JOURNAL OF DIFFERENTIAL EQUATIONS 25, 65-89 (1977)

Generic Bifurcation in Manifolds with Boundary*

MARCO ANTONIO TEIXEIRA

Universidade Estadual de Campinas, IMECC, C.E.P.-13100, Cx.P.-1170, Campinas-S.P., Brazil

Received September 22, 1975; revised March 9, 1976

INTRODUCTION

Let M be a C^{∞} two-dimensional orientable compact manifold, with boundary ∂M . χ^r will denote the space of the C^r vector fields on M, with the C^r topology (it is a C^{∞} Banach manifold).

We are concerned in this study with certain types of vector fields which are not structurally stable in χ^r ; namely, in generic vector fields in $\chi_1^r = \chi^r - \Sigma_0$, where Σ_0 is the set of structurally stable vector fields of χ^r .

The main result is the following.

THEOREM A. For r > 3, there exists a C^{r-1} submanifold Σ_1 , having codimension one which is immersed in χ^r , and satisfies:

(a) Σ_1 is dense in χ_1^r (both with the relative topology);

(b) for any X in Σ_1 , there exists a neighborhood B_1 in the intrinsic topology of Σ_1 , such that any Y in B_1 is topologically equivalent to X["].

The part of Σ_1 imbedded in χ^r coincides with elements of χ^r which are first-order structurally stable.

In Section 0 we give definitions, recall standard facts, and establish our notation.

Section 1 is devoted to the construction of Σ_1 and the proof of Theorem A. It is divided into three parts. In the first part we adapt the quasi-generic fields studied by Sotomayor [22] to manifolds with a boundary. In part 2 we study fields which are nongeneric due to the contact between the field and ∂M . Finally in part 3 we prove Theorem A. At the end of certain paragraphs we include some remarks which prepare the way for the study of first-order structurally stable fields.

* This research was partially supported by FINEP, Financiadora de Estudos e Projetos, Brazil.

MARCO ANTONIO TEIXEIRA

0. Preliminaries

We will consider dynamical systems generated by tangent vector fields (differential equations) on manifolds with a boundary. For simplicity M will be imbedded on a two-dimensional C^{∞} manifold N, without a boundary.

Two vector fields \hat{X}_1 , \hat{X}_2 on N are said to be germ equivalent on M if they coincide on a neighborhood of M. A vector field X on M is, by definition, a class of germ equivalent (on M) tangent vector fields defined on N. It is said to be of class C^r if it has a representative \hat{X} of class C^r on N.

Let $\tilde{\Phi}$ be the flow of a representative \tilde{X} of X; $\tilde{\Phi}$ is defined on a set $D(\tilde{X}) = \{(x, t) \in N \times R, t \in \tilde{I}(x)\}$, where $\tilde{I}(x)$ is an open interval with extremes $\tilde{\alpha}(x)$, $\tilde{\alpha}(x)$. The flow Φ of X is defined by $\Phi(x, t) = \tilde{\Phi}(x, t)$ for $x \in M$ and $t \in I(x)$, where I(x) is the maximal interval containing t = 0 ($\Phi(x, 0) = x$) for which $\tilde{\Phi}(x, t) \in M$. We denote by $\alpha(x)$ (resp. $\omega(x)$) the lower (resp. upper) extreme of this interval; it may be that one, both, or none of the extremes of I(x) are infinite, finite, or even zero. Clearly Φ and its domain D(X) do not depend on the representative \tilde{X} of X. Furthermore, any two representatives of X define flows on N which coincide on a neighborhood of D(X). We call $\tilde{\Phi}$ their germ on D(X); $\Phi = \tilde{\Phi}|_{D(X)}$.

The orbit $\gamma(x)$ of X, passing through $x \in M$ is by definition the image of I(x) by the integral curve map $\Phi_{\chi}(x,): t \to \Phi_{\chi}(x, t)$. Orbits are oriented by the orientation induced by this map from the positive orientation of I(x); an orbit of X, with no distinguished parametrization, is a trajectory of X.

Germ orbits and germ trajectories are defined similarly.

0.1. DEFINITION. Two vector fields X, Y on M are said to be conjugate if there exists a homeomorphism $h: M \to M$ mapping trajectories of X onto trajectories of Y.

We denote by $\tilde{\chi}^r = \chi^r(N)$ the equivalent space of χ^r .

0.2. DEFINITION. $X \in \chi^r$ is structurally stable in χ^r , if it has a neighborhood B in χ^r such that X is conjugate to every $Y \in B$.

It has been shown in [5, 6] that Σ_0 is open dense in χ^r (r > 1) and coincides with the collection of vector fields X such that:

 Ω_1 : X has all its singular points generic (or hyperbolic);

 Ω_2 : X has all its periodic trajectories generic (or hyperbolic);

 Ω_3 : X does not have saddle connections;

 Ω_4 : X does not have nontrivial recurrent trajectories;

 B_1 : X has all its singular points in the interior of M;

 B_2 : X has all its periodic trajectories in the interior of M;

- B_3 : any trajectory of X has at most one point of tangency with ∂M ;
- B_4 : any saddle separatrix of X is transverse to ∂M ;
- B_5 : if a trajectory of X is tangent to ∂M in p, then the contact between the two curves in p is of the 2nd order;

 B_6 : there exist only a finite number of points of tangency of X and ∂M .

It is proved in [11] that the conditions B_1 , B_2 , B_3 , B_4 , B_5 imply B_6 .

For the sake of reference, the concepts of generic singular point, generic periodic trajectory, saddle connection, quasi-generic singular point, quasi-generic periodic trajectory, quasi-generic saddle connection are contained in [10].

We denote by $\Delta(X, p)$ and $\sigma(X, p)$ the determinant and the trace of DX_p (derivative of X at p), respectively.

The definitions of *imbedded* and *immersed* Banach submanifolds of class C^s and codimension K of a Banach manifold of class C^{∞} are given in [10, p. 7].

0.3. Observations and notations. (a) We will fix on N a Riemannian metric of differentiability class large enough for our purposes.

(b) The positive limit set of an orbit $\gamma(p)$ of X is the set of points $y \in M$ which are limit points of sequence of the form $\Phi(p, t_n)$ with t_n tending to $\omega(p)$; we denote this set by $L^1(p)$ and the negative limit set $L^-(p)$ has a similar definition. These definitions do not depend on $q \in \gamma(p)$. If

$$\omega(p) < +\infty$$
 (resp. $\alpha(p) > -\infty$),

then $L^{+}(p)$ (resp. $L^{-}(p)$) is the single point $\Phi(p, \omega(p))$ (resp. $\Phi(p, \alpha(p))$) and belongs to ∂M .

(c) The following notations will be used in the text.

- (i) M F is the set of points $q \in M$, such that $q \notin F$;
- (ii) int(M) is the interior (topologic) of M;

(iii) if $u, v \in T(M)$ (T(M) is the tangent space of M), then $u \wedge v$ will denote the exterior product of u and v;

(iv) (F, p) is to be regarded as a flow box around p of some vector field.

For $Q \in \chi^r$ we have the definitions:

0.4. We say that Q satisfies the I condition (resp. M condition) if it is an immersed (resp. imbedded) Banach submanifold of class C^{r-1} and codimension one of χ^r .

MARCO ANTONIO TEIXEIRA

0.5. We say that Q satisfies the E condition if every $X \in Q$ has a neighborhood B in Q such that every $Y \in B$ is conjugate to X.

0.6. We say that Q satisfies the A condition if Q is an open set of χ^r .

I. The Submanifold Σ_1

Part 1

We will consider in this part the quasi-generic elements of a vector field which belong to the interior of M; basically the demonstrations of 1.1, 1.2, 1.4, 2.1, and 3.1 are due to Sotomayor [10].

1

1.1. PROPOSITION. Denote by Q_2 the set of vector fields $X \in \chi^r$, r > 2, such that:

(1) X has one quasi-generic trajectory as unique nongeneric periodic trajectory;

(2) X satisfies Ω_2 , Ω_3 , Ω_4 , B_2 , B_3 , B_4 , B_5 , and B_6 . Then Ω_2 satisfies the I and E conditions.

See the proof of 1.1 in [10, p. 9]. It is convenient to give the following.

1.2. LEMMA. Call $Q_2(n)$ the set of $X \oplus Q_2$ such that its quasi-generic periodic trajectory has length less than n. Then $Q_2(n)$ satisfies the A, M, and E conditions.

1.3. Remark. Call \tilde{Q}_2 the subset of Q_2 of vector fields X, which satisfy:

(a) There exists no $q \in M - \gamma_x$, such that $L^+(q) = L^-(q) = \gamma_x$.

(b) There exist no saddle points s_i of X in M, i = 1, 2, such that $L^-(W^u(s_1)) = L(W^{s_i}(s_2)) - \gamma_x$, where W^{s_i} (resp. W^u) is the stable (resp. unstable) submanifold associated to the critical point.

(c) Associated to X there exist no $(s, q) \in M \times M$, where s is a saddle point of X, $q \in \partial M$ and X(q) is tangent to ∂M at this point, such that $L^{-}(q) := L^{-}(W^{s}(s)) = \gamma_{X}$.

(d) There exists no $p_i \in \partial M$, i = 1, 2, such that $X(p_i)$ is tangent to ∂M at p_i , with $L^-(p_1) = L^-(p_2) = \gamma_X$ (the case $p_1 = p_2$ is not excluded).

1.4. PROPOSITION. \tilde{Q}_2 satisfies the M, E, and A conditions.

1.5. Remarks. (i) If γ_X is the α and ω limit of saddle separatrices, then

it can be shown that there is Y, arbitrarily close to X, which has saddle connections having arbitrarily large length.

(ii) If there exists a trajectory η of X, which has γ_X as the α and ω limits, then it can be shown that there is Y, arbitrarily close to X, which has a nongeneric periodic trajectory meeting F and arbitrarily large length.

(iii) If there exists a trajectory η_1 of X which has γ_X as the α limit and a saddle separatrix η_2 of X having γ_X as the ω limit then it can be shown there is Y, arbitrarily close to X, having a saddle separatrix tangent to ∂M ; furthermore, its length is arbitrarily large.

(iv) If there exist two distinct trajectories of X, both having tangency points of ∂M and having its α and ω limits coinciding with a quasi-generic periodic trajectory, then there exists Y close to X, such that it has a trajectory which is tangent to ∂M at two distinct points; furthermore its length is arbitrarily large.

2

2.1. PROPOSITION. Denote by Q_1 the set of vector fields $X \in \chi^r$, R > 1, such that:

- (1) X has a quasi-generic critical point as its unique nongeneric critical point;
- (2) X satisfies Ω_2 , Ω_3 , Ω_4 , B_1 , B_2 , B_3 , B_4 , B_5 , and B_6 .

Then Q_1 satisfies the M, E, and A conditions.

3

3.1. PROPOSITION. Denote by Q_3 the set of vector fields $X \in \chi^r$, r > 1, such that:

- (1) X has one quasi-generic saddle connection as its unique saddle connection;
- (2) X satisfies Ω_1 , Ω_2 , Ω_4 , B_1 , B_2 , B_3 , B_4 , B_5 , and B_6 .

Then Q_3 satisfies the I and E conditions.

3.2. Remark. Note that in 1.1, 2.1, and 3.1 the quasi-generic periodic trajectory, the quasi-generic critical point, and the quasi-generic saddle connection, respectively, are "away from" ∂M ; then the B_i conditions, i = 1, 2, ..., 6 hold for small perturbation of $X \in Q_1 \cup Q_2 \cup Q_3$.

3.3. Remark. If the saddle connection of $X \in Q_3$ is an autoconnection at a saddle p, then a closed curve C is constructed in [10] which is arbitrarily close to $\gamma_X \cup \{P\}$ and such that any Y close to X is transverse to C. Denote by \tilde{Q}_3 the subset of Q_3 consisting of fields X which have the following properties: No trajectory of X which is tangent to ∂M meets C and no saddle separatrix of X meets C. Then \tilde{Q}_3 satisfies the M, E, and A conditions.

3.4. Remark. Call $Q_3(n)$ the set of $X \in Q_3$, such that the saddle connection has length less than *n*. Then \tilde{Q}_3 satisfies the *M*, *E*, and *A* conditions.

Part 2

In this section we are going to study the families of nonstable fields, whose instability arises from the contact of the trajectories with ∂M . We will be using frequently techniques and results of Peixoto [6, 7] and Sotomayor [10].

4

4.1. DEFINITION. $p \in \partial M$ is a generic critical element of $X \in \chi^r$ if it satisfies the conditions:

- (b_1) no periodic trajectory of X is tangent to ∂M at p;
- $(b_2) \quad X(p) \neq 0;$

 (b_3) if a trajectory γ of X is tangent to ∂M at p then γ is transversal to ∂M at any point $q \in \gamma$, $q \neq p$;

 (b_4) no saddle separatrix of X is tangent to ∂M at p;

 (b_5) if a trajectory γ of X is tangent to ∂M at p, then the contact between γ and ∂M at p is of 2nd order (we will say that the contact between X and ∂M at p is generic; see construction 4.2).

4.2. A construction. Let $p \in \partial M$, let $\gamma_X(p)$ be a trajectory of $X \in \chi^r$ passing through p, and let $\tilde{X} \in \tilde{\chi}^r$ be a representative of X. Let $u: (R, 0) \to (N, p)$ be a C^{∞} germ of an imbedding, transverse to ∂M at p. Also, let $s: (R, 0) \to (\partial M, p)$ be a C^{∞} germ of an imbedding. By the Implicit Function Theorem $\sigma = (s, u)$ is a C^{∞} germ of a diffeomorphism $\sigma: (R^2, 0) \to (N, p)$. Denote by π the second component of the inverse function $\sigma^{-1}: (N, p) \to (R^2, 0)$. Finally we consider the germ $\pi_{\tilde{X}}: (R, 0) \to (R, 0)$ defined by $\pi_{\tilde{X}}(t) = \pi(\Phi_{\tilde{Y}}(p, t))$. By continuity, $\pi(\Phi_{\tilde{Y}}(q, t))$ is defined in a neighborhood $\tilde{B} \times \tilde{F}_1$ of (\tilde{X}, p) in $\tilde{\chi}^r \times N$: For each $\tilde{Y} \in \tilde{B}$, consider the C^r germ $\pi_{\tilde{Y}}: (R, 0) \to (R, 0)$ defined by $\pi_{\tilde{Y}}(t) = \pi(\Phi_{\tilde{Y}}(q, t))$ for all $q \in \tilde{F}_1$. It is clear that γ_X is tangent to ∂M at pif and only if $\pi_{\chi'}(0) = 0$ for every representative \tilde{X} of X. Observe that $\pi_{\tilde{X}}: (R, 0) \to (R, 0)$ can be defined without difficulties for $t_0 \neq 0$.

4.2.1. DEFINITION. We say that $p \in \partial M$ satisfies the *G* condition with respect to *X*, or the contact between *X* and ∂M at *p* is generic, if $\pi_{\hat{X}}'(0) = 0$ and $\pi_{\hat{X}}''(0) \neq 0$.

4.2.2. DEFINITION. We say that $p \in \partial M$ satisfies the QG condition with respect to X or the contact between X and ∂M at p is quasi-generic, if $\pi_{X}'(0) = \pi_{X}''(0) = 0$, and $\pi_{X}''(0) \neq 0$.

Obviously, these definitions depend neither on the transversal germ u, nor on the particular representative \tilde{X} of X.

4.3. Remarks. (a) Condition b_5 is equivalent to the G condition.

(b) For future reference consider the coordinates $x = (x_1, x_2)$ (defined in a neighborhood \tilde{F}_1 of p in N) where

 $x_1(p) = x_2(p) = 0,$ $x_1 \circ s = id,$ $x_2 \circ u = id,$ $x_1 \circ u = x_2 \circ s = 0.$

It is convenient to observe $\pi_{\hat{X}}(t) = x_2(\Phi_{\hat{X}}(p, t)).$

(c) Denote by U and S arbitrarily small closed neighborhoods of p in u(R) and s(R), respectively. We will assume the positive orientation of U given by the outward sense from M.

4.4. LEMMA. Assume the notations of 4.2. If the contact between $X \in \chi^r$ and ∂M at $p \in \partial M(X(p) \neq 0)$ is generic, then there exist a neighborhood B_0 of X in χ^r and a C^r function $\alpha: B_0 \rightarrow R$ such that $Y(s(\alpha(Y)))$ is tangent to ∂M at $s(\alpha(Y))$; furthermore, the contact between Y and ∂M at $s(\alpha(Y))$ is generic.

Proof. Consider the germ $G: (\chi^r \times R, (X, 0)) \to (R, 0)$ of class C^r , defined by $G(Y, \alpha) = Y(s(\alpha)) \wedge s'(\alpha)$.

Let $x = (x_1, x_2)$ be a system of coordinates around p; assume $x_1(p) = x_2(p) = 0$, $\partial/\partial x_1 = X(p)$, and that $s = (s_1, s_2)$ are the components of s in this system with s(0) = p.

By a direct calculation we obtain $(\partial G/\partial \alpha)(X, 0) = s_2''(0) \neq 0$; this follows since the contact between X and ∂M at p is generic. By the Implicit Function Theorem, there are a neighborhood B_0 of X in χ^r and a unique C^r function $\alpha: B_0 \to R$ such that $\alpha(X) = 0$ and $G(Y, \alpha) = 0$ if and only if $\alpha = \alpha(Y)$. Furthermore, by continuity B_0 can be determined such that the contact between Y and ∂M at $s(\alpha(Y))$ is generic. This finishes the proof.

4.5. DEFINITION. $p \in \partial M$ is a quasi-generic critical element of $X \in \chi^r$ of the type:

 β_1 if X(p) = 0 and

- (a) p is hyperbolic;
- (b) the eigenspaces of DX_p are transverse to ∂M at p;
- (c) the eigenvalues of DX_{p} are not equals;
- (d) if p is a node (see [2]) then the trajectory of X that is tangent

to the eigenspace of DX_p associated to the eigenvalue of larger absolute value, is not tangent to ∂M and is not a saddle separatrix;

 β_2 if there exists a generic periodic trajectory of X tangent to ∂M only at p, where the G condition is true;

 β_3 if the trajectory of X passing through p is neither periodic nor saddle separatrix and it has only one point of tangency q with ∂M besides p; furthermore, $p \neq q$ and both satisfy the G condition with respect to the field;

 β_4 if there exists a saddle separatrix of X, tangent to ∂M only at p, satisfying the G condition with respect to the field;

 β_5 if there exists a trajectory of X that is neither saddle separatrix nor periodic, is tangent to ∂M at p, and satisfies the QG condition with respect to the field.

4.6. Remark. If p is a hyperbolic critical point of X and the eigenvalues of DX_p are complex conjugate, then we are allowing it to satisfy condition (b) of the definition of the quasi-generic critical element of β_1 .

5

5.1. PROPOSITION. Denote by H_2 the set of vector fields $X \in \chi^r$, r > 2, such that:

(1) there exists one point $p \in \partial M$ that is a quasi-generic critical element of X of the type β_2 , a unique nongeneric critical element of X;

(2) X satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 . Then H_2 satisfies the M and E conditions.

The proof of 5.1 depends on several lemmas.

5.2. LEMMA. Let $\tilde{X} \in \tilde{\chi}^r$ have a generic periodic trajectory $\gamma_{\tilde{X}}$ of period τ_0 . Given ϵ and T_0 , positive integers, there exist neighborhoods \tilde{B} of \tilde{X} in $\tilde{\chi}^r$ and \tilde{V} of $\gamma_{\tilde{X}}$ in \tilde{N} , such that:

(a) to each field $\tilde{Y} \in \tilde{B}$ corresponds a unique generic periodic trajectory $\gamma_{\tilde{Y}}$ contained in \tilde{V} with period smaller than $|\tau_0 - \epsilon|$;

(b) every trajectory of \tilde{X} meeting $\partial \tilde{V}$ is transverse to it and spends a time greater than T_0 in N. Furthermore, $\partial \tilde{V}$ is the union of two closed curves.

Sec the proof of 5.2 in [4, part VIII].

5.3. LEMMA. If $X \in H_2$ then there exists a neighborhood B of X in χ^r , such that:

- (a) every $Y \in B$ satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_1 , B_5 , B_6 ;
- (b) if $Y \in B \cap H_2$ then Y satisfies B_3 and B_4 .

The proof of 5.3 follows immediately from [5].

5.4. LEMMA. Let $X \in \chi^r$, r > 2, have one point $p \in \partial M$ as a quasi-generic critical element of the type β_2 . Then there exist neighborhoods B_2 of X in χ^r , F of p in M, and a C^{r-1} function f: $B_2 \rightarrow R$, satisfying:

(a) f(Y) = 0 if and only if Y has one quasi-generic periodic trajectory that is tangent to ∂M only at the point $p_Y \in F$ and satisfies the G condition; if $f(Y) \neq 0$ then Y does not have a periodic trajectory meeting F and tangent to ∂M ;

(b) $df_x \neq 0$ (see Fig. 4).

Proof. Denote by γ_X the generic periodic trajectory of X tangent to ∂M at p, by τ_0 its period, and by $\Phi_X(p, t)$ its corresponding flow. Let $\tilde{X} \in \tilde{\chi}^r$ be a representative of X; obviously $\tau_X = \tau_{\tilde{X}}(p)$.

Take the neighborhoods \tilde{F}_0 of p in N, $\tilde{F}_0 \subset V$ and \tilde{B}_0 of \tilde{X} in $\tilde{\chi}^r$ (\tilde{V} and \tilde{B}_0 were given in 5.2); assume \tilde{F}_0 and \tilde{B}_0 are contained in \tilde{F}_1 and \tilde{B}_1 (given in 4.2), respectively; furthermore, if $\tilde{Y} \in \tilde{B}_0$ then its generic periodic trajectory contained in \tilde{V}_1 meets \cup transversely at a unique point $u_{\tilde{Y}}$; it is clear that the correspondence $\tilde{Y} \to u_{\tilde{Y}}$ is C^r .

Let $G: (\tilde{B}_0 \times J_0, (\tilde{X}, 0)) \to (R, 0)$ be a germ (C^r) defined by $\tilde{G}(\tilde{Y}, \tau) = \pi(\psi_{\tilde{Y}}(u_{\tilde{Y}}, \tau))$, where J_0 is an interval containing the origin and π was given in 4.2.

We have $\tilde{G}(\tilde{X}, 0) = (\partial \tilde{G}/\partial \tau)(\tilde{X}, 0) = 0$ and $(\partial^2 \tilde{G}/\partial \tau^2)(\tilde{X}, 0) \neq 0$; this follows from the generic property of the contact between X and ∂M at p. By the Implicit Function Theorem, there are neighborhoods $\tilde{B}_2 \subset \tilde{B}_0$ of \tilde{X} , J of $\tau = 0$, and a unique C^{r-1} function $\tau: (\tilde{B}_2, \tilde{X}) \to (J, 0)$, such that $\tau(\tilde{Y}) = 0$, $(\partial \tilde{G}/\partial \tau)(\tilde{Y}, \tau) = 0$ if and only if $\tau = \tau(\tilde{Y})$; assume by continuity $(\partial^2 \tilde{G}/\partial \tau^2)(\tilde{Y}, \tau(\tilde{Y})) < 0$ for $\tilde{Y} \in \tilde{B}_2$. Hence $\tau(\tilde{Y})$ is the maximum (nondegenerate critical point) of the mapping $\tau \to \tilde{G}(\tilde{Y}, \tau)$ for each $\tilde{Y} \in \tilde{B}_2$.

The function $\tilde{f}: (\tilde{B}_2, \tilde{X}) \to (R, 0)$ defined by $\tilde{f}(\tilde{Y}) = \tilde{G}(\tilde{Y}, \tau(\tilde{Y}))$ is C^{r-1} and $\tilde{Y} \in \tilde{f}^{-1}(0)$ if and only if \tilde{Y} is tangent to ∂M at $P_{\tilde{Y}} = \Phi_{\tilde{Y}}(u_{\tilde{Y}}, \tau(\tilde{Y}))$.

Now, we will prove $df_X \neq 0$.

First, consider the system of coordinates $y = (y_1, y_2)$ in a neighborhood $\tilde{F} \subset \tilde{F}_0$ of p, with $y_1(p) = y_2(p) = 0$, $(\hat{c}/\hat{c}y_1) = \tilde{X}$, $y_2 \in u = id$, and $y_1 \circ u = 0$. If δ is a positive small number, let $\psi_1: \gamma_{\tilde{X}} \cap \tilde{F} \to R$ and $\psi_2: U \cap \tilde{F} \to R$ be C^{μ} bump functions, having supports in $|y_1| < \delta$ and $|y_2| < \delta$, respectively.

We easily obtain $d\tilde{f}_{\tilde{X}}(Y) := (\partial \tilde{G}/\partial \tilde{Y})(\tilde{X}, 0).$

Given the field $\tilde{Y} = \Psi_1 \Psi_2(\hat{c}/\hat{c}y_2)$ in $\tilde{\chi}^r$, consider the C^r curve $h: (\neg \eta, \eta) \rightarrow \tilde{\chi}^r$ defined by $h(\lambda) = \tilde{Y}_{\lambda} = \tilde{X} + \lambda \tilde{Y}$. Clearly $\tilde{Y}_0 = \tilde{X}$ and $\tau(\tilde{Y}_{\lambda}) = 0$. By a known formula for the derivative of solutions of differential equations depending on parameters [3, p. 94] we have $(\partial \tilde{G}/\partial \tilde{Y})(\tilde{X}, 0) = (dG/d\lambda)(\tilde{X} - \lambda \tilde{Y})_{\lambda=0} \neq 0$. Therefore $d\tilde{f}_{\tilde{X}} \neq 0$. Now, consider the neighborhood of X in χ^r , $B_2 = \{Y \in \chi^r\}$ there exists $\tilde{Y} \in \tilde{B}$ with $\tilde{Y}_{|M} = Y\}$ and the C^{r-1} function $f: B_2 \to R$ defined by $f(Y) = \tilde{f}(\tilde{Y})$ where $\tilde{Y} \in \tilde{B}_2$ is a continuous extension (at X) of $Y \in B_2$ [12, p. 67].

As $d\tilde{f}_{\tilde{X}} \neq 0$ we get $df_{\tilde{X}} \neq 0$ and the proof of part (a) of the lemma follows from the definition of the function \tilde{f} .

Proof of 5.1. Part (a) follows from 5.2, 5.3, and 5.4. It remains only to demonstrate part (b).

By an elementary technique, determine a neighborhood V of τ_X in M, satisfying:

- (i) no periodic trajectory (except τ_X) and critical point of X meet V;
- (ii) $M_2 = M int(V)$ is a C^x submanifold of M;
- (iii) X_{iM_n} is generic;

(iv) there is a unique point c_0 of tangency between ∂V and X, besides p (the trajectory passing through c_0 is contained in V and is different from τ_X);

(v) $\partial V = C_1 \cup C_2 \cup S_1$ (see Fig. 1), where $C_1 \cap \partial M = \Phi$, $C_2 \cup \partial M = \{v_1\} \cup \{v_2\}$, and $S_1 \subset S \subset \partial M$ (see 4.2); furthermore $c_0 \in C_2$.

FIG. 1. The neighborhood V of τ_X .

V can be obtained such that any saddle separatrix and any trajectory (of X) that is tangent to ∂M meet C_2 ; if S is the arc of ∂M given in 4.2, we consider s[-1, 1] = S, s(0) = p, $S^- = s[1, 0)$, $S^- = s(0, 1]$, $S_1^- = S_1 \cap S^-$, and $S_1^- = S_1 \cap S^+$.

Let B_2 be the neighborhood of X in χ^r satisfying. If $Y \in B_2 \cap H_2$, then the generic periodic trajectory of Y, $\tau_v(\bar{p})$, which is tangent to ∂M at $\bar{p} \in S_1$, is contained in V and any trajectory of Y meeting V is transverse to C_1 , C_2 , and S, except at \bar{p} and \tilde{c}_0 , where $\tilde{c}_0 \in C_2$ is the corresponding point to c_0 , associated to Y (\tilde{c}_0 is close to c_0).

As X_{M_2} is generic, there is a neighborhood B of X in χ^r , $B \subseteq B_2$, such that if $Y \in B \cap H_2$ then there exists a homeomorphism $h_2: M_2 \to M_2$ (close to the identity) mapping trajectories of X_{M_2} on to trajectories of Y_{M_2} .

Necessarily $h_2(c_0) = \tilde{c}_0$ and we require $h_2(v_i) = v_i$, i = 1, 2; this is possible because each v_i is contained in a canonical region of $Y \in B$ (see definition of canonical region in [10, p. 8]).

Now we will construct a homeomorphism $h: M \to M$, which is a conjugacy of X with $Y \in B \cap H_2$; this homeomorphism will be an extension of h_2 . Consider the following subregions of V:

- (a) V_1 , bounded by C_1 and τ_X ;
- (b) V_2 , bounded by τ_X and C_2 (see Fig. 2).

FIG. 2. The subregions V_1 and V_2 of V.

We begin by constructing h in V_1 . Let Q be an arc in V_1 through to $q \in C_1$ and transverse to X; as h_2 is close to the identity, we determine an arc \tilde{Q} (close to Q), joining \tilde{p} to $h_2(q) = \bar{q}$, transverse to Y; necessarily $h(p) = \bar{p}$ and we define h for all the points of V_1 similarly to [22, p. 12] (note $h(V_1) = V_1$).

Let us construct h in V_2 . We will determine three subregions (canonicals with respect to $X_{|V_2}$) in V_2 which will facilitate the above mentioned construction.

By the continuity of X, the trajectory of X passing through c_0 meets S_1^+ at c_2 and S_1^- at c_1 . For $Y \in B \cap H_2$, there exist the correspondents \tilde{c}_1 , \tilde{c}_2 , and $\tilde{\gamma}_0$. We require $h(c_i) = \tilde{c}_i$, i = 1, 2. Thus γ_0 (resp. $\tilde{\gamma}_0$) determine in V_2 the following subregions (see Fig. 3):

(1) T_1 (resp. \widetilde{T}_1): bounded by $(\widehat{v_1c_1})_{\partial M}$, $(\widehat{v_1c_0})_{\partial M_2}$, and $(\widehat{c_0c_1})_{\nu_0}$ (resp. $(\widehat{v_1c_1})_{\partial M}$, $(\widehat{v_1c_0})_{\partial M_2}$, and $(\widehat{c_0c_1})_{\nu_0}$ (resp.

(2) T_2 (resp. \tilde{T}_2): bounded by $(\widehat{c_2 v_2})_{\partial M}$, $(\widehat{c_0 v_2})_{\partial M}$, and $(\widehat{c_2 c_0})_{\partial M_2}$ (resp. $(\widetilde{\tilde{c_2 v_2}})_{\partial M}$, $(\widetilde{\tilde{c_0 v_2}})_{\partial M_2}$, and $(\widetilde{\tilde{c_2 c_0}})_{\tilde{\tilde{c_0}}}$);

(3) (resp. \tilde{T}_3): bounded by $(\tilde{c_1c_2})_{\partial M}$, $\gamma_X(p)$, and $(\tilde{c_2c_1})_{\nu_0}$ (resp. $(\tilde{\tilde{c_1}\tilde{c_2}})_{\partial M}$, $\gamma_Y(\hat{p})$, and $(\tilde{\tilde{c_2c_1}})_{\nu_0}$).

FIG. 3. The subregions T_i of V_2 .

The critical region of $X_{|_{V_2}}$ is formed by the union of $\gamma_X(p)$, γ_0 , v_1 , and v_2 ; we have similarly the critical region of $Y_{|_{V_2}}$.

By the same techniques used at [10, p. 12] and [6, p. 153] we finally construct the homeomorphism h. By ratio of arc length we construct: $h[(c_0c_1)_{r_0}] = (c_0c_1)_{\tilde{s}_0}$; $h[(c_2c_0)_{r_0}] = (c_2c_0)_{\tilde{s}_0}$; $h[(v_1c_1)] = (v_1c_1)_{\partial M}$; and $h[(c_2v_2)_{\partial M}] = (c_2v_2)_{\partial M}$. We send T_i to its correspondent \tilde{T}_i ; this is done in the following way:

On T_3 : Let U be an arc in T_3 , joining $q \in \gamma_X(p)$ to c_0 , transverse to Xand let K be an arc C^1 , close to U joining $h_2(q) = q$ to \tilde{c}_0 . By ratio of arc length, we construct $h[(c_1, p)_{\partial M}] = (\tilde{c}_1, \tilde{p})_{\partial M}$. If $q_2 \in (pc_2)_{\partial M}$ and $\gamma_X(q_2)$ meets $(c_1 p)_{\partial M}$ at q_1 , we define $h(q_2) = \tilde{q}_2$, where \tilde{q}_2 is the intersection of $\gamma_Y(h(q_1))$ and $(p\tilde{c}_2)_{\partial M}$. On U, h acts in the following manner: If $u \in U$, $\gamma_X(u)$ meets $u_1 \in (c_1 p)_{\partial M}$ and $u_2 \in (pc_2)_{\partial M}$; assume $h(u) = \tilde{u}$, where \tilde{u} is the intersection of $\gamma_Y(h(u_1))$ and \overline{U} . Now by a straightforward computation we construct h on T_3 . Finally, by similar techniques, h is easily defined on T_1 and T_2 .

Since every point of V_2 belongs to one trajectory, h is a one-to-one mapping of V_2 on to itself; it is continuous by the standard theorem on the continuous dependence of trajectories on initial data.

This ends the proof of 5.1.

5.5. Remark. Given any positive number L > 0, the neighborhood B of X may be taken, such that the length of every trajectory of $Y \in B$ is greater than L, in V_1 ; this is obvious by 5.2; furthermore any trajectory of $Y \in B$ meeting C_2 is transverse to ∂M in V.

5.6. Remark. Denote by $H_2(n)$ the set of $X \in H_2$ such that its periodic trajectory tangent to ∂M has length $L_0 < n$; by continuity arguments we verify that 5.1 holds for $H_2(n)$.

It is not difficult to prove the following.

5.7. PROPOSITION. Denote by H_2 the subset of H_2 , of fields X which satisfy the following additional axiom: (3) The periodic trajectory of X tangent to ∂M is neither the α nor the ω limit, of either the saddle separatrices or of the trajectory tangent to ∂M . Then:

- (a) \tilde{H}_2 satisfies the M, E, and A conditions;
- (b) $\tilde{H}_{2}' = H_{2} \tilde{H}_{2}$ is open in H_{2} ;

(c) if $X \in \tilde{H}_2'$ then there exists a neighborhood B of X in χ^r , such that, if $Y \in B \cap H_2$ we have (i) $Y \in \Sigma_0$, (ii) Y has one unique saddle separatrix tangent to ∂M , or (iii) Y has one unique trajectory tangent to ∂M at two and only two points. Moreover, in (ii) and (iii) the contact between Y and ∂M is generic.

FIG. 4. The unfolding of $X \in H_2$.

6.1. PROPOSITION. Denote by H_3 the set of fields $X \in \chi^r$, r > 2, such that:

(1) There is one point $p \in \partial M$, that is a quasi-generic critical element of X of type β_{is} , as the unique nongeneric critical element of X;

(2) X satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 .

Then H_3 satisfies the M, E, and A conditions.

The proof of 6.1 depends on several lemmas.

6.2. LEMMA. If $X \in H_3$, then there exists a neighborhood B of X in χ^r such that any $Y \in B$ satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_1 , B_2 , B_4 , B_5 , and B_6 .

The proof of this lemma follows immediately from [5] and 4.4. We can prove the next lemma in the same way as 5.4.

6.3. LEMMA. Let $X \in \chi^r$, such that there exists one trajectory γ_X tangent to ∂M only at two points P_1 and P_2 $(P_1 \neq P_2)$. Suppose the contact between X and ∂M at P_1 and P_2 is generic. Then, there exist neighborhoods B_3 of X in χ^r , F_i of P_i in N (i = 1, 2), and a C^{r-1} function $f: B_3 \rightarrow R$, such that:

(a) f(Y) = 0 if and only if the trajectory of Y is tangent to ∂M at two points $q_1 \in F_1$ and $q_2 \in F_2$, whose contact between the curve and the field is generic; if $f(Y) \neq 0$, then there exists a unique trajectory tangent to ∂M in F_1 (resp. F_2) at a unique point and it is not tangent to ∂M at any other point;

(b) $df_x \neq 0$ (see Fig. 5).

FIG. 5. The unfolding of $X \in H_3$.

⁶

Now, the proof of 6.1 is analogous to 5.1.

6.4. Remark. $Ad(H_3) \cap Q_2 \neq \Phi$ and $Ad(H_3) \cap H_2 \neq \Phi$.

6.5. Remark. Denote by $H_3(n)$ the subset of H_3 of fields X, such that γ_X has length L < n. Then 6.1 holds for $H_3(n)$.

7

The proof of the following proposition is similar to 5.1.

7.1. PROPOSITION. Denote by H_4 the set of fields $X \in \chi^r$, r > 2, such that:

(1) there is a $p \in \partial M$, that is a quasi-generic critical element of X of type β_4 as a unique nongeneric critical element of X;

(2) X satisfies Ω_1 , Ω_2 , Ω_2 , Ω_4 . Then H_3 satisfies the M, E, and A conditions.

It is convenient to state the following two lemmas.

7.2. LEMMA. If $X \in H_4$, then there exists a neighborhood B of X in χ^r , such that every $Y \in B$ satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_1 , B_2 , B_3 , B_5 , and B_6 .

We can prove the next lemma in the same way as 5.4.

7.3. LEMMA. Let $X \in H_4$ have a saddle separatrix tangent to ∂M at only one point p. Then there exist neighborhoods B_4 of X in χ^r , F of p in M, and a C^{r-1} function $F: B_4 \rightarrow R$, such that:

(a) f(Y) = 0 if and only if there exists a saddle separatrix tangent to ∂M at only one point $P_Y \in F$, and satisfying the G condition with respect to the field; if $f(Y) \neq 0$ then there is no saddle separatrix of Y tangent to ∂M in F;

(b) $df_X \neq 0$ (see Fig. 6).

FIG. 6. The unfolding of $X \in H_4$.

7.5. Remark. $Ad(H_4) \cap Q_2 \neq \Phi$ and $Ad(H_4) \cap H_2 \neq \Phi$.

7.6. Remark. Denote by $H_4(n)$ the subset of H_4 , of fields X such that the saddle scparatrix tangent to ∂M has length L < n. Then 6.1 holds for $H_4(n)$.

8.1. LEMMA. Let $p \in \partial M$ be a simple critical point of $X \in \chi^r$. Then there exist neighborhoods B_0 of X in χ^r , F of p in M, and a C^r function f: $B_0 \rightarrow R$, such that:

(a) f(Y) = 0 if and only if Y has one unique critical point $p_Y \in \partial M \cap F$; furthermore p_Y is simple;

(b) if f(Y) > 0, Y has no critical point in F;

(c) if f(Y) < 0, Y has one unique simple critical point $p_Y \in F$, and $p_Y \in int(M)$.

Proof. Choose $\tilde{X} \in \tilde{\chi}^r$ a representative of X, \tilde{F}_i a neighborhood of p in N, and \tilde{B}_0 a neighborhood of \tilde{X} in $\tilde{\chi}^r$ such that each $\tilde{Y} \in \tilde{B}_0$ has one unique critical point $p_{\tilde{Y}}$ in \tilde{F}_1 , which is simple; it is clear that the correspondence $\tilde{Y} \to p_{\tilde{Y}}$ is C^r .

Define a C^r mapping $\tilde{f}: \tilde{B}_0 \to R$ by $\tilde{f}(\tilde{Y}) = \pi(p_{\tilde{Y}})$; it is obvious that $f(\tilde{X}) = 0$. Now we will prove that $d\tilde{f}_{\tilde{X}} \neq 0$.

Let $x = (x_1, x_2)$ be the system of coordinates around p given in 4.3. Let $\psi: N \to R$ be a C^{∞} bump function with support in $F_{\delta} = \{q \in N \text{ with } |x(q)| < \delta\}$ $(\delta > 0)$ and $\psi(q) = 1$ if $|x(q)| < \delta$.

Since p is a simple critical point suppose, for simplicity, that $(\partial X^1/\partial x_1)(p) \neq 0$. The equality $d\tilde{f}_{\tilde{X}}(E) = \pi[(D\tilde{X}_p)^{-1}(Z(p))]$ (see [10, p. 24]) implies $d\tilde{f}_{\tilde{X}}(\tilde{V}) \neq 0$, where $\tilde{V} = \psi(\partial/\partial x_2) + (1 - \psi)\tilde{X}$.

Consider the neighborhood B_0 of X in χ^r given by $B_0 = \{Y \in \chi^r \text{ such that}$ there exist $\tilde{Y} \in \tilde{B}_0$ and $\tilde{Y}_{|M} = Y\}$ and the C^r function $f: B_0 \to R$, defined by $f(Y) = \tilde{f}(\tilde{Y})$, where \tilde{Y} is a continuous extension of Y (at X) in $\tilde{\chi}^r$. Now, the proposition follows immediately.

8.2. *Remark.* Denote by H_1^{-1} the set of fields $Y \in \chi^r$, such that:

(1) Y has one unique simple critical point $p_Y \in \partial M$ which is the unique nongeneric critical element of Y;

(2) Y satisfies Ω_2 , Ω_3 , Ω_4 , and all the critical points of Y except p_Y are hyperbolic. Let D_1 be the subset of H_1^{11} of fields Y satisfying the additional axiom: "The eigenvalues of DY_{P_Y} are real and are equals." Then $H_1^{11} - D_1$ is open and dense H_1^{11} ; this follows by considering the C^r function

$$g(Y) = \sigma^2(Y; p_y) - 4\Delta(Y; p_Y).$$

8.3. PROPOSITION. Denote by H_1 the set of fields $X \in \chi^r$, such that:

(a) there exists one point $p \in \partial M$, that is a quasi-generic critical element of type β_1 as the unique nongeneric critical element;

(b) X satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 . Then H_1 satisfies the M and E conditions.

The proof of 8.3 depends on the following.

8.4. Remark. If $X \in H_1$, by condition (b) of the definition of the quasigeneric critical element of type β_1 , there exists a neighborhood F of p in M, such that any trajectory of X_{1F} meets ∂M transversally, does not meet ∂M , or if p is the α or ω limit of the trajectory, then "it tends transversally to ∂M at p."

8.5. Remark. Take $X \in H_1$, such that $p \in \partial M$, X(p) = 0 and $[\sigma^2(x, p) - 4\Delta(X, p)] < 0$. If s is the imbedding given in 4.3 (s[-1, 1] = S), the construction made in [10, pp. 24-25] implies that there exists a C^{r-1} diffeomorphism Θ_X of $S^- = s[-1, 0]$ on to $S^+ = s[0, 1]$ satisfying the conditions: $\Theta_X(s(-1)) = s(1), \Theta_X(p) = p$, and, for each α , $s(\alpha)$ and $\Theta_X(s(\alpha))$ belong to the same trajectory; furthermore, every trajectory of X, except p, is transverse to $(S - \{p\})$.

8.6. LEMMA. If $X \in H_1$, then there exists a neighborhood B of X in χ^r , such that any $Y \in B$ satisfies Ω_1 , Ω_2 , Ω_3 , and Ω_4 .

8.7. LEMMA. Every $X \in H$ has a neighborhood B_0 in H_1 , such that if $Y \in B_0$, then:

(a) There exists a neighborhood F of p in M where given a trajectory of Y_{1F} , one of the following situations is possible:

- (i) the given trajectory is the quasi-generic critical element $P_Y \in \partial M$;
- (ii) the given trajectory meets ∂M transversally and
- (iii) the given trajectory "tends to P_Y transversally to ∂M ."

(b) If X has n and only n critical points (hyperbolics) in int(M), then Y has n and only n critical points (hyperbolics) in int(M); any $Y \in B_0$ satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_2 , B_3 , B_4 , B_5 , and B_6 .

Part (a) of 8.7 follows by the transversality theory and parts (b) and (c) by [5] and 8.11.

Proof of 8.3. Proposition 8.3(a) is a direct consequence of 8.1, 8.2, 8.6, and 8.7. We will demonstrate part (b) of 8.3.

If $X \in H_1$, then we have the following possibilities: $(0_1) p$ is a saddle point; $(0_2) p$ is a nondegenerate node; $(0_3) p$ is a generic focus. We will consider these cases separately.

 (0_i) Let $\tilde{X} \in \tilde{\chi}^r$ be a representative of X. Denote by \tilde{F} a neighborhood of p in N, such that $\tilde{X}_{\tilde{F}}$ is generic; hence the separatrices S_i , i = 1, 2, 3, 4of p meet $\partial \tilde{F}$ transversally. These trajectories of \tilde{X} determine four subregions \tilde{T}_i of \tilde{F} (see Fig. 7); let $T_i = \tilde{T}_i \cap M$ (i = 1, ..., 4), $F = \tilde{F} \cap M$, $L = \partial \tilde{F} \cap M$, and $L_2 = \tilde{F} \cap \partial M$. Assume there is no saddle separatrix different from S_i , no trajectory tangent to ∂M , and no periodic trajectory of X meeting F.

FIG. 7. The neighborhood F of a saddle point.

We know that \tilde{F} can be chosen such that \tilde{X} is tangent to $\partial \tilde{F}$ at only four points; assume without loss of generality that only one point c_0 belongs to M and $c_0 \in T_1$. Assume $L_2 \subseteq S$ (S, S⁺, S⁻ given in 8.5) and X transversal to $S - \{p\}$ (see 8.9).

Consider $a_1 \in S^- \cap F^+$, $a_2 \in S^- \cap F^-$ and assume for simplicity that if we go through $(\widehat{a_1a_2})_{L_1}$, we meet first one stable separatrix S_1 and then one unstable separatrix S_2 , where $S_1 \cap L_1 = K_1$ and $S_2 \cap L_1 = K_2$.

We can assume that L_1 satisfies the conditions:

(i) there is a neighborhood B of X in χ' , such that, if $Y \in B_0 \cap H_1$, then $p_Y \in F$;

(ii) the separatrices of p_Y , \bar{S}_1 , and \bar{S}_2 , corresponding to S_1 and S_2 , respectively, meet L_1 in \bar{K}_1 and \bar{K}_2 transversally;

- (iii) $M_2 = M (\text{int } F)$ is a C^{∞} submanifold of M;
- (iv) the contact between X and L_1 at c_0 is generic;
- (v) X is transverse to L_2 , except at p.

Since X_{M_2} is generic (by construction of M_2), there exists a neighborhood of X in χ^r , $B \subseteq B_0$, such that, if $Y \in B \cap H$ then Y_{M_2} is conjugate to X_{M_2} ; so we have a homeomorphism (close to the identity) $h: M_2 \to M_2$ mapping trajectories of X_{M_2} onto those of Y_{M_2} . In the process of the extension of h_2 to homeomorphism $h: M \to M$, conjugating X to Y, we note that the critical region of X_F is formed by the union of the following trajectories: a_1, a_2, p , c_0, S_1 , and S_2 (see Fig. 7). Then we apply the technique of Peixoto [5] and we obtain without difficulties the homeomorphism h.

 (0_2) Consider the following objects given below, and \tilde{X} , \tilde{F} , F, L_1 , L_2 , S, S^- , a_1 , and a_2 given in (0_1) . Call E_1 the eigenspace such that the trajectories of X, except one that we denote by γ_2 , are tangent to it. F can be chosen such that X is transverse to L_1 except at one unique c_0 ($c_0 \notin \gamma_2$) and to L_2 except at p. Assume there is no saddle separatrix and no trajectory of X tangent to ∂M , meeting L_2 ; furthermore no periodic trajectory of X meets F. Finally we must observe that the critical region of $X_{1,F}$ is formed by the union of a_1 , a_2 ,

 $p, \gamma_{X_{|F}}(c_0)$, and γ_2 ; for Y close to X, there exist the corresponding objects $a_1, a_2, p_Y, \gamma_{Y_{|F}}(\bar{c}_0)$, and $\bar{\gamma}_2$, respectively. Then we use standard techniques to give the proof (see Fig. 8).

FIG. 8. The neighborhood F of a node.

(0₃) In the same same way as in (0₁) (or (0₂)) we can prove easily the case when $[(\sigma(X, p))^2 - 4\Delta(X, p)] < 0$ (see Fig. 9).

FIG. 9. The neighborhood F of a focus.

8.8. LEMMA. H_1 is open in χ_1^r .

The proof of 8.8 depends on the lemmas given in 8.9.

8.9. Remarks. The following lemmas discuss the behavior of the trajectories of a field Y around a hyperbolic critical point, with respect to one given curve. Let V be a neighborhood of a point p of R^2 and let X be a field on R^2 of class C^r , r > 2, such that p is one unique singularity of $X_{\downarrow V}$; furthermore p is a hyperbolic critical point of X. Denote by λ_1 , λ_2 the eigenvalues of DX_p and by T_1 , T_2 their respectives eigenspaces. Consider $s: I = [-1, 1] \rightarrow R^2$ a C^{∞} imbedding with s(0) = p and S =: s(I).

8.9a. LEMMA. Suppose λ_1 , $\lambda_2 \in R$, $\lambda_1 \neq \lambda_2$ an S transversal to T_i , i = i, 2. Then there exist neighborhoods V_1 of p in R^2 , $V_1 \subset V$ and B_1 of X in $\chi^r(R^2)$, such that:

(i) each $Y \in B_1$ has one unique hyperbolic singularity $P_Y \in V_1$ of the same kind as p;

(ii) there exists a C^r function $\alpha: B_1 \to R$, such that, if $P_Y \notin S \cap V_1$, then $Y(s(\alpha(Y)))$ is tangent to S at $s(\alpha(Y))$, for $Y \in B_1$;

(iii) the contact between Y and S in $s(\alpha(Y))$ is generic.

Proof. It is known that there are neighborhoods B_0 of X in $\chi^r(R^2)$ and V_0

of p in \mathbb{R}^2 , such that each $Y \in B_0$ has one unique singularity P_Y in V_0 . Consider the sets $S_0 = S \cap V_0$ and $I_0 = s^{-1}(S_0)$.

Define a C^r function $G: B_0 \times I_0 \to R$ by $G(Y, \alpha) = Y(s(\alpha)) \wedge s'(\alpha)$; it is obvious that G(X, 0) = 0.

Let $x = (x_1, x_2)$ be a system of coordinates around p (say in V_0) with $\partial/\partial x_i \in T_i$, i = 1, 2. In these coordinates the components of X, X_1 , and X_2 , satisfy

$$\frac{\partial X^1}{\partial x_2}(p) = \frac{\partial X^2}{\partial x_1}(p) = 0, \qquad \frac{\partial X^1}{\partial x_1}(p) = \lambda_1, \qquad \text{and} \qquad \frac{\partial X^2}{\partial x_2}(p) = \lambda_2.$$

If $s(\alpha) = (s_1(\alpha), s_2(\alpha))$, by hypothesis we have $s_1'(0) \neq 0$ and $s_2'(0) \neq 0$. Thus $G(Y, \alpha) = Y^1(s(\alpha)) s_2'(\alpha) - Y^2(s(\alpha)) s_1'(\alpha)$ and we get $(\partial G/\partial \alpha)(X, 0) = s_1'(0) s_2'(0)(\lambda_1 - \lambda_2)$.

Since $\lambda_1 \neq \lambda_2$, then $(\partial G/\partial \alpha)(X, 0) \neq 0$.

By the Implicit Function Theorem, there exist neighborhoods B_1 of X in $\chi^r(R^2)$ $(B_1 \subset B_0)$, I_1 of $\alpha = 0$ in R $(I_1 \subset I_0)$, and a C^r function $\alpha: B_1 \to I_1$, such that $\alpha(X) = 0$ and $G(Y, \alpha) = 0$ if and only if $\alpha = \alpha(Y) = \alpha_Y$.

If $Y(s(\alpha_Y)) \neq 0$, then this vector and $s'(\alpha_Y)$ are linearly dependents.

The above assertions imply (i) and (ii); part (iii) follows immediately from $(\partial G/\partial \alpha)(Y, \alpha_Y) \neq 0$. This ends the proof of 8.9a.

8.9b. LEMMA. Suppose λ_i complex, i = 1, 2. Then there exist neighborhoods, V_1 of p in V, B₁ of X in $\chi^r(R^2)$, such that:

(i) each $Y \in B_1$ has one unique singularity p_Y in V that is hyperbolic and of the same kind as p;

(ii) there exists a C^r function $\alpha: B_1 \to R$, such that if $p_Y \notin S \cap V_1$ then $Y(s(\alpha(Y)))$ is tangent to S at $s(\alpha(Y))$, $Y \in B_1$;

(iii) the contact between Y and S at $s(\alpha(Y))$ is generic.

Proof. Let S_0 , I_0 , V_0 , and G be the objects given in the last demonstration. Let $x = (x_1, x_2)$ be a system of coordinates around p (say in V_0), with $\partial/\partial x_1 = s'(0)$. Thus we have $\partial X^1/\partial x_1 = \partial X^2/\partial x_2 = \alpha$ and $\partial X^1/\partial x_2 = -\partial X^2/\partial x_1 = \beta$ ($\alpha \neq 0, \beta \neq 0$). In the same way as 8.9a we prove this lemma without difficulties.

8.9c. LEMMA. Suppose p is a hyperbolic critical point of $X \in \chi^r(\mathbb{R}^2)$, such that $\lambda_1 < \lambda_2 < 0$ (or $0 < \lambda_1 < \lambda_2$). Let s: $I \rightarrow \mathbb{R}^2$ be the imbedding given in 8.11a having the following property. There exists one unique saddle (hyperbolic) separatrix γ_X , of length $L < \infty$, such that p is its ω limit and $\gamma_X \cap S = \Phi$. Then there exist neighborhoods V_1 of p in \mathbb{R}^2 and B_1 of X in $\chi^r(\mathbb{R}^2)$, such that:

(i) each $Y \in B_1$ is transverse to ∂V_1 (∂V_1 is a C^{∞} curve);

(ii) each $Y \in B_1$ has a saddle separatrix γ_X meeting ∂V_1 at one unique point ω_Y and the correspondence $Y \to \omega_Y$ is C^r ;

(iii) $s(\alpha(Y)) \notin \gamma_Y$, where $s(\alpha(Y))$ is the point of S obtained in 8.11a.

Proof. Parts (i) and (ii) follow by [5], and its verification is similar to [9, Lemma 4.3, p. 27].

Consider V_1 and B_1 given in (i) and (ii) and satisfying Lemma 8.9a; assume S is transverse to $\hat{c}V_1$ and $(V_1 - S)$ and has two connected components, S_1 and S_2 (see Fig. 10).

FIG. 10. The neighborhood V_1 .

Since $\omega_X = \gamma_X \cap \partial V_1 \notin S$, assume by continuity that $\omega_Y \notin S \cap \partial V_1$ for every $Y \in B_1$.

Fix in V_1 the coordinates $x = (x_1, x_2)$ around p, given in 8.9a; for E > 0, by [2, p. 90], V_1 can be chosen such that $|X^1(q)/X^2(q)| < E$ for $q \in V_1$ and $\gamma_X(q)$ is not tangent to T_1 ; so this inequality holds for $Y \in B_1$ and q does not belong to the trajectory of Y close to T_1 [2, p. 87]. Observe that

$$0 < K_1 < |s_2'(\alpha)/s_1'(\alpha) < \infty$$
, for $\alpha \in I$.

Assume T_1 and T_2 determine in V_1 four quadrants Q_i , i = 1, 2, 3, 4 (see Fig. 10).

Assume, for simplicity, that $S \cap Q_1 \cup Q_3 = p$ and $\omega_Y \in Q_4 \cap S_1$; we will analyze the cases:

(1) If $p_Y \in S$ then the demonstration is trivial.

(2) If $p_Y \in S_2 \cap Q_1$, since this point is the ω limit of γ_Y , then $\gamma_Y \cap S := A_y$ has (a) one unique point or (b) two points, at least. If (a) occurs then $s(\alpha(Y)) \in A_y$, since the contact between Y and S in this case is generic. If (b) occurs then the continuity of Y in S implies the existence in S of two points of tangency between the field and curve, and this is an absurdity.

(3) If $p_Y \in Q_3 \cap S_1$ then γ_Y does not meet S for Y close enough to X; so $s(\alpha(Y)) \notin \gamma_Y$.

The other cases are similar.

8.9d. LEMMA. Lemma 8.9c holds if γ_X is the unique trajectory tangent to an imbedded curve in \mathbb{R}^2 (distinct from S) at the unique point q where the contact is generic.

Proof of 8.8. If p is a saddle point (case (0_1)), consider neighborhoods B of X in χ^r and F of p in M given in 8.6 and satisfying:

(i) no saddle separatrix of $Y \in B$, except the ones of p_Y , meets F;

(ii) no trajectory of $Y \in B$, tangent to ∂M , meets F. This is possible since the numbers of points of tangency between X and ∂M and critical points of the field are finite.

Lemma 8.9a permits us to choose B and F such that if $Y \in B$ and $f(Y) \neq 0$, then there exists one unique trajectory γ_Y of Y tangent to ∂M at $q_Y \in F$, generically: so $Y \in B$ satisfies B_5 and B_6 .

Since the conditions Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_1 , B_2 , B_3 , and B_4 are trivially satisfied for Y close enough to X and $f(Y) \neq 0$, we have $Y \in \Sigma_0$ for $Y \in B$ and $f(Y) \neq 0$.

Using 8.9 we can finish this demonstration without difficulties; i.e., there exists a neighborhood of X in χ' , such that every $Y \in B$ either belongs to H_1 or belongs to Σ_0 .

9

9.1. PROPOSITION. Denote by H_5 the set of fields $X \in \chi^r$, such that:

(1) there exists $p \in \partial M$, that is a quasi-generic critical element of X of type β_5 as a unique nongeneric critical element of X;

(2) X satisfies Ω_1 , Ω_2 , Ω_3 , and Ω_4 . Then H_5 satisfies the M, E, and A conditions.

We have to state two preliminary lemmas.

9.2. LEMMA. Every $X \in H_5$ has a neighborhood B in χ^r , such that every $Y \in B$ satisfies Ω_1 , Ω_2 , Ω_3 , Ω_4 , B_2 , B_3 , and B_4 .

9.3. Remark. Lemma 9.4 proves in particular that B can be chosen such that if $Y \in B$ then Y satisfies B_6 .

9.4. LEMMA. Let $X \in \chi^r$, r > 3, having a trajectory γ_X tangent to ∂M at the unique point p where the contact between the curve and the field is quasi-generic. Then there exist neighborhoods B_5 of X in χ^r , F of p in M, and a C^{r-1} function $f: B_5 \rightarrow R$, such that:

(a) f(Y) = 0 if and only if Y has a trajectory γ_Y tangent to ∂M at the unique point $p_Y \in F$, satisfying the Q.G. condition with respect to Y; if f(Y) > 0,

then any trajectory of Y meeting F is transverse to ∂M in F; if f(Y) < 0 then there exist two and only two distinct trajectories of Y meeting F, each one tangent to ∂M at one point and both satisfying the G condition with respect to Y;

(b) $df_{\chi} \neq 0$ (see Fig. 2).

Proof. Consider the neighborhoods B_0 of X in χ^r , and F of p in M, such that no $Y \in B_0$ has a critical point in F.

Define the C^r germ $G: (B_0 \times R, (X, 0)) \to (R, 0)$ by $G(Y, \alpha) = Y(s(\alpha)) \wedge s'(\alpha)$, where s is the imbedding given in 4.2. We have

$$\frac{\partial G}{\partial \alpha}(y, \alpha) = \frac{d}{d\alpha}[Y(s(\alpha))] \Lambda s'(\alpha) - Y(s(\alpha)) \Lambda s''(\alpha)',$$

$$\frac{\partial^2 G}{\partial \alpha^2}(Y, \alpha) = \frac{d^2}{d\alpha^2}[Y(s(\alpha))] \Lambda s'(\alpha) - 2 \frac{d}{d\alpha}Y(s(\alpha)) | \Lambda s''(\alpha) + Y(s(\alpha)) \Lambda s'''(\alpha).$$

By a direct calculation, we obtain $(\partial G/\partial \alpha)(X, 0) = 0$ and $(\partial^2 G/\partial \alpha^2)(X, 0) \neq 0$ (we used here the quasi-generic property of the contact between X and ∂M at p).

Thus by the Implicit Function Theorem, there exist neighborhoods B_5 of X in χ^r ($B_5 \subset B_0$), J of $\alpha = 0$ in R, and a C^{r-1} function α : $B_5 \rightarrow J$, satisfying $\alpha(X) = 0$ and $(\partial G/\partial \alpha)(Y, \alpha) = 0$ if and only if $\alpha = \alpha(Y) = \partial_Y$. Assume for simplicity that $(\partial^2 G/\partial \alpha^2)(X, 0) > 0$ (the other case is similar). Choose B_5 and J such that $(\partial^2 G/\partial \alpha^2)(Y, \alpha) > 0$ for $(Y, \alpha) \in B_5 \times J$.

So α_Y is the minimum of $g_Y(\alpha) = G(Y, \alpha)$ for each $Y \in B_5$, and:

(i) if $g_Y(\alpha_Y) > 0$ then $g_Y(\alpha) > 0$, $\alpha \in J$; this means that Y is transverse to ∂M around p in M;

(ii) if $g_Y(\alpha_Y) = 0$, then $g_Y(\alpha) = 0$ ($\alpha \in J$) only if $\alpha = \partial_Y$;

(iii) if $g_Y(\partial_Y) < 0$, by the Intermediate Value Theorem there exist $\alpha_1, \alpha_2 \in R, \ \alpha_1 < \alpha_Y < \alpha_2$, such that $g_Y(\alpha_1) = g_Y(\alpha_2) = 0$; however, $(\partial G/\partial \alpha)(Y, \alpha_i) \neq 0, \ i = 1, 2$.

If $g_Y(\alpha_Y) = 0$ and $(\partial G/\partial \alpha)(Y, \alpha_Y) = 0$ then the contact between Y and ∂M at $s(\alpha_Y)$ is nongeneric; $(\partial^2 G/\partial \alpha^2)(Y, \alpha_Y) \neq 0$ implies that the contact is quasigeneric.

If $g_Y(\bar{\alpha}) = 0$ and $(\partial G/\partial \alpha)(Y, \bar{\alpha}) \neq 0$ ($\bar{\alpha} \in J$), then the contact noted above at $s(\bar{\alpha})$ is generic.

The application $f(Y) = G(Y, \alpha_Y)$ shows part (a) of 9.4. We will prove $df_X \neq 0$.

We have f(X) = 0 and $df_X(Y) = dG_{(X,0)}(Y,0) + (\partial G/\partial \alpha)(X,0) d\alpha_X(Y)$. Since $(\partial G/\partial \alpha)(X,0) = 0$, we need only show that

$$dG_{(X,0)}(Y,0)\neq 0.$$

Consider coordinates around p in M, $y = (y_1, y_2)$ with y(p) = 0, $\partial/\partial y_1 = X$ and a bump function $\psi: M \to R$ with support in $|y(q)| \leq \delta$, $\delta > 0$ and small enough; furthermore $\psi(q) = 1$ for $|y(q)| < \delta_1$, with $0 < \delta_1 < \delta$.

If $Y = \psi(\partial/\partial y_2)$, consider the C^r curve $h: [-\eta, \eta] \to \chi^r$ defined by $h(\lambda) = X - \lambda Y$; call $h(\lambda) = Y_{\lambda}$. In coordinates $Y = (1, \lambda)$ and $G(Y_{\lambda}, 0) = \lambda$. This proves 9.4.

FIG. 11. The unfolding of $X \in H_5$.

Proof of 9.1. The M and A conditions follow from 9.2, 9.3, and 9.4, while the E condition is demonstrated by already known methods.

Part 3. The Submanifold Σ_1

10

Consider the sets $S_i = Q_1 \cup Q_2(i) \cup Q_3(i) \cup H_1 \cup H_2(i) \cup H_3(i) \cup H_4(i) \cup H_5$ and $\Sigma_1 = \bigcup_{i=1}^3 Q_i \bigcup_{k=1}^5 H_k$. By 1.2, 2.1, 3.4, 5.6, 6.5, 7.6, 8.3, and 9.1 each S_i (i = 0, 1, 2, ...) satisfies the M condition; since $S_i \subset S_{i+1}$ and $\Sigma_1 = \bigcup_i S_i$, this subset of χ^r satisfies the I condition.

Proof of Theorem A. The above considerations guarantee us the existence of Σ_1 . Part (b) follows from 1.1, 2.1, 3.1, 5.1, 7.1, 8.3, and 9.1. Part (a) follows from a sequence of approximations similar to those used in [5] (to get the density of Σ_0 in χ^r) and [22]. By a straightforward computation one proves the following lemmas.

LEMMA A. Denote by Q_2^0 the set of fields $X \in \chi^r$ having nongeneric periodic trajectories contained in int(M). Then Q_2 is dense in Q_2^0 .

LEMMA B. Denote by Q_1^0 the set of fields $X \in \chi_1^r$ having nongeneric critical points contained in int(M). Then Q_1 is dense in Q_1^0 .

LEMMA C. Denote by Q_3^0 the set of fields $X \in \chi_1^r$ which have saddle connections (contained in int(M)) or nontrivial recurrent orbits, and all the field's critical points and periodic trajectories are in int(M). Then $Q_1 \cup Q_2 \cup Q_3$ is dense in Q_3^0 .

LEMMA D. Denote by H_3^0 the set of fields $X \in \chi_1^r$ having periodic trajectories tangent to ∂M . Then $H_2^0 \subset Ad(H_2 \cup Q_2)$.

LEMMA E. Denote by II_1^0 the set of fields $X \in \chi_1^r$ having critical points in ∂M . Then $H_1^0 \subset Ad(H_1 \cup Q_1)$.

LEMMA F. Denote by H_3^0 the set of fields $X \in \chi_1^r$ having trajectories tangent to ∂M in more than one point, none of then being periodic or saddle separatrix. Then $H_3^0 \subset Ad(H_3)$.

LEMMA G. Denote by H_4^0 the set of fields $X \in \chi_1^r$ having saddle separatrices tangent to ∂M . Then $H_1 \subset Ad(H_1 \cup H_4 \cup Q_1 \cup Q_3)$.

LEMMA H. Denote by H_5^0 the set of fields $X \in \chi_1^r$ having one point $p \in \partial M$ such that it does not satisfy the G condition with respect to X. Then $H_5^0 \subset Ad(\Sigma_1)$.

Since $\chi_1^r = Q_1^0 \cup Q_2^0 \cup Q_3^0 \cup H_1^0 \cup H_2^0 \cup H_3^0 \cup H_4^0 \cup H_5^0$, Lemmas A-H imply immediately that Σ_1 is dense in χ_1^r .

11. Final Remarks

11.1. Remark. Denote by $\tilde{\Sigma}_1$ the set of first-order structurally stable vector fields of χ^r (see the definition in [10, p. 35]). Then $\tilde{\Sigma}_1 = Q_1 \cup \tilde{Q}_2 \cup \tilde{Q}_3 \cup H_1 \cup \tilde{H}_2 \cup H_3 \cup H_4 \cup H_5$; furthermore $\tilde{\Sigma}_1$ satisfies the M and A conditions. This follows by 1.4, 2.1, 3.3, 5.7, 6.1, 7.1, 8.8, and 9.1.

11.2. Remark. Let I = [a, b] be a closed interval. Denote by Φ^r the space of C^1 mappings $\xi: I \to \chi^r$, with the C^1 topology. We say $\lambda_0 \in J$ is an ordinary value of $\xi \in \Phi^r$ if there is a neighborhood N of λ_0 such that $\xi(\lambda)$ is topologically equivalent to $\xi(\lambda_0)$ for every $\lambda \in N$; if λ_0 is not an ordinary value of ξ , it is called a bifurcation value of ξ . Obviously, if $\xi(\lambda_0) \in \Sigma_0$, (resp. $\xi(\lambda_0) \in \chi_1^r$), λ_0 is an ordinary (resp. bifurcation) value of ξ . If ξ is transverse to Σ_1 then every $\lambda_0 \in \xi^{-1}(\Sigma_1)$ is a bifurcation value of ξ .

11.3. Remark. We say ξ_1 and ξ_2 of Φ^r are conjugate if there is a homeomorphism $h: I \to I$ and a map $H: I \to \text{homeo.}(M)$, such that $H(\lambda)$ is a conjugation between $\xi_1(\lambda)$ and $\xi_2(h(\lambda))$ (homeo.(M) denotes the group of homeomorphisms of M). With this concept of conjugacy, the structural stability in Φ^r is defined in an obvious way. Let us denote by A^r , the collection of the elements $\xi \in \Phi^r$ such that:

- (1) $\xi(I) \subset \Sigma_0 \cup \tilde{\Sigma}_1$;
- (2) ξ is transversal to $\tilde{\Sigma}_1$;

(3) $\xi(a)$ and $\xi(b)$ are in Σ_0 . We have the result, "Any $\xi \in A^r$ is structuraly stable."

GENERIC BIFURCATION

ACKNOWLEDGMENTS

This paper is part of a doctoral dissertation at Instituto de Matemática e Estatística, Universidade de São Paulo, Brasil, 1975.

The author wishes to thank Professor A. Barone and Professor J. Sotomayor for many helpful conversations and suggestions on conducting this research.

References

- 1. A. ANDRONOV AND E. LEONTOVICH, Sur la théorie de la variation de la structure qualitative de la division du plan en trajectores, *Dokl. Akad. Nauk* 21 (1938).
- 2. W. HUREWICS, "Lectures on Ordinary Differential Equations," M.I.T. Press, Cambridge, Mass., 1963.
- 3. S. LANG, "Introduction to Differentiable Manifolds," Interscience, New York, 1962.
- 4. J. PALIS, "Seminário de Sistemas Dinâmicos," IMPA, Rio de Janeiro, 1971.
- 5. M. C. PEIXOTO AND M. M. PEIXOTO, Structural stability in the plane with enlarged conditions, An. Acad. Brasil. Ci. 1 (1959).
- 6. M. M. PEIXOTO, On structural stability, Ann. of Math. 69 (1959).
- 7. M. M. PEIXOTO, Structural stability in two-dimensional manifolds, Topology 1 (1962).
- 8. M. M. PEIXOTO, "Dynamical Systems: Bahia Dynamical Systems Symposium," Academic Press, New York, 1973.
- 9. J. SOTOMAYOR, "Estabilidade Estrutural de Primeira Ordem em Variedades de Banach," Thesis, IMPA, Rio de Janeiro, 1964.
- 10. J. SOTOMAYOR, "Generic One Parameter Families of Vector Fields on Two-Dimensional Manifolds," Publ. Math. IEHS., No. 43, 1974.
- 11. J. SOTOMAYOR, "Structural Stability in Manifolds with Boundary-Global Analysis and Its Applications," Vol. III, International Atomic Energy Agency, Vienna, 1974.
- 12. V. POFNARU, "Analyse Differentielle," Lectures Notes in Mathematics, Springer-Verlag, Berlin, 1974.