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INTRODUCTION

Let M be a C* two-dimensional orientable compact manifold, with houndary
oM. x" will denote the space of the C7 vector fields on M, with the Cr topology
(it is a C* Banach manifold).

We are concerned in this study with certain types of vector fields which
are not structurally stable in y"; namcly, in generic vector fields in y," =
x" — &y, where 2 is the set of structurally stable vector fields of x".

The main result is the following.

THeOREM A. For r > 3, there exists a C"-' submanifold X, , having codimen-
ston one schich ts immersed in ", and satisfies:

(a) 2, is dense in x," (both with the relative topology);

(b) for any X in 2, , there exists a neighborhood B, in the intrinsic topology
of 2\, such that any Y in B, is topologically equivalent to X",

The part of 2| imbedded in x™ coincides with elements of x” which are first-
order structurally stable.

In Scction 0 we give definitions, recall standard facts, and establish our
notation.

Section 1 is devoted to the construction of 2| and the proof of Theorem A.
It 1s divided into three parts. In the first part we adapt the quasi-generic fields
studicd by Sotomayor [22] to manifolds with a boundary. In part 2 we study
fields which are nongeneric duc to the contact between the ficld and M.
Finally in part 3 we prove Theorem A. At the end of certain paragraphs we
include some remarks which prepare the way for the study of first-order
structurally stable fields.

* This research was partially supported by FINEP, Financiadora de Estudos e Projetos,
Brazil.
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66 MARCO ANTONIO TEIXEIRA
0. PRELIMINARIES

We will consider dynamical systems gencrated by tangent vector fields
(differential equations) on manifolds with a boundary. For simplicity M will
be imbedded on a two-dimensional C= manifold N, without a boundary.

Two vector ficlds X, , X, on N are said to be germ equivalent on M if they
coincide on a neighborhood of M. A vector field X on M is, by definition,
a class of germ cquivalent {on M) tangent vector fields defined on N. It is
said to be of class C7 if it has a representative X of class CT on N.

Let @ be the flow of a representative X of X; @ is defined on a sct D(X) =
{(x,t)e N x R, tel(x)}, where I(x) is an open intcrval with extremes a(x),
&(x). The flow @ of X is defined by ®(x, ) = D(x, t) for xe M and t € I(x),
where I(x) is the maximal interval containing ¢ = 0 (@(x, 0) == x) for which
®(x, t) e M. We denote by afx) (resp. w(x)) the lower (resp. upper) extreme
of this interval; it may be that one, both, or none of the extremes of I(x) are
infinite, finite, or even zero. Clearly @ and its domain D(X) do not depend
on the representative X of X. Furthermore, any two representatives of X
define flows on N which coincide on a neighborhood of D(X). We call @ their
germ on D(X); @ = & |p(y) -

The orbit y(x) of X, passing through x€ M is by dcfinition the image of
I(x) by the integral curve map @,(x, ): ¢ — P4(x, t). Orbits are oriented by
the orientation induced by this map from the positive orientation of I(x);
an orbit of X, with no distinguished paramectrization, is a trajectory of X.

Germ orbits and germ trajectories are defined similarly.

0.1. DeriniTiON. Two vector fields X, Y on M are said to be conjugate
if there exists a homeomorphism A: M — M mapping trajectories of X onto
trajectories of Y.

We denote by ¥" = y¥"({V) the equivalent space of y.

0.2. DeFINITION. X € x" is structurally stable in x", if it has a neighborhood
B in x" such that X is conjugate to every Y € B.

It has been shown in [5, 6] that 2 is open dense in x™ (» > 1) and coincides
with the collection of vector fields X such that:

: X has all its singular points generic (or hyperbolic);

—

X has all its periodic trajectories generic (or hyperbolic);

(5]

: X does not have saddle connections;

SRS

N

: X does not have nontrivial recurrent trajectories;

S

: X has all its singular points in the interior of M;

B,: X has all its periodic trajectories in the interior of M;
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: any trajectory of X has at most onc point of tangency with &.14;
B,: any saddle scparatrix of X is transverse to ¢M;

: if a trajectory of X is tangent to ¢ in p, then the contact between
the two curves in p is of the 2nd order;

Bg: therc exist only a finite number of points of tangency of X and M.

It is proved in [11] that the conditions B,, B,, B,, B, B; imply B;.

For the sake of reference, the concepts of generic singular point, gencric
periodic trajectory, saddle connection, quasi-generic singular point, quasi-
generic periodic trajectory, quasi-generic saddle connection are contained
in [10].

We denote by 4(X, p) and o(X, p) the determinant and the trace of DX,
(derivative of X at p), respectively.

The definitions of imbedded and immersed Banach submanifolds of class C*
and codimension K of a Banach manifold of class C* are given in [10, p. 7]

0.3. Observations and notations. (a) We will fix on V a Riemannian metric

of differentiability class Jarge enough for our purposes.

(b) The positive limit set of an orbit ¥(p) of X is the set of points y ¢ M
which are limit points of sequence of the form ¢(p, t,) with ¢, tending to
w(p); we denote this set by L'( p) and the negative limit set L~( p) has a similar
dcfinition. These definitions do not depend on g ¢ y( p). If

w(p) < +®  (resp. a(p) > —0),
then L7(p) (resp. L=(p)) is the singlc point @(p, o p)) (resp. P(p, af p))) and
belongs to ¢Af.

(¢) The following notations will bc used in the text.
(1) M --F is the set of points g € M, such that ¢ ¢ F;
(1) int(.M) is the interior (topologic) of M;

(i) if u, v e T(M) (T(M) is the tangent spacc of M), then u A = will
denote the exterior product of # and ¢;

(iv) (F, p)is to be regarded as a flow box around p of some vector field.

For Q) € x™ we have the definitions:

0.4. 'We say that Q satisfies the [ condition (resp. M condition) if it is an
immersed (resp. imbedded) Banach submanifold of class C™=! and codimension
one of x".
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0.5. Wec say that Q satisfies the F condition if every X € O has a neighbor-
hood B in Q such that cvery Y € B is conjugate to X.

0.6. We say that () satisfics the 4 condition if O is an open set of x".

I. THE SuBMANIFOLD 2|

Part |

We will consider in this part the quasi-generic elements of a vector field
which belong to the interior of M; basically the demonstrations of 1.1, 1.2,
1.4, 2.1, and 3.1 are due to Sotomayor [10].

1

1.1. PrOPOSITION. Denote by Q, the set of wvector fields X e x7, r > 2, such
that:

(1) X has one quasi-generic trajectory as unique nongeneric periodic trajectory;
(2) X satispes 2,, 24, 82,, By, By, By, B;, and By . Then Q, satisfies
the I and E conditions.

See the proof of 1.1 in [10, p. 9].

It is convenient to give the following.

1.2. Lemma.  Call Qy(n) the set of X ¢ (), such that its quasi-generic pertodic
trajectory has length less than n. Then Qy(n) satisfies the A, M, and E conditions.

1.3. Remark. Call O, the subsct of Q, of vector ficlds X, which satisfy:

(a) There exists no ge M - - y,, such that L*(¢) = L~(q) = y...

(b) There exist no saddle points s; of X in A, 7 == 1,2, such that
L-(H¥(s))) =1 (W*(sy)) — y,, where W* (resp. V") is the stable (resp.
unstable) submanifold associated to the critical point.

(c) Associated to X there cxist no (s,q)e M X M, where s is a saddle
point of X, g = 6M and X(g) 1s tangent to &M at this point, such that L' (g) =
LA(WHs) = yx -

(d) There cxists no p,e €M, i = 1,2, such that X(p,) is tangent to
&M at p;, with L=(p,) = L=(p,;) = yy (the case p, -= p, is not excluded).

1.4. Provosition.  Q, satisfies the M, E, and A conditions.

1.5. Remarks. (i) If vy is the « and w limit of saddle separatrices, then
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it can be shown that there is Y, arbitrarily close to X, which has saddle connec-
tions having arbitrarily large length.

(1) If there exists a trajectory 5 of X, which has vy as the a and w limits,
then it can be shown that there is }, arbitrarily close to X, which has a non-
generic periodic trajectory meeting F and arbitrarily large length.

(1i1) If there exists a trajectory n, of X which has y; as the « limit and a
saddle separatrix 7, of X having y; as the o limit then it can be shown therc
is Y, arbitrarily closc to X, having a saddle separatrix tangent to &M further-
more, its length is arbitrarily large.

(iv) If there exist two distinct trajectorics of X, both having tangency
points of &M and having its « and o limits coinciding with a quasi-generic
periodic trajectory, then there exists Y close to A, such that it has a trajectory
which is tangent to £7 at two distinct points; furthermorc its length is arbitrarily
large.

2

2.1. ProrosITiON. Denote by Q, the set of wvector fields Xey', R > 1,
such that:

(1) X has a quasi-generic critical point as its unique nongeneric critical point;
(2) X satisfies 82, , 9,,2,, B,, B,, By, B,, By, and Bg.

Then O satisfies the M, E, and A conditions.

3.1. PrOPOSITION. Denote by Q; the set of vector fields X =7, r > |, such
that:

(1) X has one quasi-generic saddle connection as its unique saddle connection;
(2) X satisfies 2, , £,, 92,, B,, B,, B;, B,, B, and B;.
Then Q, satisfies the I and E conditions.

3.2. Remark. Note that in 1.1, 2.1, and 3.1 the quasi-generic periodic
trajectory, the quasi-generic critical point, and the quasi-generic saddle connec-
tion, respectively, are “‘away from” M then the B, conditions, { == 1,2,..., 6
hold for small perturbation of X Q, U 0, U Q,.

3.3. Remark. If the saddle conncction of X ¢ O, is an autoconnection
at a saddle p, then a closed curve C is constructed in [10] which is arbitrarily
close to y4 U {P} and such that any Y close to X is transverse to C. Denote
by (), the subset of Q, consisting of fields X which have the following properties:
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No trajectory of X which is tangent to €3 meets C and no saddle separatrix
of X meets C. Then (, satisfies the M, E, and A conditions.

3.4. Remark. Call Qy(n) the set of X € Q,, such that the saddle connection
has length less than 7. Then O, satisfies the A7, E, and 4 conditions.

Part 2

In this section we are going to study the familics of nonstable fields, whose
instability arises from thc contact of the trajectories with 2M. We will be using
frequently techniques and results of Peixoto [6, 7] and Sotomayor [10].

4

4.1. DEFINITION. p € ¢M is a generic critical element of X € ™ if it satisfies
the conditions:

(b)) no periodic trajectory of X is tangent to dM at p;
(b)) X(p) # 0;

(by) if a trajectory y of X is tangent to &M at p then y is transversal to
0M at any point g€y, ¢ # p;

(b,) no saddle separatrix of X is tangent to ¢ at p;

(b;) if a trajectory y of X is tangent to &3] at p, then the contact between
vy and 8M at p is of 2nd order (we will say that the contact between X and
oM at p is generic; see construction 4.2).

4.2. A construction. Let pe M, let yx(p) be a trajectory of X € ™ passing
through p, and let X € §* be a representative of X. Let u: (R, 0) — (N, p)
be a C” germ of an imbedding, transverse to dM at p. Also, let s: (R, 0) -~
(cM, p) be a C» germ of an imbedding. By the Implicit Function Theorem
o = (s, u) i1s a C* germ of a diffcomorphism o: (R?%, 0) — (¥, p). Denote by =
the sccond component of the inverse function o~1: (N, p) — (R% 0). Finally
we consider the germ =g: (R, 0) — (R, 0) defined by mg(t) = n(@3(p, 1))
By continuity, m(@p(q, 2)) is defined in a ncighborhood B x F| of (X, p) in
%" x N: For cach Y € B, consider the C" germ wy: (R, 0) — (R, 0) defined
by wp(t) = #(P3(g, t)) for all ge F, . It is clear that y, is tangent to M at p
if and only if 7,/(0) = O for every representative X of X. Obscrve that
me: (R, 0) = (R, 0) can be defined without difficulties for ¢, 5= 0.

4.2.1. DEFINITION. We say that pe dM satisfics the G condition with
respect to X, or the contact between X and oM at p is generic, if ng'(0) = 0
and 7g(0) -~ 0.
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4.2.2. DerINiTION. We say that pe &M satisfies the QG condition with
respect to X or the contact between X and 6M at p is quasi-generic, if =y (0) =
7%(0) = 0, and #§(0) # 0.

Obviously, these definitions depend neither on the transversal germ u,
nor on the particular representative X of X.

4.3. Remarks. (a) Condition b; is equivalent to the G condition.

(b) For future reference consider the coordinates x == (v, x,) (defined
in a neighborhood F, of p in N) where

x(p) = x,(p) =: 0, xy 08 =1d, Xpou = id, Xpou = x,08 = 0.

It is convenient to observe wg(t) = x(Pg(p, 1))

() Dcnote by U and S arbitrarily small closed neighborhoods of p
in #(R) and s(R), respectively. We will assume the positive orientation of UV
given by the outward sense from M.

4.4. Levna.  Assume the notations of 4.2. If the contact between X e x™
and ¢M at pe eM(X(p) # 0) is generic, then there exist a neighborhood B,
of X in x" and a CT function a: By — R such that Y(s(«(Y)) is tangent to oM
at s(o(Y')); furthermore, the contact between Y and 6:M at s(e(Y')) is generic.

Proof. Consider the germ G: (x" X R, (X, 0)) — (R, 0) of class C”, defined
by G(Y, &) = Y(s(a)) A s'(a).

Let x = (%, x,) be a system of coordinates around p; assume x,(p) =
xo{ p) = 0, 6/¢x; = X(p), and that s = (5, ,s,) are the components of s in
this svstem with s(0) = p.

By a dircct calculation we obtain (6G/éx)(X. 0) = s5(0) # 0; this follows
since the contact between X and &M at p is generic. By the Implicit I'unction
Theorem, there are a neighborhood B, of X in y" and a unique C7 function
a: By — R such that o(X) +: 0 and G(Y,a) == 0 if and only if « = «(¥).
Furthermore, by continuity B, can be determined such that the contact between
Y and €3 at s(«(Y)) is generic. This finishes the proof.

4.5. DEFINITION. pe &M is a quasi-generic critical element of X ey™ of
the type:

B, if X(p) = 0and
(a) p is hyperbolic;
(b) the eigenspaces of DX, arc transverse to &M at p;
(c) the eigenvalues of DX, are not cquals;

(d) if p is a node (see [2]) then the trajectory of X that is tangent
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to the eigenspace of DX, associated to the cigenvalue of larger absolute value,
is not tangent to M and is not a saddle separatrix;

B, 1if there exists a generic periodic trajectory of X tangent to ¢ only
at p, where the G condition is true;

B, if the trajectory of X passing through p is neither periodic nor saddle
separatrix and it has only one point of tangency g with éM besides p; further-
more, p £ ¢ and both satisfy the G condition with respect to the field;

B, if there exists a saddle separatrix of X, tangent to @ only at p,
satisfying the G condition with respect to the ficld;

Bs if there exists a trajectory of X that is neither saddle separatrix nor
periodic, is tangent to €A1 at p, and satisfies the QG condition with respect
to the field.

4.6. Remark. 1f p is a hyperbolic critical point of X and the eigenvalues
of DX, are complex conjugate, then we are allowing it to satisfy condition (b)
of the definition of the quasi-generic critical element of 3, .

5.1. PrOPOSITION. Denote by H, the set of vector flelds X € x", r > 2, such
that:

(1) there exists one point pe M that is a quasi-generic critical element
of X of the type B, , a unique nongeneric critical element of X;
(2) X satisfies Q,, 2,, 2., 82, . Then H, satisfies the M and E conditions.

The proof of 5.1 depends on scveral lemmas.

5.2. LemMa. Let X € §7 have a generic periodic trajectory yg of period .
Given « and T, , positive integers, there exist neighborkoods B of X in §" and V
of yg in N, such that:

(a) to each field ¥ € B corresponds a unique generic periodic trajectory yy
contained in V with period smaller than | 7y — € ;

(b) every trajectory of X meeting GV is transverse to it and spends a time
greater than Ty in N. Furthermore, &V is the union of two closed curves.

See the proof of 5.2 in [4, part VIII].

3.3. Lemma. If X € H, then there exists a neighborhood B of X tn x', such
that:
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(a) euvery Y € B satisfies Q2,, Q,, 84, 2,, B,, B;, By;
(b) if Y& BN H,then Y satisfies By and B, .
The proof of 5.3 follows immediately from [5].

5.4. Lemma. Let Xcy', r > 2, have one point pc &M as a quasi-generic
critical element of the type B,. Then there exist neighborhoods By of X in x'.
Fof pin M, and a C™ function f: B, — R, satisfying:

(@) f(Y) = 0 if and only if Y has one quasi-genevic periodic trajectory
that is tangent to ¢M only at the point py = F and satisfies the G condition; if
f(Y) +# O then Y does not have a periodic trajectory meeting F and tangent to ¢M,

(b) dfy == 0 (see Fig. 4).

Proof. Denote by yy the generic periodic trajectory of X tangent to .M/
at p, by 7, its period, and by @4(p, f) its corresponding flow. Let Xeg bea
representative of X obviously 7, = 7g(p).

Take the ncxghborhoods] of pin N, F,C I and By of X in 3" (V¥ and B,
were given in 3.2); assume F, and B, are contained in F, and B, (given in 4.2),
respectively; furthermore, if ¥ ¢ By then its generic periodic trajectory contained
in P, meets U transverscly at a unique point up; it is clear that the corre-
spondence ¥ > uy is C7.

Let G: (B, % Jo, (X,0))->(R,0) be a germ {C7) defined by G(¥,7)
a(bs(uyp . 7)), where ], is an interval containing the origin and = was given in 4.2.

We have G(X,0) = (Gler)(X,0) =0 and (8Giér? 2)(X,0) # 0; this
follows from the generic property of the contact between X and &M at p.
By the Implicit Function Theorem, there are neighborhoods B,C B, of X,
Jof 7 .+ 0, and a unique C™ ! function 72 (B, , X) > (J, 0), such that (') = 0,
(6G:&7)(¥, =) = 0 if and only if 7 = +(V); assume by continuity (¢ Gy (Y.
(¥)) << 0 for Y & B,. Hence 7(Y) is the maximum (nondegencrate criticai
point) of the mapping T — G(Y, 7) for each Y e B,.

The functionf (B,, X)-> (R, 0) defined by f(Y) -= G(¥, #(¥)) is C"* and
T ¢ f 40) if and only if ¥ is tangent to 831 at Py == Op(uy, (¥)).

Now, we will prove dfg # 0.

First, consider the system of coordinates v = (¥, y.) in a neighborhood
FCFE,of p, with y,(p) = yo(p) = 0, (€iéyy) = X, ypcu =id, and y, ~u =: 0.
If & is a positive small number, let 1 yg N F - R and $,: U NEF->R be
C+ bump functions, having supports in 'y, ! < § and . 3,1 < §, respectively.

We easily obtain dj}(Y) .= (8G[2Y)( X, 0).

Given the field ¥ — 'P Y, (6/?}«'&) in ¥*, consider the C7 curve A: (- -m, 1) > X"
defined by A(A) - == X | AY. Clearly ¥V, = X and «(Y¥,) =0. By a
known formula for the derlvatlve of solutions of differential equations depending
on parameters [3, p. 94] we have (2G/6¥ )X, 0) — (dGidAY(X -+ AT),., 7 0.
Therefore dfs # 0.
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Now, consider the neighborhood of X in ¥, B, = {Y € x"; there exists
¥ € B with ¥},, =. Y}and the C! function f: B, — R defined by f(Y) = f(¥)
where ¥ € B, is a continuous extension (at X) of Y € B, [12, p. 67].

As dfy # 0 we get dfy /- 0 and the proof of part (a) of the lemma follows
from the definition of the function f.

Proof of 5.1. Part (a) follows from 5.2, 5.3, and 5.4. It remains only to
demonstrate part (b).

By an elementary technique, determinc a neighborhood V' of 74 in M,
satisfying:

(1) no periodic trajectory (except 7y) and critical point of X meet V;
(i) M, = M — int(V)is a C* submanifold of W,
(iif)  Xiu, is generic;
{(iv) there is a unique point ¢, of tangency between €17 and X, besides p
(the trajectory passing through ¢, is contained in V" and is different from =);
(v) 9V =C u U S (see Fig. 1), where C, N oM = @, C, U oM ==
{2,} U {v,}, and §; C .S C &M (see 4.2); furthermore ¢o € C, .

int{M)

<

Fic. 1. The ncighborhood V of 74 .

V can be obtained such that any saddle separatrix and any trajectory (of X)
that is tangent to ¢M meet C, ; if .S is the arc of &M given in 4.2, we consider
s[—=1,1]1 =S, s(0)=p, S~ =4[1,0), S~ =s0,1], S, =S5 NS, and
Sy =8NS~

Let B, be the neighborhood of X in y" satisfying. If Y e B, If,, then
the generic periodic trajectory of Y, 7.( ), which is tangent to oM at pe S,
is contained in V' and any trajectory of ¥ meeting V is transversc to C,, C,,
and S, except at p and &, where € C, is the corresponding point to ¢,
associated to Y (¢, is close to ¢p).

As X, is generic, there is a ncighborhood B of X in x", BC B;, such
that if YeB N H, then there cxists a homeomorphism A,: M, — M, (close
to the identity) mapping trajectories of X;, on to trajectories of ¥y, -

Necessarily hy(c,) = & and we require hy(v,) = v;,7 = 1, 2; this is possible
because each ©; is contained in a canonical region of Y € B (see definition of
canonical region in [10, p. 8]).
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Now we will construct a homeomorphism k: M - M, which is a conjugacy
of X with ¥ B H, ; this homeomorphism will be an cxtension of 4, .
Consider the following subregions of 1™

(a) V,, bounded by C, and 74 ;
(b) ¥, bounded by 7, and C, (sec Fig. 2).

16, 2. The subregions V', and I/, of V.

We begin by constructing & in V. Let O be an arc in I) through to g€ C,
and transverse to X; as k, is close to the identity, we determine an arc O (close
to 0), joining p to hy(g) = §, transverse to Y necessarily 4(p) = p and we
define k for all the points of ¥V, similarly to [22, p. 12] (note A(F7) = V).

Let us construct 4 in V,. We will determine three subregions (canonicals
with respect to Xy ) in V; which will facilitate the above mentioned construction.

By the continuity of X, the trajectory of X passing through ¢, meets S,
at ¢, and S,” at ¢;. For Y€ BN H,, therc exist the correspondents &, &,,
and 7, . We require h(c,) = ¢, i = 1, 2. Thus y, (resp. §;) determine in V),
the following subregions (see Fig. 3):

(1) T, (resp. Ty): bounded by (9,¢,)em, (¥1codam, . and (ceéy),, (resp.
(@11)om > @reoan, » and (Fof)g,);

(2) Ty (resp. 74): bounded by (Gba)o . (Esdonr» and (Gafolews (resp.
(szz)aM > (00'02)6:\42 and (C/z?o)yo)

(3) (resp. T): bounded by (yép)oms, vx(p), and (Gy),fresp. (Exdpdons
yv( B), and (&8,)s,).

Fic. 3. The subregions T, of ;.
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"The critical region of X, is formed by the union of yx(P), ¥y, ¢, and v, ;
wc have similarly the critical region of Yy, .
By the same techniques used at [10, p. 12] and [6, p. 153] we ﬁna]ly construct

the homcomorphlqm h. By ratio of arc length we construct h[(cocl) J (r:oq)yo

[(Czco)y I= (szo)yo [('L )] = (7«1‘1)01\1 ; and h[(fzvz)aM] (C"'Lz)cu We send
T; to its correspondent T, ; this is done in the following way:

On T,: let U be an arc in T, joining g € y4(p) to ¢, transverse to X
and let K be an arc C1, close to UJommg hy(g) = K to é, . By ratio of arc lcngth

we construct h[(fl »P)aM] (I P)(w If g, (PCZ)OM and yx(g,) meets (Cl P)ov
Jt s we define A(g,) = §,, where §, is the intersection of y,(h (ql)) and

(pr2)( v - On U, hacts in the following manncr: If u € U, yy(u) meets u; ¢ (cl p)d\,

and u, € (pcy)zay 3 assume A(u) = 4, where @ is the interscction of yy(h(x,))
and U. Now by a straightforward computation we construct # on T,. Finally,
by similar techniques, # is easily defined on T and T, .

Since every point of ¥, belongs to one trajcctory, k is a one-to-one mapping
of V, on to itself; it is continuous by the standard theorem on the continuous
dependence of trajectories on initial data.

‘This ends the proof of 5.1.

5.5. Remark. Given any positive number L > 0, the neighborhood B
of X may be taken, such that the length of every trajectory of Y € B is greater
than L, in V, ; this is obvious by 5.2; furthermorc any trajcctory of Y e B
mecting C, is transversc to M in V.

5.6. Remark. Dcnote by Il,(n) the set of X e H, such that its periodic
trajectory tangent to ¢ has length L, < z; by continuity arguments we
verify that 5.1 holds for Hy(n).

It is not difficult to prove the following.

5.7. PROvOSITION. Denote by H, the subset of H, , of fields X which satisfy
the following additional axiom: (3) The periodic trajectory of X tangent to oM
is neither the o nor the w limit, of either the saddle separatrices or of the trajectory
tangent to eM. Then:

(a) H, satisfies the M, E, and A conditions;
(b) H, = H, — H, is open in H, ;

(c) if XeH, then there exists a neighborhood B of X in x’, such that,
if Y e BN H, we have (1) Y € 2, (i1) Y has one unique saddle separatrix tangent
to ¢M, or (il1) Y has one unique trajectory tangent to éM at two and only two
points. Moreover, in (ii) and (iil) the contact between Y and oM is generic.
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= aM f{Yi<0

@

Fic. 4. The unfolding of X ¢ H, .

6.1. PROPOSITION. Denote by H, the set of fields X € x', r > 2, such that:

(1) There is one point p e &M, that is a quasi-generic critical element of X
of type B, , as the unique nongeneric critical element of X
(2) X satisfies 82,, 2,, 2,, £2,.
Then I1; satisfies the M, E, and A conditions.

The proof of 6.1 depends on scveral lemmas.

6.2. LEmMA. If X e Hy, then there exists a neighborhood B of X in x" such
that any Y € B satisfies 2, , 2,, 2, ,Q,, B, , B,, B;, B, , and B, .

5

The proof of this lemma follows immediately from [3] and 4.4.
We can prove the next lemma in the same way as 5.4.

6.3. LemMa. Let X ey, such that there exists one trajectory yy tangent
to ¢M only at two points Py and P, (P, # P,). Suppose the contact between
X and ¢ M at P, and P, is generic. Then, there exist neighborhoods B, of X in x",
Fyof Pyin N (i == 1,2), and a C™! function f: By — R, such that:

(a) f(Y) =:0 if and only if the trajectory of Y is tangent to ¢M at two
points q; € F, and g, € F, , whose contact between the curve and the field is generic;

if f(Y) # O, then there exists a unique trajectory tangent to M in F, (resp. F,)
at a unique point and it is not tangent to OM at any other point;

(b) df, +# O (see Fig. 5).

S A M M g M
M aaS (NN

f{Y}<0 f(Y)=0 f{y1>0
Fi1c. 5. The unfolding of X e H, .



78 MARCO ANTONIO TEIXEIRA

Now, the proof of 6.1 is analogous to S.1.

6.4. Remark. Ad(H;) N Q, # @ and Ad(H,) N H, : .

6.5. Remark. Denote by Hyn) the subset of H, of fields X, such that
yx has length L < n. Then 6.1 holds for Hy(n).

7

The proof of the following proposition is similar to 5.1.

7.1. ProposSITION. Denote by H, the set of fields X €y, r > 2, such that:

(1) thereis a p € OM, that is a quasi-generic critical element of X of type B,
as a unique nongeneric critical element of X,

(2) X satisfies 2, , 2, , 2., 8, . Then H, satisfies the M, I, and A conditions.

It is convcnient to state the following two lemmas.

7.2. LEMMA. If X € H,, then there exists a neighborhood B of X in y*, such
that every Y € B satisfies 2, , 82, , 2,,8,, B,, B, , By, By, and By .

We can prove the next lemma in the same way as 5.4.

7.3. LemMa. Let X € H, have a saddle separatrix tangent to ¢M at only
one point p. Then there exist neighborhoods By of X in x7, F of p in M, and a C™1
Sfunction F: B, — R, such that:

(@) f(Y)=0 if and only if there exists a saddle separatrix tangent to
¢M at only one point Py € F, and satisfying the G condition with respect to the
Sield; if f(Y) # O then there is no saddle separatrix of Y tangent to ¢M in F;

(b) dfy #* O (see Fig. 6).

A
flY)<0 flY)=0 1{Y)>0
F1c. 6. The unfolding of X € H, .

7.5. Remark. Ad(H,) N Q, # @ and Ad(H,) "\ H, # P.

7.6. Remark. Denote by H(n) the subset of H,, of fields X such that
the saddle scparatrix tangent to M has length L < n. Then 6.1 holds for Hy(n).
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8.1. LemMMA. Let pc oM be a simple critical point of X e x". Then there
exist neighborhoods By of X in x", F of p in M, and a C function f: B, -» R,
such that:

(a) f(Y) == 0 if and only if Y has one unique critical point py € oM N F,
Surthermore py is simple;
by f f(Y) >0, Y has no critical point in F;

() if f(Y)<O, Y has one unique simple critical point p,cl, and
py €int(M).

Proof. Choose X € §” a representative of X, F; a ncighborhood of p in A,
and B, a neighborhood of X in " such that each Y ¢ B, has one unique critical
point pp in F,, which is simple; it is clear that the correspondence ¥ — py
is CT.

Define a C™ mapping f: B, — R by f(¥') = =(ps); it is obvious that f(X) = 0.

Now we will prove that dfy # 0.

Let x = (x;, x,) be the system of coordinates around p given in 4.3. Let
it N — R be a C* bump function with support in Fy =— {g € N with | 2(q)| < &}
(8 > 0) and y(q) -- 1 if | x(q)l < 8.

Since p is a simple critical point suppose, for simplicity, that (¢.X?/0x,)(p) 7 0.
The equality dfg(E) -= #[(DXp)"(Z(p))] (sce [10, p. 24]) implies dfg(V) 7: 0,
where V' = §(@/ox) +~ (1 -- )X

Consider the neighborhood B, of X in x" given by B, -- {Y € " such that
there exist ¥ ¢ By and Y|, — Y} and the C” function f: B, — R, defined
by f(Y) == f(¥'), where Y is a continuous extension of ¥ (at X) in §. Now,
the proposition follows immediately.

8.2. Remark. Denote by H,! the set of ficlds Y € x", such that:
(1) Y has onc unique simple critical point p, € ¢M which is the unique
nongeneric critical element of Y;

(2) Y satisfies Q,, 2,, £,, and all the critical points of Y except p,
are hyperbolic. Let D; be the subset of H|! of ficlds Y satisfying the additional
axiom: ‘“T'he eigenvalues of DY, are rcal and are equals.” Then H! - D,
is open and dense H,!; this follows by considering the CT funetion

8(Y) = o*(Y; p,) — 44(Y; py)-

8.3. ProPOSITION. Denote by H, the set of fields X € x", such that:

(a) there exists one point p € 0M, that is a quasi-generic critical element
of type By as the unique nongeneric critical element;

(b) X satisfies 2, , 2, , 2, , Q2,. Then H, satisfies the M and I ccnditions.

505/25/1-6
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The proof of 8.3 depends on the following.

8.4. Remark. If X eIl , by condition (b) of the definition of the quasi-
generic critical element of type B, , there exists a neighborhood F of p in A,
such that any trajectory of X meets 00 transversally, does not meet ¢/,
or if p is the « or w limit of the trajectory, then “it tends transversally to 6M at p.”

8.5. Remark. Take X e H,, such that pe M, X(p) == 0 and [o*(x, p) —
44(X, p)] < 0. If s is the imbedding given in 4.3 (s[—1, 1] = S), the construc-
tion made in [10, pp. 24-25)] implies that there exists a C7-! diffcomorphism
By of S = s[—1,0] on to ST = 5[0, 1] satisfying the conditions: @,(s(—1)) =
s(1), ©4(p) = p, and, for each «, s(a) and @,(s(«)) belong to the same trajectory;
furthermore, every trajectory of X, except p, is transverse to (S — {p}).

8.6. LEmMMmA. If X < H,, then there exists a neighborhood B of X in x", such
that any Y € B satisfies 2, , 2,, 825, and £2,.

8.7. LeMMA. FEvery X € H has a neighborhood B, in H, , such that if Y € B, ,
then:

(a) There exists a neighborhood F of p in M where given a trajectory of Y¢,
one of the following situations is possible:

(1) the given trajectory is the quasi-generic critical element Py € oM,
(11) the given trajectory meets OM transversally and

(1i1) the given trajectory ‘‘tends to Py transversally to ¢M.”

(b) If X has n and only n critical points (hyperbolics) in int(M), then Y
has n and only n critical points (hyperbolics) in int(M); any Y € B, satisfies 2, ,
2,,9,,92,,B,, By, By, By, and By .

Part (a) of 8.7 follows by the transversality theory and parts (b) and (c)
by [5] and 8.11.

Proof of 8.3. Proposition 8.3(a) is a direct consequence of 8.1, 8.2, 8.6, and
8.7. We will demonstrate part (b) of 8.3.

If X e H,, then we have the following possibilities: (0,) p is a saddle point;
(0,) p is a nondegenerate node; (0,) p is a generic focus. We will consider these
cases separatcly.

(0,) Let X e g be a represcntative of X. Denote by F a neighborhood
of p in A, such that X ; is generic; hence the separatrices S;, £ = 1, 2, 3, 4
of p meet &F transversally. These trajectorics of X determine four subregions T';
of ' (see Fig. T;let T, =T, "M (i —=1,.,4),F=FnML:-eFn M,
and L, = F'n @M. Assume there is no saddle separatrix different from S,
no trajectory tangent to ¢, and no periodic trajectory of X meceting F.
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Fr;. 7. ‘The neighborhood I of a saddle point.

We know that F can be chosen such that X is tangent to af at only four
points; assume without loss of generality that only one point ¢, belongs to M
and ¢y& Ty . Assume L, C S (S, S%, S given in 8.5) and X transversal to
S — {p} (sce 8.9).

Consider a, € S-NF+, a,.5 NF+ and assume for simplicity that if we

go through (alaZ)Ll , we meet first one stable separatrix S, and then onc unstable
separatrix S,, where S;NL, = K, and S;NL, .- K,.

We can assume that L, satisfies the conditions:

(1) there is a neighborhood B of X in y’, such that, it Yec B,n H,,
then p, € F;

(i) the separatrices of p,, S;, and S,, corresponding to S, and S,,
respectively, meet L, in K, and K, transversally;

(i) M, = M — (int F) is a C* submanifold of M;

(iv) the contact between X and L, at ¢, is generic;

(v) X is transverse to L, , except at p.

Since Xy is generic (by construction of A,), there exists a neighborhood
of X in y", BC B,, such that, if Y& B H then Y1y is conjugate to Xy, ;
so we have a homeomorphism (closc to the ideatity) h: M, - > M, mapping
trajectories of X ,, onto those of ¥, . In the process of the extension of A,
to homeomorphism h: M — M, conjugating X to Y, we note that the critical
region of X [ is formed by the unjon of the following trajectories: a,, a,, p,
€, Sy, and S, (see Fig. 7). Then we apply the technique of Peixoto [5] and
we obtain without difficultics the homeomorphism 4.

(0,) Consider the following objects given below, and X, I, F, 1., L,,
S, S, S, 4y, and a, given in (0,). Call £ the cigenspace such that the trajec-
tories of X, except one that we denote by v, , are tangent to it. I can be chosen
such that X is transversc to I., except at one unique ¢, (¢, € y,) and to L, except
at p. Assumc there is no saddle separatrix and no trajectory of X tangent 1o 6M,
meeting L, ; furthermorc no periodic trajectory of X meets 7. Finally we
must observe that the critical region of X, is formed by the union of ¢, , a,,
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P vx (c), and y;; for ¥ close to X, there exist the corresponding objects
a,, ay, py, ‘}’ylF(EO), and ¥, , respectively. Then we use standard techniques
to give the proof (see Fig. 8).

Fic. 8. The neighborhood F of a node.

(0;) In the same same way as in (0,) (or (0,)) we can prove easily the case
when [(o( X, p))? — 44(X, p)] < O (see Fig. 9).

P

a, a,
% . S

Fi1c. 9. T'he neighborhood F of a focus.

8.8. LEMMA. H, is open in y,".
The proof of 8.8 depends on the lemmas given in 8.9.

8.9. Remarks. The following lemmas discuss the behavior of the trajectorics
of a field Y around a hyperbolic critical point, with respect to one given curvc.
Let V be a neighborhood of a point p of R? and let X be a field on R? of class €7,
r > 2, such that p is one unique singularity of X, ; furthermore p is a hyperbolic
critical point of X. Denote by A,, A, the eigenvalues of DX, and by T, T,
their respectives eigenspaces. Consider s:J = [—1, 1] — R? a C*® imbedding
with s(0) — p and S == s(I).

8.9a. LEMMA. Suppose Ay, A, € R, A| # Ay an S transversal to T, , i =1, 2.
Then there exist neighborhoods V| of p in R%, V,CV and B, of X in x"(R?),
such that:

(i) each Y e B; has one unique hyperbolic singularity P, eV, of the
same kind as p;

(i1) there exists a C* function a: B, — R, such that, if P, ¢ SN V7,
then Y(s(a(Y)) is tangent to S at s(a(Y)), for Y € B, ;

(iii) the contact between Y and S in s(o(Y)) 1s generic.

Proof. 1t is known that there are neighborhoods B, of X in ¥"(R?) and V,
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of p in R?, such that each } € B, has one unique singularity Py in V. Consider
the sets S; = SN Vyand I, = s71(S,).

Define a C" function G: By X Iy— R by G(Y,a) = Y(s{(x)) A s'(a); it is
obvious that G(X, 0) = 0.

Let x = (%, , x,) be a system of coordinates around p (say in V) with
ofox;e T;, i .= 1, 2. In these coordinates the components of X, X, , and X, ,
satisfy

c X! oxX?
()

- - o
sz (9]

oX! ox?
(# 0 a—xl(P) ==, and oy (p) = A,

If s(o) = (5;(2x), so(2)), by hypothesis we have s5,(0) 7= 0 and s,’(0) -/- O.
Thus G(Y, a) == Y(s(a)) s'(a) — Y¥(s(e)) 5,'(«) and we get (6G/6a)(X, 0) =
$1'(0) 5:'(0Y(A, — A9)-

Since A, # Ay, then (6G[da)(X, 0) =~ 0.

By the Implicit Function Theorem, there exist neighborhoods B, of X in
x(R?) (ByCBy), I of « =0 in R ({; C1,), and a C* function «: B, - I,
such that o(X) = 0 and G(Y, «) =: 0 if and only if « = «V) = o, .

If Y(s{ay)) £ O, then this vector and s'(ey) are linearly dependents.

The above assertions imply (i) and (ii); part (iii) follows immediatcly from
(¢G/ex)(Y, ay) # 0. This ends the proof of 8.9a.

8.9b. LEMMA. Suppose A; complex, 1 = 1,2. Then there exist neighborhoods,
Viof pin V, By of X in x"(R®), such that:

(1) each Y € B, has one unique singularity p, in V that is hyperbolic and
of the same kind as p;

(1) there exists a CT function o: B, — R, such that if py ¢ SNV, then
Y(s(a(Y)) 1s tangent to S at s((Y)), Ye B, ;

(i) the contact between Y and S at s(a(Y)) s generic.

Proof. Let S,,1,, V,, and G be the objects given in the last demonstration.

Let x = (x, r,) be a system of coordinates around p (say in V), with
0)ox, == §'(0). Thus we have &X'/0x; = 86X*6x, =« and 08X 0x, =
--0X%ox, = B (x # 0, B £ 0). In the same way as 8.9a we prove this lemma
without difficulties.

8.9c. LEMMA.  Suppose p is a hyperbolic critical point of X € x"(R?), such
that Ay <Ay < 0 (or O <A, < Ay). Let s:1 — R? be the imbedding given in
8.11a having the following property. There exists one unique saddle (hyperbolic)
separatrix yy , of length L << co, such that p is its w limit and y, NS = P.
Then there exist neighborhoods V, of p in R? and B, of X tn y'(R?), such that:

(i) each Y € B, is transverse to &V, (8V, is a C® curve);
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1) each Y e B, has a saddle separatrix meeting OV, at one unique
1 Yx ng 1 q
point wy and the correspondence Y — wy is CT;

(1) s((Y)) ¢ yy , where s(a(Y')) is the point of S obtained in 8.11a.

Proof. Parts (i) and (i) follow by [5], and its verification is similar to [9,
Lemma 4.3, p. 27].

Consider V, and B, given in (i) and (ii) and satisfying Lemma 8.9a; assume
S is transverse to ¢} and (1, — 8) and has two connected components, .S,

and S, (see I'ig. 10).

I'16. 10. The neighborhood V', .

Since wy == yy N IV, ¢ .S, assumc by continuity that w, ¢ SNl for
every Y € B; .

Fix in V| the coordinates x -- (x, , x,) around p, given in 8.9a; for £ > 0,
by [2, p- 90], ¥, can be chosen such that | X'(g)/X*4g)! < E for ge I and
vx(g) is not tangent to 77 ; so this inequality holds for Y € B, and ¢ does not
belong to the trajectory of Y close to T [2, p. 87]. Observe that

0 < K, < |s(a)j$,(a) < 00, for ac€l.

Assume 7, and T, detcrmine in V) four quadrants Q;, i = 1, 2, 3, 4 (see
Fig. 10).

Assume, for simplicity, that SN O, U Q, — p and w, € O, N S, ; we will
analyze the cases:

(1} Tf py € S then the demonstration is trivial.

(2) If py e S, Q,, since this point is the w limit of yy , then y, NS ==
A, has (a) one unique point or (b) two points, at least. If (a) occurs then
s(a(Y)) € A1, , since the contact between Y and § in this case is generic. If
(b) occurs then the continuity of ¥ in S implies the existence in S of two points
of tangency between the field and curve, and this is an absurdity.

(3) If py € Oy N S, then y, does not meet S for ¥ close cnough to X;
30 s((Y)) ¢ yy -

The other cases are similar.
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8.9d. Lemma. Lemma 8.9c holds if v, is the unique trajectory tangent to
an imbedded curve in R® (distinct from S) at the unique point q where the contact
is generic.

Proof of 8.8. If p is a saddle point (case (0,)), consider neighborhoods B
of X in " and F of p in M given in 8.6 and satisfying:

(i) no saddle separatrix of ¥ € B, cxcept the ones of py , meets F;

(ii) no trajectory of Y € B, tangent to &34, meets F. This is possible
since the numbers of points of tangency between X and ¢M and critical points
of the ficld are finite.

Lemma 8.9a permits us to choose B and F such that if Y ¢ B and f(Y) # 0,
then there exists one unique trajectory yy of Y tangent to &3 at ¢y €F,
generically: so Y € B satisfies B; and B,.

Since the conditions 2, , 2,, Q;, 2,, B,, B,, By, and B, are trivially
satisfied for Y close enough to X and f(Y) # 0, we have Ye 2 for YeB
and f(Y) = 0.

Using 8.9 we can finish this demonstration without difficulties; i.e., there
exists a neighborhood of X in y”, such that cvery Y € B either belongs to 1,
or belongs to X, .

9
9.1. ProposiTION. Denote by I, the set of fields X € y*, such that:
(1) there exists p € OM, that is a quasi-generic critical element of X of type B
as a unique nongeneric critical element of X;
(2) X satisfies 2,, Q,, Q,, and 2, . Then H; satisfies the M, E, and A

conditions.

We have to state two preliminary lemmas.

9.2. Lemma.  Ewery X e Hy has a neighborhood B in ", such that every
Y € B satisfies Q,, 2,, £,, 2,, B,, By, and B,.

9.3. Remark. Lcemma 9.4 proves in particular that B can be chosen such
that if Y e B then Y satisfies B, .

9.4. Levma. Let Xy, r > 3, having a trajectory yy tangent to ¢M at
the unique point p where the contact between the curve and the field is quasi-generic.
Then there exist neighborhoods B, of X in x", F of p in M, and a C™1 function
f: Bg — R, such that:

(a) f(Y) -=0if and only if Y has a trajectory y, tangent to cM at the
unique point py c I, satisfying the Q.G. condition with respect to Y if f(V) > 0,
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then any trajectory of Y meeting F is transverse to oM in F; if f(Y) < O then
there extst two and only two distinct trajectories of Y meeting F, each one tangent
to ¢M at one point and both satisfying the G condition with respect to Y;

(b) dfy 7 0 (see Fig. 2).

Proof. Consider the neighborhoods B, of X in y’, and F of p in M, such
that no Y € B, has a critical point in F.

Define the C germ G: (B, X R, (X, 0)) — (R,0) by G(Y, a) = Y(s(«)) A
s'(«), where s is the imbedding given in 4.2. We have

L (5.0) = L [¥ () A5 (=) — V(s(e)) As"(e),
% (¥, e) = :Tza [Y(s(e)] As'(2) — 2 ‘% Y(s(@)) | 4As"(@) -+ Y(s(e)) 45" ().

By a direct calculation, we obtain (¢G/8a)(X, 0) = 0 and (0*G/ca®)(X, 0) 7% 0
(we uscd here the quasi-gencric property of the contact between X and ¢M
at p).

Thus by the Implicit Function Theorem, there exist neighborhoods By
of X in y"(B;C By), Jof « = 0in R, and a C™! function a: By — ], satisfying
«(X) = 0 and (8G/oa)(Y, o) = 0 if and only if « = o(Y) = &, . Assume for
simplicity that (€2G/éa®)(X, 0) > O (the other case is similar). Choose Bj
and J such that (6*G/oe®)(Y, a) > 0 for (Y, a)e B; X ].

So ay is the minimum of g,(«) = G(Y, «) for cach Y € By, and:

(i) if gy(eey) > O then gy(a) > 0, € J; this means that Y is transverse
to ¢M around p in M;

(i) if gy(ay) = 0, then gy(a) == 0 (€ J) only if « = &) ;

(i) if gy(dy) <0, by the Intermediate Value Theorem there
exist a;, % ER, o < ay < ay, such that gy(a;) == gy(x,) = 0; however,
(eGléa)(Y, o) # 0,7 =1,2.

If gy(ay) =: 0 and (8G/éa)(Y, ay) =: O then the contact between Y and oM
at s(ay) is nongeneric; (62G/éa?)(Y, ay) # O implies that the contact is quasi-
generic.

If g4(&) = 0 and (8G[8x)(Y, @) # O (a € J), then the contact noted above
at s() is generic.

The application f(Y) = G(Y, ay) shows part (a) of 9.4. We will prove
dfy # 0.

We have f(X) = 0 and dfy(Y) = dG (Y, 0) + (0G]éa)( X, 0) duy(Y).

Since (¢G/da)( X, 0) = 0, we need only show that

dG(x.o)(y’ 0) # 0.
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Consider coordinates around p in M,y = (y;,y,) with y(p) = 0, 9/cy, = X
and a bump function ¢: M — R with support in | y(¢), < 8, 8 > 0 and small
enough; furthermore ¢(g) = 1 for | y(¢)| < 8,, with 0 < §, < 4.

If Y = (&/dy,), consider the CT curve h: [—7, 7] — x" defined by A(}) =
X - AY; call A(d) = Y, . In coordinates Y = (1, A) and G(Y,,0) = A. This
proves 9.4.

7 Y avs

P 27 /’/;/_I_ R o /’//,
7/;-\/ :; //

f(Y)<0 f(Y)=0 f(Y)>0

F1c. 11. The unfolding of X € H.

Proof of 9.1. The M and A conditions follow from 9.2, 9.3, and 9.4, while
the E condition is demonstrated by already known methods.

Part 3. The Submanifold 2|
10

Consider the sets S; = O, U O,(i) U Q1) U H, U H,(i) U Hyi) U Hy(i) U
Hyand 2, = U2, O; Usi Hy - By 1.2, 2.1, 3.4, 5.6, 6.5, 7.6, 8.3, and 9.1
ecach §; (1 = 0,1, 2,...) satisfies the M condition; since S;C S;., and Z; =
U; S;, this subset of ¥ satisfies the I condition.

Proof of Theorem A. The above considerations guarantee us the existence
of Z, . Part (b) follows from 1.1, 2.1, 3.1, 5.1, 7.1, 8.3, and 9.1. Part (a) follows
from a sequence of approximations similar to those used in 5] (to get the
density of X, in x") and [22]. By a straightforward computation one proves
the following lemmas.

Lemma A.  Denote by Q,° the set of fields X € x" having nongeneric periodic
trajectories contained in int(M). Then Q, is dense in Q0.

Levma B.  Denote by Q,° the set of fields X € x,” having nongeneric critical
points contained in int(M). Then Q, is dense in Q,°.

Lemma C. Denote by Q,° the set of fields X € x,” which have saddle connec-
tions (comtained in int(M)) or nontrivial recurrent orbits, and all the field’s critical
points and periodic trajectories are tn int(M). Then Q; U Q, U O, is dense in Q..

Levma D.  Denote by H° the set of fields X € y," having periodic trajectories
tangent to oM. Then H,LL C Ad(H, U Q,).
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LeMmMA E.  Denote by IL° the set of fields X € x," having critical points
in cM. Then H,° C Ad(H, U Q).

Lemma F.  Denote by H the set of fields X € x,” having trajectories tangent
to ¢M in more than one point, none of then being periodic or saddle separatrix.
Then H C Ad(H,).

L.eMMa G. Denote by H,° the set of fields X € x," having saddle separatrices
tangent to ¢M. Then I, C Ad(H, W H, U O, U Q).

LemMa H.  Denote by H® the set of fields X € x,” having one point p € oM
such that it does not satisfy the G condition with respect to X. Then H C Ad(Z,).

Sincey,” = 0,V 0,°V Q.U H°U HL U HU H' U H, Lemmas A-H
imply immediately that 2, is dense in x,".

11. Final Remarks

11.1. Remark. Denote by £, the set of first-order structurally stable vector
ficlds of y" (see the definition in [10, p. 35]). Then 2, = Q, U 0, U 0, U
H,u H, U II, U H, U Hy ; furthermore 2, satisfics the M and A4 conditions.
This follows by 1.4, 2.1, 3.3, 5.7, 6.1, 7.1, 8.8, and 9.1.

11.2. Remark. Let I — [a, b] be a closed interval. Denote by @' the space
of C! mappings &: 1 --» x", with the C’ topology. We say Ay € J is an ordinary
value of ¢ ¢ @7 if there is a ncighborhood N of Ay such that £(A) is topologically
cquivalent to £(A,) for every A € N if A, is not an ordinary value of ¢, it is called
a bifurcation value of £ Obviously, if &A,)€Z,, (resp. €(X) € x17), Ap is an
ordinary (resp. bifurcation) value of £. If ¢ is transverse to X, then every
A € E7Y(Z)) is a bifurcation value of £.

11.3. Remark. We say ¢, and €, of @* are conjugate if there is a homco-
morphism A: I — I and a map H:! — homeo.(M), such that H(A) is a con-
jugation between £,{A) and £&,(A(2)) (homeo.(3f) denotes the group of homeo-
morphisms of M). With this concept of conjugacy, the structural stability
in @7 is defined in an obvious way. Let us denotc by AT, the collection of the
elements € € @7 such that:

(N §(I)CX()U 21 ;
(2) ¢is transversal to 5, ;

(3) é&(a) and £(b) are in Xy . We have the result, “Any £ € A7 is structuraly
stable.”
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