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Abstract Brain is a complex organ and many attempts have been done to know its functions.

Studying attention and memory circuits can help to achieve much information about the brain.

P300 is related to attention and memory operations, so its investigation will lead to better under-

standing of these mechanisms. In this study, EEG signals of thirty healthy subjects are analyzed.

Each subject participates in three-segment experiment including start, penalty and last segments.

Each segment contains the same number of visual and auditory tests including warning, attention,

response and feedback phases. Data analysis is done by using conventional averaging techniques

and P300 source localization is carried out with two localization algorithms including low-

resolution and high-resolution algorithms. Using realistic head model to improve the accuracy of

localization, our results demonstrate that the P300 component arises from a wide cerebral cortex

network and localizing a definite generating cortical zone is impossible. This study shows that a

combination of high-resolution and low-resolution algorithms can be a useful tool for physiologists

to find the neural sources of primary circuits in the brain.

ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Contribution of the brain neural circuitry to cognitive pro-
cesses is one of the main aspects of neuroscience which is so
difficult in practice, and many attempts have been made to

describe the function of the brain. Electroencephalogram
(EEG) (Nunez and Srinivasan, 2006; Sanei and Chambers,
2007) signals are produced by recording brain electrical activ-

ity through scalp electrodes and because of convenience and
low cost they still have a remarkable value in brain activity
monitoring (Parvinnia et al., 2014).

Event Related Potentials (ERPs) (Polich, 2007; Luck, 2005)
reflect the brain electrical responses to different sensory, cogni-
tive or affective stimuli. Compared to functional magnetic res-
onance imaging (fMRI) and positron emission tomography

(PET), ERPs have better temporal resolution but less definite
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Figure 1 Illustration of visual experiment.
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spatial resolution. By increasing the number of scalp electrodes
theoretically we can improve their spatial resolution. However,
it should be considered that when the number of scalp elec-

trodes is increased, the inter-distances between electrodes are
decreased (or the cross-talk among them is increased). The
most well-known component of ERPs is the P300 which is in

close relationship with memory/attention activities of the
brain. Using depth electrodes in medial temporal regions in
epileptic patients, the hippocampal formation was demon-

strated as the source of P300 for the first time (McCarthy
et al., 1989). But other studies on patients that had temporal
lobectomy or severe medial temporal lobe injury showed that
the hippocampal formation cannot be the exclusive source of

this wave (Molnar, 1994). An interaction between frontal lobe
and hippocampal/temporal parietal region was known as the
generator of P300 (Knight, 1997; Kirino et al., 2000).

Involvement of frontal, parietal, temporal and cingulate areas
as the P300 source was confirmed with fMRI studies (Stevens
et al., 2000).

Many algorithms have been made for reconstructing the
current source for a given scalp electrical distribution. Source
localization based on scalp potentials requires a solution to

an ill-posed inverse problem with many possible solutions. A
good understanding of brain physiology is critical for selection
of a particular solution (Sanei and Chambers, 2007). EEG
source localization methods can be categorized into two main

approaches: equivalent current dipole approach, in which the
EEG signals are assumed to be generated by a relatively small
number of focal sources, and the current distributed source

approach, in which all possible source locations are considered
simultaneously.

The distributed source approach has good consistency with

neuroimaging studies, so it could be significantly useful in deter-
mining the underlying sources of P300. Among this approach,
localization algorithms such as low resolution electromagnetic

tomography (LORETA) (Sabeti et al., 2011; Pascual-Marqui
et al., 1994), standardized LORETA (sLORETA) (Pascual-
Marqui, 2002), focal underdetermined system solver
(FOCUSS) (Gorodnitsky et al., 1995) and shrinking

LORETA-FOCUSS (Liu et al., 2005) have been proposed.
Mulert et al. (2004) used LORETA in the analysis of P300

data and found a large similarity between the result of

LORETA and previous fMRI or intracranial recordings stud-
ies. Volpe et al. (2007) applied LORETA to analyze the two
P300 sub-components (P3a and P3b) and found that P3a is

related to the automatic allocation of attention, while P3b
reflects the effortful processing of task-relevant events.
Schimpf and Liu (2008) used SSLOFO to localize the P300
ERP neural generators. They showed that the results are in line

with functional neuroimaging studies while preserving the tem-
poral resolution advantages of the EEG.

Li et al. (2009) applied EEG/fMRI integration to investi-

gate the neural sources of P300 component. Their results
revealed that P300 was generated in a distributed network such
as bilateral parietal, middle and inferior frontal, precentral,

postcenteral cortex and anterior cingulate gyrus. Connell
et al. (in press) studied neural sources of P3a and P3b compo-
nents with simultaneous EEG/fMRI recordings for visual odd-

ball task and showed that the effect of age on P3a component
was increased activation of the left inferior frontal and cingu-
late cortex and decreased activation of the inferior parietal cor-
tex. This effect on P3b was the increased activation of the left
temporal regions, right hippocampus, and right prefrontal
cortex.

In this study, visual and auditory paradigms are used to

record P300 ERP in a group of healthy participants.
Whereas the neural sources of P300 component are not deter-
mined certainly, localization of brain sources of this compo-

nent is the main goal of this work. In our study, sLORETA
and shrinking sLORETA are used to localize the cortical dis-
tribution of P300 generators. To improve the accuracy of

localization, we used the realistic head model instead of spher-
ical model to estimate the lead-field matrix. Also, we restricted
source space (solution space) to parts of the brain that believed
they are related to attention and memory circuits. Finally, the

results are compared and discussed.
The paper is organized as follows. Section 2 will discuss

data collection. In Section 3, we present EEG source localiza-

tion algorithms. Experimental results that show the neural
sources of P300 component, are introduced in Section 4.
Finally, Sections 5 and 6 summarize the contribution of this

paper and some future research directions respectively.

2. Data collection

Thirty normal subjects (20 male and 10 female) aged between
18 and 30 years (23.10 ± 3.84 year) participated in this study.
All participants were students and they were recruited from

Shiraz University, Shiraz, Iran. Each participant has been
seated upright with eyes open and the experiment lasted
around 150 min. To avoid any muscle artifact the neck was
firmly supported by the back of the chair, and the feet were

rested on a footstep.
Each subject participated in three-segment experiments

including start (takes about 30 min), penalty (60–90 min) and

last (30 min) segments. Each segment contains an equal num-
ber of visual and auditory tests where each test includes warn-
ing, attention, response and feedback phases. Fig. 1 shows a

simple illustration of the visual test. At the beginning of each
test, the participant sees two up and down flashes, as an alarm.
In the attention phase, one of the flashes appears. In the

response phase, a question mark appears and the participant
must answer which flash has appeared by pressing up or down
button. In the feedback phase, a right/wrong answer is dis-
played. The auditory test is similar, in structure, to the visual

test, but the participant distinguishes between low or high
pitch tones from the background white noise. The visual and
auditory tests are applied alternatively, and to start the next

test, participants must press a button. Each visual or auditory
test lasts about 7 s. In this work, each segment contains one
hundred visual tests and one hundred auditory tests. In penalty



 

Figure 2 Source localization scheme.

Table 1 Tissue conductivity.

Tissue Radius (mm) Conductivity 1=ðohm �mmÞ
Brain 75.2479 0.3300

Skull 81.9291 0.0041

Scalp 96.2195 0.3300
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segment, we punish participants for wrong answers where each
wrong answer adds four more tests to this segment. Therefore,
the penalty segment takes a long time in comparison to the

other segments.
Electrophysiological data were recorded using a neuroscan

32 channel Synamps system, with a signal gain equal to 75 K

(150x at the headbox). For EEG paradigms, 30 electrodes
(Electrocap 10–20 standard system with reference to linked
earlobes) were recorded plus vertical electrooculogram

(VEOG). The eye-blink artifacts were corrected using the
Infomax independent component analysis (ICA) algorithm
(Bell and Sejnowski, 1995) and the elimination of high noise
trials were performed off-line by an experienced physician

through visual inspections of the recordings (Sabeti et al.,
2009). Additionally, EEG signals were filtered with a band
pass filter at 0.5–45 Hz to account for noise of very low fre-

quency up to the power line frequency. According to the inter-
national 10–20 system, EEG data have been continuously
recorded from 30 electrodes (Fp1, Fp2, F3, F4, FC3, FC4,

C3, C4, CP3, CP4, P3, P4, O1, O2, F7, F8, FT7, FT8, T3,
T4, TP7, TP8, T5, T6, Fz, FCz, Cz, CPz, Pz, Oz) with a sam-
pling frequency of 250 Hz.

3. EEG source localization

The EEG signal can be described by the propagation of the

brain sources to the sensors with the assumption that a small
region of active tissue in the brain can be represented by cur-
rent dipole source

X ¼ LSþN ¼
Xm
i¼1

Lisi þN ð1Þ

where X (an ne � T matrix) represents the EEG channel data,
S (an m� T matrix) is the current source densities, N is noise

and Lead field matrix, L, is an ne �m matrix describing the
forward mixing model of m sources to the ne electrodes. The
lead field matrix, L, can be decomposed into m matrices Li as

L ¼ ½L1 � � �Li � � �Lm� ð2Þ

where Li is an ne � 1 vector containing the potentials observed
at the electrodes when the source vector has unit amplitude at
one location and is zero at all others. This matrix contains the
geometric information about the source and sensor positions,

as well as the volume-conductor properties. Fig. 2 shows the
used scheme for P300 source localization.

3.1. Head model

Most previous studies assume that the head model is made up
of a set of nested concentric spheres (including scalp, skull, and

brain) each with homogeneous (same magnitude at all loca-
tions) and isotropic (same magnitude in all directions) conduc-
tivity. However, it is clear that the head is not spherical, so

replacing the spherical geometry with a more realistic head
shape improves the lead-field matrix calculations. This realistic
head model can be extracted from MRI anatomical images.
This model assumes that the head consists of a set of contigu-

ous isotropic regions with constant conductivity. Table 1
shows the radius and conductivity of different head tissues.
The radius of each tissue is selected by fitting a sphere to the

template MRI image. As Table 1 shows the skull is the most
important tissue because of its low conductivity where the
brain to skull conductivity ratio is usually considered as 80.

3.2. Boundary element model

To calculate the lead field matrix, it must be investigated how
currents spread through the brain, skull and scalp. In fact, ele-

ments of lead field matrix show the surface potentials gener-
ated by the neural sources in the brain. It is clear that the
surface potentials depend on realistic shape and conductivity

information. Since an analytic solution for surface potentials
is available only for simple surfaces, use of realistic volume
requires numerical techniques such as the boundary element

model (BEM) (Fuchs et al., 1998). This method gives a solu-
tion by calculating the effects of the source at the boundaries
of the volume where the boundaries are the interfaces between

regions of different conductivities within the volume and the
outer surface.

It is assumed that the volume can be divided into nS þ 1
regions with conductivities rj; j ¼ 1; :::; nS þ 1, which includes

the nonconducting region outside of the head. These regions

are separated by a number of nS surfaces Sj with different con-

ductivities rj. Using Green’s theorem for solving Poisson equa-

tion (r � r2V ¼ rJi), the potential at any point consists of the

sum of an infinite medium potential v1ðrÞ and the volume cur-
rent effects, as



Figure 4 Source locations including the cortex and limbic

system.
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r�k þrþk
2

vðrÞ¼ r0v1ðrÞþ
1

4p

XnS
j¼1
ðr�j �rþj Þ �

Z
Sj

vðr0Þr 1

r0 � r

� �
�dr0

ð3Þ

v1ðrÞ ¼
1

4pr0

Z
G

jiðr0Þ � r 1

r0 � r

� �
dr0 ð4Þ

where v1ðrÞ shows the potential generated by the impressed

current density, Ji in an infinite homogeneous medium with
conductivity r0, r

0 � r is the vector distance from an arbitrary
point r to the element of volume or area r0, and r�j (rþj ) indi-
cates the conductivity inside (outside) the j th surface respec-

tively. Eqs. (3) and (4) form the general set of boundary
integral equations for solving the forward problem for scalp
potentials (calculating the lead field matrix). To calculate the

electric fields it is necessary to numerically approximate the
integral over the closed surfaces Sj of the conductor bound-

aries. The surfaces can be described by a large number of small
triangles and the integrals are replaced by summations over
these triangle’s areas. These small triangles can be obtained

from segmentation of the MRI anatomical data and triangula-
tion of the corresponding surfaces. The brain template used is
obtained from Montreal Neurological Institute (MNI) that is

an averaged T1-weighted MR scan from 152 subjects
(Neurological Institute and Hospital), (Spm8 (statistical
parametric mapping)). The assumed head model contains three
layers: brain, skull and scalp. Each surface is decomposed into

5120 small triangles (2562 vertices). Fig. 3 shows the adopted
head model.

3.3. Source locations

In this study, we include the anatomical information by only
considering the locations corresponding to physically realistic

source locations. We restricted the source space (solution
space) to parts of the brain that are believed to be related to
attention and memory circuits. This method limits the solution

space, therefore it can improve the accuracy of localization.
The probable source locations are shown in Fig. 4. This figure
contains the brain cortex and limbic system where physiolo-
gists believe that attention and memory circuits are located

in. These locations register to Talairach human brain atlas
(Wong), (Talairach and Tournoux, 1988) and are obtained
from MNI brain template.
Figure 3 Assumed head model including three layers: brain,

skull and scalp.
3.4. Source localization algorithm

The goal of source localization is to find the intracerebral
sources of the potentials recorded at the scalp and to relate
them to the activity of neural generators within the brain.

Source localization based on scalp potentials requires a solu-
tion to an ill-posed inverse problem with many possible solu-
tions. Selection of a particular solution often requires a

priori knowledge from the overall physiology of the brain. It
is important to utilize methods that help the physiologist to
perform the essential operation of transferring scalp EEG

information into cortical or even subcortical processes. Also
the selected methods should be easily interpreted by specialists.

First localization algorithm, sLORETA (Pascual-Marqui,
2002) gives a unique solution to the inverse problem using a

cost function as

jjX� LSjj2 þ kjjSjj2 ð5Þ

where k is a positive constant known as the regularization

parameter and ||.|| is the Euclidean norm. Hence sLORETA
chooses S to fit EEG channel data X in least-squares sense,
but penalizes solutions of large norm. sLORETA gives a solu-
tion as

si ¼ LT
i ½LiL

T
i þ kiI�

�1
X ð6Þ

Second localization algorithm, shrinking sLORETA (Liu

et al., 2005) assumes that sources are more focal, and produces
a high spatial resolution iterative method that uses information
from the previous iterations. In this algorithm, the search space
is modified by eliminating the nodes with no source activities. In

fact, this algorithm shrinks the source space after each iteration,
leading to a reduction in computational cost. Table 2 shows the
shrinking sLORETA source localization algorithm.

To obtain the temporal information, the sources are
assumed spatially fixed during a short time window, and tem-
poral information can be factored out (Sanei and Chambers,

2007; Liu et al., 2005). The solution of each time sample is
added to obtain temporal information as

S ¼
X
t

Ŝt; ð7Þ

Ŝt ¼ SSTLTðLSSTLTÞþX ð8Þ

where Ŝt is calculated by sLORETA and shrinking sLORETA.



Table 2 The shrinking sLORETA source localization

algorithm.

1. Estimate the current density Ŝ0 by sLORETA spatial filter

2. Initialize the weighting matrix C as

C0 ¼ ðW�10 Þ
T
W�10

W0 ¼ diagðŜ0ð1Þ; Ŝ0ð2Þ; :::; Ŝ0ð3mÞÞ
3. Estimate the source power as

ŜT
i ðlÞ½Liðl; lÞ��1ŜiðlÞ

4. Keep the prominent nodes and their neighboring nodes, and

smooth the values on these nodes

5. Shrink the solution space containing only the retained nodes

6. Update the weighting matrix as

Wi ¼ PWi�1½diagðŜi�1ð1Þ; Ŝi�1ð2Þ; :::; Ŝi�1ð3mÞÞ�
P ¼ diag 1

kK1k :::
1

kK3mk

h i
7. Repeat steps 3 to 6 until there is no negligible change in the

weighting matrix
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Figure 5 Activation map of source power with spherical head

model using (a) sLORETA, (b) shrinking sLORETA.
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4. Experimental results

In this study, we try to localize P300 component in the start

segment using sLORETA and shrinking sLORETA localiza-
tion algorithms. These algorithms estimate activity in different
source locations by solving X= LS. In these algorithms, the

goal is estimation of S where X and L is defined. The elements
of X matrix show the EEG brain activity in electrodes located
on the head based on 10–20 standard system.

In the next step, to calculated elements of L matrix, the pos-

sible source locations must be determined. Whereas the brain is
not spherical, it should be better that source locations are consid-
ered according to the real shape of the brain. Also as physiolo-

gists discuss (Bear et al., 2006), all parts of the brain are not
known as P300 generator and only some specific areas are
responsible for its generation, so we limited source locations to

the specific areas of the brain like the cortex and limbic system.
Finally, L matrix will be calculated. To calculate the first

column of L (ne �m matrix), we assume that the first source
in location ðx1; y1; z1Þ is active. Using a numerical method

(BEM), first the voltage on the cortex will be calculated. At
the next steps, the voltage on the skull and scalp will be calcu-
lated respectively. In fact, each column of L contains the

potentials observed at the electrodes when the source vector
has unit amplitude at one location and the other sources are
all zero. After determining L matrix, two mentioned localiza-

tion algorithms will be applied to find the neural sources of
P300 component with estimating of S matrix elements.

Whereas, the neural sources of P300 were not determined

certainly, we cannot estimate localization error for P300
sources. Therefore, to evaluate the accuracy of localization
algorithms, we used simulated data.

4.1. Simulated data

To evaluate the source localization algorithms, we consider
sinusoidal sources in a simulated brain. Two sources with a

1 lV amplitude, oscillating sinusoidally at 23 Hz are consid-
ered. These sources are randomly positioned in the brain and
gaussian white noise is added to yield a signal to noise ratio

(SNR) of 2. Fig. 5 and Fig. 6 show the result of applying
sLORETA and shrinking sLORETA using spherical and
realistic head model respectively. Fig. 5a shows that the out-
put of sLORETA is a blurred image of neural activity in the
brain and it is difficult to accurately locate the position of
the sources. Fig. 5b shows that using shrinking sLORETA,

there are localization errors Eloc = 5.34 mm and
Eloc = 75.23 mm for the superficial and deeper sources respec-
tively. Fig. 6a shows that sLORETA can detect only the

superficial source correctly. Fig. 6b shows that the shrinking
sLORETA can detect the superficial source correctly, but there
is a localization error Eloc = 6.80 mm for the deeper source.

Our results show that the accuracy of source localization is
improved using the realistic head model.

4.2. P300 source localization

Because ERP is embedded in a larger EEG signal, almost all
ERP studies rely on some sort of averaging procedure to min-
imize the EEG noise. The advantage of averaging event-related

data is not only to enhance the signal, but also to remove non-
event-related noise. EEG epochs following a given stimulus are
extracted from the ongoing EEG. The ERP is obtained by
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Figure 6 Activation map of source power with realistic head model using (a) sLORETA, (b) shrinking sLORETA.
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Figure 7 Grand averaging process of all subjects on the Fz, Cz, Pz, Oz channels on the visual task in (a) the first segment,(b) right

answer, (c) wrong answer in the penalty segment, (d) the last segment.
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temporally averaging event-related data (more than 40 events),
each event producing an EEG of size ne � T, where ne is the
number of electrode signals and T is the number of samples

of the event. Figs. 7 and 8 show the grand averaging process
of all subjects on Fz, Cz, Pz and Oz channels for start, penalty
and last phase. In this study, attention and feedback phase in
both visual and auditory experiments elicited the P300 compo-
nent. With change of stimulus discrimination (harden the

experiment) during the experiment, we ensured that the num-
ber of correct answers remains above a certain threshold.
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Figure 8 Grand averaging process of all subjects on the Fz, Cz, Pz, Oz channels on the auditory task in (a) the first segment,(b) right

answer, (c) wrong answer in the penalty segment, (d) the last segment.

Table 3 Mean and std of latency for P300 component in the

first and last segments.

First segment Last segment

Visual stimuli 357.6915 ± 4.7522 361.7711 ± 9.6603

Auditory stimuli 366.3483 ± 8.1565 398.7662 ± 20.5237

Table 4 Mean and std of latency for P300 component in the

penalty segments.

Right answer Wrong answer

Visual stimuli 369.3134 ± 2.5310 377.3930 ± 1.7156

Auditory stimuli 413.2338 ± 1.4547 392.0000 ± 4.7103

Table 5 Probability of correct and incorrect answers.

Type of test Probability of correct answer (mean ± std)

Visual test 89.12 ± 8.72

Auditory test 88.28 ± 12.87
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Figs. 7 and 8 show that the more the attention to environmen-

tal feedback, the higher is the P300 peak. In the penalty phase
the feedback P300 peak for wrong answer is increased because
of more attention and higher tension.

Tables 3 and 4 show the mean and the standard deviation
of latency for P300 component in the first, penalty and last seg-
ments. It is shown that the P300 latency is longer for auditory
stimuli compared to visual stimuli (p-value < 0.05). The rea-
son might be that the auditory test is more difficult than the

visual test, and our results confirm that the number of auditory
correct answers is lower than that for visual test. Table 5 shows
the probability of correct and incorrect answers for the two

stimulus types. We compared the latency of P300 component
for first and last segments. Latency of P300 component is
increased in the last segment compared to the first due to par-

ticipants’ fatigue (p-value < 0.05).
We localized P300 component in the start segment. The

neural generators of the P300 component are analyzed for a
grand averaging of all subjects using sLORETA and shrinking

sLORETA algorithms. Fig. 9 shows the result of applying
sLORETA to the ERP data. It is clear that the source distribu-
tion generated by sLORETA has a low spatial resolution. The

output of sLORETA is a blurred image of neural activity in
the brain which makes it difficult to accurately locate the posi-
tion of the sources. Therefore, a higher spatial resolution algo-

rithm also is needed.
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Figure 9 Reconstructed activation map of signal power, and reconstructed P300 waveform using the sLORETA.
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Fig. 10 and Table 6 show the result of applying shrinking
sLORETA to the ERP data. A high-resolution method such

as shrinking sLORETA is able to localize more focal sources,
but this method is not generally robust for distributed activity
and may generate over-focal results. Therefore high-resolution

is not necessarily better than low-resolution algorithms. It
should be emphasized that both low and high resolution have
their own appropriate applications.
5. Discussion

P300 is believed to have relation with attention and memory

operation and possibly arises from a distributed network of
neurons. Determining a distinct explanation for this phe-
nomenon is so difficult. P300 is generated whenever a task
requires stimulus discrimination, that is occurred in many

aspects of cognition specially attention (Polich, 2007).
In our study, sLORETA showed that the P300 is generated

in a wide cerebral network including the superior and inferior
frontal lobe, middle temporal gyrus, parietal lobe, and cingu-
late gyrus. Shrinking sLORETA showed that the P300 gener-

ated by superior and inferior frontal lobe and cingulate gyrus.
There are no significant differences between the patterns of
activation for two stimulus types. Our results for the source

activity underlying a target detection task are in line with those
reported in recent studies that the P300 wave is generated by
numerous circuits in the brain responsible for working mem-

ory and attention. Although several studies (Li et al., 2009;
Connell et al., in press) used fMRI to localize P300 neural
sources, but EEG signal remains a useful tool to monitor the
brain activity. The main advantage of EEG in comparison

with fMRI is low cost and easy usability.
Using realistic head model to improve the accuracy of

localization, our results demonstrate that some parts of P300

component originate from the interaction between frontal lobe
and temporal–parietal areas, and other parts of P300 are gen-
erated by the cingulate gyrus that has a significant role in

working memory circuit. In an attempt to find a specific source
for P300 generation, we cannot find a specific area of the brain
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Figure 10 Reconstructed activation map of signal power, and reconstructed P300 waveform using the shrinking sLORETA.

Table 6 Cerebral networks found by shrinking sLORETA.

MNI coordinates Brodmann area

X Y Z

�4.9523 23.8364 56.6187 Brodmann area 8 Superior Frontal Gyrus

Frontal Lobe

�19.1222 62.2029 2.4246 Brodmann area 10 Superior Frontal Gyrus

Frontal Lobe

8.0032 37.2007 �19.8804 Brodmann area 11 Inferior Frontal Gyrus

Frontal Lobe

16.3513 64.0694 16.4875 Brodmann area 10 Superior Frontal Gyrus

Frontal Lobe

�7.6598 19.7742 47.2293 Brodmann area 32 Cingulate Gyrus

Limbic Lobe
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responsible for generating P300. This result confirms previous
studies with different experimental techniques that the P300
stems from a diffuse neuronal network in the brain (Brazdil

et al., 2005; Linden, 2005).
sLORETA and shrinking sLORETA localization algo-

rithms have been selected because they assume that any source
can be considered as a weighted combination of dipoles
(Mosher et al., 1999). So, the geometry of sources can be dis-
tributed instead of being localized. Furthermore, these algo-

rithms do not require determination of the number of dipole
sources to fit to the data. Therefore, the anatomical informa-
tion can be easily included by only considering the locations
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corresponding to physically realistic source locations.
Physiologists (Bear et al., 2006) believe that attention and
memory circuits are located in the cortex and the limbic sys-

tem. Therefore, we restricted the source space to probable
P300 generating areas of the brain.

6. Conclusion

It is clear that the head is not spherical, so replacing the
spherical geometry with a more realistic head shape improves

the lead-field matrix calculations, and finally enhances the
accuracy of source localization algorithms. Also, we include
the anatomical information by only considering the locations

corresponding to physically realistic source locations. We
restrict the source space to parts of the brain that are believed
to be related to attention and memory circuits. This method

limits the solution space, therefore it can improve the accuracy
of localization.

The high-resolution method such as shrinking sLORETA is
able to localize more focal sources, but these methods are not

generally robust to distributed activity and may generate over-
focal results. Therefore high-resolution is not necessarily better
than low-resolution algorithms. It should be emphasized that

both low and high resolution have their own appropriate
applications, so it seems that physiologists need both low
and high-resolution results. This study shows that a combina-

tion of high-resolution and low-resolution algorithms can be a
useful tool for physiologists to find the neural sources of pri-
mary circuits in the brain. We studied P300 sources only in
start segment. Analyzing P300 sources in penalty and last

phases is planned as a future work. We decide to study how
P300 neural sources are affected by penalty and fatigue.
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