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Introduction

Cohen [1. 2] has shown that the continuum hypothesis (CH) cannot
be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have
subsequently shown that CH cannot be proved cven if one assumes the
existence of a measurable cardinal. Their argument in fact shows that
no large cardinal axiom of the kind presentiy being considered by set
theorists can yield a proof of CH (or of its negation, of course). Indeed,
many set theorists — including the authors — suspect that CH is false.
But if we reject CH we admit curselves to be in a state of ignorance
about a great many questions which CH resolves. While CH is a power-
full assertion, its negation is in many ways quite weak. Sierpinski [15]
deduces propcesitions tisere called C; — Cg, from CH. We know of none
of these propositions which is decided by the negation of CH and only
one of them (C5g) which is decided if one assumes in addition that a
measurable cardinal exists. Among the many simple questions easily
decided by CH and which cannot be decided in ZF (Zermelo-Fraenketl
set theory, including the axiom of choice) plus the negation of CH are
the following: Is every set of real numbers of cardinality less than that
of the continuum of Lebesgue measure zero? s 280 < 2819 Is there a
non-trivial measure defined on all sets of real numbers? (This third
question could be decided in ZF + not CH only in the unlikely event

1 The second author received support from a Sloan Foundation fellowship and the National
Science Foundation Grant (GP-8746).
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that the existence of a measurable cardinal can be refuted in ZF.) -

We are then very much in need of an alternative to CH. The aim of
this paper is to study one such alternative. We introduce an “axiom™ A
which (1) is demonstrably consistent with ZF, (2) allows the continuum
to be (lovsely speaking) any regular cardinal, (3) follows from CH and
implies many of the important consequences of CH, and (4) impties,
when 250 > ¥, several interesting statements. The following theorem
gives some of the main consequences of A. (For a statement of A, see

§1.2.)

Theorem. If A then

1) 2Ro > Ry = Souslin's hypothesis | 22] .

2) If N is an infinite cardinal number < 2N0, then 2N = 2‘\:0;

3) If Mo> R 1 - every set of real numbers of cardinality X | is 1 i it and
only if every union of 8 Borel sets is 21, if and onlv if there is a real t
with R =x )

4) The union of < 280 gers of reals of Lebesgue measure zero (respec-
tively, of the first category) is of Lebesgue measure zero (of the first
category};

5) If 280> § 1> every & ‘, set of reals is Lebesgue measurable and has
the Baire property .

6) 280 js not a real valued measurable cardinal (see also [ 8]).

The axiorm arose from the consistency problem for Souslin’s hypothe-
sis. Souslin’s hypothesis states that there are no “*Souslin trees”. Now if
9 is a countable standard model of ZF and T is a Souslin tree in M,
there is an easy method for finding a Cohen extensionM 7 of M such
that M T has the same cardinals as 9 and T is not a Souslin tree in any
model N of set theory with W T C N. Solovay and Tennenbaum found
a method for constructing a Cohen extension N of any model W, of ZF
with the property that, if 7 is 2 Souslin tree in some submodel N of X,
ther some Cohen extension M7 is a submodel of 9 (so T is not a Sous-
lin tree in 97). That is, all the Souslin tree destroying Cohen extensions
M ~>M7T can be carried out inside the model N. (This account is slightly
inaccurate.)

Martin observed that the construction of % depended only on very
general properties of the Cohen extensions W -~ 7. He and, indepen-
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dently, Rowbottom, suggested an “‘axiom” wh:ch asserts that all Cohen
extensions having these very general properties can be carried out inside
the universe of sets: that the universe of sets is — so to speax — closed
under a large class of Cohen extensions. The methods of [22] show this
axiom to be consistent, and the consistency proof is given in [22].

The method of {22] is to construct a transfinite sequence M,, « <0,
of models, with; a Cohen extension of M, whenever a <g. The
“limit” N of the M, is the desired Cohen extension of W, . Several con-
sistency proofs have subsequently been found using this method of
iterated Cohen extensions. Almost all of these consistency proofs can
be simplified as follows: If & is the proposition to be shown consistent,
one deduces ¢ from A (or A + Mo > x 1 ) and concludes that ¢ is con-
sistent since A (A + 28 0 > N 1) 1s.

Although this paper is abuut forcing, almost the whole paper can be
read without any krowledge of forcing. For the reader not familiar with
forcing. $ 1 will not be as enlightening, some of the theorems and proofs
of § 2 will appear strange and ingenious, and various remarks made here
and there in the paper will be unintelligible.

In § 1 we introduce the notion of a generic filter and state the axiom
A. §2 is devoted to two other versions of A: The Boolean algebraic ver-
sion and a formulation in terms of ideals in the Borel sets of reals. To
prove the equivalence of A and this latter version, we introduce the
method of “almost disjoint sets”, which is perhaps tlie main tool used
in this paper. We assume in § 2 some facts about Boolean algebras, all of
which can be found in Halmos [S] or Sikorski [16]. in § 3 we prove
parts 2) and 3) of the theorem stated above. Some familiarity with pro-
jective sets is assumed in § 3.2. §4 is concerned with parts 4) and 5) of
the theorem. In § 5, we discuss the ways in which A is very close to the
continuum hypothesis. We indicate how most consequences in [15] of
CH can also be deduced from A (in particular, the non-existence of a
real-valued measurable cardinal). (These topics are also discussed in [8].)
Finally we consider the problem of the truth of A in light of Godel’s
remarks [4] on the truth of CH.

This paper is complementary to [22], where our axiom is proved
consistent and where Souslin’s hypothesis is deduced from A + 280> R 1-
We have mostly tried to keep the same notation and terminology as {221,
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and we indicate our departures from [22]. Another study of the con-
sequences of the axiom is § § 11--14 of Kunen’s dissertation [8], which
we recommend to the reader. Some other papers directly or indirectly
related to the axiom are [23], [24], [25], and [26].

§ 1. The axiom

1.1.M- generic filters. in using the forcing method of Cohen, one begins
with a transitive standard model M of ZF and a partially ordered set 2
belonging toW. If py < p, we say that p, extends p,. p,.p, € P are
compatible if there is a p; € ? which extends them both; otherwise p,
and p, are incompatible. A subset X of ? is dense open if
DpeX.geP,andp=<g-gc X:
D peP->(Ige XNp<g).

The model M is usually assumed to be countabie. and this guarantees
the existence ol an“M-generic filter on P, a subset G of P satisfying
a) peGandg<p->q€G:
b)Y P P €G> (3Ap3Xp Sp3 &Py p; &p3 €6
¢) XCPand X € Mand X dense open - X N G # ¢,
where ¢ is the empty set. If G is an9-generic filter on 2, there is a
danique minimal model M[ G} of ZF such that M CMIG] and G €M G
and such that M| G] has the same ordinals as M.

Remarks. What we call dense open is called dense in [22].In § 2.1 we
make a partial ordering ¥ into a topological space. Condition 1) then
says that X is an open subset of @ and condition 2) that X is dense in
the topological sense.

In [22]. the weaker condition
b') py, p» € G~ p, and p, are compatible
appears instead of condition b). This change does not affect the notion
of M-generic filters. Indeed, if a), b'), and ¢) hold of ¢, then

X={p:(p,3p&p,<p)

or (p is incompatible with p; or p,)}
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is a dense open subset of ?belonging to%. By ¢), let p; € X N G.

b') guarantees that p; is compatible with p; and P>, 80 p3 extends them
beth. Qur use of b) instead of b') does change the notion of an %-
generic filter (§ 1.2) but has no effect on the propositions Ax defined
in §l.2.

“Generic ideal” might be more descriptive thin “generic filter”. The
word “filter”™ is used because a generic filter on ? is associated with a
filter in a related Boolean algebra. (See § 2.1.) Some authors reverse the
extension relation in order to make < agree with the partial ordering in
this Boolean algebra. We do not do this for historical agreement with
Cohen | 2] and because we, like Cohen, think of p extends ¢ as meaning
p has more information than q.

As a final remark, we note that if we replace ¢) by the condition that
G meets every dense subset of 2, i.c.. every subset of 2 satisfying 2),
then a) implies that the notion of generic filter is unchanged.

xample 1 (essentially that of Cohen [2,Ch. 4, §3]). LetMbe a
countable standard model of ZF + V = L; let 2 be the set of finite func-
tions p with domain(p) € w and range(p) € {0, 1} ; partially order ? by
inclusion. An-generic filter on 2 is then just the set of finite subsets
of the characteristic function of a subset of w which is generic relative
toM in the sense of [ 2, Ch. 1V].

When countable models N are considered, the existence of M-generic
filters is never a problem. for there are then only countably many dense
open subsets of ? which belong to M. (Let X, X5, ... be all these dense
open subsets; let py € P be arbitrary and p,,; be some extension of p,,
belonging to X3 {p : (In)p<p, )} is anM-generic filter on ?.) Sup-
pose however that Y is uncountable or even that M is a proper class.
For instance consider:

Example 2. Let Pbe as in Example 1, but replace the M of that example
by the whole universe L of constructible <ets. If & is an L-generic filter
on P, then UG is a non-constructible function f: w - {0,1} as can
easily be seen.

We cannot in general prove in ZF that M-generic filters exist. In
Example 2, a proof that an L-generic filter exists would be a refutation
of the axiom of constructibility (V = L), which is known [3] to be con-
sistent with ZF.
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Nevertheless it is not obviously false that in many instances M-generic
filters exist even though W, or even the set of dense cpen subsets of 2
belonging to“M, is uncountable. Our axiom will sav that this is indeed
the case.

1.2. F-generic filters. The model M is involved in the notion of anM-
generic filter on 2 only via the collection of dense open subsets of 2
belonging to“W. Accordingly we introduce a more general notion. If ?
is a partial ordering and ¥ is a collection of dense open subsets of 2, an
F -generic filter on P is a subset G of P satisfying 2) and b) in the defi-
nition of ¥-generic filters and

¢') XeEF->XNnG+o.

If one looks for a proposition asserting the existence of F-generic
filters, one naturally thinks of the following: For every partial ordering
# and every collection F of dense open subsets of P, there is an F-gen-
eric filter on P. Now it is possible to accept this strong proposition,
provided that one is willing to abandon the power set axiom of ZF. In
ZF without the power set axiom, the proposition is equivalent to the
assertion that every set is countable. To see that the proposition is in-
consistent with ZF, let P be the set of finite functions p with
domain(p) € w and range(p) € w . Partially order ? by inclusion. For
each countable ordinal a, let

Xo={pP€ P a€range(p)} .

Let = {Xa ra < 8%, }. (We always identify cardinals with initial
ordinals.) Each X, is dense open for if p € 2, and n is the least natural
number not in domain (p), then

p<pu{ina}.

If G were an F-generic filter, it is easy to see that U G would be a func-
tion mapping w onto w .

Some restriction is required so that we do not assert the existence of
generic filters which “collapse” cardinals in this way. We adopt a restric-
tion on ? to be described below. It is not the weakest restriction on ?



§ 1. The axiom 149

which will prevent cardinal collapse, but it has the virtue of being
strong enough to permit the proof of Theorem 2 of this section.

An antichain in a partially ordered set 2 is a collection of elements
ot P tiy two distinct members of which are incompatibie. ? satisfies
the countable antichain condition (the cac) if every artichain in % is
countable.

For N an infinite cardinal, let Ay be the assertion:

[f Pis a partial ordering satisfying the cac and F is a collection of
dense open subsets of P of cardinality < R, then there is an F-generic
filter on P.

Our Ay, is equivalent to MA{X") of [8] and Mg+ of {22], where 8"
is the least cardinal greater than X. The cquivalence between our Ay
and the MA(R") of [ 3] will be proved in §2.1. The va of [22] has
an extra restriction on 2 that ? has cardinality < K. This restriction
has no importance:

Lemma. Ler P be a partial ordering and let F be a collection of dense
open subsets of P. There is a P' C P of cardinality < max(R g, {card (F))
such that, ift F'is the collection of X NP for X € F, then F' consists of
dense open subsets of ' and any F'-generic filter on ?' can be extended
to an F-generic filter on 2.

Proof. For cach X € ¥, let f,: P~ @ be a function such that

p<fIp) € X. Let py be some element of P. Let P be the closure of

{ pg } under the £, for X € F. If ¥ is infinite, clearly the cardinality of
P is no greater than that of F. If X € F, X N ?' is a dense open subset
of ?'. Let G' be an F'-generic filteron ?'. Let G={pe @: Ap' )Np € P
and p <p')}. G is an F-generic filter on ?: G clearly satisfies a) and ¢').
fp,.,py €G letp),py € G withp; <pj and p, < p}. Since p; and
p5 have an extension in G’ so do p, and p,.

As we have essentially remarked already, Ay, is a theorem of ZF.

Theorem 1. If Ag then ¥ < 2o,

Proof. Let P be as in Examples | and 2. For each subset s of w let X
be the set of p € P such that p is not » subset of the characteristic func-
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tion of 5. Eacit X, is dense open. Let F={X,:5sC w}. If At for some
8 > 280, then there is an F-generic filter G on ?. But then UG is a sub-
set of the characteristic function of a subset of w differing from every
subset of w.

Let A be the proposition.
If 8 < 280 then Ay.

A is the axiom we wish to study (though many of our results will con-
cern the Ax's).

Clearly A is consistent with ZF, for CH - A. In fact we have the fol-
lewing much stronger consistency result (the “forcing” version of the
“Boolean” theorem 7.11 of [22]):

Theorem 2. Let ‘M be a standard model of ZF. Let 6 be an ordinal such
that in W the statement *‘0 is an uncountable regular cardinal and

0' <0~ 20°< 6 is true. There is a partially ordered se: P € WM such
that **? has cardinality 0 and 2 satisfies the cac” is true in W and such
that, if G is any W -generic filter on MG satisfies 2X0 =9 and A.

We shall see in § 3 that the conditions on 8 cannot be dropped:
A implies that 280 js regular and in fact that 8 < 280 ~ 28 = ¥o,

§ 2. Propositions equivalent to A

In § 2.1 we prove the equivalence of A and its Booiean version. The
rest of § 2 will be devoted in one way or another to a proposition A*
which is also equivalent to A. The equivalence of A* and A is proved in
§2.4. In § 2.3 we prove a theorem about Boolean algebras which is the
key fact in showing A* < A.In § 2.2 we introduce the main ideas of
§ 2.3 and use them to prove a consequence of A which will be used
several times in this paper. In § 2.5 we use § 2.2 to study two proposi-
tions related to A*.

2.1. The Boolean version. The axiom A is stated in terms of forcing. In
view of the g:neral correspondence between Boolean algebras and
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forcing [ 13], there should be a translation ¢ f A into the Boolean lan-
guage. We now give such a translation and recall enough of [13] to
prove its equivalence to A. By Ay we mean the following proposition:

Let B be a complete Boolean algebra satisfving the countable chain
condition {cce) and let by, be elements of B for all i < ¢ and all ordin-
als & < Y. There is a homomorphism I: 8 - {0, 1} (the two element
Boolean algebra) such that, for each a < N,

h (Eb,a) 221hig) -

i

A homomorphism preserving all infinite sums is impossible if ‘B is
atomless, but Ay says that an 4 preserving any given X sums can be
found. Ak is MA(R™) of [8].

Theorem. Ay and Ay are equivalent.

Proof. Ay » Ay. Let B and b;, be as in the statement of Aly. With no

toss of generality we may assume 2 b;o = 1. For, if not, let ¢gq =
!

1 \Ehia and ¢; 1o = bia- 1B~ {0.1} is a homomorphism with
f_.«m(m) /z(z Ciq) = {1y =1, then either (1 - Z}bm) 1 and so

h(E big)=0= L hib,o) or else (b;o) = 1 for seme i and so h(E hig) =

Z/‘/I(um) =

Let = B~ {0}. 1t by, b- € P letb; < b, if by < by where < is
the Boolean algebraic relation. If £, - by # 0. then by - by 2 b, and
by - by > b,. In other words, b, and b, are compatible if they are not
disjoint. Since B satisfies the ccc, P satisfies the cac.

Fora<Nict X, ={be@: (ANMD<b)}.Since Th;, =1, X, is

4

dense open. Let F={X, ra <R}

By Ay let G be an F-generic filter on 2. Let 1 : B { 0,1} be de-
fined by (b) =1 «~= b€ G. By a) and b) of 1.1, G is a Boolean filter in
B, so that /1 is a homemorphism. Let o < R. G is F-generic, so let
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be Xy N G. There is an i such that b < b, (b)) = h(d) = 1. Hence
Elz(bia) = 1.
i

Ay - Ay. Let ? be a partially ordered set. We define the complete
Boolean algebra B, associated with P.

Forpe 2 let O, = {q€?:p=<gq}. Wecan make ?into a topological
space by taking the O, as a base for the open sets, for

0!71 n Ol’z =U{0P3 P 51’3 &!)351”3} )

Note that the term “dense open” is unambiguous. Let B, be the
Boolean algebra generated by the open sets. Let / be the ideal of sets
whose complements are dense open. Let By =B, /1.

If X € B, let [X] be the image of X inB,. Every element of 9B, is of
the form [U] for some open U: Since this property is obviously pre-
served under sums, it is enough to show that it is preserved under com-
plements. If {U] € ‘B, U open, let U’ be the interior of P— U. UL U’
is dense open, and U’ and-? — U are equal off the complement of
Uu U'. Therefore [P~ Ul =[U'].

In [22, 8§7.5] it is shown that 9, is complete and that satisfies the
ccee if P satisfies the cac.

Now suppose P is a partial ordering satisfying the cac. card (?) < R,
F={Xy a <N} isa collection of dense open subsets of P, and B, is
the complete Boolean algebra associated with 2. For each a < X, let
{Pici < w} be a maximal antichain in Xy. Let bjo = [Op 1.

Let us compute Z)b,»a. Suppose U € Pis open and [ U] > 22%,,. Let

i H

p € P. There is an i < w such that p and p;, are compatible. since
{Pig; I < w} is a maximal antichain. Let g > pand g 7 po. Then
0,<0,n Op ;- Hence [Oq] S1O0p;ol =biq SIUL. Hence UN Oy # ¢

andso Un 0,, # ¢. Since p was arbitrary, U is dense, i.e., [U] = 1. Thus
Z‘bia =1.
1]

By Ay, let /it B, —~ { 0.1} be a homomorphism such that ;mbia) =

=

2

h(Zb,,) =1 foreach a < 8 and 7({0, 1 - [0,
i

X w0, Dforp,py € P.LetG={pe P h(l0,1)=1}.
Pi,p2 X p3
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Since /1 is a homomorphism, it is readily secn that G satisfies a) and b)
of 1.1. Leta < R. 27/11(b;3) = 1:50 /1(;,) = 1 for some i. Hence
-

h1Op, = Vand pig € G. pig € X 50 X D G is nonempty. This
means G satisfies ¢') of § 1.2, and thus that  is F-generic.

2.2 Almost disjoint sets and the proposition 8g. The method of this
section was invented by Solovay in order to prove the consistency of
“Every subset of 8 is construc:ible from a subset of w and o>,
(§3.1). Among the theorems proved by this method are those of [6].

Lot 4 be a collection of infinite subsets of w. Let 2, be the set of all
ordered pairs (k, K) with & a finite subset of w and K a finite subset of
A. We partiaily order 2, as follows:

Chy K< (ky Ky e (k) € ky & K| €K,
&k, N (UKDHC k).

Let Cg gy be the set of subsets £ of w such that £ < 1 and. forall s € K,
st C k. Then ¢k, K =<<(ky. Ay ifand only if Cy, k3= Cry.k o)

Lemma 1. 2, satisfics the cac.

Proot. <k, K, and (k, K,) are always compatibie, since ¢k, K; U Ky
extends them both. Since there are only countably many finite subsets
of w. the lemma is proved.

Wiih each x € w we now associate ans, € w. Letf, 1w > {0,1} be
the chracteristic function of x. If f': w0 ~ {0. ] },?is defined by
. me-1 _
foy= 11 p/*1 where p; is the i + 1st prime number. f(n) should be

i=0

thought of as the finite sequence f(0), f(1). ..., f(n—-1). Now lets, =
{}—‘x(n); n < w }. Note that s, is always infinite.

Two subsets of w are afmost disjoint if their intersecrion is finite. Let
x, v€ wandx # y. Then there isan # € w such thatn € x <> n ¢ y. If
m>n,f.(m)é¢s, and}‘.'),(m) ¢ s, . Hence x and y are almost disjoint. In
particular, we have shown:
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Lemma 2. There is a collection of infinite pairwise almost disjoint sub-
sets of w of cardinality 280,

The following easy lemma is needed for the theorem of this section:

Lemma 3. Let A be a set of subsets of w. Let t C w be such that for
every finite subset K of A, t — UK is infinite. For each n € w, the set
X, p of ¢k, Ky € Py such that k O t has cardinality > n is dense open.

Proof. Let <k, K> € 2, . Since 1 - (U K) is infinite, there is a subset &,
of t of cardinality # disjoint from UK. Thus &, K)Y<<(¢ U ky, KYand
kUK, KreX

tn-

By Sg we mean the following proposition:

Let A and B be collections of subsets of w, each of cardinality < R,
such that if t € B and K is a finite subsct of A then t — UK is infinite.
There is a subset to of w such that x N ty is finite if x € A and infinite
if x € B.

Note that the hypothesis of Sy is fulfilled if each member of B is in-
finite and almost disjoint from each member of 4.

Theorem. Ax ~> Sy.

Proof. Let A and B satisfy the hypothesis of Sy;. Consider ?, . For
s Cw, let Y, be the set of <k, K) such that s € K. Obviously Y, is dense
in 2, its€ A. Define X, , asin Lemma 3. Let

F={Y :s€A}VU{X, :s€eB&ncw}.

By Lemma 3, Fis a collection of dense open subsets of 2, . By Ay let
G be an F-generic filter on 2, . Let

ty ={n: (3, KK KEG&NEK)}.

Lets€ A. Since Y, € F, let ¢k, K)€ G withs€ K. Let k', KY€ G.
Then <k, Ky and k', K') are compatible. Let <k, K» extend both. Since
(k, K> < (ky, ¥,> we have by definition that £; N s C k. Hence
k'nsC k; nsC k. Since k' was arbitrary, 1y N s C k.
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We have only to show that s € B ~ 1, N s is infinite. Let s € B and
n € w. We show that 1y N s has cardinality > »n. Let <k, Ky € X, , N G.
k G ¢, and k N s has cardinality 2> #, by the definition of X ,,.
2.3. An embedding theorem for Boolean algebras with the ccc. Kripke
{ 71 shows that every complete Boolean algebra can be embedded as a
complete subalgebra in a countably generated complete Boolean alge-
bra. In this paper we are concerned only with complete Boolean alge-
bras satisfying the ccc. Can all such algebras be emoedded as a complete
subalgebra in a countably generated complete Boolean algebra satisfy-
ing the cce? The answer is no, since it is readily seen that every counta-
oy generated complete Boolean algebra satisfying the ccc has cardinality
< 2%,
Theorem. Every complete Boolean algebra of cardinality < 2o satisfy-
ing the ccc can be embedded as a complete subalgebra in a countably
gencrated complete Boolean algebra satisfyving the ccc.

Proof. Our proof, like that of Kripke [ 7] and the proof of Solovay | i8]
on which it is based, is motivated by forcing. To indicate the motiva-
tion, suppose that M is a countable standard model of ZF, P€ N is a
partially ordered set of cardinality < 280 inon satisfying the cac, and G
is anM-generic filter on 2. The Theorem of § 2.2 tells us how to find a
cac Cohen extension (MG )iyl of MG such that G €Mty ] (Ge.,
Mty = MIGItg] 1 and £y € w. Results of [22] tell us that the
composition of two cac Cohen extensions is a cac Cohen extension.
Since (MG 3lry] =Mty ], we know that the Boolean algebra asso-
ciated with this two stage extension is countably generated.

For the proof of the theorem, let B be a complete Boolean algebra
of cardinality < 280 satisfying the ccc. By Lemma 2 of § 2.2 let f map
B one-one onto a collection of infinite pairwise almost disjoint subsets
of w.Forbe B-{0} . letAD)={f(b"):b > b}. Let P be the set of
all ordered triples b, k., K), where b€ B {0} and ¢k, Ky € P, Let

by kK< by ky Ky

b 2by &k, KDk, Ky
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Lemma 1. P satisfies the cac, and so B (see § 2.1) satisfies the ccc.

Proof. Suppose by - by # 0. Then (b, k. K and <Dy, k. K5) are com-
patible, since (by - by . k., K| U K,) extends both. If there were an un-
countable antichain in 2, there would be one all of whose members had
a fixed k. But this would give us an uncountable set of pairwise disjoint
elements of B.

Lemma 2. B, is countably generated.

Proof. Forn < w.letp, =1 3. {n},¢>. Leta, = [0y, 1. It is enough
to prove, for each p € P, that {OP ] belongs to the complete subalgebra
generated by the g, . since the [0, ] generate B,

We show that

[0(/,.1\31\")1 =( |1 t‘l”)‘( 2 I (i a, ).
nek 1+ nerutUn)
finite nék

First we prove that [Oy, s k)] < IV g, Ifn ek (o kKD is an ex-
nek

tension of (1 ;. {n}.¢>and so Oy, 1 xy S O sin}oyT Op,, and
hence [0, 3] < a,.

We next show that [Og, 4 xy] € 22 I (1 -a,). Call the
T AT CTI VT 9]
finite ne k

right hand side of this inequality ¢. It is enouzh to show that
{pe?:10,1 - 10y 4 gy} = 00r 0,1 < ¢} is dense in P, by the defi-
nition of Bp. Let (b, k. Kp e P Ith k. K and (o k., K) are in-
compatible, the [0 . &, k1" 1Ok k)] = 0. Otherwise let <hy. k5. Ky
be an extension of both. (b, k3. K< (b5, fiy, Ky U {f(D)D so we
only need to show that [O,, «, &, U{J‘(h)}>] <. Lett=7(b) - k,. Let
n€ tuU (UK)and n¢ k. We must prove that { O, 1, k, U{“b)})l a, =
= 0, that is, that (b5, k, Ky U {f(0)}rand (V, {n}, ¢) are incompa-
tible. Suppose (b3, k3. K3) extends both of them. If n € £, then

n € ky — ky and n € f(h) which contradicts (b~ k5. Ky U {7y} =<
<(bs. k, K3>. Otherwise 1 € (UK) - k, whicl: contradicts <h. k. K) <
< (b3, k3, K3).

Finally we show that [0, 4 4] 2 ( [l a,) c. To do this, we prove
nek
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that. for each r € w such that f(b) — ¢ is finite.
{})E ?: [01,] g {O<h1(,A>j or

[0,1-C 1T a,) i1 (1-a,)=0}
nEk retU(UK)
nek
is dense. Let p € 2. If p and (b, k. K) are compatible, thereisap' > p
with [0, ] S 10, 4 k3] - Assume they are incompatible. Let p =
(by.ky, K.

Case 1. by -b = 0y. Then (UK ;)N f(b) is finite by almost disjoint-
ness. Letne - (UKpandn g k.<b, . ky v {n}. K extends p and
My {n}t. 950104, &, u fn}.app) (1 —a,)= 0. Since n € r and
n & Kk, we are done.

Case 2. by -b# 0. Since<d, b, k; Uk, K| U K) is not an exten-
sion of both p and (b, x. K, either there isan n € k| — & such that
ne U K orthereisann € k— ky such that n € U K. In the first case,
(0,1 < a, foran = € (UK) - k. In the second case [0,,] -a, = 0 for
ann € k.

Lemma 3. B can be embedded in ‘B, as a complete subalgebra.

Proof. Let /1 : B > B, be defined by #(0,;) = 0and /(b)) = 10<,,,¢,d,>}
otherwise. The proof that /i is a complete monomorphism is routine.
SO we omit it.

2.4. The proposition A% . Recall that a o-ideal / in a Boolean o-algebra
Bis N -satvrated if every uncountable collection of disjoint elements
of “B meets / (in other words, if ‘B/I satisfies the ccc). By A we mean
the tfoillowing assertion.

If Lis an X\ -saturated o-ideal in the Borel subsets of the real line R
with R & I, then R is not the union of X members of 1.

Example. Let I be the set of Borel sets of Lebesgue measure zero. Then
A§ says that 9 is not the union of ¥ sets of measure zero.

It is often convenient to consider a trivial variant of A§. Give
{ 0.1} = 2 the discrete topology and 2« the product topology. Let B,
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be the Borel subsets of 2*. Then Af is equivalent to the assertion:

If [is an ¥ y-saturated o-ideal in By with 2% ¢ 1, then 2% is not the
union of ¥ elements of 1.

Theorem. A§ is equivalent to Ay .

Proof. We show Af equivalent to Ay

Lemma 1. A’;,< -~ Afk.

Proof. Let  be a collection of (type w) sequences of Borel subsets of
2. We say that a subset of 2 is J-Borel if it belongs to the smallest
family F of subsets of 2 with the following three properties:
1) Foreachn, {g:g(n)=1} € %
D fAe F 2% AT
3) If{A4, :n€ w} isasequence of setsin F and {A4,} € J, then
U,c . 4, belongs to F. Clearly each Borel set is 3-Borel for some
countable . since the family of sets with the latter property is a
o-algebra.

Now let / be an R -saturated o-ideal in B,. B, /I is a complete
Boolean algebra [S]. Let A, € [ for a < 8. For each o < R let J, be a
countable set of sequences such that 4, is Jy-Borel. Let

By Ag. et fi:By/l > { 0,1} be a homomorphism such that, for
each sequence { C,, } ind,

h(21C,) =2C, 1),

where {C),] is the image of €, inBy /1. Let f<= 2% be defined by
foy=1<>h(i{g:gm=1}H=1.

We shall prove that, for every 3-Borel set C,
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feC«— ({IChHh=1.

Since each A is 3-Borel and € /, we will be done.
By induction, f€ 2« — C«=> f¢& C«— N([C]Y# 1— h([2¥ -C]) =
=l andfe UG« (INFEC) — @NNICH =1 — nZICD =
i i

=1.

Lemma 2. A} - Ag\

Proof. Let B be a complete Beolean algebra satisfying the cce and let

big-i < w.a <N be elements of B with 22 b, =1 for all «. We find a
i

homomorphism 2: %~ { 0,1} with2J li(b;o) = 1 for each a < W. Let
;

‘B’ be the complete subalgebra of B generated by the b,,. It is enough to
find a homomorphism #:B" -~ { 0,1} with the required properties,
since such a homoniorphism can always be extended to a homomor-
phism of Binto{ 0,1}.

We next observe that Af implies that X < 280 Otherwise R is the
union of ¥ points, i.e., of & members of the ideal of sets of Lebesgue
measure zero.

Since P satisfies the cce, B’ is the v-subalgebra of generated by the
b,q. It follows that the cardinality of B’ is < 8 %0 < (2%0)Fo =280, 3y
the Theorem of 2.3%’ is a complete subalgebra of a countably gener-
ated Boolean algebra satisfying the cce. By [16, p. 108every countably
generated complete Boolean algebra satisfying the ccc is isomorphic to
DB, /1 for some o-ideal § in By. It is thus clear that with no loss of gen-
erality we may assume that our original algebra 93 was of the form B //
for I an R | -saturated o-ideal inB,.

For each i < w and a < X pick C;, € By such that [C;q ], the image

of Ci In B/, is by Make sure that U Cpy = 2% for each a (this can be
;

done, since 23 b, = 1). Let B* be the Boolean subalgebra of By, gener-

ated by the C,. Let J =B* N [. Since J has cardinality < &, by A% let
fe2“ — UJ. Define hy : B* > {0,1} by ho(C)=1if and only if f€ C.

hg is a homomorphism. Since 2y(C) = 0 for C inB* N [, we can extend
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hq to a homomorphism 2: By - { 0. 1} which induces a homomor-
phism 2*: B,/ - { 0,1}. Since for eacha < X U Cio = 2%, there is

]
for each a an i such that 2,(Ci) = 1. Thus i*([bh;,1) =1 and
Lh*(lbigl)=1.
i

2.5. Questions related to A . We first note that we cannot drop from
A% the restriction that / be X | -saturated. This is related to the fact that
we cannot drop from A, the restriction that ? satisfy the cac. Let

Ag r o < ¥, be disjoint non-empty Borel subsets of ‘R with

a<UN | Ay =R. (The Lebesgue decomposition of ® supplies such 4,.)
Let / be the ideal of Borel sets disjoint from all but countably many A,,.

lis ao-ideal. Buteach Ay € land R= U A,.
a< N,

A more interesting question concerns the additivity of ideals in the
Borel sets. An ideal / in an algebra of sets is N-additive if every union of
fewer than 8 members of / is a subset of a member of /. Can A% be
strengthened to: If / is an N | -saturated o-ideal in B, then / is R*-
additive (where 8™ is the least cardinal greater thian X)? The answer is
once again no, if ¥ > R.

Theorem 1. There is an ¥ -saturated o-ideal in B, (the Borel subsets of
2% ) which is not X y-additive.

Proof. Let A4 be an uncountable collection of infinite, almost disjoint
subsets of w. Each element (k. K) of ?, is associated with an element
Cie k3 of By (see §2.2).

Let / be the o-ideal in ‘B, generated by sets of the form

2 . U C
peED P

where @ is a maximal antichain in 2, . It is fairly easy to show that
By /I is isomorphic to the complete Boolean algebra associated with 2, .
[ is then B -saturated.

Foreacha € A4, let
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B,={fe 2 ran{n:f(ny=1} isinfinite} .

Since {¢A.AY:a€ K} isdense in 2, . B, € [. Let A* be any uncount-

able subset of 4. We show that U B, is not a subset of any member
acA*

of /. Since A* can have cardinality X, this proves that / is not ¥ ,-
additive.
Let ;. i < w be maximal antichains in 2, . We must show tha!

N U C,meets U B, Let
{ I’E'D,‘ acA*

D={ae A (N . KNA.Kre D, &a€ K} .

D is countable, soleta € A% - D. Weshow that N U ¢ mects B,.
I pE :'p;
We detine a sequence

Po=<p;<p,=< ..

of clemients of 2, . Suppose p,; = (h;, K;) is defined for i/ < n and sup-

posc U A; & D. Since ¢ is almost disjoint from each member of D,
<an

letmea - (k, VUK, Nifr>0andmeaitn=40. Let

g, =<k, (u{m}.K, pitn>0 and

H
q, =({m}.¢ if n=0.

Since D, is a maximal antichain in 2, , let (k. K) € D,, be compatible
with g, . Let
UK.

p, =<k u{mjuk K,

1

n- 1
Note that K, = K,,  UKC D. Letf(m)=1ifneUk;and f(»)=0
i

otherwise. Clearly a 0 U &, is infinite so f € B,. Since f € N (), and
i n
Cp, € C, forsomepeD, . fen U (.
L E(Di
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Despite Theorem I, we shall see in § 4 that the two most important
R | -saturated o-ideals in B, are, in the presence 0i Agx, X" -additive.

Let B be an algebra of subsets of a set X containing all points (unit
subsets). Call an ideal J in B non-trivial if X € J and every point belongs
to J. A subset A of X is a null set of an ideal J/ in‘B if 4 is a subset of a
member of J.

Let / be a non-trivial ¥, -saturated o-ideal in B,. Does A imply that
every A € 2% of cardinality < 280 is a null set of 7? To answer this
question, we first prove the foilowing theorem.

Theorem 2. If A then the following two asscrtions are equivalent.
1) There is a non-trivial X |-saturated o-ideal I in By such that not
every set of cardinality < 280 is g null set oj 1.

2) There is an uncountable cardinal x < 250 with a non-trivial ¥ 1"
saturated x-additive ideal in P(x), the set of all subsets of x.

Proof. 2) » 1). (A is not used in this half of the proof.) Let R; <« <
< 280 and let A be a subset of 2% of cardinality . If there is a non-
trivial X ; -saturated o-ideal in P(x) then there is a non-trivial X, -
saturated o-ideal J in P{A4). Let

I={CeBy:CnAe]}.

1 is a non-trivial N -saturated o-ideal in 93 since J is such an ideal in
P(A). Also A is not a null set of /.

If A, then 1)~ 2). Suppose / is a non-trivial ¥ -saturated o-ideal in
By. Let k be the least cardinal such that some 4 € 2 of cardinality «
is not a null set of /. Suppose k < 280 and let 4 € 2% be a set of car-
dinality x which is not a null set of /. Let

M

J={CC A :Cisanullsetof{}.

We need the following lemma, due to Silver, which also answers (assum-
ing A+ WMo n 1) a question of Sierpinski [15, p. 90].

Lemma {(Silver). If A and if C € A, where A is a subset of 2% of cardi-
nality less than 280 then chere isa C* S 2% such that C* N A4 = C and
C*isaGy.
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Proof. By §_ let &€ 2% be such that{n : f)=1} n 5, is infinite if @
is a subset of w withf, € Cn 4 and {n : f(n)=1} n s, is finjte if
J, €A~ C (s, and f, were defined in § 2.2.) Let

Cx={f,:s5,0 {n:f(m)y=1} isinfinite } .

C* clearly has the required propertics.

We show that J is a non-trivial N -saturated o-ideal in P(4). J is a
non-trivial o-ideal, since [ is. To see that J is ¥ -saturated, suppose Cy,
a < Ny, are disjoint subsets of A. By the lemma, let C¥ be Borel sets

such that Cg N 4 = Cy. Let D, = Cy~ U C5. The D; are disjoint.
g

Since / is 8 -saturated, some D; € . Since the () are disjoint,
Cp=D;nAel.

It is easily seen that the least x * such that J is not (k *)* -additive is
such that P(k *) bears a non-trivial k *-additive X | -saturated ideal. In-
deed let A, a <k * be disjoint subsets of 4 such that each 1, € J but

U A, ¢ /. Let J* be the collection of subsets X of « * such that
W

U A4,€J.J%is the desired ideal.
ac X

We note that the existence of an uncountable x < 250 such that P(x)
bears a non-trivial k-saditive N, -saturated ideal is consistent with
ZF + A if and only if the existence of a { 0, 1 } -measurable cardinal is
consistent with ZF. If P(x) bears such an ideal J, thenx is{0, 1} -
measurable in L{J]. (See [19].) If M is a countable standard model of
ZF + “There is a { 0, 1 } -measurable cardinal” + the generalized conti-
nuum hypothesis, there is by Theorem 2 of § 1.2 a cac Cohen exten-
sion % of M such that N satisties ZF + A and 280 > ¢ in %. By a theo-
rem of Prikry [12], P(k) bears a non-trivial X | -saturated «-additive
ideal in N (namely, the ideal generated by the sets of measure 0 in 7).
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§ 3. The cardinal of the continuum and a hypothesis of Lusin

3.1. Subsets of cardinals < 2¥0 Lusin | 10] propounded a hypothesis
which we call L which implies 280 = 281 (This latter equation is known
as Lusin’s continuum hypothesis.) In § 3.2 we shall see that L is con-
sistent with and independent of AN, . We now show, using the proposi-
tion Sw, of § 2.2. that the consequence 280 = 281 of L does follow
from Ay, .

Theorem i.if Ay then 28 = 280,

Proof. Let {5, : @ < N} be a set of infinite pairwise almost disjoint sub-
sets of w. Let G : P(R() ~ P(R) be defined by G(£) = {a <N 1 1N 5y s
infinite } . By Sx. G is surjective.

Corollary 1. If Aand R < 280 then 28 = 280,

Corollary 2. If A, then 2No g regular.

Proof. Otherwise 20 is cofinal with some R less than 230, By Konig’s
Theorem, 28 is not cofinal with ®. Since 2% = 280 we have a contra-
diction.

Theorem 2. If Ay, there is a fixed subset Y of R such that every subset
of N is constructible from Y together with some subset of X y.

Proof. Let ¢ be the function defined in the proof of Theorem 1. G(7) is
constructible from ¢ and the sequence { 55} . Let Y be a subset of 8
coding this sequence.

Corollary 3. If AR, every subset of Ry is constructible from a subset
of wifand only if ¥ = NH” forsome t € w.

Proof. Let ¥ C R, code a sequence s, : @ < ¥ of distinct subsets of w.
If Y is constructible from ¢ € w, then each s, is constructible from ¢
and so, since by Godel [3] the continuum hypothesis holds in L[¢],
¥y =N

On the other hand, if 8; =R 1“’1 then a sequence of ¥ almost dis-
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joint subsets of w is constructible from ¢. so G(s) is constructible from
s and ¢, where G is the function defined in the proof of Theorem 1.

3.2. The hypothesis L. For information about projective sets. see [14].
L is the assertion that every subset of P(w) of cardinality R, is ﬂ} (CA).
(L=171onpage 129 of [10}.)

Theorem. If Ag, then Lifand only if there isa t © w with &}“‘ =8,

Proof. Assume 1 C w and 8, = R}/ By a theorem essentially due to
Godel (see [20]), it follows that there is a ﬂ§ set A of cardinality ¥ .
Let 4 ={a,:a<R;}andlet C={c,:a <R, } beany set of cardi-
nality R{. fx S wandn € w, lets, , = {f; (m) : m is a power of the
n + 1st prime number} . By Sy let #y € w be such that

1y N Sey 2+l is finite «— n € aq, ,
o M Say, 2n+2 is finite <> n€E€ ¢, .

Foreachx C w, lety, ={n: Sy an+1 N tg is finite} and z, =
{15, 3,42 0 1y} is finite. Then

xXEC+>ypy, €4 and Zy, =X

Since 4 is T so is C.

On the other hand, if there is no 1 € « such that RYU! = R then it
is a result of Sotovay [20] and Mansfield that no set of cardinality
< 280 js H{ (oreven X 5). Since Ay, » X < 2N0, no set of cardi-
nality 8, is H{.

Lusin proposed in [ 10} another hypothesis which he considered,
unlike L, to be only probable: Every union of 8, Borel sets is 2 pro»
jective set of the second class. Let L' be the assertion: Every union of
R, Borelsetsis X % We note that L’ follows easily from L (in ZF). It
suffices to show from L that the union of 8 ! setsis £}. For this,
it is enough to prove that any set of the form '
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{t:(3a)a@€ A and (a.>E )},

where 4 has cardinality X, and CC P(w) X P(w)is & ; But this is true
if A isTI;.

Corollary. If Ay, then L' if and only if there isa t C w such that
N]L(t] =R,.

Still another proposition (11 ot [10]) is mentioned and described as
“certain” by Lusin. Solovay will show elsewhere that 1l implies that ¥,
is a { 0. 1} -measurable cardinal, so that I contradicts the axiom of
choice.

§ 4. Measure and category

4.1. Lebesgue measure. Let 8 < 280 If a set of reals has cardinality R
and is Lebesgue measurable, it must have measure zero. But is every
such set measurable? If so, is every union of X sets of measure zero
measurable? Does every such union have measure zero? If the conti-
nuum hypothesis holds, the answer to all these questions is yes. We
shall see momentarily that the weaker proposition A also yields affir-
mative answers. On the other hand. there are models of ZF in which
280 > R, and

(a) There is a set of cardinality X (namely, the set of constructible
reals) which is not Lebesgue measurable;

(b) Every set of cardinality < 280 has measure zero, but R is the
union of ¥, sets of measure zero.

Briefly, let M be a countable transitive standard model of ZF + V = L.
Let « be a regular cardinal > 280 in M. InM, give { 0, 1} the discrete
topology and give {0} and {1} each measure ! ; give 2% the product
topology and the product measure. Let 9B be the Borel subsets of 2%
and let [, and [, be the ideals of measure zero Borel sets and of meager
Borel sets respectively. (A set is meager if it is disjoint from an inter-
section of countably many dense open sets.) Let @, be the non-zero
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clements of the Boolean algebra ‘¥//, and let 2, be the non-zero cle-
ments of B/, . In each case define
by<by—0b,-b = 0.

Let G, and G, be9f-generic filters on 2, and P, respectively. Then
MG, ) andM! G ) are models of (a) and (b) respectively. The proofs
of these facts, which are - like the analogous ones cited in §4.2 - due
to Solovay, arc omitted.

Let 7 be the o-ideal of Borel subsets of ¥ of measure 0. Suppose

(A a<NKL 220} are sets of measure 0 and suppose that U Ag
a< N

has positive inner measure. Let 4 © U A, be a Borel set of positive
a< N

Lebesgue measure. Let 77 be the set of Borel sets Csuch that Cn A4 € /.

(R--Ayu U A, =R soRis the union of ¥ < 280 members of the
alN

p-saturated o-ideal /', which contradicts A. We have then %hown that,
1] A then the union of < R0 gers of measure O has inner measire 0.
This is all we get from a direct application of A to the ideal of sets of
measure 0. We now prove a much stronger theorem by applying A to a
different ideal.

Theorem 1. [f Ay then the union of R sets of Lebesgue measure O has
Lebesgue measure 0.

Proof. Let A . a < N be sets of measure 0. Let e be a real number > 0.

We show that U A has outer measure < e. Let @ be the set of open
a <N

subsets of R of measure < ¢. Partially order 2 by inclusion. We denote
Lebesgue measure by g during the rest of this section. For o < R, lct
Xo={p€ P4, C p}. Weshow that each X is dense. Letp € 2.
Since u(A4,) = 0, there is an open g with p(g) < e —u(p)yand g 2 A,
Thenpug € Xy Let F={ X, 1 « <X} Since F consists uf dense
open subsets of P, if we can show that 2 satisties the cac, then by Ay
there is an F-generic filter G on 2. Evidently U G is an open set of reals

and U A, SUG HfulUG)> e thenthereare A(. 4,.....4, €6
a <N
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n

with u (U 4,) > e. By repeated application of condition b) on F-generic
1

n
filters (§ 1), U 4, € G, a contradiction.
i

Suppose D is an uncountable antichain in 2. There isa § > 0 such
that € ={p € D: u(p)< e -5} is uncountable. Since R is separable,
let{b, : n< w } be a base for the open sets of R. For each p € ¢ let
4, bea finite union of basic open suksets of p such that u(p — qp) < <
< 8/2. {q : p € €} is countable, since there are only countably many
finite unions of basic open sets. If p,.p, € € and p; # p,, then p; and
p- are incompatible, so u(p; U p,)> €. But ulg,, Y qp,,)> u(p, Vi)
—~(6/2)-(8/2)2 e —5.Sinceplg, V< u(p<e 5. q, #4q,,-
Therefore the countability of {qp pEC} nnpllcs thL countability of

(C‘

Corollary 1. If A, (i) the ideal of sets of Lebesgue measure 0 is 2N0-
additive; (2) the g-algebra of Lebesgue measurable sets is R-complete
for every R < X6 and ( 3) Lebesgue measure is 2R0_gdditive.

Proof. Assume A. (1) is evident. Let 4, a <R < 280, be Lesbesgue
measurable. Let CC U A, be a Borel set such that U A, - Chas

a< N a< N
inner meesure 0. Foreach a. (A, - CY=0,sou( U (Ay - C)N=0
a<<N
Since U Ag—~C= U (Ay-0O), U A4, - Chas measure 0: hence
a< R a<l N << N

U A, is measurable, and (2) is proved. If A, a <R < 280 are pair-
a<N

wise disjoint measurable sets, then only countably many of them, say
Ag;» < w, can have positive measure. Hence

p( U AN=u( U Ag)+u( U A - U Ag)=
Oz<\ i<<w (¥<Q <

=2 uda)= E MVME

I\Lx)

and so we have (3).
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Corollary 2. If Ay, , every ! (PCA yset is Lebesgue measurable.

Proof. Every 1 set is the union of N Borel sets.

It is a theorem of G&del that the measurability of £ sets cannot te
proved in ZF alone. On the other hand, that every £} set is measuralble
also follows from the existence of a measurable ca:di.nal (Solovay). We
now indicate why two axioms are better than one. The proof of the
following theorem of Martin, which uses the methodsof [11]. will
appear elsewhere.

Theorem 2. If a measurable cardinal exists, every 22 set is the union of
W, Borel sets.

. R PN - S T 1R A
Corollary 3. /f szand there exists a measurable cardinal, every Ly set
is Lebesgue measurable.

We do not know whether the hypothesis ““There exists a measurable
cardinal” can be dropped from Corollary 3. We conjecture that it can-
not. We do not know whether Ay, van be weakened to Ax, . We con-
jecture that it cannot. We d¢ xnow that the measurability of 2; sets
docs not follow from the existence of a measurable cardinal. This fact
is due to Silver [17].

We close §4.1 with two remarks: (1) Theorem 1 also shows that
A 2%0 g5 regular (Corollary 1 of the Theorem of § 3.1). 2) Theorein
1 readily gencralizes to the completion of any resular Borel measure in
a separable space.

4.2. The Baire categories. Recall that a subset of R is meager (first cate-
gorv) if its complement contains an intersection of countably many
dense open sets. A set is comeager if :ts complement is meager. The
Baire Category Theorem says that the intersection of ¥, dense open
sets is dense. If we apply A directlv to the o-ideal of meager Borel sets
we see that A immplies a Strong Baire Category Theorem: The intersec-
tion of < 280 dense open sets is dense. To see this, let Agru <y <

< 280 pe dense open and let 4 be open. Let [ be the o-ideal of Borel
sets whose intersection with A4 is meager. [ is ¥ | -saturated {5]. Since
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each ®— A, € 1, A implies that (R— A)u U (R- Ay) FR. Hence
o< N

thereisarealindAn N Aa'
a< N

A set of reals A has the Baire property if there is an open set U and a
meager set N such that, forallx € N,

XEA—xelU

(i.e., A equals U ouiside the meager set N). Every Borel set has the
Baire property [5]. Questions about the Baire property corresponding
to those asked about measurability at the beginning of §4.1 can be
raised, and one gets the corresponding answers. There are models of ZF
which satisfy 280 > 8 1> and
(a') There is a set of cardinality 8, which does not have the Baire
property.
(b') Every set of cardinality < 2N g meager, but R is the union of ¥
meager sets.

Recall thew[G,} andM[G, ] mentioned in §4.1. These are models
of (b') and (a’) respectively.

The following theorem was discovered independently by each of the
authors. One of our proofs used an unpublished construction of R. Cot-
ton.

Theorem. If Ay then the union of ¥ meager sets is meager.

Proof. Every union of X meager sets is meager if and only if the inter-
section of any ® comeager sets is comeager. A comeager set contains
the intersection of countably many dense open sets. What we have to
prove then is that the intersection of X dense open sets is comeager.

Let D,, « < N be dense open sets. Let B;, i < w, be a base for the
open sets of ®. If W is a dense open set, let

sWy={icw; B;E W} .
Forj&€ w, let

t(j)y={i€« :B; < B;} .
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Let A ={s(Dy):a<N}andlet B={1(j):je w). Letn,; < w and

s(Da_l | T s(Da”) € A. Since the intersection of finitely many dense

open sets is densc open, thereisa B, © B, N Dy N ...N Dy, .

{k : B, C B;} is then an infinite subset of #(j) - (5(Dg, ) U ... U s(Dg, ).

By Sy and the Theorem of § 2.2, let ¢ be a set of inte gers such that

10 £(j) is infinite for allj € w and ¢ N s is finite fors € 4. Let

W,= U B;. For cachj € w, since £ N 1(j) is infinite, there is a
n<i€tr

B, € W, 0 B;. Hence W, is a dense open set. For each a < X, 1N 5(Dy)

is finite, and so there is an n such that W, € D, . Hence

n w < n p_.
nE W " a<<N a

Since N W, is comeager,sois N D,
”Ew a<<N

Corollary 1. If A, then the ideal of meager sets is 2XNoydditive and the
o-algebra of sets with the Baire property is X-complete for every
R < 280, "

Corollary 2. If AR, . every ! set of reals has the Baire property.

Corollary 3 11 An, and there exists a measurable cardinal, then every
X} set of reals has the Baire property.

The theorem. like 1neorem 1 of 4.1. shows that A~ 280 s regular.
The Theorem can readily be generalized to separable topological spaces.
The construction needed to prove the Theorem antedates the almost-
disjoint set technique; however, it was noticed only recently that it is
essentially an example of that technique.

4.3. The measure problem. In | 21] it is proved that if ZF plus *“‘there
exists an inaccessible cardinal™ is consistent, then ZF minus the axiom
of choice, together with the axiom of dependent choice and *‘every set
of reals is Lebesgue measurabie and has the Baire property”, is con-
sistent. The use of an inaccessible cardinal is a minor annoyance, since
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it appears unlikely that the inaccessible is really necessary. The meth-
ods of §4.1 and § 4.2 suggest a method which might remove this
annoyance.

Let B, B,, ... be the open intervals of ® with rational endpoints. If
A is a Borel subset of R, a code for A is a real t which codes (in some
standard way) a method for generating A from the B, by taking count-
able unions. complements, etc. A real t is random (Cohen generic) over
a class M satisfying the axioms of set theory if ¢ belongs to no Borel
set of measure zero (of the first category) some code for which belongs
to M.

It is a result of Solovay that if every set is Lebesgue measurable (has
the Baire property), then

(*) If 9 satisfies the axiom of choice. the set of reals random (Cohen
generic) over M has a measure zero (meager) complement.

The method of | 211 is to find a model satisfying
(*%) Any well-ordered sequence of reals is countable.

(*) fcllows casily from (¥*). However (¥¥) plus dependent choice im-
plies inat X is inaccessible in L. That is why [ 21] requires an inacees-
sible cardinal.

The results of §4.1 and §4.2 can be restated as

I A and if N has fewer than X0 reals, then the set of reals random
(Cohen generic) over WM has a measure zcro (ineager) complement.
(In tne statement of A we here require that card () < X))

Hence a moder will satisty (*) if it satisfies A and
(***)R cannot be well-ordered.

Suppose that 9 is a model of ZF + A+ 2%0 > ) 1~ Let " be the col-
lection of members of ‘N which are hereditarily ordinal definable from a
real. 9 satisfics A and N can be chosen so that 9’ satisfies (¥*%) and
hence (*). Perhaps then an 9 can be found such that 9" satisfies “all
sets are Lebesgue measurable and have the Baire property™. If this can
be done, however, it appears that the set of forcing conditions used to
get W must be chosen with carc. The proof in [21] depends not only
on having a model of (*) but also on the fact that this model is a Cohen
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extension via a ? whose associated Boolean algebra is quitc homoge-
neous. It is not clear how to get our ¥ via a @ with (he analogous homo-
geneity property.

Another apprcach is not to get a model of A but simply to get a
mode! of (*) using the special constructions of §4.1 and §4.2. This can
be done without making 25 > 8 MURE

§5. A and the continuum hypothesis

5.1, The relative strength of A and CH. Many of the most interesting
applications of A occur only when 280 > § 1 - Examples are Souslin’s
hypothesis and the measurability of 25 sets. Nevertheless, A is a conse-
quence of CH and many of the consequences of CH follow also from A.
We have seen several examples of this: Corollaries 1 and 2 of § 3.1,
Corollary 1 of §4.1 and C_rollary 1 of §4.2. For more examples, we
turn to Sterpmskl [15]. Of the consequences €| — Cg, of CH demon-
strated there. we know tha! at least 48 follow from A ; at least 23 are
refuted by A + 2N > Ny 1ot least three (Csy . Cqg. and Cy, ) are con-
sistent with and independent of A+ Wo > N, (provided that the
existence of an inaccessibie (_dl'dlndl is (.OllblStt,nt with ZF — for the
consistency of Cog with A + 2o > R, and for the independence of Cg,
from A - and that the existence of a measurable cardinal is consistent
with ZF — for the independ:nce of Cs, from A). There are only 8 of
the C,, whose relation to A -+ 2No > Ny we do rot know about at pres-
ent (Cy. €30 Cyqn Cuge Gy Cgan Cogn and Cyy).

Actually (as Kunen [ 8] r marks]) A is much closer to CH with re-
spect to the C,, of [ 15] than our count makes ii appear. Sierpinski
often states his consequences of CH in terms of the denumerable/
indenumerable dichotomy. Obviously, however, the effect of A is to say
that all infinite cardinals < 280 have many of the properties of NO, SO
that the important dichotomy in terms of A is the less than hN0/7 0
dichotomy. All the 23 consequences C,, of CH which we know to con-
tradict A+ 280 > Ny, and all of the 8 ( , about whose relation
to A+ 280 > N, we are ignorant, become — if we make the obvious
replacements of “‘denumerable” by “of cardinality < 2%0* and “inde-
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numerable” by “of cardinality 280> _ consequences of A. A few be-
come in fact theorems of ZF. but most do not.

For instance (this example is also noted by Kunen [8]). (; is the
assertion that there is a set of reais of cardinality 2Ro which has at most
Rg members in common with each meager set. If 270 > N, and A. C,
clearly contradicts the Theorem of § 4.2, which implies that every set
of cardinality < 2o js meager. On the other hand. the very same Theo-
rem of §4.2 allows us to repeat essentially Sierpinski’s proof (which is
due to Lusin) of CH - C; to show that A - C§. where C} is the propo-
sition: There is a set of reals of cardinality 2%o which has < 2% mem-
bers in common with each meager set. (Let 4,. a < 2o pe all meager
Borel scts. By A and the Theorem of 4.2 U .1, is meager for cach

Q< p
g< 2% Let ts €R-- U A, be distinct from each 74, a < 3. Then
a<g
{t3:8< 2“\0} is the required set.) C7{. together with the theorems of
§ 4 is enough to deduce many of the propositions which Sierpinski de-
duces from C.

For other consequences of CH. which are also consequences of A,

see [ 8].

5.2. Real valued measurable cardinals. « is a real-valued measurable
cardinal if « is an uncountable cardinal and there is a x-additive real-
valued measure v defined on all subsets of x such that »({«}) =0 for
each ¢ <« and v(k) =1 (i.e.. it there is a non-trivial xk-additive ideal J in
P(x) such that P(x )/l is a measure algebra). « is a {0, 1 }-measurable
cardinal if there is a v as above and in addition » takes only the values O
and 1.

The assumption that 280 is a real-valued measurable cardinal is. like
A. an alternative to CH. It is known that 2%0 s very large if it is
real-valued measurable (see {19]). Also many of the consequences of
CH are decided - one way or other - by the assumption that 2o s
real-valued measurable.

If 7 is an ideal in P{x ) such that P(x)/] is a measure algebra, / is of
course Nj-saturated. We remarked in § 2.5 that, if the existence of a
{0.1}-measurable cardinal is consistent, then so is A plus the existence
of an uncountable k < 280 such that P(x ) bears a non-trivial Ny -
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saturated x -additive ideal. By the same argument, A is (on the same
hypothesis) consistent with the assumption that P(ZNO) bears a non-
trivial N -saturated 2No.additive ideal. Now Solovay [ 19] has shown
that it is consistent that 289 is real-valued measurable if and only if it
is consistent that a { 0.1 }-measurable cardinal exists. Can one combine
these consistency results to show that A is consistent with the assump-
tion that 280 is real-valued measurable?

The answer is no. In fact, A implics that there is no real valued meas-
urable ca dinal < 2No_ It is hard to decide to whom this fact is due.
since almost any of the classical proofs that CH implies that there is no
real-valued measurable cardinal < 280 work just as well under the weak-
cr hypothesis A. Kunen [ 8] gives three proofs and mentions stit! a
fourth. Several recipes for proofs can be found in Sierpinski [ 157,
though Sierpinski’s official proof that CH - no«x < 280 js real valued
measurable unfortunately uses the fact that CH - P(2%0) does 10t bear
an N, -saturated o-ideal. Most of the proofs use only the cons.juence of
A which we have in §4.2 called the Stroug Baire Category Theorem.
One of Kunen's arguments uses only the even weaker assumy ion that
every set of reals of cardinality < 2o g Lebesgue measurable. We give
a proof based on Theorem 6 of Sierpinski [15].

Theorem. The Strong Baire Category Theorem (SBCT) implizs (and so
A implies) that there is no real valued measurable cardinal < 2o,

Proof. Assume SBCT and that x < 2N0 is real-valued measuritle. Let
C € R have cardinality WMo 1t is easily seen (using the real-valued
measurability of « ) that there is a countably additive real-vaiued meas-
ure v defined on all subsets of ‘®with »({t})= 0 for each real f and
{C)y=p(RY=1, .

We first use SBCT to show that every A4 € R of cardinality < %o
has v-measure 0. Let r;, [ € w, be an enumeration of all rational num-
bers. Let B, forj € «w. be the set of reals 7 such that r, < ¢ and
p(lr 1]y <e/2/*1. (lr;. ] is the closed interval from r; to .} For each

iand j.v(B;) < /2% and. for each j, U B,; = R, since otherwise there
if STl
1

is a real £ such that »([r, t]1) > ¢/2/*1 foreachr < t,and sov({1})>
>e/2/. Let (. € w, be a base for the open sats of ‘R. For each, let
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Ap j Ay oo be disjoint nonempty open subsets of (! For each real s let

DY:S{AH:SEBU} .

Clearly each D, isopen. Letj € w. Let i be such thats € B;. Then
A; & Cyand A;; © Dg. Hence D is dense.
Let A C R have Cardmahty < 2% . By SBCT, there is a real

te N D,.

s 4

For each j therc is a unique i(j) such that r € A Consider

HUINN

B= E Bijyj

v(BYS L e/2tl=e. Ifs€e A, t € D, so there isaj withs € B
J
Hence B 2 A. Since e was arbitrary, we have shown that »(A4) = 0.
We next note that the proof of C¥ of 5.1 uses only SBCT. We may
then suppose that our set € has < 280 members in common with every
meager set. Let e > 0. For each rational r;, let B, be the interior of B ;.

NN

V(UB)<Z/ = ¢,

i i '7I+l

Now U B, is dense open, so (" — U B; has cardinality < 2o and so has
i i

v-measure 0. But then v(C) < e. If we let e < 1 we have a contradiction.

5.3.Is A true” As we have indicated. many if not most of the interest-
ing consequences of CH follow also from A. If CH is thought by some
to be false — and if it is thought to be false because of its consequences
— then may not the same consequences count against A?

Godel [4] offers - indications of the falsity of CH six consequences
of CH which he says are implausible. Three of these follow from A:
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(a) There is a set of reals of cardinality 280 which i Meager 0n every
perfect set.

(b) There is a set of reals of cardinality 280 which is carried into a set
of Lebesgue measure 0 by every continuous 1--1 mapping of R into R.

(¢) Thereisaset A € R cf cardinality 2%0 which has property C: foy
any positive reals ag. ay . ..., there are intervals 4, . n < w, of length a,,

o0

such that U A4, 2 A.
=0

The proofs given in [15] of (a), (b) and (¢) from C; work just as
well as procfs from C§ plus the assumption that every set of cardinality
< 2o s meager and has the property C. We might note that (b) and
(¢) tollow from SBCT alone. The construction of the proof of the Theo-
rem of § 5.2 goces through with no changes if we assume that v is
Lebesgue measure (since the only sets we assumed to be measurable
were Borel sets). Suppose we replace e/27*! by reals @, in that construc-
tion. Then the first part of the proof shows that any set of cardinality
< 280 can be covered by the union of intervals By of length ;. In
other words, it shows that every set of cardinality < 280 has property
C. The sccond part of the proof shows -~ with similar modifications —
that any sct C satistying C} has property C. It is <asily seen that C is
preserved under enntinucus mappings of R into R, so our set € also
satisties the conditions of (b).

Another “implausibie”™ consequence of CH mentioned by Gaodel is
C,. Now A+ Mo > R, implies that C, is false, but perhaps C7 is just
as “implausible™ as C, . Of the other two consequences of CH cited by
Godel. one is equivalent to CH and the other is inconsistent with A +
Mo > R 1 - {This last fact is due to D.Booth.)

If one agrees with Godel that (), (b), and (¢) are implausible, then
one must consider A an unlikely proposition. The authors, however,
have virtually no intuitions at all about (a), (b), and (¢) — or about the
other consequences of A discussed in this paper. We know of no very
convincing evidence either of the :ruth of A or of its falsity, and we see
no immediate hope for finding suck evidence.
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