [18, 6.3] which states that with the tableau labelings of the Springer fiber
components and the Kazhdan–Lusztig basis vectors, the codimension 1 pairwise
intersections of the components yield the edges of the left cell W -graphs. It was also
conceivable that the Springer basis and the Kazhdan–Lusztig basis were the same at
the level of Sn; and that perhaps there was a way to get an Iwahori–Hecke algebra
action on the Springer basis [25].
Recent work of Kashiwara–Saito [17] disproved a conjecture concerning

irreducibility of a certain characteristic variety, which implies that the Springer
and Kazhdan–Lusztig bases are indeed different at the Sn level, and disproves
Conjecture 6.3 in general.
For hook shapes, the Kazhdan–Lusztig basis is known to coincide with the

Springer basis for Sn (see [14]); the Conjecture [18, 6.3] also holds for two-row
shapes, because of the equations established in Section 5 and the work of Lascoux–
Schützenberger [20] (see also [29,30]). In fact, for representations of Sn labeled by
hooks and two-rows (and all left cells for which the Bruhat order coincides with the
weak Bruhat order), Kazhdan and Lusztig [18, 6.3] is known in the sense that
Hotta’s transformation formula (see [2,15]) for the Springer basis coincides with the
Kazhdan–Lusztig transformation formula (see [8]).
It is not yet clear how the results of this dissertation fit into the framework of the

above results and counterexamples. The Kazhdan–Lusztig inner products, properly
normalized, are always polynomials that are symmetric around 0; that is, invariant

with respect to the map t-t�1: So we would like them to correspond to a method of
associating a symmetric Poincaré polynomial to each component (and to each
pairwise intersection of components) of the Springer fiber. In the cases in this work,
all components and intersections were nonsingular, so the homology Poincaré
polynomials were already symmetric, once shifted appropriately. A natural choice
for a symmetric Poincaré polynomial associated to a singular variety is the
intersection homology Poincaré polynomial. In the nonsingular case, intersection
homology coincides with ordinary homology, except for the shift. Also, intersection
homology satisfies the crucial Decomposition Theorem [1]. However, it appears that
the natural conjecture extending Theorems 6.2 and 7.2 using intersection homology
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alone is not correct. The first example of a singular component arises in S6 (see
[24,28]). This component X is specified in our notation by the tableau

6 4

5 2

3

1

and X can be given the following description. The component X consists of flags F

such that F2Cker N; F2-im N has dimension at least 1, F4-ker N has dimension at

least 3, F4CN�1ðF2Þ; and imNCF4: In the Spaltenstein–Vargas subset for this

component, F2-im N is a one-dimensional space p and F4 is chosen in N�1ðpÞ to
contain imN: Since F4 and ker N are both four-dimensional subspaces of the five-

dimensional space N�1ðpÞ; their intersection F4-ker N ¼ PL must have at least
dimension 3 and contain imN:
The singular set of the component X consists of those flags such that F2 ¼ im N

and F4 ¼ ker N: In those cases, the one-dimensional subspace p is no longer uniquely
determined, nor is the three-dimensional space PL. If, for each flag in X ; we choose a
one-dimensional subspace in im N-F2 and a three-dimensional subspace in

F4-ker N; then the resulting space X̃ of such triples is a resolution of singularities

of X : Also, the fiber over a point in the singular set is a CP1 � CP1: The singular set
has complex codimension 4. Thus the resolution is semismall.

We can see that space X̃ has homology Poincaré polynomial equal to
½2
½2
½2
½2
½2
½2
½2
 as follows. The choice of a one-dimensional subspace p in im N

is a CP1: Then the choice of a three-dimensional space PL in ker N; containing imN;

is a CP1: Then the choice of a two-dimensional space F2 containing p and contained

in PL is a CP1: The choice of a space F4 containing PL and contained in the five-

dimensional space N�1ðpÞ is another CP1: Finally, since X is a union of lines of types

1, 3, and 5, the other choices each contribute a CP1: This exhibits X̃ as an iterated
fiber bundle.
The semismall Decomposition Theorem says that the intersection homology

Poincaré polynomial IPðX̃Þ of the resolution X̃ equals the sum of IP’s of strata of X ;
each with multiplicity equal to the number of components of the fiber over the point
in the stratum. So we can compute IPðX Þ; since we know that the fiber over each

point in the stratum CP1 � CP1 � CP1 is CP1 � CP1: Thus ½2
½2
½2
½2
½2
½2
½2
 ¼
IPðXÞ þ ½2
½2
½2
: However, the entry in our normalized inner product matrix is

½2
½2
½2
½2
½2
½2
½2
; which is larger than the homology Poincaré polynomial of X̃:
However, this suggests that perhaps the inner products correspond to some other

semisimple perverse sheaves (see [23]) in the intersection KA-KB; since semisimple
perverse sheaves also satisfy the Decomposition Theorem and have symmetric
Poincaré polynomials. We also have examples of inner products (from the same
shape as the above example) that are the sum of intersection homology Poincaré
polynomials of multiple irreducible components of the corresponding intersection of
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two components of the Springer fiber. This lends further weight to the idea of using
semisimple perverse sheaves on the intersection KA-KB of two components of the
Springer fiber, since the appropriate Poincaré polynomial is obtained by summing
the Poincaré polynomials of the irreducible components of the intersection KA-KB:
The data also suggests that it would be worthwhile to investigate the structure of
resolutions of singularities of components of Springer fibers.
There is now W -graph data available up to S15 (see [23]) and it would be

interesting to compute the inner products of the Kazhdan–Lusztig basis vectors from
them. For instance, one could check whether they satisfy the Hard Lefschetz
theorem.
There is of course more to be done on the computation of the topology of the

components of the Springer fibers. The techniques exposed here exploit the relative
simplicity of the structures of the nilpotent maps for hook and two-row types. It
would be interesting to understand these components better. Even in the two-row
case, it would be worthwhile to gain more information on the structure of the fiber
bundles, for instance extensions of Lorist’s theorem [21] concerning the e-invariants

of the nontrivial CP1 bundles.
We believe that further study of the Kazhdan–Lusztig inner products and their

relation to the components of Springer fibers will prove to be fruitful, and that there
are many questions left to be answered here.
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espaces singuliers, II, III (Luminy, 1981), Astérisque, Vols. 101–102, Soc. Math. France, Paris, 1983,

pp. 23–74.

[4] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, New York,
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1981/1982, Astérisque, Vols. 92–93, Soc. Math. France, Paris, 1982, pp. 249–273.

[27] T.A. Springer, On representations of Weyl groups, in: Proceedings of the Hyderabad Conference on

Algebraic Groups, Manoj Prakashan Press, Madras, 1991, pp. 517–536.

[28] J.A. Vargas, Fixed points under the action of unipotent elements of SLn in the flag variety, Boll. Soc.

Math. Mex. 24 (1) (1979) 1–14.

[29] B. Westbury, The representation theory of the Temperley–Lieb algebras, Math. Z. 219 (4) (1995)

539–565.

[30] J. Wolper, Some intersection properties of the fibres of Springer’s resolution, Proc. Amer. Math. Soc.

91 (2) (1984) 182–188.

ARTICLE IN PRESS
F.Y.C. Fung / Advances in Mathematics 178 (2003) 244–276276


	On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory
	Introduction
	Some properties of nilpotent maps and Springer fibers
	Vargas [28], Spaltenstein [24]
	Determination of the topology of the irreducible components of Springer fibers for nilpotent maps of hook type for GLn(C)
	Vargas [28]
	Structure of pairwise intersections of two components of hook type
	Determination of the topology of components of Springer fibers for nilpotent maps of two-row type for GLn(C)
	Relationship with Kazhdan-Lusztig theory
	Structure of intersections of components of two-row type and the relationship with Kazhdan-Lusztig theory
	Westbury [29], Graham-Lehrer [13]
	Further speculations
	Acknowledgements
	References


