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SUMMARY

Rapid action potential propagation in myelinated
axons requires Na+ channel clustering at nodes of
Ranvier. However, the mechanism of clustering at
CNS nodes remains poorly understood. Here, we
show that the assembly of nodes of Ranvier in the
CNS involves three mechanisms: a glia-derived
extracellular matrix (ECM) complex containing pro-
teoglycans and adhesion molecules that cluster
NF186, paranodal axoglial junctions that function as
barriers to restrict the position of nodal proteins,
and axonal cytoskeletal scaffolds (CSs) that stabilize
nodal Na+ channels. We show that while mice with a
single disrupted mechanism had mostly normal
nodes, disruptions of the ECM and paranodal barrier,
the ECM and CS, or the paranodal barrier and CS all
lead to juvenile lethality, profound motor dysfunc-
tion, and significantly reduced Na+ channel clus-
tering. Our results demonstrate that ECM, paranodal,
and axonal cytoskeletal mechanisms ensure robust
CNS nodal Na+ channel clustering.

INTRODUCTION

In myelinated nerve fibers, rapid action potential (AP) conduction

depends on high densities of voltage-gated Na+ channels clus-

tered at regularly spaced sites called nodes of Ranvier. These

nodes contain ion channels and cell adhesion molecules (e.g.,

neurofascin-186 [NF186]) that are linked to the axonal cytoskel-

eton by the scaffolding proteins ankyrinG (ankG) and bIV spectrin

(Salzer, 2003). Together withmyelin, clustered nodal proteins are

responsible for the regeneration and rapid propagation of APs.
Node assembly depends on neuron-glia interactions between

axons and oligodendrocytes in the CNS, and axons and

Schwann cells in the peripheral nervous system (PNS) (Schafer

and Rasband, 2006). These neuron-glia interactions require

NF, since animals lacking NF fail to cluster Na+ channels or

ankG (Sherman et al., 2005). In the PNS, during myelination the

proteins gliomedin and NrCAM cluster axonal NF186 at the

ends of the nascent myelin sheath (Eshed et al., 2005; Feinberg

et al., 2010). Clustered NF186 then functions as an attachment

site for ankG and the subsequent recruitment of Na+ channels

and bIV spectrin (Davis and Bennett, 1994; Gasser et al., 2012;

Sherman et al., 2005; Yang et al., 2007). Little is known about

the molecular mechanisms of CNS node formation, which

must be different from PNS mechanisms because gliomedin is

not found at CNS nodes (Eshed et al., 2005).

Three potential mechanisms have been proposed to operate

during the assembly of nodes in the CNS: (1) clustering of

NF186 by glia-derived ligands, (2) restriction of nodal proteins

at the forming nodal gap by the paranodal axoglial junctions,

and (3) stabilization of Na+ channels by axonal cytoskeletal scaf-

folds (CSs; Susuki and Rasband, 2008). However, the specific

contribution of these mechanisms, as well as their ability to

compensate for each other, is unknown. Potential glial ligands

thatmay cluster NF186 include the chondroitin sulfate proteogly-

cans brevican (Bcan) and versican (Vcan), since they are en-

riched in the extracellular matrix (ECM) surrounding CNS nodes

(Dours-Zimmermann et al., 2009; Hedstrom et al., 2007; Oohashi

et al., 2002). In support of this notion, Bcan was shown to bind

NF186 (Hedstrom et al., 2007). However, mice lacking Bcan or

Vcan have normal nodes (Bekku et al., 2009; Dours-Zimmer-

mann et al., 2009), questioning their role in CNS node assembly.

Alternatively, the paranodal axoglial junctions flanking nodes

have been proposed to function as lateral diffusion barriers

that restrict the position of nodal proteins in the axon (Pedraza

et al., 2001; Rasband et al., 1999). Although there is strong

experimental support for a paranodal barrier-like mechanism
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Figure 1. NF186 Can Cluster at Nodes

through Extracellular or Cytoskeletal

Interactions

(A) Cartoon showing the full-length and truncated

constructs of NF186 and a membrane protein CD4

used in this experiment. FNIII, fibronectin type III

domain; Ig, immunoglobulin domain.

(B) Coronal sections of electroporated mouse

brains immunostained for GFP (green), Caspr (red),

and bIV spectrin (blue). Arrowheads indicate nodes

of Ranvier. Scale bars, 5 mm.

(C) The node/paranode ratio of GFP signals in the

axons introduced with NFfull-GFP (n = 14),

NFDCD-GFP (n = 10), NFDED-GFP (n = 14),

NFDEDF-GFP (n = 16), or CD4-GFP (n = 18). Data

were collected from two brains in each group.
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(Feinberg et al., 2010; Zonta et al., 2008), the idea remains

controversial since disruption of paranodal junctions (PJs) alone

causes only mild perturbations to Na+ channel clustering (Bhat

et al., 2001; Pillai et al., 2009; Thaxton et al., 2011). Finally, Na+

channel binding to the CS ankG is both necessary and sufficient

for channel clustering (Gasser et al., 2012). However, mice lack-

ing nodal bIV spectrin, which links ankG and Na+ channels to the

actin cytoskeleton, have relatively normal CNS nodes (Komada

and Soriano, 2002; Yang et al., 2004).

How can these differences and apparent contradictions be

explained? One possibility is that these several mechanisms

normally work together but can also function independently

and compensate for one another. Here, we report that CNS

nodes of Ranvier are assembled by three distinct mechanisms:

(1) clustering of NF186 by a glia-derived ECM, (2) restriction of

nodal protein mobility by paranodal axoglial barriers, and (3)

stabilization of Na+ channels by axonal CSs. Furthermore, we

show that these mechanisms are complementary, since disrup-

tions of either the ECM and paranodal barrier, the ECM and CSs,

or the paranodal barrier and CSs in mice all cause significantly

impaired node formation. Our results reveal multiple, overlap-

pingmechanisms that together assemble CNS nodes of Ranvier.

RESULTS

NF186 Can Be Localized to CNS Nodes through
Extracellular or Cytoplasmic Interactions
Clustering of NF186 is sufficient to initiate clustering of ankG,

Na+ channels, and bIV spectrin (Eshed et al., 2007; Zonta

et al., 2008). To determine if cytoplasmic and/or extracellular

interactions cluster NF186 at CNS nodes of Ranvier, we

constructed wild-type (WT) and truncated NF186-GFP fusion
470 Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc.
proteins (Figure 1A) and expressed them

in cortical layer II/III neurons by in utero

electroporation. We examined nodes in

the corpus callosum of electroporated

mice at postnatal day 28 (P28), because

the axons of the transfected neurons proj-

ect through the corpus callosum and

many are myelinated by P28. We found

that both full-length NF186 (NFfull-GFP)
and NF186 lacking its cytoplasmic domain (NFDCD-GFP) were

strongly clustered at nodes, indicating that extracellular interac-

tions are sufficient for nodal clustering of NF186 (Figure 1B).

Similarly to NFfull-GFP and NFDCD-GFP proteins, NF lacking

its extracellular domain (NFDED-GFP) was also enriched at

nodes of Ranvier (Figure 1B), indicating that interactions with

the axonal cytoskeleton are also sufficient for NF clustering at

nodes. However, consistent with one previous report (Dzha-

shiashvili et al., 2007), loss of the extracellular domain impaired

the removal of the truncated protein from paranodal and inter-

nodal regions covered by the myelin sheath. To further charac-

terize the cytoplasmic interaction necessary for nodal NF186

clustering, we deleted the five amino acids (FIGQY) responsible

for ankG-binding (NFDEDF-GFP; Garver et al., 1997). In the

absence of an extracellular domain, this deletion blocked

NF186 enrichment at CNS nodes (Figure 1B). Similarly, a control

transmembrane protein (CD4-GFP) showed no significant

accumulation at nodes (Figure 1B). Quantification of the ratio

of node/paranode GFP fluorescence intensity showed that

NF186full-GFP, NFDED-GFP, and NFDCD-GFP were signifi-

cantly more enriched at nodes than CD4-GFP (Figure 1C),

although the ratio of nodal/paranodal enrichment in the

NFDED-GFP construct was dramatically reduced due to its fail-

ure to be removed from paranodal regions. We conclude that

both extracellular and cytoplasmic interactions are sufficient to

cluster NF186 at CNS nodes.

Extracellular Interactions: The ‘‘Core’’ CNS Nodal ECM
What extracellular molecules and interactions could be respon-

sible for nodal clustering of NF186? Several ECM proteins

have been reported at CNS nodes, and most of them are ex-

pressed by oligodendrocytes or their precursors (Cahoy et al.,



Figure 2. Node-Enriched ECM Components

Interact with and Cluster NF186

(A) Adult WT and mutant mouse spinal cord

immunostained using antibodies against various

ECM components (green) and the paranodal

marker Caspr (red) or the juxtaparanodal marker

Kv1.2 (red). Scale bar, 10 mm for Bral1 staining and

5 mm for all the others.

(B) Fc fusion proteins of BcanG3, VcanG3, NrCAM,

and Bral1 bind to COS-7 cells transfected with

HA-NF186 (green). Fc alone was used as a nega-

tive control. Cell nuclei were visualized by Hoechst

in blue. Scale bars = 20 mm.

(C) Pull-down analysis shows binding between

BcanG3, VcanG3, or Bral1 and the secretedNF186

extracellular domain. GldnECD is the whole

extracellular domain of gliomedin, and GldnOLF is

the olfactomedin domain of gliomedin; both serve

as positive controls. Molecular weight markers

in kDa.

(D) Pull-down analysis shows binding between

BcanG1 or VcanG1 and Bral1.

(E) Clustering of BcanG3-Fc or NrCAM-Fc (green)

and HA-NF186 (red) along axons (visualized by

anti-neurofilament-M) of cultured DRG neurons.

Scale bar, 5 mm.

See also Figure S1 and Table S1.
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2008; Zimmermann and Dours-Zimmermann, 2008). Therefore,

the oligodendrocyte-derived factors that have been proposed

to cluster Na+ channels in CNS axons (Kaplan et al., 1997) could

be the nodal ECM proteins and work through NF186. Consistent

with this idea, the nodal ECMproteins Bcan and tenascin-R have

been reported to interact with NF186 (Hedstrom et al., 2007;
Neuron 78, 469
Volkmer et al., 1998). Nodal clustering

of the ECM molecules phosphacan, te-

nascin-R, and neurocan (Ncan) depends

on the proteoglycan Vcan and/or the pro-

teoglycan Bcan (Figure 2A; Bekku and

Oohashi, 2010; Bekku et al., 2009;

Dours-Zimmermann et al., 2009). In addi-

tion, the hyaluronan-binding, brain-spe-

cific link protein Bral1 also colocalizes

with Bcan and Vcan in the nodal ECM

(Figure 2A; Oohashi et al., 2002). To iden-

tify the core components of the CNS

nodal ECM and their interdependence

for nodal localization, we examined adult

KO mice lacking Bcan (Bcan�/�), Vcan

(Vcan�/�), both Bcan and Vcan (Bc�/�

Vc�/�), or Bral1 (Bral1�/�; Figure 2A).

Whereas Bcan and Vcan do not depend

on each other for nodal clustering, in a

subset of CNS nodes Bral1 localization

depends on Bcan and Vcan. We found

that 97% of WT nodes in the adult mouse

spinal cord were Bral1 positive, but only

94%, 57%, and 39% of spinal cord nodes

were labeled by Bral1 antibodies in
Bcan�/�, Vcan�/�, and Bc�/� Vc�/� mice, respectively. In adult

Bral1�/� tissues, Bcan, Vcan, and Ncan were not found at nodes

(Figure 2A; Bekku and Oohashi, 2010; Bekku et al., 2010). How-

ever, Bcan and Vcan were detected at CNS nodes during early

development (Figure S1A available online), suggesting that

Bral1 may function to stabilize nodal ECM components rather
–482, May 8, 2013 ª2013 Elsevier Inc. 471
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than promote their initial assembly. Thus, among the six previ-

ously described nodal ECM proteins, our results suggest that

Bcan, Vcan, and Bral1 function together as core ECMmolecules

surrounding CNS nodes.

In addition to the ECM molecules described above, we also

found that the extracellular domain of NrCAM, a cell adhesion

molecule related to NF186, is secreted and incorporated into

the CNS nodal ECM (Figures 2A and S1B–S1H). Importantly,

the nodal localization of NrCAM was not affected by loss of

Bcan, Vcan, or Bral1, and vice versa (Figure 2A). Thus, extracel-

lular NrCAM is a core component of the nodal ECM, but not of

the nodal proteoglycan-based ECM.

Core CNS Nodal ECM Components Interact with NF186
and Induce Node-like Clustering
To further define the molecular interactions between the core

ECM components and NF186 or other axonal nodal membrane

proteins, we constructed core nodal ECM-Fc fusion proteins

and applied them to COS-7 cells expressing known nodal mem-

brane proteins (Figure 2B; Table S1). We found specific interac-

tions between NF186 and Bral1, NrCAM, and the C-terminal G3

domains of Bcan and Vcan (Figure 2B; Table S1). Pull-down

experiments using the extracellular domain of NF186

(HA-NF186) further confirmed the interaction between NF186

and Bcan, Vcan, and Bral1 (Figure 2C). We previously showed

that silencing the expression of NF186 in neurons blocked the

clustering of Bcan at axon initial segments (AIS), an axonal

domain that has a molecular organization similar to that of nodes

(Hedstrom et al., 2007; Rasband, 2010). Similarly, Vcan is

enriched at the AIS of neurons in vivo and in vitro, and loss of

NF186 blocked its clustering at the AIS (Figures S1I and S1J).

Thus, the CNS nodal ECM proteins Bcan, Vcan, Bral1, and

NrCAM interact with NF186.

We next determined the interactions between the core

ECM proteins themselves. Using cell-surface binding assays

(Table S1), we found that NrCAM did not interact with other

ECM molecules, consistent with the idea that nodal localization

of secreted NrCAM is unrelated to the proteoglycan complexes

(Figure 2A) and likely depends on binding to NF186. Finally, using

Flag-tagged Bral1 (Flag-Bral1) and Fc fusion proteins, we

observed strong interactions between Bral1 and the G1 domains

of Bcan and Vcan (Figure 2D). Previous studies of the cartilage

link protein Crtl1 (also known as HAPLN1), a paralog of Bral1,

revealed that it interacts with the G1 domain of aggrecan, a

chondroitin sulfate proteoglycan related to Vcan and Bcan,

and stabilizes its interaction with hyaluronan by forming a ternary

complex (Yamaguchi, 2000). Together, these results suggest

that Bral1, Bcan, and Vcan stabilize each other’s nodal localiza-

tion by forming ternary complexes with hyaluronan surrounding

nodes of Ranvier (Girard et al., 1992; LeBaron et al., 1992; Ooha-

shi et al., 2002).

To begin to determine whether the core nodal ECMmolecules

participate in CNS node formation, we testedwhether addition of

ECM-Fc fusion proteins to cultured neurons in vitro was suffi-

cient to induce formation of node-like clusters in the absence

of glia. We incubated BcanG3-Fc and NrCAM-Fc with dorsal

root ganglion (DRG) neurons transfected with HA-NF186, and

found coclustering of Bcan or NrCAM and NF186 along axons
472 Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc.
(Figure 2E). Furthermore, the interaction between BcanG3-Fc

and NF186 along axons could recruit ankG to these node-like

clusters (Figure S1K).

PJ Formation Precedes Clustering of Nodal ECM
and Axonal Proteins during CNS Node Development
In the PNS, gliomedin initiates node assembly at the edges of

myelinating Schwann cells by binding to and clustering NF186

(Eshed et al., 2005). By analogy, if ECM protein-mediated clus-

tering of NF186 initiates CNS node formation, then the assembly

of the CNS nodal ECM must be temporally correlated with the

clustering of NF186. To test this, we immunostained myelinating

optic nerve axons from P10 through adulthood with antibodies

against the nodal axonal proteins NF186 and bIV spectrin; the

nodal ECM components Bcan, Vcan, and Bral1; and the PJ pro-

tein Caspr (Figures 3A–3E). We labeled optic nerve axons with

antibodies against the PJ protein Caspr because in the CNS,

PJs form before the clustering of Na+ channels (Rasband et al.,

1999). At P10, shortly after myelination begins, we found many

immature Caspr-labeled single paranodes, nearly half of these

lacking any flanking NF186 (Figure 3A). In contrast, <1% of

NF186 clusters lacked flanking Caspr immunoreactivity. Asmye-

lination progressed (analyzed at P13 and P17), the majority of

Caspr- and/or NF186-labeled sites had a mature appearance

with NF186 flanked by Caspr on both sides (Figure 3A). Immuno-

staining with antibodies against bIV spectrin showed results

similar to those obtained for NF186 (Figure 3B). Furthermore,

when NF186 was detected at P10, it colocalized with bIV spec-

trin 93.5% of the time and in >98% of nodes at all later time

points, indicating that bIV spectrin is recruited to developing

nodes concurrently with NF186. Together, these data suggest

that a single paranode forms at the end of a myelinating oligo-

dendrocyte process (Rasband et al., 1999), followed by NF186

and bIV spectrin clustering adjacent to the PJ. In contrast to

NF186 and bIV spectrin, ECM molecules accumulate at nascent

nodesmuch later. At P10, 80%of sites showed single paranodes

without enriched Bcan or Vcan (Figures 3C and 3D). When two

paranodes were present, 100% had concentrated NF186

between them, but only half had Bcan or Vcan staining, and

the immunoreactivity for these nodal proteoglycans was weaker

than in adult optic nerves (Figures 3C and 3D). In parallel with

development, Bcan and Vcan enrichment at nodes became

more frequent in number and stronger in intensity. We also found

that Bral1 could not be detected until P21 or later (Figure 3E),

consistent with one previous report (Oohashi et al., 2002).

Together, these results suggest that the nodal ECM is assem-

bled after the formation of paranodes and the clustering of

NF186, and that PJs may play a primary role in assembling

CNS nodes of Ranvier.

A Genetic Strategy to Test Overlapping Mechanisms
of CNS Node Formation
Our data suggest that the nodal ECM, PJs, and CSs normally

work together butmay also function independently and compen-

sate for one another as redundant mechanisms to assemble

CNS nodes. To directly test this idea and to determine the suffi-

ciency of a single mechanism, we crossed mice with a disrupted

nodal ECM mechanism (Bcan�/�, Vcan�/�, Bcan�/� Vcan�/�,



Figure 3. Developmental Clustering of Nodal and Paranodal

Components in the CNS

(A–E) Rat optic nerve sections were immunostained with antibodies to nodal or

paranodal markers as indicated in the left panels showing representative

images of different stages of CNS node formation. Scale bars, 5 mm. Right

panels show a quantitative analysis of each type of staining as a function of

age. The data were obtained by observation of 200–250 sites from two animals

at each time point indicated.

(F) Schematic of the genetic strategy used to test whether multiple mecha-

nisms contribute to CNS node of Ranvier formation. ECMmutants, PJmutants

(barrier), and CSmutants (scaffold) were crossed to generate double- or triple-

mutant mice with two mechanisms disrupted simultaneously. (N.B. The

core ECM molecules at the CNS nodes cannot be completely removed in

ECM+Barrier or ECM+Scaffold mutant mice.)
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and Bral1�/�; Bekku et al., 2010; Brakebusch et al., 2002; Dours-

Zimmerman et al., 2009), mice with a disrupted PJ barrier mech-

anism (Caspr�/�; Gollan et al., 2003), and mice with a disrupted

CSmechanism (SPNB4qv3J/qv3J, a bIV spectrin mutant, hereafter

referred to as qv3J; Parkinson et al., 2001; Yang et al., 2004) to

generate mutant mice with two of the three mechanisms simul-

taneously disrupted (Figure 3F). We did not analyze mutant

mice lacking NrCAM and Caspr since NrCAM�/� Caspr�/�

mice die at P8 due to the dramatic loss of PNS nodal Na+ channel

clustering and before node formation begins in the optic nerve

(Feinberg et al., 2010).

Disruption of the Nodal ECM and PJs Causes Severe
Neurological Phenotypes and a Decreased Number of
Nodes
We confirmed the genotypes and loss of each targeted molecule

in ECM+PJmutants by immunostaining (Figure 4A) and PCR (not

shown). In mutants with disrupted PJs, juxtaparanodal proteins

(e.g., Kv1.2) are found at paranodes (Bhat et al., 2001; Poliak

et al., 2001). In the ECM+PJ mutants, the simultaneous loss of

one or two ECM molecules and PJs did not further disrupt other

nodal ECM molecules (e.g., NrCAM) compared with the ECM

mutants alone (Figure 4A). Nevertheless, in contrast to mice

with a single disrupted mechanism, the double (Vcan�/�

Caspr�/�, Bcan�/� Caspr�/�, or Bral1�/� Caspr�/�) and triple

(Bcan�/� Vcan�/� Caspr�/�) ECM+PJ mutants began to show

clear motor dysfunction during the second week after birth

(Movie S1). Evaluation of motor performance using the acceler-

ating rotarod showed significant motor deficits in Bcan�/�

Caspr�/� and Vcan�/� Caspr �/� mutants at P18 (Figure 4B). A

similar analysis could not be done in Bcan�/� Vcan�/� Caspr�/�

triple mutants because they were too sick to perform the test.

The symptoms were progressive and the ECM+PJ mutant

mice died prematurely (Bcan�/� Caspr�/� mice at P22–P58,

Vcan�/� Caspr�/� mice at P18–P23, and Bral1�/� Caspr�/�

mice at P17–P31). The Bcan�/� Vcan�/� Caspr�/� mice died at

P16 or were sacrificed at P18 for the analyses described below.

Despite the severe motor deficits, we measured no significant

slowing of the compound AP (CAP) conduction velocity in the

optic nerves of P18 ECM+PJ mice compared with Caspr�/�

mice (Figure S2E). We also observed no apparent disruption of

the molecular organization of individual CNS nodes in the optic

nerves of the P18 ECM+PJ mutants (Figure 4C). However, we

did observe a striking and significant reduction in the number
Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc. 473



Figure 4. Mutant Mice with Disrupted CNS Nodal ECM and Paranodes

(A) Loss of ECMmolecules in the mutants at P18. Spinal cord sections were stained as indicated. Kv1.2 channels were mislocalized to paranodes due to the loss

of Caspr. Scale bar, 5 mm for all panels.

(B) Accelerating rotarod test performed at P18.

(C) Representative images of nodal and paranodal components. P18 optic nerve sections were immunostained as indicated. Note that the Kv1.2 channels (blue)

are mislocalized to paranodes in Caspr-deficient mutants.

(D) Na+ channel staining at nodes of Ranvier (black dots) in the optic nerves of the indicated mutant mice at P18. Scale bars, 20 mm.

(E) Quantitation of the number of Na+ channel clusters per field of view (FOV, depicted in D). Data are collected from 20 FOVs from two animals.

(F) P18 spinal cord nodes of Ranvier immunostained using antibodies against Na+ channels (Nav; green) and claudin-11 (red).

(G) Frequency of Na+ channel clusters at nodes. More than 200 nodes (defined by two claudin-11-labeled paranodes) were observed in spinal cords from two

animals in each group.

ECM,mutant mice lacking one or two ECMmolecules; PJ, Caspr�/�mice lacking PJs. *p < 0.01, **p < 0.001; ns, not significant. See also Figure S2 andMovie S1.
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of nodes of Ranvier. Compared with WT animals or animals

with only a single mechanism disrupted (ECM or PJ), all of the

ECM+PJ mutants had significantly reduced numbers of Na+

channel clusters in their optic nerves (Figures 4D and 4E). This

dramatic nodal reduction in ECM+PJ mutants is unlikely to be

a consequence of impaired myelination or axon degeneration

since compared with the single Caspr�/� mice, the reduction in

the number of Na+ channel clusters in ECM+PJ mutants (Fig-

ure 4E) was consistently greater than the change in the number

of myelinated axons (Figures S2A and S2B). To further confirm

the loss of nodes in ECM+PJ mutants and to more directly

show that this is not a consequence of impaired myelination,

we double labeled P18 spinal cords for Na+ channels and clau-

din-11, a marker of the autotypic paranodal tight junction (Gow

et al., 1999). For this analysis, nodes were defined by two adja-

cent paranodes labeled for claudin-11 (Figure 4F). Thus, only

confirmed myelinated axons were counted in this analysis. In

ECM+PJ mutants, the frequency of nodes with Na+ channel

clusters was dramatically reduced compared with WT, ECM,

or PJ mutant mice (Figures 4F and 4G).

The reduction in Na+ channel clustering at P18 could be due to

a failure to cluster or to maintain nodal Na+ channels. To distin-

guish between these possibilities, we examined Na+ channel

clustering in P12 optic nerves, a very early developmental time

point when node formation is just beginning. We found that

Na+ channel clusters were significantly reduced in Bcan�/�

Caspr�/� mouse optic nerves (Figure S2C), suggesting the initial

assembly of nodes is impaired in ECM+PJ mutants. Further-

more, using double immunostaining for claudin-11 and Na+

channels in the spinal cord, we found that the reduction of nodes

with Na+ channel clusters in Bcan�/�Caspr�/�micewas compa-

rable between P12 and P18 (Figure S2D). Together, these results

suggest that there is no evolving loss of nodal Na+ channel clus-

ters in ECM+PJ mutants; rather, there is a developmental defect

in their assembly.

In the PNS, we found no significant difference in the nodal Na+

channel cluster density (Figure S2F) or nerve conduction velocity

between PJ and ECM+PJ mutants (Figure S2G) since the ECM

components that are disrupted in these animals are specific for

CNS nodes. Together with this finding, the significant reduction

in CNS nodal Na+ channel clusters in ECM+PJ mutants

compared with ECM or PJ mutants alone supports the conclu-

sion that in the CNS, ECM and PJ barrier mechanisms work

together to assemble nodes, but the remaining ECM and cyto-

skeletal interactions are only partially sufficient to form nodes.

Mutants with Disruption of the Nodal ECM and CS Have
Severe Neurologic Phenotypes and Decreased Nodal
Densities
Next, we crossed bIV spectrin mutant mice (qv3J) with Bcan�/�

or Vcan�/�mice to disrupt the ECM andCS at the same time, but

leaving the paranodes intact (ECM+CS mutants; Figure 3F). In

these double mutants, the loss of Bcan did not affect the nodal

localization of Vcan, and vice versa, indicating that the ECM

disruption in these double mutants is only a partial disruption

(Figure 5A). Nevertheless, the ECM+CS mutants began to

show motor impairment during the second week after birth

(Movie S2) and most of them died or had to be euthanized
between 3 and 4weeks of age. ECM+CSmutants showed signif-

icant motor deficits on the accelerating rotarod at P18 (Fig-

ure 5B). Despite the severe phenotypes of the ECM+CSmutants,

we measured no apparent slowing of conduction in their optic

nerves compared with qv3J mice (Figure S3C). Furthermore,

we observed no major difference in the molecular architecture

of individual nodes in ECM+CS mutants compared with WT or

qv3Jmice (Figure 5C; Vcan�/� qv3J double mutants not shown).

However, in Bcan�/� qv3J optic nerves, the number of nodal Na+

channel clusters was significantly reduced (Figures 5D and 5E),

with nomajor difference in myelinated axons compared with sin-

gle mutants (Figures S3A and S3B). Similarly, the frequency of

nodes, defined by paranodal claudin-11 and labeled for Na+

channels, was reduced in Bcan�/� qv3J spinal cords (Figures

5F and 5G). In Vcan�/� qv3J optic nerves, the reduction in

node density compared with qv3J did not reach statistical signif-

icance (Figure 5E) despite a reduction in the number of myelin-

ated axons (Figure S3B). However, in Vcan�/� qv3J spinal cords,

the frequency of nodeswith Na+ channel clusters was reduced at

P18 (Figure 5G; 68.2%, n = 2) compared with single mutants and

WT, with no apparent evolving loss at P27 (65.3%, n = 2). As

expected, no change was seen in the PNS nodal density (Fig-

ure S3D) or nerve conduction velocity (Figure S3E). Together,

the severe motor impairment, juvenile lethality, and reduced

number of Na+ channel clusters in the ECM+CS mice support

the conclusion that in the CNS the ECM and cytoskeletal mech-

anisms work together to facilitate CNS node formation. Further-

more, the preserved nodal molecular organization but fewer Na+

channel clusters suggests that the intact paranodes and remain-

ing ECMmolecules are only partially sufficient to assemble CNS

nodes.

Loss of PJs and CSs Causes Severe Neurologic
Phenotypes and Remarkably Disorganized and Reduced
Numbers of Nodes in the CNS
One limitation of our strategy to disrupt two nodal clustering

mechanisms simultaneously was that for practical reasons, we

were unable to completely remove all nodal ECM proteins in

the ECM+PJ and ECM+CS mutants. Consequently, instead of

a complete loss of nodes, the 30%–50% reduction in Na+ chan-

nel clustering in ECM+PJ and ECM+CS mutants (Figures 4E

and 5E) likely reflects a rescue of node formation by the remain-

ing nodal ECM components together with one intact clustering

mechanism (CS or PJ). Therefore, to completely disrupt two

clustering mechanisms, we produced qv3J Caspr�/� mutants

with disrupted cytoskeletal interactions and disrupted PJs

(CS+PJ) but intact nodal ECM (Figure 3F). The qv3J Caspr�/�

mutants began to show profound motor deficits (Movie S3) in

the second week after birth. The phenotype of these mice was

even more severe than that of the ECM+PJ or ECM+CS mutant

mice, and most died at P17 or P18. Rotarod tests could not be

performed on the qv3J Caspr�/� double mutants, because by

P17 and P18 most of these animals were moribund. The most

striking finding in these qv3J Caspr�/� (CS+PJ) mutants was

the remarkable �70% loss of Na+ channel clusters in the P18

optic nerves compared with CS or PJ mutants alone (Figures

6A and 6B). Analysis of spinal cord nodes defined by claudin-

11 immunostaining also showed a profound reduction in
Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc. 475



Figure 5. Mutant Mice with Disrupted CNS

Nodal ECM and Nodal Cytoskeleton

(A) Loss of ECM molecules in the indicated

mutants at P18. Spinal cord sections were stained

as indicated. Scale bar, 5 mm for all panels.

(B) Accelerating rotarod test performed at P18.

(C) Representative images of nodal and paranodal

components. P18 optic nerve sections were

immunostained as indicated. Note the loss of bIV

spectrin in Bcan�/� qv3J double mutants.

(D) Na+ channel staining at nodes of Ranvier (black

dots) in the optic nerves of the indicated mutant

mice at P18. The density of Na+ channel clusters is

reduced in Bcan�/� qv3J double mutants. Scale

bars, 20 mm.

(E) Quantitation of the number of Na+ channel

clusters per FOV (depicted in D). Data were

collected from 20 FOVs from two animals in each

group.

(F) P18 spinal cord nodes of Ranvier immuno-

stained using antibodies against Na+ channels

(Nav; green) and claudin-11 (red).

(G) Frequency of Na+ channel clusters at nodes.

More than 200 nodes (defined by two claudin-11-

labeled paranodes) were observed in spinal cords

from two animals in each group.

ECM,mutant mice lacking a single ECMmolecule;

CS, qv3J mice lacking nodal bIV spectrin.

*p < 0.01, **p < 0.001; ns, not significant. See also

Figure S3 and Movie S2.
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Na+ channel clustering in qv3J Caspr�/� mice (Figures 6C

and 6D). When Na+ channel clusters were present, they were

disorganized, very elongated, and often lacked flanking

Kv1.2-containing K+ channels, but these aberrant clusters still

contained NF186 and ankG (Figure 6E). Consistent with the

dramatic loss of Na+ channel clusters and disrupted nodal orga-

nization, we measured a significant decrease in nerve conduc-

tion velocity in the qv3J Caspr�/� mice compared with qv3J or

Caspr�/�mice alone (Figure 6F). Myelination in qv3J Caspr�/�

mice was comparable to that in Caspr�/� mice with no sign of

axon degeneration (Figure S4). Together, these data demon-

strate that both paranodal barrier and CS mechanisms play

essential roles in the assembly of CNS nodes of Ranvier.

What mechanism accounts for the few clusters of Na+ chan-

nels, NF186, and ankG that still formed in the qv3J Caspr�/�

mice (Figures 6A, 6B, and 6E)? When we immunostained optic

nerves from qv3J Caspr�/� mice, we found that as in WT mice,

Na+ channel clusters were associated with Bcan, Vcan, and

NrCAM (Figure 6G), suggesting that these ECM molecules are
476 Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc.
sufficient to cluster Na+ channels in the

absence of cytoskeletal scaffolding and

paranodal barrier mechanisms, and

partially rescue node assembly.

Mutants with Disrupted PJs
and Axonal Cytoskeletons Have
Normal PNS Nodes
As described above, ECM+PJ and

ECM+CS mutants had normal PNS
nodes of Ranvier, since PNS nodes have a different nodal

ECM (Figures S2 and S3). However, since qv3J Caspr�/� mice

lack CS+PJ mechanisms in both the CNS and PNS, they offer

a unique opportunity to contrast the roles of each mechanism

in CNS and PNS node formation. We confirmed that qv3J

Caspr�/� PNS paranodes are disrupted and have Kv1.2 chan-

nels mislocalized in paranodal regions (Figure 7A). We also

confirmed the loss of bIV spectrin from sciatic nerve nodes by

using antibodies against bIV spectrin’s N terminus (Figure 7A).

Surprisingly, despite the severe disorganization of CNS nodes

in qv3J Caspr�/� mice, the PNS nodes were preserved and

indistinguishable from nodes in Caspr�/� mice (Figure 7A).

Furthermore, despite the �70% reduction in the number of

Na+ channel clusters in the CNS, we found no significant reduc-

tion in the nodal density in the sciatic nerve compared with CS or

PJ mutants (Figure 7B). Finally, we found that the motor nerve

conduction velocity in the sciatic nerves from qv3J Caspr�/��
mice was not significantly different from that in Caspr�/� mice

(Figure 7C). Thus, the PNS nodal ECM, but not the CNS nodal



Figure 6. CNS Nodes Are Dramatically Disrupted in Mutant Mice Lacking Paranodes and the Nodal Cytoskeleton

(A) Na+ channel staining in the optic nerves at P18. The density of Na+ channel clusters (black dots) is dramatically reduced in qv3J Caspr�/� mice. Scale bars,

20 mm.

(B) Quantitation of the number of Na+ channel clusters in the optic nerves at P18 per FOV (depicted in A). Data were collected from 20 FOVs from two animals in

each group.

(C) P18 spinal cord nodes of Ranvier immunostained using antibodies against Na+ channels (Nav; green) and claudin-11 (red).

(D) The frequency of Na+ channel clusters at nodes. More than 200 nodes (defined by two claudin-11-labeled paranodes) were observed in spinal cords from two

animals in each group.

(E) Immunostaining of P18 optic nerve sections shows disorganized nodal and juxtaparanodal domains in qv3J Caspr�/� mice. Optic nerves were labeled as

indicated. Scale bars = 5 mm.

(F) Optic nerve CAP conduction velocities. Significant slowing was observed in qv3J Caspr�/� mice compared with WT, qv3J, or Caspr�/� mice. The analyses

were performed at P17 or P18.

(G) Localization of ECM molecules surrounding Na+ channel clusters. Spinal cord sections at P18 were stained as indicated. Scale bars, 5 mm.

(H) Cartoon showing three mechanisms involved in CNS node formation. The primary mechanism in the CNS is the paranodal barrier mechanism.

PJ, Caspr�/� mice lacking PJs; CS, qv3J mice lacking nodal bIV spectrin. **p < 0.001; ns, not significant. See also Figure S4 and Movie S3.
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Figure 7. PNS Nodes Form Properly in Mutant Animals with

Disrupted Paranodes and Axonal Cytoskeleton

(A) Sciatic nerve sections at P18 were stained as indicated. Nodal organization

is preserved in the PNS of qv3J Caspr�/� mice. Scale bars = 5 mm.

(B) Quantitation of the number of Na+ channel clusters in the sciatic nerves at

P18 per FOV. Bars indicate the mean value of �25 FOVs from two animals in

each group.

(C) Motor nerve conduction velocity in sciatic nerves at P18. No significant

difference was seen between Caspr�/� and qv3JCaspr�/�mice. *p < 0.01; ns,

not significant.

(D) Cartoon showing three mechanisms involved in PNS node formation.

Among these three mechanisms, the primary one is the ECM mechanism.

PJ, Caspr�/� mice lacking PJs; CS, qv3J mice lacking nodal bIV spectrin.
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ECM, is sufficient to assemble a normal contingent of nodes of

Ranvier. Furthermore, these results strongly suggest that PJ

and cytoskeletal mechanisms are more important for nodal

Na+ channel clustering in the CNS than in the PNS.

DISCUSSION

Clustered Na+ channels at nodes of Ranvier dramatically

increase the speed and significantly reduce the metabolic

demands of AP conduction in myelinated axons. While much is

known about the mechanisms of Na+ channel clustering at

nodes in the PNS and the molecules involved (Feinberg et al.,

2010; Sherman et al., 2005), the proposed mechanisms for the

CNS are controversial and remain poorly understood. Here, we

identified the molecules and three mechanisms (Figure 6H) that

contribute to Na+ channel clustering at CNS nodes. The loss or

disruption of nodes, as a consequence of disease or injury, im-

pairs nervous system function. Therefore, therapeutic strategies
478 Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc.
aimed at repairing the nervous system require a detailed under-

standing of the mechanisms of node formation and the role that

myelinating glia play in node assembly.

Mechanism 1: Interaction with the Nodal ECM
CNS nodes of Ranvier are surrounded by a complex ECM con-

sisting of Bcan, Vcan, Ncan, phosphacan, tenascin-R, Bral1,

and NrCAM. Among these ECM components, Bcan, Vcan,

Bral1, and NrCAM comprise a core ECM and contribute to Na+

channel clustering by binding to and stabilizing the cell adhesion

molecule NF186. This conclusion is based on several observa-

tions: (1) NF186 lacking its cytoplasmic domain can cluster at

CNS nodes, indicating that extracellular interactions with the

ECM are sufficient for its nodal localization; (2) Bcan, Vcan,

Bral1, and NrCAM bind directly to NF186; (3) nodal ECM compo-

nents can promote node-like clusters of NF186 in vitro; (4) CNS

nodes can assemble in associationwith the core ECMproteins in

mutant mice lacking both PJs and CSs; and (5) mutant mice with

a disrupted ECM and loss of PJs or disrupted ECM and loss of

CSs have severe motor dysfunction and a significantly reduced

number of Na+ channel clusters compared with mutants lacking

only a single mechanism.

Despite their importance, not all ECM components are equally

represented at CNS nodes. For example, some normal adult

nodes lack Bcan (Figure 3; Bekku et al., 2009). Consistent

with this observation, mutants deficient for a single ECM

component do not show apparent phenotypes or altered CNS

nodes (Bekku et al., 2010; Brakebusch et al., 2002; Dours-Zim-

mermann et al., 2009). Our genetic analyses of double- and tri-

ple-knockout mice suggest that this may be explained by

compensation by other ECM molecules, PJs, and CSs. Further-

more, the developmental delay in the enrichment of ECM pro-

teins surrounding the CNS nodes suggests that under normal

conditions they may play more important roles in stabilizing

nodal proteins than in contributing to their initial assembly. How-

ever, in mutants with disrupted paranodes and/or CSs, we

conclude that the nodal ECM contributes to initial node forma-

tion. Although our experiments did not reveal a progressive

loss of Na+ channel clusters, our experiments were unable to

determine whether ECM proteins contribute to stabilizing nodal

Na+ channel clusters for longer periods. It is interesting to note

that many of these same ECM proteins have been reported to

stabilize synapses and affect synaptic plasticity (Frischknecht

et al., 2009). We speculate that nodal ECM proteins may

contribute to the plasticity of node location and internodal

length, which in turn could influence the timing of AP arrival in

neural circuits (Seidl et al., 2010). In the PNS, the major Na+

channel clustering mechanism is the interaction between the

nodal ECM proteins gliomedin and NrCAM and their axonal re-

ceptor NF186 (Feinberg et al., 2010). This conclusion is further

supported by our results showing that mutant mice lacking

both paranodal and cytoskeletal mechanisms have normal

Na+ channel clustering in the PNS (Figure 7).

Mechanism 2: Paranodal Diffusion Barriers
PJs are formed by interactions between glial NF155 and the

axonal cell adhesion molecules Caspr and contactin, although

the exact details of these interactions remain unclear (Charles
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et al., 2002; Gollan et al., 2003). PJs function as lateral diffusion

barriers to restrict the mobility of axolemmal membrane proteins

between two growing myelin internodes (Bhat et al., 2001;

Dupree et al., 1999; Feinberg et al., 2010; Poliak et al., 2001; Ras-

band et al., 1999; Rios et al., 2003; Zonta et al., 2008). The results

presented here are consistent with this view and support amodel

for node formation in which paranodal diffusion barriers are the

primary mechanism of Na+ channel clustering in the CNS. This

interpretation is based on the observations that (1) during early

development, PJs formed before clusters of NF186 or bIV spec-

trin appeared, and before ECM molecules accumulated at

nodes; (2) double and triple mutants lacking PJs were always

more severe than single knockouts; (3) CS+PJ mutants had

profound loss of Na+ channel clustering in the CNS; and (4)

ECM+CS mutants had the best-preserved Na+ channel clus-

tering in the spinal cord, emphasizing that PJs have the ability

to form CNS nodes of Ranvier and can compensate for the

loss of the CS and ECM.

The idea that PJs constitute an independent mechanism for

Na+ channel clustering is controversial. Thaxton et al. (2011)

reported that paranodes do not contribute to Na+ channel clus-

tering, since the loss of neuronal NF186 alone blocked Na+ chan-

nel clustering despite intact paranodes. In contrast, other studies

showed that expression of glial NF155 in an NF-null mouse is

sufficient to rescue PJs and Na+ channel clustering in the CNS

(Zonta et al., 2008). Furthermore, coculture of WT Schwann cells

with NF-null DRG neurons is sufficient to induce clustering of Na+

channels adjacent to paranodes (Feinberg et al., 2010). The data

presented here do not resolve the issue of whether PJs first clus-

ter NF186 and then ankG is clustered through its interaction with

NF186, or PJs and the associated paranodal cytoskeleton are

sufficient to cluster ankG without NF186. Nevertheless, they do

resolve some of the controversy because the intact ECM-NF186

interaction alone (CS+PJ mutant) resulted in profound loss of

Na+ channel clustering. Taken together, these data support the

view that paranodes play important roles in normal CNS node

of Ranvier formation and that NF186-ECM interactions alone

are insufficient to assemble a normal complement of nodes of

Ranvier.

How do PJs function as a membrane diffusion barrier to limit

the lateral diffusion of membrane proteins? One possibility is

that the cytoskeletal molecules at PJs form a boundary that

effectively ‘‘fences in’’ the nodal axonal cytoskeleton. Consis-

tent with this idea, we recently showed that during develop-

ment the distal axonal submembranous cytoskeleton,

comprised of ankyrinB, aII spectrin, and bII spectrin, defines

a boundary that limits ankG to the proximal axon, resulting in

the clustering of ankG, Na+ channels, NF186, and bIV spectrin

at AIS (Galiano et al., 2012). The submembranous axonal cyto-

skeleton found at PJs is similar in composition (Ogawa et al.,

2006) and may confine ankG and bIV spectrin between the

paranodes. Future studies of mutant mice lacking these CSs

will help to test this possibility, although single knockouts are

unlikely to result in disrupted nodes given the availability of

the compensatory ECM and CS mechanisms. The PJ may

also function as a barrier at the level of the plasma membrane

due to the unique lipid environment found at paranodes

(Dupree and Pomicter, 2010; Schafer et al., 2004). In this
view, axonal membrane proteins are restricted to their unique

domains not only through protein-protein interactions with

cytoskeletal and extracellular binding partners but also as a

consequence of the lipid domains that they prefer or from

which they are excluded.

Mechanism 3: CSs
The ankyrin-binding motif in Na+ channels is both necessary and

sufficient for Na+ channel localization to nodes (Gasser et al.,

2012), and bIV spectrin’s clustering at CNS and PNS nodes

also depends on its ankyrin-binding domain (Yang et al.,

2007). Furthermore, in vitro small hairpin RNA (shRNA)-medi-

ated knockdown of ankG in myelinating DRG-Schwann cell

cocultures blocked Na+ channel clustering at gaps in the myelin

sheath (Dzhashiashvili et al., 2007). Based on its similarity to

other ankyrin-containing protein complexes, ankG is thought

to cluster membrane proteins and connect them to the actin

cytoskeleton through bIV spectrin (Bennett and Baines, 2001).

Together, these studies support the conclusion that an

ankG-bIV spectrin complex plays essential roles in node of

Ranvier formation and stabilization. Our results support and

extend this concept since 1) a GFP-tagged NF construct lacking

the extracellular domain clustered at CNS nodes, (2) deletion of

the extracellular domain and ankG-binding motif blocked NF

clustering at CNS nodes, (3) ECM+CS and CS+PJ mutants

had significantly fewer CNS nodes of Ranvier than ECM or PJ

mutants alone, and (4) ECM+PJ mutants had �50%–70% of

the normal complement of CNS nodes in the optic nerve, sug-

gesting that the preserved cytoskeletal interactions could

partially compensate for the disrupted ECM and loss of PJs.

Thus, a cytoskeletal mechanism involving an ankG-bIV spectrin

protein complex and the actin cytoskeleton contributes to node

formation.

A Model for CNS Node Formation
Although the results presented here are consistent with a model

in which multiple mechanisms normally contribute to ankG and

Na+ channel clustering along myelinated axons, our analyses

also suggest that they are not equally redundant. During devel-

opment of CNS nodes, we found that PJs formed before the

nodal clustering of ECM proteins or CSs. Furthermore, the

severity of the double- and triple-mutant phenotypes varied

depending on the mechanisms that were disrupted. In general,

the most severe double and triple mutants were those that

lacked PJs. For example, on the Vcan�/� background, loss of

paranodes reduced Na+ channel clustering (only 36% of nodes

hadNa+ channel clusters in the spinal cords of Vcan�/�Caspr�/�

doublemutants)more than loss of the cytoskeleton did (68%had

Na+ channel clusters in the Vcan�/� qv3J double mutants).

Furthermore, the ECM seems to be less important than para-

nodes in normal development since the nodal ECM assembles

after paranode/node formation (Figure 3). Thus, we propose

that PJs play the primary role in CNS node formation

(Figure 6H). In contrast, in the PNS the ECM is the primary

mechanism for node assembly (Figure 7D) since (1) clustering

of NF186 and gliomedin occurs before the formation of

paranodes (Eshed et al., 2005; Schafer et al., 2006), (2) double-

mutant mice with disrupted PNS ECM and PJs (ECM+PJ;
Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc. 479
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gliomedin�/� Caspr�/� and NrCAM�/� Caspr�/�) have

remarkably disorganized and reduced Na+ channel clusters

(Feinberg et al., 2010), and (3) the analysis of CS+PJ mutant

mice in this study showed intact PNS nodes.

In summary, our data support a model in which neuron-glia

interactions first cluster ankG and NF186 adjacent to forming

paranodes. Next, the ankG-Na+ channel nodal complex is stabi-

lized through interactions between bIV spectrin and the actin

cytoskeleton, and through NF186 and the nodal ECM. We

conclude that in CS mutants, nodes remain intact since PJs

restrict nodal proteins and NF186-ECM interactions stabilize

the nodal protein complex. In ECM mutants, nodes form since

PJs restrict nodal proteins, and bIV spectrin interactions with

the actin-based cytoskeleton stabilize the nodal protein com-

plex. In PJ mutants, nodes still form since NF186 can interact

with the ECM, recruit ankG and Na+ channels, and be further sta-

bilized through bIV spectrin interactions with the actin cytoskel-

eton. The existence of multiple mechanisms that contribute to

CNS node of Ranvier formation ensures their proper assembly

and highlights the importance of nodes for efficient nervous

system function.

EXPERIMENTAL PROCEDURES

Animals

Animals were housed at the Center for Laboratory Animal Care at Baylor

College of Medicine. All procedures were approved by the Institutional Animal

Care and Use Committee at Baylor College of Medicine and conform to the US

Public Health Service Policy on Human Care and Use of Laboratory Animals.

The following single-mutant mice were produced as described previously:

Bcan�/� (C57BL/6) (Brakebusch et al., 2002); Vcan�/�(C57BL/6J) (Dours-Zim-

mermann et al., 2009); Bral1�/� (ICR) (Bekku et al., 2010); Caspr�/� (ICR) (Gol-

lan et al., 2003); and qv3J (C57BL/6J) (Parkinson et al., 2001).

Antibodies

A detailed list of the antibodies used here can be found in the Supplemental

Experimental Procedures.

DNA Constructs

A description of the complementary DNAs (cDNAs) and shRNAs used here can

be found in the Supplemental Experimental Procedures.

Preparation of Media Containing Secreted Proteins

The HA-NF186ECD, Flag-Bral1, and various Fc constructs were transfected

into COS-7 cells and the media were changed to virus-production serum-

free medium (VP-SFM) supplemented with 23 GlutaMAX-I 1 day after trans-

fection; harvested 2, 3, or 4 days after transfection; and neutralized with

Tris-HCl (pH 8.0). The media with Fc fusions were concentrated 12- to

15-fold and buffer-exchanged to Neurobasal (Life Technologies). Small-scale

purification of Fc, BcanG3-Fc, VcanG3-Fc, and Bral1-Fc was done by incu-

bating the unconcentrated or concentrated media containing 0.05% [v/v]

Triton X-100 with 20 ml of protein A agarose beads (Thermo Scientific) over-

night at 4�C, washing the beads with 1 ml of ice-cold PBST (149.8 mM

NaCl, 10.4 mM NaPi [pH 7.2], 0.05% Triton X-100) once and PBS (149.8 mM

NaCl, 10.4 mM NaPi [pH 7.2]) twice, eluting with 100 ml of 80 mM glycine-

HCl (pH 2.5) at room temperature (RT) and neutralizing with 10 ml of 1 M

HEPES-NaOH (pH 8.0).

COS-7 Cell-Surface Binding and DRG Neuron-Clustering Assays

The concentrated media or eluates of small-scale purification containing Fc

fusions were preclustered with fluorescein isothiocyanate (FITC) or Texas

Red-conjugated anti-human Fcg at 1:200 on ice for 30min. COS-7 cells grown

on glass coverslips and transfected with HA-NF186, contactin, Navb1-V5-His,
480 Neuron 78, 469–482, May 8, 2013 ª2013 Elsevier Inc.
Navb2-V5-His, Navb4-EGFP, or HA-NrCAM were incubated with preclustered

Fc fusions at RT for 30 min, washed with ice-cold PBS three times, fixed with

4%paraformaldehyde in 0.1MPB (19mMNaH2PO4, 81mMNa2HPO4, pH7.2)

at 4�C for 20 min, and immunostained as described previously (Hedstrom

et al., 2007). Purified DRG neuron culture was prepared as described previ-

ously (Susuki et al., 2011). At 10–12 days in vitro (DIV), the DRG neurons grown

on coverslips were transfected with HA-NF186 by using Lipofectamine LTX

and Plus reagent (both from Life Technologies) and washed twice with Neuro-

basal. Two days later, the neurons were incubated with the preclustered Fc

fusions at RT for 30 min, cultured for 2 more days in the original medium (Neu-

robasal supplemented with 13 GlutaMAX-I, 1 3 B-27 Supplement [Life Tech-

nologies], and 100 ng/ml recombinant rat b-NGF [R&D Systems]), fixed, and

immunostained.

Pull-Down Assays

For pull-down of HA-NF186ECD, the unconcentrated or concentrated media

of Fc fusions containing 0.01% Triton X-100 were incubated with 10–20 ml of

protein A agarose beads for 2–6 hr at 4�C. The beads were washed with

ice-cold modified NET-2 buffer (150 mM NaCl, 10 mM Tris-HCl pH 7.5,

0.01% Triton X-100) three times and incubated with the media of

HA-NF186ECD supplemented with 0.01% Triton X-100 overnight at 4�C.
The beads were then washed with the ice-cold modified NET-2 buffer four

times and the precipitated material was analyzed by western blotting. For

pull-down of Flag-Bral1, the media of Fc fusions containing 0.05% Triton

X-100 were incubated with 20 ml of protein A agarose beads for 2 hr at 4�C.
The beads were washed with ice-cold PBST three times and incubated with

the media of Flag-Bral1 supplemented with 0.05% Triton X-100 overnight at

4�C. The beads were then washed with ice-cold PBST four times and analyzed

by western blotting.

Hippocampal Neuron Culture and shRNA Knockdown

Details about the primary hippocampal neuron cultures and knockdown of

proteins by shRNA can be found in the Supplemental Experimental

Procedures.

In Utero Electroporation

In utero electroporation of truncated NF186 or CD4 plasmids was performed in

E14mouse embryos as described previously (Saito, 2006). Injected mice were

born and allowed to develop 28 days before being killed. Brains were fixed,

sectioned, and stained as described previously (Schafer et al., 2004).

Immunofluorescence Studies

Details of the immunostaining procedures can be found in the Supplemental

Experimental Procedures.

Rotarod

An accelerating rotarod was used to analyze motor coordination as described

elsewhere (Chang et al., 2010).

Electrophysiology

CAP recordings in optic nerve and sciatic nerve were performed as described

elsewhere (Rasband et al., 1999; Susuki et al., 2007).

Transmission Electron Microscopy

Electron microscopy was performed as described before (Chang et al., 2010).

The sectioning and electron microscopy were performed in the Baylor College

of Medicine Integrated Microscopy Core.

Statistical Analysis

Statistical significance was determined using a Kruskal-Wallis test. To further

analyze which experimental group differed from the relevant control group,

planned comparisonswere done byMann-Whitney’s test according to Bonfer-

roni correction. For the analyses of double mutants, comparison was per-

formed among four groups: WT, mutant 1, mutant 2, and double mutants of

1 and 2. Data are shown in a box-and-whisker plot (median: a line across

the box; 25th and 75th percentiles: lower and upper box edges, respectively;

minimum and maximum: the values below and above the box, respectively).
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SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, three movies, and

Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2013.03.005.
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