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Introduction 

Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot 

be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have 
subsequently shown that CH cannot be proved even if one assumes the 
existence of a measurable cardinal. Their argument in tact shows that 
no large cardinal axiom of the kind present;y being considered by set 
theorists can yield a proof of CH (or of its negation, of course). Indeed, 
many set theorists - including the authors - suspect that C1t is false. 
But if we reject CH we admit Gurselves to be in a state of ignorance 
about a great many questions which CH resolves. While CH is a power- 
full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] 
deduces propcsitions there called C l - C82 from CH. We know of none 
of these propositions which is decided by the negation of CH and only 
one of them (C78) which is decided if one assumes in addition that a 
measurable cardinal exists. Among the many simple questions easily 
decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel 
set theory, including the axiom of choice) plus the negation of CH are 
tile following: Is every set of real numbers of cardinality less than tha't 
of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a 
non-trivial measure defined on all sets of real numbers? CIhis third 
question could be decided in ZF + not CH only in the unlikely event 
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that  the existence o f  a measurable cardinal can be refuted in ZF.)  

We are then very much in need of  an alternative to CH. The aim of  
this paper ~s to s tudy one such alternative.  We introduce an " a x i o m "  A 
which (t ~ is demons t rab ly  consis tent  with ZF, ~2) allows the con t inuum 
to be (loosely speaking) any  regular cardinal,  (3) follows from CH and 
implies many  of  the impor tan t  consequences  o f  CH, and (4) implies, 
when 2 ~0 > t¢ 1, several interest ing s tatements .  The following theorem 
gives some of  the  main consequences  of  A. (For  a s ta tement  o f  A, s.ce 
§1.2 . )  

Theorem. I r A  then 
1 ) 2 to0 > ~ 1 -> Souslin~ hypothesis 122] ; 
2) I f  ~ is an infinite cardinal mtmber < 2t<o, then 2 ~ = 2~o ; 
3) I f  2 ~o > ~ 1, every set o f  real numbers o f  cardinality ~ l is I11 i f  and 
only i f  every union o ] ~  l Borel sets is 1~ i f  and only i f  there is a real t 
with b~ -It] = b~ l ; 

4) The union o f <  2 too sets (Lf reals o f  Lebesgue measure zelv (respec- 

tively, o f  the first categoo') is o f  Lebesgue measure zero (o f  the first 
category); 

5) I f  2 b~o > t¢ l ,  el~ery ~ !~ set o f  reals is Lebesgue measurable and has 
the Baire property; 
6) 2 too is not  a real valued measurable cardinal (see also [8] ). 

The axiom arose from the consistency problem for Souslin's hypothe-  
sis. Souslin's hypothes is  states that there are no "Souslin trces". Now if 

97t is a countable  standard model  o f  ZF and T is a Souslin tree in 9'~, 
there is an easy method for f inding a Cohen extensionCt/Z T o f  c'ffL such 

that 9/~ T has the same cardinals as ~ and T is not a Souslin trec in any 
model  9Z o f  set theory with ctgT C 9Z. Solovay and Temlenbaum found 

a mcthod for constructing a Cohen extens ion 9Z o f  any model  9~ 0 o f  ZF 
with the property that, if T is ~,~ Souslin tree in some submodel  ctIt ofgZ, 
the~ some Cohe~ e x t e n s i o n ' ~  T is a submodel  o f  9Z (so T is not a Sous- 
lin tree in 9Z). That is, all the Souslin tree destroying Cohen extens ions  

9/t ~91~ T can be carried out  ip~side the modelgZ.  (This account  is slightly 

inaccurate.)  
Martin observed that the construct ion o f ~  depended only  on very 

general properties o f  the Cohen extensions~7/~ __, c//gT. He and, indepen- 
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dently, Rowbottom, suggested an "axiom" which asserts that all Cohen 

extensions having these very general properties can be carried out inside 

the universe of  setup: that the universe of sets is - so to speak -- closed 

under a large class of Cohen extensions. The methods of  [22] show this 
axic,,~l~ to be consistent, and the consistency proof is given in [ 22]. 

The method of (22i is to construct a transfinite sequence qga, a < 0, 

of models, with cttgt3 a Cohen extension of Ctga whenever a < #. The 
"limit"9~ of the cttga is the desired Cohen extension ofTg 0. Several con- 
sistency proofs have subsequently been found using this method of 
iterated Cohen extensions. Almost all of these consistency proofs can 
be simplified as follows: If ,b is the proposition to be shown consistent, 
one deduces ,I, from A (or A + 2 ~0 > s t ) a~d concludes that q~ is con- 

sistent since A (A + 2 ~0 > ~ l ) is. 
Although this paper is about forcing, almost the whole paper can be 

read without any kr:owledge of forcing. For the reader not familiar with 
forcing, § 1 will not be as enlightening, some of the theorems and proofs 
of § 2 will appear strange and ingenious, and various remarks made here 

and tiaere in the paper wi)l be unintelligible. 
In § 1 we introduce the notion of a generic filter and state the axiom 

A. ~ 2 is devoted to two other versions of A: The Boolean algebraic ver- 

sion and ~a formulation in terms of ideals in the Borel sets of  reals. To 
prove the equivalence of A and this latter version, we introduce the 

method of "almost disjoint sets", which is perhaps the main tool used 
in this paper. Wc assume in § 2 some facts about Boolean algebras, all of 

which can bc found in Halmos 15] or Sikorski [16] .  in § 3 we prove 
parts 2) and 3) of the theorem stated above. Some familiarity with pro- 
jective sets is assumed in §3.2. §4 is concerned with parts 4) and 5) of 
the theorem. In § 5, we discuss the ways in which A is very close to the 
continuum hypothesis. We indicate how most consequences in [15] of 

CH can also be deduced from A (in particular, the non-existence of a 

real-valued measurable cardinal), ('Ihese topics are also discussed in [81 .) 

Finally we consider the problem of the truth of  A in light of  GiSdel's 

remarks [4] on the truth of CH, 
This paper is complementary to [ 221, where our axiom is proved 

consistent and where Souslin's hypothesis is deduced from A + 2 t~0 > ~ 1. 
We have mostly tried to keep the same notation and terminology as [22],  
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and we indicate our departures from [22].  Another study of the con- 
sequences of the axiom is § § 11 .... 14 of Kunen's dissertation [8] ,  which 
we recommend to the reader. Some other papers directly or indirectly 
related to the axiom are [23], [24], [25], and [26]. 

§ 1. The axiom 

1. l.C~ - generic filters. In using the forcing method of Cohen, one begins 
with a transitive standard model ~7/~ of ZF and a partially ordered set f~ 

belonging togIL l f p l  < !-'2 we say that P2 extends p i .  Pl ,P2 ~ :~ are 
compatible if there is a P3 ~ 9 which extends them both: otherwise Pl 
and P2 are incompatible. A subset X of 7' is dense open if 
1) p E X ,  q E g ,  a n d p ~ _ q ~ q ~ X :  
2) p E ~-~ ( ~! q ~ X)(p < q). 

The model ctg is usually assumed to be countable, and this guarantees 
the existence of anC~g-generie .filter on 9, a subset G of ~ satisfyhlg 
a) p ~ G a n d q < p ~ q ~ G :  

b) p l , P 2 E G ~  ( 3 p 3 ) ( p  I ~-P3 & P 2 ~ P 3  &P3 E G): 
c) X C g a n d X ~ C ~ a n d X d e n s e o p e n ~ X n  G4=~, 

where ~ is the empty set. If G is anal-generic filter on ~, there is a 
anique minimal modelC~[G] of ZF such that q / ~  °tg[G] and G ~O~[G] 
and such that ¢~[G] has the same ordinals asC?g. 

Remarks. What we call dense ope,z is called dense in [22].  In § 2.1 we 
make a partial ordering ) into a topological space. Condl, tion 1 ) then 
says that X is an open subset of ~ and condition 2) that X is dense in 
the topological sense. 

In [ 22],  the weaker condition 

b') P l ,  P2 E G ~ Pl and P2 are compatible 
appears instead of condition b). This change does not affect the notion 
of C~-generic filters. Indeed, if a), b'), and c) hold of G, then 

X = { P  : ( P l  ~ p & p 2  < p )  

or (p is incompatible w i t h p i  o rp2)}  
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is a dense open  subset of  7" belonging to c~g. By c), let P3 @ X n G. 

b') gt, arantees that  P3 is compat ib le  with Pl and P2, SO P3 ex tends  them 
both.  Our use o f  b) instead o f  b') does change the not ion  of  an cy_ 

generic filter (§ 1.2) but  has no  effect on the proposi t ions AS def ined 
in §1.2. 

"Gener ic  ideal" might  be more  descriptive th an "generic fil ter".  The 
word "f i l ter"  is used because a generic filter on 9 is associated with a 
filter in a related Boolean algebra. (See § 2.1 .) Some authors  reverse the  

extens ion  relation i~ order  to make < agree with the partial order ing in 
this Boolean algebra. We do not  do this for historical agreement  with 
Cohen [ 21 and because we, like Cohen,  think o f p  extends q as meaning  
p l ms more  inyormation than q. 

As a final remark, we note  that  if we replace c) by the condi t ion  thai 
G meets  every dense subset o f  :9, i.e., every subset o f  :9 satisfying 2), 
then a) implies that  the not ion  o f  generic filter is unchanged.  

Example 1 (essentially that  of  Cohen [ 2, Ch. 4, § 3] ). Let c~ be a 

countable  standard model  of  ZF + V = L; let 5~ be the set of  finite func- 
t ions p with domain(p}  C co and range(p)  c_ { 0, 1 } ; partially order  :9 by 

inclusion. An~71Ggencric filter on 7" is then just tile set o f  finite subsets 

o f  the characteristic funct ion of  a subset of  co which is generic relative 
toq/g ia the sense o f  [2, Ch. 1V]. 

When countable  models  cr/~ are considered,  the existence of  Cr/{-generic 

filters is never a problem, for there are then only countably  many  dense 
open subsets of  :9 which belong to cr/L (Let X l , X 2 ... .  be all these dense 

open subsets; let P0 e :9 be arbitrary and P,,+l be some extens ion  o f  p,, 
belonging to X,, ; { p : ( 3 n)(p  < p,, ) } is anC//&generic filter on :9.) Sup- 

pose however  that  ~/g is uncountab le  or even that  9/g is a proper  class. 
For  instance consider:  

Example 2. Let :9 be as in Example  1, but  replace the  c~ of  that  example  
by the whole  universe L of  construct ible ~ets. If G is an L-generic filter 
on 7', then u G is a non-construct ible  funct ion  f :  co -+ { 0,1 } as can 
easily be seen. 

We cannot  in general prove in ZF that  c/tZ-generic filters exist. In 

Example 2, a p roof  that  all L-generic filter exists would  be a refuta t ion 
of  the axiom of  construct ibi l i ty  (V = L), which is k n o w n  [3] to be con- 
sistent with ZF. 
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Nevertheless it is no t  obviously  false that  in many  iz~stances ~Ggener ic  

filters exist even thoughCrg, or even the set o f  dense open subsets o f  9 

belonging to~/~, is uncoun tab le .  Our  axiom will say that  this is indeed 
the case. 

1.2.55-generic f i l ters.  The model  9R is involved in the no t ion  o f  anC//t - 

generic filter on 9 only  via the col lec t ion o f  dense open  subsets o f  9 

belonging tog~ .  Accordingly  we in t roduce  a more  general not ion.  If 9 

is a partial order ing and 9" is a col lec t ion of  dense open  subsets o f  9, an 

5r-gener ic f i l ter  on  9 is a subset  G of  9 satisfying a) and b) in the defi- 

ni t ion ofg~-gener ic  filters and 

c ')  X E 55-+ X n G 4= ¢ . 

If one looks for  a propos i t ion  asserting the exis tence of  Y-generic 

filters, one natural ly  th inks  o f  the following: For  every partial ordering 

9 and every col lect ion 9" o f  dense open  subsets o f  9,  there is an 7-gen-  

eric filter on 9. Now it is possible to accept  this s trong proposi t ion,  

provided tha t  one is willing to abandon  the power  set axiom of  ZF. In 

ZF wi thou t  the power  ~et axiom,  the propos i t ion  is equivalent  to the 

assertion that  every set is countable .  To see that  the proposi t ion  is in- 

consis tent  wi th  ZF, let 7' be the set o f  finite func t ions  p with 

doma in (p )  ~ ~ and range(p)  c_ w I • Partially order  9 by inclasion.  For  

each countab le  ordinal  ~, let 

X a = { p e :~: o~ ~ range(p)}  . 

Let 55 = { X a : a < ~ l }. (We always ident i fy  cardinals wi th  initial 

ordinals.)  Each X a is dense open  for i f p  E 9, and n is the least natural  
number  not  in domain  (p),  then  

P ~ I '  u {<n, ~>} . 

If G were an 55-generic filter, it is easy to see that  u G would  be a func- 

t ion mapping w on to  w 1. 

Some restr ict ion is required so that  we do not  assert tile exis tence of  

generic filters which  "co l lapse"  cardinals in this way. We adopt  a restric- 

t ion on 9 to be descr ibed below. It is not  the weakest  res t r ic t ion on 9 
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which will prevent cardinal collapse, but it has the virtue of being 

strong enough to permit the proof of Theorem 2 of this section. 
An antichain in a partially ordered set ? is a collection of elements 

of ~ ;.ny two distinct members of which are incompatibie. 7> satisfies 
the countable antichain condit ion (the cac) if every antichain in ? is 
countable. 

For ~ an infinite cardinal, let A~ be the assertion: 

It" ~ is a partial ordering sati~:f),ing the cac and ~ is a collection o f  
dense open subsets o f  ~ o f  cardinality <_ S ,  then there is an ~-generic 

f i l ter cm ?. 

OurAt< is equivalent to MA(8 +) of 18] and M~+ of [22] ,  where t~ + 
is the least cardinal greater than ~. The equivalence between our A s 
and the MA(t~ +) of [3] will be proved in § 2.1. The MS+ of [22] has 
an extra restriction on 9: that 7 ~ has cardinality % S. This restriction 
has no importance: 

Lemma. Let ~ be a partial o,,'dering and let 7: be a collection o f  dense 

open subsets o f  9. There is a 7 '  C 9~ o f  vardinalio" < max(S 0, (card (Y)) 
such that, i f  3:' is the collection o f  X n ~'  f o r  X ~5 7 ,  then ~:' consists o f  

dense open subsets o.f ) '  and any 3:'-generic l~lter on 7)' can be ex t ended  

to an ~-generic .filter on ) .  

Proof.  For each X c c y ,  let .Ix : f9 ~ 9 ~ be a tunct ion  such that 
p ~ ( t p )  e X. Let P0 be some  e l e m e n t  o f  9 .  Let ? '  be the closure o f  
{ P0 } under  the)'x for X ~ ~ .  If 5 r is inf inite ,  clearly the cardinal i ty  o f  
7 ~' is no greater than that o f  5 r. If X e 9:, X n ~' is a dense  opeo. subset  
o f  7 ' .  Let G' be an 5f-generic  filter on 9 ~'. Let G = { p 6 ~ :  (3p')(p'  ~ 7 ~' 
and p < p ' ) } .  G is an 9"-generic filter on 9~: G clearly satisfies a) and c'). 

p ? ~ w 

]'fPl, P~_ E G, let P l ,  P2 ~ G' with  Pl ~ P] and P2 <- P2- Since Pl  and 
p~ have an ex tens ion  in G' so do Pl  and P2.  

As we ha,Je essential ly  remarked already, A ~0 is a theorem o f  ZF. 

"theorem I . / f A  s then ~ < 2 ~0. 

Proof. Let ~ be as in Examples 1 and 2. For each subset s of ~o let X s 
be the set of p ~ ~ such that p is not v subset of the characteristic func- 
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t ion o f  s. Each X s is dense open.  Let 9r = { X s : s _c eo }. If A s for some 
S _> 2S0~ then there is an 9r-generic filter G on :9. But then O G is a sub- 
set of  the characteristic funct ion  o f  a subset of  ~ differing from every 
subset of  w. 

Let A be tile proposi t ion.  

I f S  < 2 s0 titep~ AI~. 

,a, is tile axiom we wish to  study ( though many o f  our  results will con- 
cern the A s ' s ) .  

Clearly A is consis tent  with ZF, for CH ~ A. In fact we have the fol- 

lc,~wing much stronger consis tency result ( the " forc ing"  version o f  tile 
"Boo lean"  theorem 7.11 o f  [22] ): 

Theorem 2. Let  ~ be a standard mode l  Qi" ZF. Let  0 be an ordinal such 

that in ~ tize st.atement "'0 is an uncountable  regular cardinal and 

O' < 0 ~ 2 o' < 0"  is true. There is a partially ordered se," ~ E ~ stlch 

that "3~ has cardinality 0 and 3o satisfies the cac" is true in ~ and such 

that, if" G is anyg~-generic f i l ter on ~, ffl~ [ G 1 satisfies !2S0 = 0 and A. 

We shall see in § 3 that  the condi t ions  on 0 cannot  be dropped" 
A implies that  2 s0 is regular and in fact that  S < 2 s0  ~ 2 s = 2s0 .  

§ 2. Propositions equivalent to A 

In § 2.1 we prove the equivalence of  A and its Boolean version. The 
rest of  § 2 will be devoted  in one way or ano ther  to a proposi t ion A* 
which is also equivalent  to A. The equivalence of  A* and A is proved in 
§ 2.4. In § 2.3 we prove a theorem about  Boolean algebras which is the 
key fact in sh3wing A* ~ A. In § 2.2 we int roduce the main ideas of  
§ 2.3 and use them to prove a consequence  o f  A which will be used 
several t imes in t~fis paper. In § 2.5 we use § 2.2 to study two proposi- 
t ions related to A*. 

2.1. The Boo!ean version. The axiom A is stated in terms o f  forcing. In 
view of  the g~neral cor respondence  be tween Boolean algebras and 
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forcing [ 13 ], there  should be a t ranslat ion c f A into tile Boolezm lan- 

guage. We now give such a translat ion a~ld recall enough of  [i 3] to 

prove its equivalence to A. By A ~  we mean tile fol lowing proposi t ioq:  

Let  ~B be a comple te  Boolean algebra satL~[vi~zg the countable chain 
condit ion (ccc) a , d  let bia be elements  o f  ~3 for  all i < c~ amt  all ordin- 
als ~ < S. There is a homomorphis. ,n h. -~ -+ {0, 1} (the two e l e m e ,  t 
Boolean algebra) .~uch that, .tbr each ~ < ~. 

h (~i b i a ) =  ~h(bicx)'i 

A h o m o m o r p h i s m  preserving all infinite sums is impossible if ~ is 

atomless,  but AS says that  an h preserving any given ~ sums can be 

found.  A s is MA(t~+) of  [81. 

Thec~rem. AS amt A'~ are equivalent. 

Proof. A~ --> A s .  Letq3 and h i e  e be as in the s ta tement  of  A ~ .  With no 

loss of  general i ty  we may assume X b io  ~ = 1 . For,  if not ,  let c0c ~ = 
i 

1 .... ~ h i c  ~ and Ci+l~ = b i c  ~. If h • ~B--' { 0, 1 } is a h o n m n m r p h i s m  with 
i 

'~'/l(Cio ~ ) ~  = h(~-~, t i t  x ) = 1l(1 ~ = 1 , then ei ther  h( 1 - ~bioL) = 1 and so 
i i i 

I I ( ~  bio ~) = 0 = ff_~ h ( b i a )  o r  e l s e  h(b i c  ~ ) = 1 f o r  s o m e  i a n d  s o  h( ~ t'ic ~) = 
i i i 

h(bia ) = 1. 
i 

Let 7'= ~B--- { 0 } .  l f b l , b ,  E ~, let b I _'5 b 2 i f b  2 < b I where  < is 

the Boolean algebraic relation. If b,  • b 2 ¢ 0,  then  b 1 • b 2 _> b I and 

b I • b 2 > b 2. In o ther  words,  b 1 and b 2 are compat ib le  if they are not  
disjoint.  Since c~3 satisfies th~ ccc, 7' satisfies the cac. 

For a < ~ let )t'c~ = { b ~ ~ " ( Hi)(b < b i a )  } .  Since ~; b io  ~ = 1, Xc~ is 
i 

dense open.  Let cy = {Xc ~ , ~ < ~ }. 

By A~ let G be an Y-generic filter on ',~. Let h " q8-, { 0,  1 } be de- 

f ined by h(b) =1 ,---* b e G. By a) and b) of  1.1, G is a Boolean filter in 

q3, so that  It is a h o m e m o r p h i s m .  Let a < ~.  G is 5r-generic, so let 



152 D,A.Martin and R.M.Solovay, Internal Cohen extensions 

b ~ X~ n G. There is an i such that  b < biot. h(bio ~) ~ h(b)  = 1. l tence 
~.h(bicx) = 1. 
i 

A~ --, A~.  Let 5 o be a partially ordered set. We define the comple te  
Boolean algebra ~,~ associated with 5~. 

For p ~ ) ,  let Op = { q ~ 5 o : p < q }. We can make ~ into a topological  
space by taking the Op as a base for the open sets, for 

Op n :U{Ol ,3-  p < ~ -< } I O p 2  1 -- P 3  P 2  -- P 3  " 

Note that the term "dense  o p e n "  is una:nbiguous.  Let ~31 be the 
Boolean algebra generated by the open  sets. l e t  I bc the ideal of  sets 

whose complemen t s  are dense open.  Let q3,~, = q31/1, 
If X ~ q31 let [X] be the image of  X in ~ .  Every e lement  of~-~ is o f  

the form [ U1 for some open  U: Since this proper ty  is obviously pre- 

served under  stuns, it is enough to show that  it is preserved under  com- 
plements.  If [ U] ~ q3~, U open,  let U' be the interior of  ~ -  U. U u U' 
is dense open,  and U' and_O-- U are equal o f f  the complemen t  of  

U u U'. Therefore [ : 9 -  U1 = [ U ' I .  
1.,: [22, § 7.5] it is shown that  ~:~ is comple te  and that satisfies the 

ccc if9 ~ satisfies the cac. 
Now suppose. 9 is a partial ordering satisfying the cac, card (:9) < ~,  

7 =  {Xa; c~ < S } is a col lect ion of  dense open subsets of  9, and q:k~ is 

die  complete  Eoolean algebra associated with :9. For each ~ < ~,  let 

{ P i e , ;  i '< co } be a maximal  antichain in X a. Let bio~ = [ O p i ~ ] .  

Let us compute  ~ bia. Suppose U c_ So is open  and [ U] > ~'b ia .  Let 
i i 

p ~ ) .  There is an i < co such that  p and Pia are compatible ,  since 

{ l)iot; i < (,2 } i',; a maximal  antichain. Let q ~ p and q ~ Pic~. Then 
Oq ~ Op n Opi ~. Hence [Oq] < [Opi ~1 = bio ~ <= [U]. Hence U n  Oq 4: (~ 
and so U n Or, 4: q~. Since p was arbitrary, U is dense, i.e., [ U] = 1. Thus 

~" bio ~ = 1. 
i 

By A a ,  let h: q3,~ --> { 0,  1 } be a h omomorph i sm  such that ~-~h(bia) = 
i 

h ( ~ b m )  = 1 for each u < ~ and h(lOt,  ~ ] • [Op2]) = 
i 

h([Op3 l ) for Pl , P2 E ~. Let G = { P E so: h([Op ] ) = l }. 
Pl,P2 ~ P3 
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Since h is a homomorphi , ;m,  it is readily seen tMt  G satisfies a ) a n d  b) 

of  i .1. Lela ,  < ~.  " ~ h ( b i a }  =- 1" so h ( b i a )  = 1 for some i. Hence 
i 

h ( [ O p i  a] ~ = 1 and Pioe ~ G. ]~ia E X a so X a ,'~ G is noncmpty .  This 
means  G satisfies c ' )  o f  § 1.2, and thus  that (; is q-gener ic .  

2.2. A l m o s t  di,sjoint sets  and  the  l)rot~osition S;<. The m e t h o d  of  this 

sect ion was invented  by Solovay in order  to prove the cons is lency of  

"'Every subsei o f  S ~ is construc~ible f rom a subset of  oo and 2 s0 > S l "  

( § Z. 1 ]. Among  the theorems  l.U':3ved by this m e t h o d  are those of  [ 6 ]. 
Let q be a col lect ion of  infinite subsets of  co. Let ~.1 be the set o f  all 

o rdered  pairs (k, K} with  k a finite subset o f  co and K a finite subset o f  

A. Wc partiaily order  ~,,t as follows: 

( k ~ , K l ) <  (k 2 , K  2 ) ~ ( k  I c k 2 & K  t C K 2 

& k  2 n ( U K I ) C  k z ) .  

Lel ('~k,K) be the set of  subsets t o f  co such that  k c t and,  for all s ~ K, 

s n  t c k. Then (k I , K t ) ' <  (k~,  A 2) if and only if ('(k~,h- ~) ~ C(k2,h'2). 

Lemma !. ~A sati,~l'ics the  cac. 

Proof.  (k, K l) and (k, K 2) are always compat ibie ,  :ince (k, K 1 o K 2) 
ex tends  them both.  Since there are only coun tab ly  many  finite subsets 

o f  co, the l emma is proved. 

W i f l l e a c h x C  co we now associate a n s  x <_ w .  L e t J x "  co-~ { 0 , 1 }  be 

the chracterist ic  funct ion  o f x .  If f "  co -+ {0, 1 },./ ' is def ined by 

n - -  1 

7(,1} = I-1 p/"}+~, where  Pi is the i + 1st pr ime number ,  f ( n )  should be 
i -- 0 

though t  of  as the finite sequence f(0) , . l ' (  1 ) . . . . .  f ( n  - 1 ). Now let s x = 

{.tic(n); n < co }. Note  that  s x is always infinite. 
Two subsets o f  co are a h n o s t  d i s lo in t  if their  in tersect ion is finite. Let 

x, y g co and x -4: 3'. Then there is an n c co such that  n ~ .v ~ n q~ y.  lr  

m > n , - f x ( m )  ~ Sy and'fv (m) ~ s x . Hence  x and y are a lmost  disjoint,  in 

particular,  we have shown:  
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Lemma 2. There is a collection o,f inf#lite pairwise alnlost disjoint sub- 
sets o f  co o f  cardinality 2S0. 

The following easy lemma is needed  for the theorem of  this section:  

Lemma 3. Let  A be a set o f  subsets o f  co. Le t  t c_ co be such that for  

every f inite subset K o f  A,  t -- U K is" infinite. For  each n E co, the set 

Xt,  n o f ( k ,  K) E ~A Sllch that k c~ t has cardinality >_ n is dense open. 

Proof .  Let (k, K> ~ ~4 - S ince  t - (U  K) is infinite,  there  is a subset k 1 

of t o f  cardinal i ty  n disjoint f rom U K. Thus ~k, E) ~ (k u k I,  K) and 

(k u k l ,  K) E X t .  n. 

By St¢ we mean the fol lowing proposi t ion" 

Let  A and B be collections o f  subsets o f  w ,  each o f  cardinaliO' < ~ ,  

such that (f  t E B and K is a f ini te  subset o f  A then t - U K is infinite. 

There is a subset t o eLt'co sttch that x n t o is f ini te  i t 'x ~ A and infinite 

i f x E B .  

Note that  the hypothes is  o f  St¢ is fulfilled if each m e m b e r  of  B is in- 

finite and almost  disjoint f rom each m e m b e r  of 'A.  

T h e o r e m .  A ~  ~ S 8 .  

Proof .  Let A and B satisfy the hypothes is  o f  S~;. Consider  3~ A . For  

s Cco, let Ys be the set o f  ~/~, K) such that  s e K. Obviously Y:¢ is dense 

in ~t  i f s  ~ A. Define Xs. n as in Lemma 3. Let 

cy ={  Ys " s ~  A } to { Xs.,, " s E  B & n E  co } . 

By Lemma 3, 9 ~is a col lect ion of  dense open subsets o f  ~4 • By A s let 

G be an 7-gener ic  filter on fPA • Let 

t o ={ n • (3 <k, K))((k, K) E G & n  E k)} . 

Let s ~ A. Since Ys ~ 'Y, let (k, K) ~ G with s E K. Let (k', K ' )  E G. 

Then <k, K) and (k', K'> are compat ib le .  Let (k I , K l ) ex tend  both.  Since 

(k, K)<_ ( k l ,  L" 1 ) we have by def ini t ion that  k I n s c_ k. Hence 

k' n s _C_ k j n s c k. Since k' was arbi trary,  t o n s c k. 
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We have only to show that s E B -* t 0 n s is infinite. Let s E B and 
n ~ w. We show that  t 0 n s has cardinality > n. Let (k, K) ~ Xs.,~ n G. 

k ~ t¢! and k n s has cardinality > n, by the def ini t ion of  Xs.,;. 

2.3. A n  embeddo,~g theorem jbr  Boolean algebras with the cc~. Kripke 
[7] shows that  every comple te  Boolean algebra can be e m b e d d e d  as a 'D 

comple te  subalgebra in a countably  generated comple te  Boolean alge. 
bra. In this paper we are concerned  only with comple te  Boolean alge- 
bras satisfying the ccc. Can all such algebras be em0edded  as a comple te  
subalgebra in a countably  generated comple te  Boolean algebra satisfy- 
ing the c~ c ? The answer is no, since it i~ readily seen that every counta-  
b,y generated comple te  Boolean algebra satisfying the ccc has cardinality 

2"~o. 

Theorem.  Every comple te  Boolean algebra o t'c:lrdinality < 2 ~o satisJ),- 

mg the ccc can be e m b e d d e d  as a comple te  subalgebra in a countably  

generated comple te  Boolean algebra satisJ)'ing the ccc. 

Proof. Our proof, like that of  Kripke [7] and the proof  o f  Solovay [ f8 ]  

on which it is based, is mot ivated by forcing. To indicate the motiva- 
tion, suppose that  c,,/~ is a countable  standard model  of  ZF, ~ ~ ~g is a 
partially ordered set of  cardinality < 2 b;0 in ~ satisfying the cac, and G 

is anq'/Ugeneric filter on ~. The Theorem of  § 2.2 tells us how to find a 
cac Cohen extension (~E[G]) [ t  o ] of~'Tg[G] such that  G ~ ct/~[t 0 ] (i.e., 

q g [ t  0 ] = (gK[G]) I t  0 ] .~ and t o !- o~. Results of  [22] tell us that  the 
composi t ion  of  two cac Cohen extensions is a cac Cohen extension.  
Since ( .C~[G] )[t o ] =q/~[t0 ], we know that the Boolean algebra asso- 
ciated with this two stage extens ion  is countably  generated.  

For the proof  of  the theorem,  let ~ be a comple te  Boolean algebra 
of  cardinality < 2 s0  satisfying the ccc. By Lemma 2 of  § 2.2 let f map 

q8 one-one on to  a collect ion of  infinite pairwise almost  disjoint subsets 
of~o. F o r b  6 qS-- { 0 }  , let A(b)  = {j ' (b ' )  : b' > b } .  Let 5~be the set of  
all ordered triples (b, k, K>, where b E q8 - { 0 } and (k, K> ~ 5~A(t~ ~. Let 

(b l , k  1 ,Kl )<-  (b 2 ,k  2 ,K 2)~+ 

+--* b 1 ~= b 2 &(k I , K1)~  (k 2, Kz).  
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Lemma 1. :~ satL~fies the cac, and so "~,  (see § 2.1 ) satirizes the ccc. 

Proof. Suppose b ! • b 2 4: 0. Then (b t , k, K l ) and (b 2, k, K 2) are com.  

patible, since (b I • b 2 , k ,  K i u K 2 ) ex tends  both.  If there were an un- 
countable  ant ichain in 9, there  would  be one all o f  whose members  had 

a fixed k. But this would  give us an uncoun tab!e  set o f  pairwise disj,;~int 

e lements  of  cB. 

Lemma 2. ~}8~ is countably generated 

Proof. For  n < oo. let p,, = (1 ~. { n } ,  ¢ ). Let a,, = lOp, , ] .  It is enough 

to prove, for each p c 7L that  lop  ] belongs to the comple te  subalgcbra 

generated by the a , .  since the [Op ] generate  'Bp. 

We show that 

IO(h.k .A.) l=(  11 , , , ) ' l  ~.  11 ( 1  a , , ) ) .  
~,CI, l~b) t n E t U l U K )  

finite n ~ k 

First we prove that  [O@.k.K)] <~ I I 
r i c k  

a . i f  n c k, ( , : , ,  k ,  K )  is an  e x -  
I1 

tension o f ( 1  ~j, { n } .  q~)and so O(i,.k.A. ) C O(1 ~' { , , } . ~ )  = Op,, and 
hence  lO(h.k.~.. )] ~ a,,. 

We next show that  [O(/,.k. h, )] <_ ~,  I I ( 1 -a , ,  ). ( 'all the 
t { l~) t nC :UIUK)  

finite n ~ k 

r ight  hand side o f  this i t :equal i ty  c. It is e n o u d l  to show that  

{ p e J'" l 0 z, I • I O<i,. k. ~ )1 = 0 or [ Oi, 1 < c }  is dense in '~, by the deft- 

n i t i on  ot'q~:~. Let (b I , k l ,  A" l )  e :~. I f ( b  t ,  k I ,  K l )  and (b, k,  K )  are in- 

compat ib le ,  the IO(b~,k~ ,h , ) ]  " IOq, .k .K) ]  = 0. Otherwise let ( b  2 , k 2 , K 2) 

be an extens ion of  both.  ( b  2 , k 2 , K 2 ) ~  ( b  2 , J~2, K2 U { f (b )} )  so we 

only need to show that  [ 0(t ,z,k 2. h z to { lO,)}) ] < c. Let t = f ( b  ) - k 2- Let 

tt E t U ( u K )  a n d  n ~ k.  We m u s t  prove t h a t  lO(l,2,k2.K2 U{.t(b)}}] "at, = 

= O, that  is, that  (b 2, k~, K 2 o {)"(b)}) and ( t  ~, { n } ,  ~) art' incompa-  

tible. Suppose (b 3, k 3, K 3) ex tends  both  of  them. l f n  E~ t, then 

n ¢ k 3 - k 2 and n E . f (h )  which cont radic ts  ( b . , / " 2 .  K2 u { f ( b ) } )  

< (b 3, k3, K3). Otherwise  n c= (U K ) -  k, which contradic ts  (b, k, K) '<  

(b 3 , k 3 , K3). 
Finally we show that  [Oq,.t,.~; )1 ~ ( 1 ] a,, ) "c. To do this, we prove 

nEE k 



§ 2. f'ropositions ~quivalent to A 15 7 

t ha t ,  fo r  each  t C co such  t h a t , f  (b)  - t is f in i te .  

{ p e  9 :  lOj, l < IOo.k .h .> l  or  

I l • ( f l  a,, ) -  ( [-I ( 1 - a , ,  ))  = 0 } 
t~E/~ I : E t  U ( U K  ) 

n ~ k  

is dense .  Let  p c ~.  I f p  and  (b, k, K) are c o m p a t i b l e ,  t he re  is a p '  _>7_ p 

w i th  [ Op,] < } Oo.~ .  h' )] • A s s u m e  t h e y  are i n c o m p a t i b l e .  Let  p = 

( b  I , k 1 , Kl) .  
Case 1. b 1 . b = 0 ~ .  T h e n  ( U K  1 ) ca J ( b )  is f ini te  by a l m o s t  d i s jo in t -  

ness.  Let  n c t - ( U K  1) and  n ~ k. (b  I , k I o { n } ,  K 1) e x t e n d s p  and  

( l ~ . { n } . O )  so [O(~ ,~ .k ju{ ,} .~ -~ ) ]  " ( 1 - - a , ) =  O. S i n c e n ~ t a n d  

,: ~ k,  we are d o n e .  

Case 2. b I • b # 0 , .  S ince  <b~ • b, k 1 w k, K l u K) is n o t  an  e x t e n -  

s ion o f  b o t h  p and  (b,  k. K),  e i t he r  t he r e  is an n e k I - k such  t h a t  

n e U K or  t he re  is an n e k -  k I such  t h a t  n e U K 1. In the  first  case,  

[ O p l  < a,, for  an ,: ~ ( U K }  -- k. In the  s e c o n d  case [Op 1 .a,, = 0 fo r  

an n e k. 

L e m m a  3. ~ can be embedded  in ~:~ as a complete  subalgebra. 

Proof .  Let  h : 93 -* ~3~ be d e f i n e d  by h(0 .~  ) = 0 and  h(b) = [Oq,,¢,~)]  

o t h e r w i s e .  T h e  p r o o f  t h a t  h is a c o m p l c t e  m o n o m o r p h i s m  is r o u t i n e .  

so we o m i t  it. 

2.4. The proposit ion A ~ .  Recal l  t h a t  a o- ideal  I in a B o o l e a n  o-a lgebra  

cB is S ~ -saturated if  every  u n c o u n t a b l e  c o l l e c t i o n  o f  d i s jo in t  e l e m e n t s  

o f  q3 m e e t s  I (in o t h e r  words ,  if:~3/l sat isf ies  the  ccc) .  By A* ~R w e  m e a n  

tile f o l l o w i n g  asse r t ion .  

I f ]  iS all ~ 1 -salltratet] o- ideal  in the Bore! s l tbse l s  o f  the real line oR 

with c~ ~ 1, then ~ is not  the union oJ" N members  o f / .  

Exanq~le. Let 1 be the  set  o f  Bore l  sets  o f  L e b e s g u e  m e a s u r e  zero .  T h e n  

A ~  says t h a t  c~ is n o t  t he  u n i o n  o f  b~ se ts  o f  rneasure  zero .  

it  is o f t e n  c o n v e n i e n t  to  c o n s i d e r  a tr ivial  va r i an t  o f  A ~ .  Give 

{ O, 1 } = 2 the  d i sc re t e  t o p o l o g y  a n d  2 '~ the  p r o d u c t  t o p o l o g y .  Le t  ct~ 0 
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be the Borel subsets o f  2 ~° . Then A~ is equivalent  to the assertion: 

I l l  is' an ~ l-saturated o-ideal in c~ o with 2 ~° ~ 1. then 2 ~ is not  the 
union o f  ~ element:; o f  L 

Theorem. A~ is eqt~ivalent to A~ .  

Proof. We show A~ equivalent  to A~ .  

Lemma I. A~ ~ Ai~. 

Proof. Let c5 be a collection o f  (type co) sequences of  Borel subsets of  

2 ¢~ . We say that a subset o f  2 ¢° is c5-Borel it" it belongs to the smallest 

family c-j of  subsets of  2 ¢° with the fol lowing three properties: 
I )  For e a c h n , { g : g ( n )  = I }  E 9. 
2) If A E  9 r, 2 ~ - - A ~ 9 .  

3) l f {A n :n  E o~ } is a sequence o f  sets in 9 r and {An}  ~ 6, then 
UnE, j  A,~ belongs to 9 r. Clearly each Borel set is eS-Borel for some 
countable c5. since the family of  sets with the latter proper ty  is a 
o-algebra. 

Now let I be an t~ 1 -saturated o-ideal in ~0 .  CBo/1 is a comple te  
Boolean algebra [ 5 ]. Let A o~ E I for c~ < ~. For each c~ < ~ let cic~ be a 
countable  set of  sequences such that Ae  is eSocBorel. Let 

6 = U 6c~ . 

i , By A N, ,et h" qflo/l ~ { O, 1 } be a homomorph i sm  such that,  for 

each sequence { C. } in c5, 

h ( ~ [ C . ] )  = ~, ( [C.  ] ) ,  
I I  n 

where [C',, ] is the image of  C,, in q~0/I. Let f ~ 2 ~ be def ined by 

f ( n )  = 1 , > h ( [ { g : g ( n )  = 1 } ] ) =  1 .  

We shall prove that,  for every d-Borel  set C, 
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f ~  C,---, h ( [ C ] ) =  1 .  

Since each A~ is cS-Borel and ~ / ,  we will be done. 

By induct ion,  r e  2 ~ - (7, , . f ¢  C~-~ h ( [ C ] )  4= 1 "- "- h( [2  ~° - C ] )  = 

= 1, a n d f G  U G ~ (-q i)(.fE Ci) ~ (3  i)(h([Cil  ) = 1 ) ~ h{~[C, . l  ) = 
i i 

= ] .  

t 
Lemma 2. A~ -* A~.  

Proof. Let93 be a comple te  Bc  ~lean algebra satisfying the ccc and let 

bia, i < co, o~ < ~ be e lements  of  93 with ~ bia = 1 for all a. We find a 
i 

• ~ with ~ h(bia) ] for eacil a < ~. Let homomorpl f i sm tt ~F, ~ { O, 1., = 
I '  

c'B' be the comple te  sub:flgebra of  93 generated by the bia. It is enough to 

find a honmmorphisn~ h • 93' --- { O, 1 } with the required propert ies,  
since such a homon~orphism can always be ex tended  to a h o m o m o r -  

phism of  93 into{ O, 1 }. 
We next  observe that  A~ implies that  S < 2 s0 .  Otherwise cR is the 

union of  S points,  i.e., o f  S men~bers of  the ideal of  sets of  Lebesgue 

measure zero. 
Since 93 satisfies the ccc, 93' is the o-subalgebra of  generated by the 

biot. It follows that  the cardinality of  93' is < S s0 < (2S0)  s0 = 2 s0 .  By 
the Theorem of 2.3 93' is a comple te  subalgebra of  a countably  gener- 
ated Boolean algebra satisfying the ccc, By [ 16, p. 108]every countab ly  
generated complete  Boolean algebra satisfying the ccc is i somorphic  to 
93o]1 for some o-ideal ; in 93o- It is thus clear that  with no loss of  gen- 

erality we may assume that  our original algebra c~ was of  the form 93o/1 
for I an S l-saturated o-ideal in 93o. 

For each i < co and ~ < S pick C m ~ 93o such that  [CioL], the image 

of  Cio ~ in93o/1, is bio ~. Make sure timt U Cia = 2 '~ for each o~ (this can be 
i 

done,  s i n c e ~  bio ~ = 1 ). Let 93* be ~.he Boolean subalgebra of93 0 gener- 

ated by the Cia. Let J = 93* n I. Since J has cardinality <_ S, by A~ let 

f ~  2 ̀ 0 - U,t. Define h 0 • 93* ~ { O, 1 } by ho(C) = 1 if and only i f . rE C. 

h 0 is a homomorph i sm.  Since ho(C) = 0 for C in93" n I, we can ex tend  

; • n L  ~ ; .  i •  ; i:•~ ¸ : • @ !  
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h 0 to a h o m o m o r p h i s m  h" ~B0 --> { O, 1 } which  induces  a h o m o m o r -  

phism h*:  ~o/1  --> { 0 ,  1 }. Since for each a < ~ U Cia = 2 ~' , there  is 
i 

for each a an i such that  ho(Cia) = 1. Thus  h*([bia] ) = 1 and 

~ h * ( [ b i a ]  ) = 1. 
i 

2.5. Questions related to A~.  We first note  that  we cannot  drop from 

A~ the restr ict ion that  I be ~ 1-saturated. This is related to the fact that 

we cannot  drop f rom A~ the restr ict ion that  9 ~ satisfy the cac. Let 

A a : a < t¢ 1 be disjoint n o n - e m p t y  Borel subsets o f  cR with  

U A a = ~ .  (The Lebesgue decompos i t ion  o f  C'R supplies such A a,.) 
a < ~ l  

Let I be the ideal of  Borel sets disjoint f rom all but coun tab ly  many  A a. 
I is a o-ideal. But each A~ ~ 1 and ~R = U A~. 

A more  interest ing ques t ion  concerns  the addit ivi ty of  ideals in the 

Borel sets. An ideal I in an algebra of  sets is S-addit ive if every union of  

fewer than ~ members  o f l  is a subset o f  a m e m b e r  o f / .  Can A* be 

s t rengthened to: I f / i s  an ~ 1"saturated o-ideal in~B 0, then 1 is ~+ 

addit ive (where ~+ is the least cardinal  greater t 'mn to)? The answer  is 

once again no, if t¢ > ~ 0- 

Theo rem 1. There is an ~ 1 -saturated o-ideal in "B 0 ( the Borel subsets o f  

2 ~ ) which is not  ~ 2-additive. 

Proof. Let A be an uncoun tab le  col lect ion of  infinite,  almost  disjoint 

subsets of  ~ .  Each e lement  (k, K) of  ~1 is associated with  an e lement  

C(k,K ) o f ~  o (see § 2.2). 
Let 1 be the o-ideal in 9~ 0 genera ted  by sets of  the form 

" ~  U C 
p E O t~ 

where O is a maximal  ant ichain in 7~ A . It is fairly easy to show that 

"93o/1 is i somorphic  to the comple te  Boolean algebra associated with 5~ A . 

I is then ~ l -sa turated.  

For  each a e A, let 
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B~ = { . t~  2 "  • a n {n . f ( n )  = 1 } is infinite} . 

Since { (k, K) " a e K } is dense in ~.4 • Ba ~ I. Let A * be any uncoun t -  

able subset o f  A. We show lhat  U B a is not  a subset o f  any m e m b e r  
aC,. l* 

o f l .  Since A* can have cardinal i ty S l ,  this proves that  I is not  S ,-  

additive. 

Lel .23 i, i < co be maximal  ant ichains  in ~..t • We must  show tha~ 

O b (), meets  U B a. Let 
i P G ~ i  a G A *  

D = {a c A • ( 3 i ) (  3 ( k ,  K ) ) ( ( k ,  K ) ~  :l) i & a  E K ) }  . 

D is countable ,  so let a ¢ ,,! * 

We define a sequence 

D. We show that  D U (), m e c t s  B a. 

Po < PI "< P2 < .-. 

of  e lements  of  ~.,1 • Suppose Pi = (/~i" Ki)  is def ined for i < n and sup- 

pose U K i C D. Since a is ahnost  disjoint f rom each member  of  D, 
I ' ~  tl 

l e t m ~ a  (k,, t o ( U K ,  l ) ) i f r  > O a n d m ~ a i t n  = o .  Let 

q ,  =(k , ,  l u { m } . K  1) i f  n > 0  and 

qn = ( { m } ' q S )  if n = 0 .  

Since '4), is a maximal  ant ichain in 5D4, let (k. K} E ~b,t be compat ib le  
with q,t. Let 

p,, = ( k , ,  I o {m} u k ,  K,, I u K ) .  

Note tha tK, ,  =K, ,  i u K g D .  L e t f ( n )  = 1 i f n ~ O k  i a n d , / ' ( t ~ ) = 0  
i 

otherwise.  Clearly a n U k i is infinite s o l e  B a. Since./" E f l  (),, ,  and 
i n 

(),,, c 0 ,  for s o m e p e f ) , , , . f ~ D  O Cp. 
i p~c/) i 
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Despite Theo rem 1, we shall see in § 4 that  the two most  importan' t  

l - sa tura ted  o-ideals in ~ 0  are, in the presence ol  A ~ ,  ~+-addi t ive.  

Let q~ be an algebra o f  subsets o f  a set X conta in ing  all points  (unit  

subsets). Call an ideal J in q~ non-tri,,,ial if X q~ J and every poin t  belongs 

to J .  A subset A o f  X is a nu l l  s e t  of  an ideal J i n ~  i fA is a subset o f  a 

member  of  J. 

Let t be a non-trivial ~ l -saturated o-ideal in c~ 0 . Does A imply that  
every A c_ 2 ̀ 0 of  cardinal i ty  < 2 s0  is a null set o f  I ? To answer  this 

quest ion,  we first prove the fol lowing theorem.  

Theore:m 2./ .f 'A t hen  the  y b l l o w i n g  t w o  asser t ions  are equivalent .  

1 ) There  is a non- t r iv ia l  ~ l - sa tura ted  o-ideal  I in ~)3 o such t ha t  n o t  

ever), se t  o f  card ina l i t y  < 2 so  is a nu l l  se t  oj' l. 

2) There  is an u n c o u n t a b h '  cardinal  K < 2 so  w i t h  a non- tr iv ia l  ~ 1" 

sa tura ted  K-addi t ive  ideal  in P(~ ), the  se t  o f a l l  subse t s  o f K .  

Proof. 2) ~ 1 ). (A  is not  used in this half  o f  the proof . )  Let S0 < K < 
< 2 ~0 and let A be a subset o f  2`0 o f  cardinal i ty  ~:. If there is a non- 

trivial ~ 1 -satucated o-ideal in P(K ) then there  is a non-trivial S l" 

saturated o-ideal J in P(A) .  Let 

I = { C ~  o ' C n A ~ J }  . 

I is a non-trivial S l -saturated o-ideal in ~ 0  since J is suclt an ideal in 

P(A ). Also A is not  a null set o f  I. 
If A, then 1 ) + 2). Suppose / is a non-trivial s l -saturated o-ideal in 

c:00. Let ~: be the least cardinal  such that  some A C 2`0 of  cardinal i ty  

is not  a null set of  I. Suppose ~ < 2 ~0 and let A g 2 "~ be a set o f  car- 

dinal i ty  K which is not  a null set o f  1. Let 

J = { C C A  " C i s a n u l ! s e t o f I } .  

We need the fol lowing lemma,  due to Silver, which also answers (assum- 

ing A + "~o - ~ 1 ) a q~mstion o f  Sierpinski [ 15 p. 90] 

Lemma ( S i l v e r ) . / f A  a n d  i f  C c_ A ,  where  A is a subse t  o f  2`0 o f  cardi- 

nal i ty  less than 2 ~0 , t hen  dtere  is a C* c_; 2`0 such  tha t  C* n A = C a n d  

C* is a G ~ . 
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Proof. By $,, l e t / '~  -,,.o _ 0 e s u c h t h a t { n  . f ( n ) =  1} ¢~s a i s i n f i n i t e i f a  

is a subset of~o wi thJ~ ~ C n  A and {n " f ( n )  = 1 } n s a is finite if 
fa ~ A - C  (s o an~Ja  were def ined in § 2.2.) Let 

C* = { fa  " Sa o { n " f ( l l )  = 1 } is infinite } . 

C* clearly has the required properties.  

We show that  J is a non-trivial ~ 1 -saturated o-ideal in P(A ). J is a 

non-trivial o-ideal, since 1 is. To see that  J is ~ 1"saturated, suppose C a, 

< ~ l ,  are disjoint subsets of  A. By the lemma, let C~ be Borel sets 

such that  C* n A = C~. Let D a = C*~ .... U (7~. The D~ are disjoint~ 

Shace 1 is ~ ~ -saturated, some D~ ~ I. Since the C~ are disjoint, 

C?6 = D t; N A E J.  
It is easily seen that  the least K * such that  J is not  (n *)*-additive is 

s u c h  

d e e d  

U 
0,'<~* 

U A a 
~ X  

that  P(~: *) bears a non-trivial n *-additive ~ 1 -saturated ideal. In- 
let Aa,  ~ < ~ * be disjoint subsets of  A such that  each 4u ~ J but  
,4a $ J. Let J*  be the col lect ion of  subsets X of  g * such that  

J. J*  is the desired ideal. 

We note  that  the existence of  all uncountab le  n < 2 ~0 such that  P(K ) 

bears a non-trivial K-~.,,iditive ~ l -saturated ideal is consis tent  wi th  
ZF + A if and only if the existence o f  a ( 0, l } -measurable cardinal is 

consistent  with ZF. If P(~ ) bears such all ideal J, then  ~ is { 0, 1 } - 
measurable in L[J ] .  (See [19] .) If ct/t is a countable  standard mode l  of  

ZF + "There  is a { O, 1 } -measurable cardinal"  + the generalized conti-  
nuum hypothesis ,  there is by Theorem 2 o f  § 1.2 a cac Cohen exten- 
sire; ~ of  C/g such that  c~ satisfies ZF + A and 2 ~0 > K in c~. By a theo- 

rem of  Prikry [ 1 2] ,  P(K ) bears a non-trivial ~ z -saturated K-additive 

ideal in ~ (namely,  the ideal generated by the sets o f  measure 0 in o/g). 



164 D.A.Martirt and R.M.Solovay. Internal Cohen extensions 

§ 3. The cardinal of the continuum and a hypothesis of Lusin 

3.1. Subsets o f  cardinals < 2~o.  Lusin [ 10] p r o p o u n d e d  a hypothes i s  

which  ,~e call L which  implies 2~o = 2 S l .  (This lat ter  equa t ion  is k n o w n  

as Lusin "s con t inuum hypothesL~'. ) In § 3.2 we shall see that  L is con- 

sistent with and independen t  o f  A 8 t .  We now show, using the proposi- 

t ion S ¢ l  o f  § 2.2. that  tile consequence  2~0 = 2~1 of  L does fol low 

from A 8 1" 

Theorem i . / , / ' A ~  the1,~ 2 ~ = 2~o.  

Proof. Let {sa " a < ~ } be a set o f  infinite pairwise almost  disjoint sub- 

sets o f ~ .  Let G • P ( ~ o ) -  P ( ~ )  be def ined by G(t) = {~ < ~ " t c~ st~ is 

inf in i te} .  By S ~ ,  G is surjective. 

Corollary I. l f  A and ~ < 2 ~o, then 2 ~ = 2 ~0. 

Corollary 2. i rA, then 2 ~o is regular. 

Proof. Otherwise  2 b~0 is cofinal with some b~ less than 2 ~o. By Konig 's  

Theorem,  ,. "~  is not  cofinal  with ~¢. Since _'~t¢ = ~.',~0, we have a contra- 

dict ion.  

T heo rem  2 . / f  A ~,  there is a t~xed subset Y o f  ~ such that every subset 

o f  ~ is constructible f r o m  )" together witlt some subset o f  ~ o. 

Proof. Let G be tile funct ion  def ined in the p roof  of  Theorem 1. G(t) is 

construct ible  f rom t and the sequence { s a }. Let Y be a subset o f  

coding this sequence.  

Corollary 3. It" A t~ l " every subset o f  ~ l is constructible . /)'ran a subset 

qt'o~ ij 'and only i f  ~ 1 = ~ L [t] ./'or some t ~ oa. 

Proof. Let Y c_ ~ l code a sequence s~ • a < t¢ 1 of  dist inct  subsets of  o~. 

If Y is const ruct ib le  f rom t c ,.o, then  each so~ is construct ible  f rom t 

and so, since by Godel  [3] the cont inuuna hypothes is  holds in L [ t ] ,  
bl I = l,~Llrl 

1 
On the o the r  hand,  if ~ 1 = ~ ~1 t I then a sequence of  ~ l a lmost  dis- 
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jo in t  subsets of  co is construct ible  from t. so G(s)  is construct ible  f rom 
s and t, where G is the func t ion  defined in the proof  of  Theorem 1. 

3.2. The  h y p o t h e s i s  k. For  in format ion  about  projective sets, see [14 ] .  
k is the assertion that  every subset of  P ( w )  of cardinal i ty ~ l is Illl (CA).  
(L = I on page 129 of  [ 10] . )  

Theorem.  l f  At~ l ' t hen  L ( / a m t  o n l y  i f  there  is a t c co w i th  ~ t l t l  = l'~ 1 

Proof. Assume t c co and ~ l  = ~I  L[t] • By a theorem essential ly due to  
Godel  (see [ 20] ), it follows that  there is a I1 ] set A of  cardinal i ty  ~ I. 

Le tA  = { a c ~ ' ~ < t ~ l } a n d l e t C  = { c . ~ ' c ~ < ~ l } b e a n y s e t o f c a r d i -  
nali ty ~ I .  l f x  C co and n ~ co, let Sx. n = {.Ix (m) • m is a power  o f  the 
n + 1st prime n u mb e r} .  By SS let t o c__ co be such that  

l ) (3 Sco ° 2n+ 1 is  f i n i t e  < > ,t E a ~  , 

t o n s a a , 2 , z + 2  is finite ~-~ n ~ c  a .  

For each x _c. co, let Yx = { n " s x , 2 . + l  n t o is f ini te} and z x = 

{ n • Sx, 2n+ 2 n t o } is finite. Then 

= x  x ~ C ~ Y x  ~ A  and Zy x 

Since A is II ~ so is C. 
On the o ther  hand,  if there is no t c2_- co such that  NLltl  = N 1, then it 

is a result of  Solovay [ 20] and Mansfield that  tto set of  cardinal i ty  
< 2 ~o i s I l l  (or even I~ ~). Since AS~ --" bl 1 ' (  2 N0, no set o f  cardi- 
nal i ty  S l is I l l  

1" 

Lusin proposed in [ 1 O] ano ther  hypothes i s  which he considered,  
unl ike i., to be only  probable:  Every union  of  ~ 1 Borel sets is a pro* 
jective set of  the second class. Let L' be the assertion: Every union of  

I Borel sets is 12 ~. We note tha t  L' fol lows easily from [. (in ZF). It 
suffices to show from t. that  the  un ion  of  ~ 1 ~ ~ sets is I2 ~. For  this, 
it is enough to prove tha t  any set o f  the form ' 

• • : :  :!~: L Z 
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{ t ' ( Z l a ) ( a ~ A  and ( a , t ) ~ C ) } ,  

where A has cardinali ty ~ 1 and C C P ( ~ )  x P(w)  is ~ ~. But this is true 
i fA i s l l  ~ 1" 

C o r o l l a r y . / l A b ; t ,  then L' (/'and only i f  there is a t _c ~ such that 
b~LItl = ~ 1 "  

Still another  proposi t ion (11 of  [1 O] ) is men t ioned  and described as 
"cer ta in"  by Lusin. Solovay will show elsewhere that lI implies that  t~ 1 

is a { O, 1 } -measurable cardina!, so that  I1 contradicts  the axiom of  

choice. 

§ 4. Measure and category 

4.1. Lebesgue measure. Let t~ < 2 ~0. If a set o f  reals has cardinality S 
and is Lebesgue measurable,  it must  have measure zero. But is every 
such set measurable? If so, is every union of  S sets of  measure zero 
measurable? Does every such union have measure zero'? If the conti- 
nuum hypothesis  holds, the answer to all these quest ions is yes. We 
shall see momentar i ly  that the weaker  proposi t ion A also yields affir- 
mative answers. On the o ther  hand, there are models  of  ZF in which 

2S° > S l and 
(a) There is a set o f  cardinality S l (namely,  the set of  construct ible 

reals) which is not  Lebesgue measurable;  
(b) Every set of  cardinality < 2 s0 has measure zero, but  9~ is the 

union of S 1 sets o f  measure zero. 
Briefly, let c'tg be a countable  transitive standard model  of  ZF + V = L. 

Let ~ be a regular cardinal > 2 s0  in c't/Z. In eeL, give { 0, 1 } the discrete 

topology and give { 0 } and { 1 } each measure ~ ; give 2 ~ the product  
topology and the product  measure. Let q5 be the Borel subsets of  2 a 

and let I a and 1 b be the ideals of  ,neasure zero Borel sets and o f  meager 

Borel sets respectively, (A set is meager if it is disjoint from an inter- 
section of  countably  many dense open sets.) Let 7~ a be the non-zero 
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e lements  of  the Boolean algebra ~B/I a and let S~j, be the non-zero ele- 

ments  o f  qO/l b , In each case define 

b 1 <._ b 2"--~ b 2 - b I = O. 

Let (;a and Gl, beq~i-generic filters on ~,7 and 7'/, respectively. Then 

~1~'[ G a ] and ~ !  (;h ] are models  of  (a) and (b) respectively.  The proofs 

of  these facts, which  are - like the analogous ones cited in §4 .2  due 

to Solovay, are omi t ted .  

Let 1 be the o-ideal of  Borel su;,sets o f  c~ of  measure 0. Suppose 

{ :1 a : a < ~ < 2 ~'10 } are sets of  measure 0 and suppose that  O A a 

has positive inner  meast-re. Let A g U el~ be a Borel set o f  positive 

kebesgue measure.  Let i '  be t i e  set o f  Borel sets ( ' s u c h  that  ('c~ A ¢ 1. 

{'7-d--AIu U Ac~ = cA?, so CR is the union o f  s < 2 ~0 members  of  the 

S ~-saturated o-ideal 1', which  cont radic ts  A. We have then shown that ,  

( l  A ,  t h e n  the  u n i o n  o f <  2 s0 se t s  o.f  m e a s u r e  0 has  i n n e r  m e a s u r e  O. 

This is all we get f rom a direct appl icat ion of  A to the ideal of  sets of  

measure O. We now prove a much  stronger theorem by applying A to a 

different  ideal. 

Theorem 1./.t' A ~  t h e n  the  u n i o n  o]" ~ se ts  o f  L e b e s g u e  m e a s u r e  0 has  

Lebe~'gue meas to ' e  O. 

Proof. Let/1 a, c~ < N be sets of  measure 0. Let e be a real n u m b e r  > 0. 

We show that U ,,tc~ has ou te r  measure < e. Let ~ be the set of  open 

subsets o f  ~ of  measure < e. Partially order  ~ by inclusion. We deno te  

Lebesgue measure by u during the rest of  this section.  For c~ < N, let 

X~ = {p c ~: A a c p }. We show that  each X a is dense. Let p ~ ~. 

Since u(/tc~) = 0, there is an open q with t a (q )<  e - ~ ( p )  and q D Ac~. 

Then p u q 6 X~. Let ~Y = {X a • a < ~ }. Since 7 consists o f  dense 

open subsets of  ~, if we can show that ~sat is f ies  the cac,  then by A 

there is an 7-gener ic  filter G on ~. Evident ly  U G is an open set of  reals 

and U A a C  UG.  I f / J ( U G ) > e t h e n t h e r e a r e A i , A  2 . . . . .  A ,  ~ G  
a < N  
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I! 

wi th  ta ( U A i) > e. By r e p e a t e d  a p p l i c a t i o n  o f  c o n d i t i o n  b)  on  fir-generic 
1 

I1 

f i l ters  (§ 1 ), O A i E G, a c o n t r a d i c t i o n .  
I 

S u p p o s e  ~-D is an u n c o u n t a b l e  a n t i c h a i n  in 3~. T h e r e  is a 6 > 0 such  

t ha t  6 = { p 6 el) : ta(p) < e - 6 } is u n c o u n t a b l e .  SinceC~ is separab le ,  

let  { b n : n < co } be a base fo r  t'he o p e n  sets  o f  ~ .  F o r  each  p ~ 6 let 

qt~ be a f in i te  u n i o n  o f  basic  o p e n  sutzsets o f p  such  tha t  u ( P  - ql, ) -< 

<_ 6/2, {qp : p ~ 6 } is c o u n t a b l e ,  s ince the re  are o n l y  c o u n t a b l y  m a n y  

f in i te  u n i o n s  o f  basic o p e n  sets. I f  p l ,  I~2 ~ 6, and  P l  :/: P2 ,  t h e n  Pl  and  

P2 are i n c o m p a t i b l e ,  so u ( p i  to p 2 ) >  e. But  ~(ql, z u q¢,~ )>  U(Pl w ~,,) 

-- ( 6 /2 )  - ( 6 /2 )  _>_ e - 8. S ince  la(qt,~ ) < la(Pl ) < e -- 6, ql'l ~- ql':" 
T h e r e f o r e  the  c o u n t a b i l i t y  o f  { qt, ; p ~ ,,5 } impl ies  the  c o u n t a b i l i t y  o f  
C. 

Coro l l a ry  i . / f A ,  ( i )  tile ideal o f  sets o f  Lebesgue measure 0 is 2 ~o -  

additive; (2) the o-algebra o f  Lebesgue measurable sets is ~-comple te  
for  every  ~ < 2 N0 : and (3) Lebesgue measure is 2~O-additi~,e. 

Proof .  A s s u m e  A.  (1)  is ev iden t .  Let A s ,  s < S < 2 t<0, bc Lesbesgue  

meas u rab l e .  L e t C C  U Ao~ be a Borel  set  such  t ha t  U Ac~ - C h a s  

i nne r  me; '~ure 0. F o r  each  s ,  ta(A s - C~ = 0, so , (  U (Ac~ - C))  = 0. 

S ince  U A s -  C = U (A s 6"), 13 A s (" has m e a s u r e  0:  hence  

U Ac~ is m e a s u r a b l e ,  and  (2)  i3 p roved .  If  Ac~, s < ~ < 2 N0 are pair- 
s<b~  

wise d i s jo in t  m e a s u r a b l e  sets,  t h e n  o n l y  c o u n t a b l y  m a n y  o f  t h e m ,  say 

A~i ,  i < co, can  have pos i t ive  measu re ,  t t e n c e  

/~( 13 A s ) = / a (  13 A s i ) + l a (  13 A s -  13 A s i )  = 
s < S  i<~o s< ,~  i<co 

= ~ ta (Asi )  = ~ la(Ac~), 

and  so we have (3). 
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Corollary 2 . / f  A ~ ,  every ~z ~ ( P C A ) s e t  is Lebesgue measm'able. 

Proof, Every X~ set is the union of S I Borel sets. 

it is a theorem of G~Sdel that the measurability of X;~ sets cannot be 
proved in ZF alone. On the other hand, that every X; ~ set is measurable 
also follows from the existence of a measurable ca:dinal (Solovay). Vee 
now indicate why two axioms are better than one. The proof of the 
following theorem of Martin, which uses the methods of [ 1 1], w~ll 

appear elsewhere. 

Theorem 2. Ira measurabl,? cardinal exists, e)'erv ~,~ set is the to,,ioit o f  

, Borel sets. 

Corollary 3. l f  A ~ a H d  there exists a measurable ;'ardinal. every X ~ set 
is L ebesgue measurable. 

We do not know whether the hypothesis "'There exists a measurable 
cardinal" can be dlopped from Corollary 3. We conjecture that it can- 
not. We do not know whether A~z can be weakened to A ~ .  We con- 
jecture that it cannot. We d(, know that the measurability of X; ~ ~ets 
does not follow from the existence of a measurable cardinal. This fact 
is due to Si lver[17] .  

We close § 4.1 with two rema~rks: (1) Theorem 1 also shows that 
A--~ 2 s°  is regular (Corollary 1 of the Theorem o)" § 3.1 ); 2) Theorem 
I readily generalizes to the completion of any regular Borel measure in 
a separable space. 

4.2. The Baire categories. Recall that a subset of c~ is meager (first cate- 

gory) if its compleme'at contains an iratersection of countably many 
dense open sets. A set is comeager if its complement is meager. The 
Baire Categoo" Theorem says that the intersectio,,~ of ~: 0 dense open 
sets is dense. If we apply A directly to the o-ideal of meager Borel sets 
we see that A implies a Strong Baire Categoo, Theorem: The intersec- 

tion o f <  2 ~° dense open sets is dense. To see this, let A~, ot < ~ < 
< 2 ~0  , be dense open and let A be open. Let I be the o-ideal of Borel 

sets whose intersection with A is meager. I is ~ 1"saturated [ 5].  Since 
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e a c h C ~ - A a E I ,  A i m p l i e s t h a t ( q ~ - A ) u  U ( C ~ - A a ) ~ . H e n c e  

there i s a r e a l i n A n  I"1 A~. 
a < S  

A set of reals A has the Baire property if there is an open set U and a 
meager set N such that, for all x ~ N, 

x E A ' > x E U  

(i.e., A equals U outside the meager set N). Every l~orel set has the 

Baire property [ 5]. Questions about the Baire property corresponding 
to those asked about measurability at the beginning of § 4.1 can be 

raised, and one gets the corresponding answers. There are models of ZF 
which satisfy 2 ~o > ~ l ,  and 

(a') There is a set of  cardinality ~ l which does not have the Baire 
property. 

(b') Every set of cardinality < 2 so is meager, butge is the union of ~ l 
meager sets. 

Recall the ctg[ G a ] and Ct/L [Gb] mentioned in § 4.1. These are models 
of  (b') and (a') respectively. 

The following theorem was discovered independently by each of the 
authors. One of our proofs used an unpublished construction of R. Cot- 
ton. 

Theorem. I f  A~  tlwn the union oJ ~ meager sets is meager. 

Proof. Every union of ~ meager sets is meager if and only if the inter- 
section of any ~ comeager sets is comeager. A comeager set contains 

the intersection of countably many dense open sets. What we have to 
prove then is that the intersection of ~ dense open sets is comeager. 

Let Do~, oz < ~ be dense open sets. Let B i, i "< co, be a base for the 
open sets of 0e. If W is a dense open set, let 

s(W) = { i ; Bi q; w } .  

For j ~ co, let 

t(j) = { i E . :  :B  iC-Bj}  . 
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Let A = { s(De~) • ~ < S } and let B = { t (D " ] e oo }. Let n , , i <  w and 

s(Doq ) . . . . .  s(D%} E A. Since the intersect ion of  finitely many  dense 

open  sets is dense open,  there is a B i C B / n  D ~  n ... n i )~ , , .  

{ k " B k C B i}  is then an infini te  subset of  t ( j)  - (s(Doq ) u ... w s ( D ~ ,  )). 

By SS and the Theorem of  § 2.2, let t be a set of  int~:gers such that  

t n t ( j )  is infinite for all j ~ co and t q s is finite for s ~--_ A. Let 

W n = U B i. For  each j ~ o0, since t n t ( j )  is infinite,  there is a 
n ' ~ i E t  

B, C t¢, n Bj. Hence W n is a dense open  set. For each u < S.  t n s(D~) 

is finite, and so there  is an n such that  ll/n C De,. Hence 

c n Do.  n l e , ,  _ 
n E w oe< 

Since n t~1,, is ,~omeager, so is O Do~. 

Corollary 1. I f  A ,  then t,re ideal o f  meager  sets is 2SO-addit ive and  ttre 

o-algebra o f  sets with thc Baire p roper t y  is t~,-complete f'~r every 

Corollary 2i I r A  ~ ~, every ~ ~ set  o f  reals/',as tlre Baire proper ty .  

Corollary 3 t f  A ~ ,  and  there exists  a measurable  cardinal, then every 

~_ i set ol'r~:als has the Baire proper ty .  
3 ' 

Tile theorem,  like 't neorem 1 of  4.1, shows that  A -~ 2 to° is regular. 

The Theorem can readily be generalized to separable topological  spaces. 

The cons t ruc t ion  needed to prove the Theorem anteda tes  the almost- 

disjoint set t echnique ;  however ,  it was no t iced  only recm~tly that  it is 

essentially an example  of  that  technique.  

4 .3.77re measure  problem,  in 1 21 ] it is proved that  if ZF plus " there  

exists an inaccessible cardinal"  is consis tent ,  then ZF minus  the axiom 

of  choice,  together  wi th  the axiom of  dependen t  choice and "'every set 

o f  reals is Lebesgue measurable  and has the Baire p rope r ty" ,  is con- 

sistent. The use of  an inaccessible cardinal is a minor  annoyance ,  since 
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it appears unl ikely that  the inaccessible is really necessary. The meth-  
ods o f  § 4.1 and § 4.2 suggest a me thod  which might rcmove this 
annoyance.  

Let B ! , B 2 . . . .  be the open interv~Is of  ~ with rational endpoints ,  if  
A is a Borel subset of  ~ ,  a code fo rA is a real t which codes tin some 
standard way) a m e t h o d  for generat ing A from the B i by taking count-  
able unions, complements ,  etc. A real t is random (Cohen generic) over 
a class c-fg satisfying the axioms o f  set theory if t belongs to no Borel 
set o f  measure zero (of  the first category)  some code for which belongs 
toC~. 

It is a result of  Solovay that if cvery set is Lcbesgue measurable ~has 
the Baire property) ,  then 

(*) l f ~  satisfies the axiom of  choice, the set of  reals random (Cohen 
generic) over c-~ has a measure zero (meager) complement .  

The me thod  of  1 21 ] is to find a model  satisfying 

(**)  Any well-ordered sequence of  reals is countable.  

(*) fel lows easily from (**).  However (**)  plus dependen t  choice im- 
plies that ~ I is inaccessible in L. That is why 1 211 requires an inacccs- 
sibie cardinal. 

The results of  §4.1 and §4.2 can bc restated as 

I r A  and ~t" c~l~has fewer  than 2 ~0 reals, then the set o f  reals rattdum 
(('ohen generic) over C~has a measttre zero (meager) compleme~zt 
(In the s ta temcnt  of  A we here require that card (5~) < N.) 

Hence a model  will satisfy (*) if it satisfies A and 

( * * * ) ' ~  cannot  be well-ordered. 

Suppose that  cE is a model  of  ZF + A + 2 ~0 > ~ 1 • Let ~ '  be the col- 
lection of  members  o f ~  which are hereditarily ordinal definable from a 
real. c~, satisfies A and ~ can be chosen so that 9Z' satisfies (***)  and 
hence (*). Perhaps then an c?~ can be found such that ~)~' satisfies "'all 

sets are Lebesgue measurable and have the Baire proper ty" .  If this can 
be done,  however,  it appears that the set of  forcing condi t ions  used to 
get 9Z must  be chosen with care. The proof  in [ 2 ! ! depends  not  only 
on having a model  of  (*) but also on the fact that this model  is a Cohen 
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extension via a 9 ~ whose associated Boolean algebra is quite homoge-  

neous. It is not  clear how to get our 9~ via a ',;~ with tile analogous homo-  
geneity property~ 

Another  apprc-ach is not  to get a model  of  A but simply to get a 

model  of  (*) using the special construct ions  of  § 4.1 and § 4.2. This can 
be done wi thout  making 2 ~o > S t in 9{. 

§ 5. A and the continuum hypothesis 

5.1. The relative strength of A and CH. Many of tile most  interest ing 
applications of  A occur only when 2 No > N ~. Examples are Souslin's 

hypothesis  and the measurabili ty of  I;~ sets. Nevertheless, A is a conse- 
quence  of  CIt and many of  the consequences  of  CH follow also from A. 
We have seen several examples  o f  this: Corollaries 1 and 2 of  § 3.1, 
Corollary 1 of  § 4.1 and ( ,  rollary l of  § 4.2, For more  examples,  we 
turn to Sierpinski [ 15 ]. Of the consequences  C 1 - C82 of  CH demon-  
strated there, we know tim: at least 48 follow from A ; at least 23 are 

refuted by A + 2 s0 > S t ; ;:t least three (C52. C~ 8 , and C81 ) are con- 
sistent with and independent  of  A + 2 ~0 > ~ l  ( p rmided  that  the 
existence of  an inaccessib;e cardinal is consistent  with ZF - for the 
consistency of  C7s with ,t, + 2So > b~ 1 and for the independence  of Csl 

from A - and that the existence of  a measurable cardinal is consistent  

with ZF - l\)r the independ_'nce ofC52 from A). There are only 8 of  
the C,~ whose relation to A + 2 so > S 1 we do pot know about  at pres- 

ent  (C s, (~13, ('47. C48. C61. C62, C70, and Cs0). 
Actually (as Kunen [8] r 'ma rks ] )  A is mv.ch closer to CH with re- 

spect to the C,, of  [ 1 5] than our count  makes it appear. Sierpinski 
of ten states his consequences  of  CH in terms of  the denumerab le /  

indenumerable  d i cho tomy.  Obviously, however,  the effect  of  A is to say 
that "¢' all infinite cardinals < 2' o have many of  the propert ies  o f  S 0, so 
that the impor tant  d i cho tomy  in terms of  A is the less than 2 No/2 N° 
d icho tomy.  All the 23 consequences  C,, o f  CH which we know to con- 
tradict A +  2 s °  > S l , and all o f  the 8 (',~ about  whose relation 
to A + 2 s °  > ~1 we are ignorant,  become - if we make the obvious 
replacements  of  " d e n u m e r a b l e "  by " o f  catdlnali ty < 2 b~o" and "inde- 
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numerab le"  by " o f  cardinal i ty  2 b~o'' - consequences  o f  A. A few be- 

come ira fact theorems  o f  ZF,  but  most  do not .  

For instance (this example  is also no ted  by Kunen 18] ), ('1 is the 

assertion that there  is a set o f  reals o f  cardi~lality 2 ~o which  has at most  

~0 members  in c o m m o n  with each meager  set. If 2 ~o > ~1 and A, C 2 

clearly contradic ts  the Theorem of  "4 ~ § ._, which implies that  every set 
of  cardinali ty < 2 ~o is meager. On the o ther  hand,  the very same Theo- 

rem of  § 4.2 allows us to repeat  essentially Sierpinski 's p roof  (which is 

due to Lusin) of  CH -, C 1 to show that  A -," C~, where  ('~ is the propo- 
sitiora: There is a set o f  reals o f  cardinal i ty  2 so which has < 2 ~o mem-  

bers ira c o m m o n  with each meager  set. (Let  Ae~, c~ < 2 ~o be all meager  

Borel sets. By A and the Theorem of  4.2 U :1~ is meager lbr each 

,~< 2 so .  L e t t u c e - -  U A ~ , b e d i s t i n c t  from e a c h t a . , a < / 3 .  Then  

{ t~ • ~ < 2 ~¢o } is the required set. ) C~', toge ther  with the theorems  of  

§ 4 is enough to deduce  many of  the proposi t ions  which  Sicrpinski de- 

duces from C 1 • 

For o ther  consequences  of  CH, which are also consequences  of  A, 

l!;ee 18]. 

5.2. Real valued measurable cardinals. ~ is a real-valued measurable 

cardinal if K is an uncoun tab le  cardinal  and there is a ~:-additive tea!- 

valued measure v def ined on all subsets of  ~ such that  e({ a, } ) = 0 Ik~r 

each e < n and u(K ) = I (i.e,, if there  is a non-trivial K-additive idea] ,7 in 

P(n ) such that  P(K )/I is a measure algebra ). ~ is a { 0, 1 }-measurable 

cardinal if there is a v as above and in a d d i t i o n ,  takes only the values 0 

and 1. 

The assumption that  2 ~o is a real-valued measurable cardinal is, like 

A, an alternative to CH. it is k n o w n  that  2 ~o is very large if it is 

real-valued measurable (see j19 ] ) .  Also many of  the consequences  of  

CIt are decided .... one way or o ther  - by the assumpt ion that  2 ~o is 

real-valued measurable.  

If I is an ideal in P(~ ) such that P(~ )/I is a measure algebra, 1 is o f  

course ~ 1 -saturated.  We remarked  in § 2.5 that,  if the existence o f  a 

{ 0, 1 }-measurable cardinal  is consistent ,  then so is A plus the exis tence 

of  an uncountab le  K < 2 ~o such that P(~ ) bears a non-trivial ~ l" 
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saturated K-additive ideal. By the same argument,  A is (on the same 

hypothesis)  consistent  with the assumption that P(2 ~o) bears a non- 

trivial S l -saturated 2 ~o-addit ive ideal. Now Solovay [ 19] lias shown 
that it is consistent  that 2 s~ is real-valued measurable if and only if it 
i.~ consistent that  a { 0, 1 }-measurable cardinal exists. Can one combine  
these consistency results to show that /A is consistent  with the assump- 
t ion that 2 ~o is real-valued measurable? 

The answer is no. In fact, A implies that there is no real valued lneas- 
urable ca J ina l  < 2 t% . It is hard to decide to whom this fact is due, 
since almost any of  the classical proofs that CII implies that  there is no 
real-valued measurable cardinal % 2 ~o work just as well ur~der the weak- 
er hypothesis  A. Kunen [81 gives three proofs and ment ions  still a 

fourth. Several recipes for lJroofs can be found in Sierpinsk~ I 151, 
though Sicrpinski's ofticial proof  that  CH ~ no K < 2 ~o is real e'~lued 
measurable unfor tuna te ly  uses the fact that CH ~ P(2 so)  does ~ot bear 
an S l -saturated o-ideal. Most of  the proofs use only the cons, ' : ;uence of  
A which we have in § 4.2 called the Stro~,g Baire Category Tl!corem. 
O~.e of  Kunen 's  arguments  uses only the even weaker assuml :ion that  
every set of  reals of  cardinality < 2 so is Lebesgue measurable. We give 

a proof  based on Theorem 6 of  Sierpinski [ 151 • 

Theorem.  77w Strong/la#'e ('ategorv 77teorem (SBCT) impli3s (and so 

A implies] that there is no real valued measurable cardi~lal 5~ 2 ~° . 

Proof. ;kssumc SBCT and that ~ < 2 ~o is real-valued measur~lzle. Let 

C ~ '~ have cardinality 2 ~o. it is easily seen (using the real-~alued 
measurabili ty of  ~ ) that there is a countably additive real-yarned meas- 
ure z, defined on ;dl subset~: o f  ~? with ,3({ t } ) = 0 for each real t anu 
z~((') = z,'(~~ ) = 1 .  

We first use SBCT to show that every A c c~ of  cardinality < 2 so 
has v-measure 0. Let r,, i e ~o, be an enumera t ion  of  all rational num- 

bers. Let Bi/, for / E w, bc the set o f  reals t sv, ch that  r i < t and 
v(lri, tl ) < c/2/+l . ~[ri, t] is the closed interval f rom r i to t.) For each 
i and/ ,  v(Bi/) ~ e/2/÷ l ; and, for each j, IJ Bi/= c-/~, since otherwise  there 

i 

is a real t such that ~,([r, t] ) > e/2/+l for e,,ch r < t, and so ~,( {t } ) > 
> e/2/ .  Let ( ) , / ~  w, be a base for the open sets ofg~. For each / ,  let 
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A o j ,  A l j  . . . .  be disjoint  n o n e m p t y  open  subsets of  ( ) .  For  each real s let 

D~ = U { Ai j  " s ¢  Bij } . 
q 

Clearly each D s is open.  Let j ~ co. Let i be such that  s ~ Bij. Then  

Ai  j C Cj and A 0 c_ D s" Hence D s is dense. 
Let A c ~ have cardinal i ty  < 2 so .  By SBCT, there is a real 

t e O D .  
S 

s ~ A 

For  each j there is a tmique i( j)  such that  t e Ai~/k ~. 

B = U Bg~j),j. 
J 

Consider  

v(B)  _<_ ~ e/2 j÷ 1 = e. If S ~ A ,  t ~ D s, so there is a j with s e Bi(j),j. 
J 

Hence B _~ A. Since e was arbi trary,  we have shown that  u(A) = 0. 

We next note  that  the p roof  of  C~ of  5.1 uses only SBCT. We may 

then suppose that  our  set C h a s <  2~o members  in c o m m o n  with every 

meager set. Let e > 0. For  each rational ri, let B i be the inter ior  o f  Bii. 

v(t,J Bi) < ~_~ e 
i i 2i+ 1 

Now U B i is dense open,  so C -- U B i has cardinali ty < 2 N° and so has 
i i 

/,-measure 0. But then v(C) % e, ~f we let e < I we have a cont radic t ion .  

5.3. Is A true.'  As we have indicated,  many  if not  most  o f  the interest- 

ing consequences  o f  CH follow also from A. If CH is thought  by some 

to be false - and if it is thought  to be false because of  its consequences  

- then may not  the same consequences  count  against A? 

G6del [4] offers a" indicat ions  of  the falsity of  CH six consequences  

of  CH wh!ch he say'~ are implausible.  Three  of  these follow from A: 
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(a) There is a set o f  reals o f  cardinality 2 so which i,, meager on every 
I: ~:rtec set. 

(b~ There is a set of  reals o f  cardinality 2 so which is carried into a set 
of  Lebesgue measure 0 by every continuous, 1 -1 mapping o f  cg into c~. 

~c) There is a set A c '~ ct" cavdinality 2 so which h a s  l n ' o p e r t ) '  C" t'o:, 

any positive reals a o ,  a I . . . . .  there ,are inter~'als A,,, ~z < co, o f  length a,, 
OO 

s~lch that U i'l,~ 23 A. 

The proofs given in [ 15! of  (a), (b) and (c) f rom C 1 work just  as 

well as proofs f ,om C~ plus tile assumption that  every set of  cardinali ty 
< 2 so is meager ;rod has the property ¢ .  We might note  that  (b) and 

t o )  fol}ow from SBCT alone. The construct ion of  the p roof  o f  the Theo- 
rem of  § 5.2 goes through with no changes if we assume tl:at v is 
Lebesgue measure (since the only sets we assumed to be measurable 
were Borel sets). Suppose we replace e / 2  i+l by reals a i in that construc- 
tion. Then tile first part of  the proof  shows that  any set o f  cardinality 
< -~S0 can be covered by the union  of  intewals  B ..... of  length a. In 

. . . .  I ( 1 t , ~ '  , ~ I "  

other  words, it shows that  every set of  cardinality < 2 ~;0 has proper ty  
C. The second part of  the proof  shows --- with similar modif ica t ions  -- 

that any set (" satisfying ('~ has proper ty  C. It is easily seen that  C is 
preserved under  continuoLis mappings o f g e  into 9e, so our  set C also 
satisfies the condi t ions  of  (b). 

Another  " implaus ib le"  consequence  of  CH men t ioned  by G6de[ is 
C I . Now A + 2 N° > ~ I implies that  C 1 is false, but  perhaps C] ~ is just 
as " implausible"  as C 1 . Of the o ther  two consequences  of  CH cited by 
G~del. one is equi-,alent to CH and the o ther  is inconsistent  with A + 
2~° :> ~ I. (This last fact is due to D.Booth.)  

If one agrees with G6del  that  (ak (b), and (c) are implausible, then 
one must consider  A an unlikely proposit ion.  The authors,  however,  
have virtually no intui t ions at all about  (a), (b), and (c) - or about  the 
other  consequences  of  A discusse¢!i in this paper. We know of  no very 
convincing evidence ei ther  of  the ':ruth of  A or of  its falsity, and we see 

no immedia te  hope for f inding such evidence. 
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