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INTROI)I:CTIOX 

Let ;CI be a CY* two-dimensional orientable compact manifold, r&h houndury 
&Vi’. x’ will denote the space of the 0’ vector fields on M, with the C’ topology 
(it is a CT Hanach manifold). 

\\:e are concerned in this study with certain types of vector fields which 
arc not structurally stable in x’; namely, in generic vector fields in xlr -= 
x’ - Z”, where Z,, is the set of structurally stable vector fields of x’. 

‘I’hc main result is the following. 

THEOREM A. For t > 3, there exists u C’-l submanifold Zl , having codimm- 
sion one which is immersed in xr, and satisfies: 

(a) Z, is dense in x17 (both with the relative topofofy); 

(b) for my X in Z, , there exists a neighborhood B, in the intrinsic topology 

?fZ,, such that any Y in B, is topolo@ally equivalent to .Y”. 

‘I’hc part of Z, imbcdded in x’ coincides with elements of x’ which are first- 
order structurally stable. 

In Section 0 we give definitions, recall standard facts, and establish our 
notation. 

Section 1 is devoted to the construction of Z, and the proof of Thcorcm A. 
It is divided into three parts. In the first part we adapt the quasi-generic fields 
studied by Sotomayor [22] to manifolds with a boundary. In part 2 we study 
fields which are nongeneric due to the contact between the field and a&Z. 
Finally in part 3 WC prove Theorem A. At the end of certain paragraphs we 
include some remarks which prepare the way for the study of first-order 

structurally stable fields. 

.* ‘J’his rcscarch was partially supported by FJNEP, Financiadora de Estudos e Projetos, 
Brxzil. 
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0. PRELIMINARIES 

WC will consider dynamical systems gcncrated by tangent vector fields 
(differential equations) on manifolds with a boundary. For simplicity M will 
be imbedded on a two-dimensional C” manifold IV, without a boundary. 

Two vector fields 2, , X2 on N are said to bc germ equivalent on kl if they 
coincide on a neighborhood of M. .4 vector field X on M is, by definition, 
a class of germ equivalent (on M) tangent vector fields defined on hr. It is 
said to be of class Cr if it has a representative X of class Cr on N. 

Let 6 be the flow of a representative X of X; 6 is defined on a set D(X) = 
{(x, t) E R’ x R, 1 E I(r):, where I(,) is an open interval with extremes I, 
G(X). The flow 0 of X is defined by @(x, t) = @A!, 1) for x E AZ and t E I(x), 
where I(.y) is the maximal interval containing t = 0 (@(x, 0) : x) for which 
6(x, 1) E AZ. We denote by a(x) (rcsp. W(X)) the lower (rcsp. upper) extreme 
of this interval; it may be that one, both, or none of the extremes of I(s) are 
infinite, finite, or even zero. Clearly 0 and its domain D(X) do not depend 
on the representative X of X. Furthermorc, any two representatives of X 
define flows on N which coincide on a neighborhood of D(X). We call 8 their 
germ on D(X); Q, = !S lDcx) . 

The orbit y(s) of X, passing through x E M is by definition the image of 
I(.*) by the integral curve map ax(x, ): 1 -b 0*(x, t). Orbits are oriented by 
the orientation induced by this map from the positive orientation of I(x); 
an orbit of X, with no distinguished parametrization, is a trajectory of X. 

Germ orbits and germ trajectories are defined similarly. 

0.1. DEFIMTION. Two vector fields X, Y on M are said to be conjugate 
if there exists a homeomorphism h: A.1 -+ M mapping trajectories of X onto 
trajectories of Y. 

We denote by 2’ = x’(N) the equivalent space of x’. 

0.2. DEFINITION. X E x’ is structurally stable in x7, if it has a neighborhood 
B in xr such that X is conjugate to every YE B. 

It has been shown in [5, 61 that Za is open dense in xr (Y > 1) and coincides 
with the collection of vector fields X such that: 

Qi: X has all its singular points generic (or hyperbolic); 

R,: X has all its periodic trajectories generic (or hyperbolic); 

Q,: X does not have saddle connections; 

Q,: X does not have nontrivial recurrent trajectories; 

B,: X has all its singular points in the interior of M; 

B,: X has all its periodic trajectories in the interior of M; 
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B,: any trajectory of X has at most one point of tangency with Z.1.2; 

B,: any saddle scparatrix of X is transverse to CM; 

&: if a trajectory of X is tangent to ZM in p, then the contact hctwccn 
the two curves in p is of the 2nd order; 

R,: there exist only a finite number of points of tangency of .Y and i;;VI. 

It is proved in [I I] that the conditions B1 , R, , R:, , B, , B, imply H, . 
For the sake of reference, the concepts of generic singular point, generic 

periodic trajectory, saddle connection, quasi-generic singular point, quasi- 
generic periodic trajectory. quasi-generic saddle connection are contained 
in [IO]. 

WC denote by d(X, p) and u(X, p) the determinant and the trace of DX,, 
(derivative of X at p), respcctivcly. 

The definitions of imbedded and immersed Hanach submanifolds of class C’ 
and codimension K of a Ranach manifold of class C:= are given in [IO, p. 71. 

0.3. Observations and notations. (a) We will fix on ‘\: a Riemannian metric 
of differentiability class large enough for our purposes. 

(b) The positive limit set of an orbit y(p) of .Y is the set of points y F :W 
which are limit points of sequence of the form @(p, f,J with t,, tending to 
w(p); we &note this set by L’(p) and the negative limit set I,-(p) has a similar 
definition. Thcsc definitions do not depend on y c v(p). If 

w(p) < tm (rcsp. n(P) > -cc~), 

then L-. (p) (resp. L-(p)) is th e single point @(p, OJ( p)) (resp. @(p, CZ( p))) and 
belongs to idl. 

(c) The following notations will bc used in the text. 

(i) AZ --F is the set of points Q E df, such that 4 $ F; 

(ii) int(,Vl) is the interior (topologic) of M; 

(iii) if tl, z’ E T(M) (T(:li) is the tangent space of -If), then u A TY will 
denote the exterior product of u and c; 

(iv) (F, p) is to bc regarded as a flow box around p of some vector field. 

For 0 E xr WC have the definitions: 

0.4. We say that Q satisfies the I condition (rcsp. N condition) if it is an 
immersed (rcsp. imhedded) ISanach submanifold of class Cr-’ and codimension 
one of xr. 
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0.5. WC say that Q satisfies the E condition if every X E Q has a neighbor- 
hood B in Q such that cvcry Y E B is conjugate to X. 

0.6. iVe say that Q satisfies the A condition if Q is an open set of xr, 

I. THE SITMWIFOLD Z, 

I’art 1 

We will consider in this part the quasi-generic elements of a vector field 
which belong to the interior of M; basically the demonstrations of 1.1, 1.2, 
1.4, 2. I, and 3. I are due to Sotomayor [lo]. 

I 

1.1. PROPOSITION. Denote by Qz the set of rector fields X E f, r > 2, such 
that: 

( I ) X has one quasi-generic trajectory as unique nongeneric periodic trajectory; 

(2) X satisjes J?, , Q, , sr, , H, , H, , B, , H5 , and B, . Then 0, satisfies 
the I and E conditions. 

See the proof of I.1 in [IO, p. 91. 
It is convenient to give the following. 

I .2. IXkIM.4. Call &(n) the set of X c Qz such that its quasi-generic periodic 
trajectory has length less than n. Then Q,(n) satisfies the A, 31, and E conditions. 

1.3. Remark. Call Q2 the subset of Qz of vector fields X, which satisfy: 

(a) There exists no q c 111 yr, such that L+(q) = I,-(q) 7 yr. 

(b) There exist no saddle points s, of X in M, i = 1, 2, such that 
L-(kru(s,)) = 1. (W(S~)) -. yr, where MTA (resp. W‘) is the stable (resp. 
unstable) submanifold associated to the critical point. 

(c) Xssociatcd to X there exist no (s, q) E M x M, where s is a saddle 
point of X, 9 E 5M and X(9) is tangent to ZM at this point, such that L (q) = 
L-( W’“(s)) = yx . 

(d) ‘I’hcrc exists no p, E %.M, i = 1, 2, such that X(p,) is tangent to 
6:11 at pi , with L-(p,) = L-( pz) = yx (th e case p, .: pa is not excluded). 

1.4. PRol~oxrro~. 0, satisfies the &I, E, and A conditiom. 

1.5. Remarks. (i) If yx is the ti and w limit of saddle separatrices, then 
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it can be shown that there is Y, arbitrarily close to X, which has saddle connec- 
tions having arbitrarily large length. 

(ii) If there exists a trajectory 77 of X, which has yx as the (Y and w limits, 
then it can be shown that there is k, arbitrarily close to X, which has a non- 
generic periodic trajectory meeting F and arbitrarily large length. 

(iii) If there exists a trajectory or of X which has yx as the a limit and a 
saddle scparatrix Q of X having yx as the w limit then it can be shown them 
is l’, arbitrarily close to X, having a saddle separatrix tangent to t’M: further- 
mom, its Icngth is arbitrarily large. 

(iv) If there exist two distinct trajectories of X. both having tangent) 
points of ?.M and having its OL and w hmits coinciding with a quasi-generic 
periodic trajectory, then there csists 1’ close to X, such that it has a trajectory 
which is tangent to ?&I at two distinct points; furthcrmorc its length is arbitraril! 
large. 

2 

2.1. htOI~OSITIOS. Denote by Q, the set of vector ,fields X E x’, R ‘; i. 
such that: 

(I) X has a quasi-generic critical point as its unique nongeneric critical point; 

(2) X satisfies Q, , !& , Sz, , BI , B, , B,, , B, , R, , and B, . 

Then Q, satisfies the M, E, and .4 condition?. 

3 

3.1. PROPOSITION. lIenote by QR the set of vector fields X 5 ,f, r > 1, such 
that : 

(1) X has one quasi-generic saddle connection as its unique saddle connection; 

(2) X satisfies f2, , Q, , Q,, B, , B, , B, , B, , B5, and R, . 

Then Q, satisfies the I and E conditions. 

3.2. Remark. Kate that in 1.1, 2.1, and 3.1 the quasi-generic periodic 
trajectory, the quasi-generic critical point, and the quasi-generic saddle connec- 
tion, respectively, are “away from” arM, then the Hi conditions, i = 1, 2 ,..., 6 
hold for small perturbation of X E 0, u 0, u 0,. 

3.3. Remark. If the saddle connection of Xc 0, is an autoconnection 
at a saddle p, then a closed curve C is constructed in [IO] which is arbitrarily 
close to yx U {P} and such that any Y close to X is transverse to C. Denote 
by f?, the subset of 0, consisting of fields X which have the following properties: 
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No trajectory of X which is tangent to 6M meets C and no saddle separatrix 
of X meets C. Then 0, satisfies the M, E, and --I conditions. 

3.4. Remark. Call Qa(n) the set of X E Qs , such that the saddle connection 
has length less than n. Then & satisfies the M, E, and A conditions. 

Part 2 

In this section we are going to study the families of nonstable fields, whose 
instability arises from the contact of the trajectories with SM. We will be using 
frequently techniques and results of Peixoto [6, 71 and Sotomayor [lo]. 

4 

4. I. DEFISITIOK. p E i&Z is a generic critical element of X E xr if it satisfies 
the conditions: 

(6,) no periodic trajectory of X is tangent to a~%’ at p; 

(h,) X(p) f 0; 

(ba) if a trajectory y of X is tangent to Z&I at p then y is transversal to 
ani at any point 4 E y, q # p; 

(b,) no saddle separatrix of X is tangent to 5&f at p; 

(bJ if a trajectory y of X is tangent to Z&f at p, then the contact between 
y and aM at p is of 2nd order (we will say that the contact between X and 
a:111 at p is generic; see construction 4.2). 

4.2. .4 construction. Let p E CM, let yx(p) be a trajectory of X E xT passing 
through p, and let X E r be a representative of X. Let u: (R, 0) -+ (N, p) 
be a C” germ of an imbedding, transverse to a;12 at p. Also, let s: (R, 0) --• 
(6M,p) be a C* germ of an imbedding. By the Implicit Function Theorem 
0 = (s, U) is a Cx germ of a diffcomorphism u: (R2, 0) - (N, p). Denote by n 
the second component of the inverse function u-r: (N, p) -+ (R”, 0). Finally 
we consider the germ TX: (R, 0) -+ (R, 0) defined by XX(‘) = a(@p(p, t)). 
By continuity, n(@p(q, t)) is defined in a neighborhood B x p, of (2,~) in 
r x N: For each YE 8, consider the C’ germ 57~: (R, 0) --F (R, 0) defined 
by rrp(t) = n(@p(q, t)) for all q E E, . It is clear that yx is tangent to ZM at p 
if and only if a,‘(O) = 0 for every representative X of X. Observe that 
~2: (K, 0) + (R, 0) can bc defined without dificulties for t, # 0. 

4.2.1. DEFINITION. We say that p E 6AI satisfies the G condition with 
respect to X, or the coniact between X and a32 at p is generic, if rrz’(O) = 0 
and ~20) :I 0. 
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4.2.2. DEFINITION. We say that p E 2112 satisfies the QG condition with 
respect to X or the contact between X and &VI at p is quasi-generic, if TX’(O) :y 
~$0) .= 0, and @(O) f 0. 

Obviously, these definitions depend neither on the transversal germ u, 
nor on the particular representative 8 of X. 

4.3. Remarks. (a) (:ondition b, is equivalent to the G condition. 

(b) For future reference consider the coordinates x :: (s, , x2) (defined 
in a neighborhood PI of p in ;\r) whcrc 

s,(p) = x2(p) -. 0, x1 3s = id, x2 o II = id, x1 0 u = x2 0 s = 0. 

It is UJnvenient to observe rz(f) = &(@x(p, t)). 

(c) Denote by U and S arbitrarily small closed neighborhoods of p 
in u(R) and s(R), respectively. \\‘e will assume the positixc orientation of I.: 
given by the outward sense from 31. 

4.4. h3lMA. Assume the notations of 4.2. If the contact between X E xr 
and Cdl at p E SM(X(p) f 0) is generic, then there exist a neighborhood B, 
of X in x’ and u C’ function a: B, -• R such that Y(s(@‘)) is taryent to 8Al 
at s(cr( I’)); furthermore, the contact betu:een I’ and i?,14 at s(cy( 1’)) is generic. 

Proof. Consider the germ G: (x’ x H, (X, 0)) -+ (R, 0) of class C’, defined 
by G( I-, a) = Y(.r(,)) A s’(n). 

Let N : : (x1 , .x2) be a system of coordinates around p; assume x,(p) = 
x.,(p) -7 0, Z/k, = X(p), and that s = (sl , sz) arc the components of s in 
this system with s(0) - p. 

By a direct calculation we obtain (r?C/Sx)(X. 0) = s:(O) f 0; this follows 
since the contact between X and 2-V at p is generic. By the Implicit P’unction 
Theorem, there are a neighborhood B, of X in $ and a unique C’ function 
(r: H, -+ R such that a(X) : : 0 and G(Y, a) :: 0 if and only if a: = a(Y). 
Furthermore, by continuity B,, can be dotermined such that the contact between 
Y and 232 at s((r(Y)) is generic. This finishes the proof. 

4.5. DEFINITIOS. p E ZM is a quasi-generic critical element of XE xr of 
the type: 

fir if X(p) = 0 and 

(a) p is hyperbolic; 

(b) the eigcnspaces of I)X, arc transverse to ?:\I at p; 

(c) the eigenvalues of DX,, are not equals; 

(d) if p is a node (see [2]) then the trqjectory of A’ that is tangent 
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to the eigenspacc of DX, associated to the eigenvalue of larger absolute value, 
is not tangent to k?M and is not a saddle separatrix; 

Se if there exists a generic periodic trajectory of X tangent to ZM only 
at p, where the G condition is true; 

/I3 if the trajectory of X passing through p is neither periodic nor saddle 
separatrix and it has only one point of tangency q with GM besides p; further- 
more, p i Q and both satisfy the G condition with respect to the field; 

18, if there exists a saddle separatrix of X, tangent to aM only at p, 
satisfying the G condition with respect to the field; 

/I5 if there exists a trajectory of X that is neither saddle separatrix nor 
periodic, is tangent to %M at p, and satisfies the QG condition with respect 
to the field. 

4.6. Remarh. If p is a hyperbolic critical point of X and the eigenvalues 
of DX, are complex conjugate, then we are allowing it to satisfy condition (b) 
of the definition of the quasi-generic critical element of & . 

5 

5.1. PROIJOSITION. Denote 6y Hz the set o/ vector fields X E x’, r > 2, such 
that : 

(I) there exists one point p E BAY that is a quasi-generic critical element 
of X of the type & , a unique nongeneric critical element of X; 

(2) X satisfies R, , Q2 , Q, , Q4 . Then Hz satisjies the M and E conditions. 

The proof of 5.1 depends on several lemmas. 

5.2. La%InlA. Let x E r have a generic periodic trajectory yx of period TV . 
Given E and TO , positive integers, there e.rist neighborhoods fI of J? in r and V 
vf yx in IT, such that: 

(a) to euch field P E B corresponds a unique generic periodic trajectory ye 
contained in r with period smaller than 1 T” - E ; 

(b) every trajectory cf 8 meeting SP is transverse to it and spends a time 
greater than TO in A’. Furthermore, ZP is the union of taco closed curves. 

Set the proof of 5.2 in [4, part VIII]. 

5.3. LEMM4. !f X E Ht then there exists a ne<yhborhood H of X in ,y’, such 
that: 
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(a) mzry Y E B satisfies Q, , % > 3, .Q, , B, , 4, 4 ; 

(b) ij 1‘ G. B n II, then Y satisfies B, and B, . 

The proof of 5.3 follows immediately from [5]. 

5.4. l,EafM.\. Let X E x’, r > 2, have one poi?zt p c 6M as a quasi-~~enerir 
critical element of the type & . Then there exist neighborhoods II, of .Y in x”: 
F of p in .lI. and a CT-’ junction.fi R, 4 R, satisfying: 

(a) .f( Y) = 0 if and only ;f Y h as one quasi-gerzbr periodic trajectory 
that is tangelzt to 6.114 only at the poi?zt pu ‘: F atzd satisfies the G conditiotz; 11 
f(Y) :/ 0 then Y does not have a periodic trajectory tneetirzg F and tangent to ?.$I; 

(11) djx 1 0 (see F;S. 4). 

Proof: I)enotc by yx the generic periodic trajectory of X tangent to i;.V 
at p, b> r0 its period, and by Qx( p, t) its corresponding flow. Let .f E r be a 
reprcscntativc of X; obviously 7x = T*(P). 

‘I’akc the neighborhoods I;? of p in IV, r?, C C’ and &, of 2 in 2” (i7 and B, 
were given in 5.2); assume p,, and d, arc contained in ZT, and d, (given in 4.2), 
rcspectivel>; furthermore, if f c B,, thsn its generic periodic trajectory contained 
in f, meets u transversely at a unique point up ; it is clear that the corre- 
spondencc F l up is Cr. 

h G: (B,, x In , (X, 0)) z (R, 0) b e a germ (P) dcfincd by G( f, T) --: 
~(I+!JF(u~. :)), where lo is an interval containing the origin and r \\as given in 4.2. 

\Ve have G(.P, 0) x (@i&)(8, 0) -= 0 and (&/~?)(x, 0) f 0; this 
follows from the generic property of the contact between A’ and i:JI at p. 
By the Implicit Function Theorem, there are neighborhoods 8, C & of 2, 
/of 7 0, and a unique C’ ’ function :: (R, , 8) + (J, 0), such that r( ‘?) -- 0. 
(X~,&)( f, T) 7 0 if and only if T = r(P); assume by continuity (iG/i.P)( P. 
T(F)) < 0 for r E B, . Hence T(F) is the maximum (nondegencrate criticai 
point) of the mapping T -* G( 9, T) for each P E i?! . 

‘l’he function fi (ha , x) - + (R, 0) defined by f( p) -: c( f. T(E)) is Cr.-’ and 
f C[ ‘(0) if ;md only if P is tangent to aill at P, = @g(zrp, T(P)). 

Now, wc will prove f7& + 0. 
First, consider the system of coordinates .v = (yI , y.,) in a neighborhood 

J: C I:,, of p, with yl( p) = Y,(F) = 0, (Z;Zyz) = .F, yZ : I( .= id, and y1 7 u 7:. 0. 
If 6 is a positive small number, let I+!Q: 72 n F --F R and &: L; n E -+ R bc 
P- bump functions, having supports in ye ! < 6 and yz I < 6, respectively. 

\Vc easily obtain d&+(Y) :: (ac/aP)(R, 0). 
Given the field 1’ 7 YY,Y2(Eli;y,) in z“, consider the C’ CUI’VC h: ( 7, 0) --> 2’ 

defined by /z(h) :. ‘i*, -: x I- ,\F. Clearly 9, = a and ~(p,,) : 0. Hp a 
known formula for the derivative of solutions of differential equations depending 
on pararnetcrs [3, p. 941 we have (%?‘/~?r)(.q, 0) - (dG;dA)(.? -T hf),,;, 7' 0. 
‘Therefore die + 0. 



74 MARCO ANTOK TEIXEIRA 

sow, consider the neighborhood of X in x7, B, = {YE x’; there exists 
P E l? with Y,, - Y} and the C-r functionf: B, + R defined byf( Y) : f(p) 
where P E a, is a continuous extension (at X) of Y E B, [12, p. 671. 

As dfx # 0 WC get df, :/- 0 and the proof of part (a) of the lemma follows 
from the definition of the function J 

Proof of 5.1. Part (a) follows from 5.2, 5.3, and 5.4. It remains only to 
demonstrate part (b). 

By an elementary technique, determine a neighborhood I’ of 7X in M, 
satisfying: 

(i) no periodic trajectory (except TV) and critical point of X meet I’, 

(ii) Al, = M - int( I’) is a C” submanifold of iV1; 

(iii) X,Mt is generic; 

(iv) there is a unique point cU of tangency between 6V and X, besides p 
(the trajectory passing through r,, is contained in I’ and is different from TV); 

(v) aV = C, u C, u S, (see Fig. I), where C, n a&Z = 0, C, u 8M == 
(z,} u {~a}, and S, C S C ZM (see 4.2); furthermore ca E Ca . 

aM>.-aM 
FIG. I. The neighborhood V of 7x . 

I’ can be obtained such that any saddle separatrix and any trajectory (of X) 
that is tangent to 8M meet C, ; i f S is the arc of EM given in 4.2, WC consider 
s[- I, I] = S, s(O) = p, S- = s[l, 0), S- = ~(0, 11, S,- = S, n S, and 
s, 1 s, n ST. 

Let B, be the neighborhood of X in x’ satisfying. If YE B, n II,, then 
the generic periodic trajectory of Y, T,(P), which is tangent to i%’ at $6 S, , 
is contained in I’ and any trajectory of Y meeting V is transverse to C, , C, , 
and S, except at 3 and E,, , where EU E C2 is the corresponding point to ca , 
associated to Y (& is close to ca). 

As X,,, is generic, them is a neighborhood R of S in xc, B C Bz , such 
that if YE B n N, then there exists a homeomorphism ha: Ma -* iI’f2 (close 
to the identity) mapping trajectories of Xt,W on to trajectories of YIAft. 

Necessarily h,(r,) = E, and we require /~a(;,) = oi , i = I, 2; this is possible 
bccausc each CJ~ is contained in a canonical region of YE B (see definition of 
canonical region in [IO, p. 81). 
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Sow we will construct a homeomorphism h: M --, M, m-hich is a conjugacy 
of X with YE B n Ha ; this homeomorphism will bc an extension of h, . 

Consider the following subregions of b’: 

(a) rrl , bounded by C, and 7x ; 

(b) LIZ, bounded by rX and C, (see Fig. 2). 

aMF --aM 

FIG. 2. The subregions V, and V2 of V. 

We begin by constructing h in V, . Let Q be an arc in I,‘, through to q E C, 
and transverse to X; as h, is close to the identity, we determine an arc & (close 
to Q), joining fi to h,(q) = q, transverse to Y; necessarily h(p) = p and we 
define h for all the points of V, similarly to [22, p. 121 (note h(P’r) =_- b’,). 

Let us construct h in Vs. We wiLl determine three subregions (canonicals 
with respect to Xlyl) in V, which will facilitate the above mentioned construction. 

By the continuity of X, the trajectory of X passing through cc, meets S,+ 
at cz and S,- at cr . For Y E B n H, , there exist the correspondents E1 , E, , 
and 7”. We require h(cJ = c~, i = 1, 2. Thus y,, (resp. TO) determine in V, 
the following subregions (see Fig. 3): 

cI (I) TA (resp. Fr): bounded by (G1)sM, (GO)sM, y and (&&),, (resp. 

(V~)BM , h&M, , and (~~A9J; 

(2) T2 (rcsp. 3’s): bounded by (c2,)sM, (@&M, and ($&+ (resp. 

6hm > (&ih, , and ~6&,); 

(3) (resp. Ta): bounded by (Z,)sM, v,(p), and ($I),.O(resp. (ZTs)aM, 

YY( P), and (~6&,). 

ah4 LL+$--ab4 

FIG. 3. The subregions T, of V3. 
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‘The critical region of X:,% is formed by the union of rx(p), yU , z, , and ~1~ ; 
WC have similarly the critical region of Ylyp . 

Ry the same techniques used at [IO, p. 121 and [6, p. 1531 we finally construct 
s--3 

the homeomorphism h. Fly ratio of arc length we construct: h[(c,,cJ.,J : (GJt, ; 

/~[(;a), ] = ($J, ; h[(&)] = (z,)E&, ; and A[(;&] = (cGp)pII, . \jTe send 
T, to it: CorresponOdent If, ; this is done in the following way: 

On Tx:3: I,et U bc an arc in TR , joining q E rx(p) to c0 , transvcrsc to X 
and let K be an arc CL”, close to c’joining h,(q) r- (I to ?a . By ratio of arc length, 

we construct h[(ci/Fp)a,,,] .- (E;I#)i;,v . If q2 E ($$a&, and yx(q2) meets (c:~)B,,, 

at yt , we dcfinc h(q,) 7: &, where qa is the intersection of YY(h(ql)) and 

(&!&, . On C, h acts in the following manner: If tl E U, y,(u) meets U, E (itb)s,,, 

and II:! E (G&, ; assume h(u) = I, where P is the intersection of yr(h(~,)) 
and G. Now by a straightforward computation we construct h on T:, . Finally, 
by similar techniques, h is easily defined on Tt and T2. 

Since every point of If2 belongs to one trajectory, h is a one-to-one mapping 
of V, on to itself; it is continuous by the standard theorem on the continuous 
dependence of trajectories on initial data. 

‘This ends the proof of 5.1. 

5.5. Kemarir. Given any positive number L > 0, the neighborhood B 
of X may be taken, such that the length of every trajectory of YE B is greater 
than L, in V, ; this is obvious by 5.2; furthermore any trajectory of I; E B 
meeting C, is transverse to ad3 in C’. 

5.6. I&mark. Denote by n,(n) th c set of X E Hz such that its periodic 
trajectory tangent to 2~11 has length I,,, < n; by continuity arguments we 
verify that 5.1 holds for H,(n). 

It is not difficult to prove the following. 

5.7. PR~P~sITI~~\;. Denote by A, the subset of H, , of $elds X which satisfy 
the following additional axiom: (3) The periodic trajectory of X tangent to aM 
is neither the 01 nor the w limit, of either the saddle separatrices or of the trajectory 
tangent to SM. Then: 

(a) I?, satisfies the M, E, and A conditions; 

(b) A,’ = H, - J’, is open in Hz ; 

(c) if X E fi2’ then there exists a neighborhood B of X in x”, such that, 
if J’ E R n Ho we have (i) Y E 2-, , (ii) Y has one unique saddle separatrix tangent 
to ZM, or (iii) Y has one unique trajectory tangent to 8.11 at two and only two 
points. Moreover, in (ii) and (iii) the contact between Y and b&Z is generic. 
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0 
aM f(Y!<G 

0 

FIG. 4. l’he unfolding of Xc II, 

6 

6.1. PROPOSITION. Denote by H3 the set of fields X E x’, I > 2, such that: 

(I) There is one point p E 3:1/I, that is a quasi-generic critical element of X 
of type & , as the unique nongeneric critical element of X; 

(2) X satisfies 0, , I&, Q, , Sz, . 

‘Then II, satk$es the M, B, and A renditions. 

The proof of 6.1 depends on several lemmas. 

6.2. LEMMA. If X E Hz, then there exists a netihborhood R of X in xr such 
thatany I’EBsatisfes~;2,,Q,,SZ,,S2,, B,, B,, R,,, H,,andB,. 

The proof of this lemma follows immediately from [j] and 4.4. 
We can prove the next lemma in the same way as 5.4. 

6.3. J,EMMA. Let X E f, such that there exists one trajectory yx tangent 
to ZM only at two points I’, and Pz (P, $: I’J. Suppose the contact between 
X and c.11 at P, and Pz is generic. Then, there exist neighborhoods B, of X in x*, 
Fi of Pi in :V (i = 1, 2), and a Cr-lfux&m f: B, -+ R, such that: 

(a) f(Y) -I: 0 if and onfy if the trajectory of Y is tangent to EM at taco 
points q1 E Fl and qz E Fz , whose contact between the curve and the field is generic; 
if f(Y) f 0, then there exists a unique trajectory tangent to Z,VZ in Fl (resp. F.,) 
at a unique point and it is not tangent to 3M at any other point; 

(b) df= # 0 (see Fig. 5). 

f(Y)<0 f(Y)-0 flYI> 

FIG. 5. The unfolding of X E If, . 
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Sow, the proof of 6.1 is analogous to 5.1. 

6.4. Remark. .4d(H,) n Qz # @ and Ad(H,) n Hz -,f- @. 

6.5. Remark. Denote by HAn) the subset of II, of fields X, such that 
‘yx has length L < n. Then 6.1 ,holds for H,(n). 

The proof of the following proposition is similar to 5.1. 

7.1. ~OPOSITION. Denote by H4 the set of $elds X E x7, r > 2, such that: 

(1) there is a p E aM, that is a quasi-generic critical element of X of type /$ 
as a unique nongeneric critical element of X; 

(2) X satisfies Q, , J2, , 9, , Sz, . Then H3 satisfies the M, E, and A conditions. 

It is convenient to state the following two lemmas. 

7.2. LEMMA. If X E H4 , then there exists a neighborhood B of X in x*, such 
that mery Y E B satisfies Q, , Sz, , Qa , Sz, , B, , B, , B, , B, , and B, . 

We can prove the next lemma in the same way as 5.4. 

7.3. LEMMA. Let X E Ha have a saddle separatrix tangent to 8M at only 
one point p. Then there exist netghborhoods B, of X in x1, F of p in M, and a C-l 
function F: B, -+ R, such that: 

(a) f(Y) = 0 if and only if there exists a saddle separatrix tangent to 
EM at only one point P, E F, and satisfying the G condition with respect to the 
field; if f (Y) + 0 then there is no saddle separatrix of Y tangent to EM in F; 

(b) dfx f- 0 (see Ftg. 6). 

f IYkO f(Y)=0 f (Yb0 

FIG. 6. The unfolding of X E H, . 

7.5. Remark. Ad(H,) n Qa # 0 and Ad(H,) n H, + 0,. 

7.6. Remark. Denote by H,(n) the subset of Hd, of fields X such that 
the saddle scparatrix tangent to 2&I has length L < n. Then 6.1 holds for H,(n). 
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8 

8.1. LEMMA. Let p E aM be a simple critical point of X E xr. Then there 
exist neighborhoods B, of X in ,y’, F of p in M, and a C’ function f: B, -> R, 
such that: 

(a) f(Y) = 0 if and only if Y has one unique critical point p,. E 351 n F; 
furthermore pr is simple; 

(b) if f(Y) > 0, Y has no critical point in F; 

(c) if f(Y) < 0, Y has one unique simple critical point pr EF, and 
p, E int(M). 

Proof. Choose X E 2’ a representative of X, pi a neighborhood of p in A\W, 
and &, a neighborhood of x in r such that each 1‘ E 8, has one unique critical 
point pp in F, , which is simple; it is clear that the correspondence 1’ + pp 
is Cr. 

Define a Cr mapping6 k?, + R byf(I’) = ;r(pp); it is obvious thatf(x) = 0. 
Now wc will prove that dfz # 0. 
Let x = (x1 , ~a) bc the system of coordinates around p given in 4.3. Let 

II,: N --f R be a Ca bump function with support in F, -- (9 E N with / .v(q)l < S} 
(6 > 0) and #(4) :: 1 if ! x(q)! < 6. 

Sinccp is a simple critical point suppose, for simplicity, that (SX1jGx,)(p) 7’ 0. 
The equality df&E) -1 v~[(Dx,)-l(Z(p))] (see [IO, p. 241) implies dfz(p) 75 0, 
where P = Il,(a/&,) T (1 -- #)A?. 

Consider the neighborhood B, of X in xr given by B,, -- {P’ E xr such that 
there exist Y G 8, and Y’,,,, 7 Y} and the C’ function f: B0 -+ R, defined 
by f(Y) E!(F), h w erc P is a continuous cxtcnsion of Y (at X) in ir. Now, 
the proposition follows immediately. 

8.2. Remark. Denote by HI1 the set of ficlds Y’ E xr. such that: 

(1) Y has one unique simple critical point pv E Z&l which is the unique 
nongencric critical element of Y; 

(2) Y satisfies Qz , Q, , a4 , and all the critical points of Y except pu 
are hyperbolic. Let D, be the subset of If,’ of fields Y satisfying the additional 
axiom : “The eigcnvalucs of JIY,r arc real and are equals.” Then H,’ .- D, 
is open and dense ff,l; this follows by considering the Cr function 

g(Y) = uy Y; p,) - 44( Y; Py). 

8.3. PROPOSITIOS. Denote by H, the set of fields Xw E x’, such that: 

(a) there exists one point p E aM, that is a quasi-generic critical element 
of type 8, as the unique nongeneric critical element; 

(b) X satisfies 52, , R, , Q, , Q, . Then HI satisfies the M and L: ccnditions. 
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The proof of 8.3 depends on the following. 

8.4. Remark. If X E II1 , by condition (b) of the definition of the quasi- 
generic critical element of type p1 , there exists a neighborhood F of p in M, 
such that any trajectory of XI, meets SAP transversally, does not meet ZM, 
or ifp is the (Y or w limit of the trajectory, then “it tends transversally to ZM at p.” 

8.5. Remark. Take X E IJ, , such that p E aM, X(p) = 0 and [L?(x, p) - 
4d(X, p)] < 0. Ifs is the imbedding given in 4.3 (s[-1, 1] = S), the construc- 
tion made in [IO, pp. 24-251 implies that there exists a C’-l diffcomorphism 
0, of S- = s[- 1, 0] on to Sf = s[O, I] satisfying the conditions: O,(r( - 1)) = 
s(l), O,(p) -= p, and, for each a, ~(a) and O,(s(cr)) belong to the same trajectory; 
furthermore, every trajectory of X, except p, is transverse to (S - {p}). 

8.4. LEMMA. If X E H, , then there exists a neighborhood B of X in XT, such 
that any Y E B satisfies R, , Q2 , Q, , and Q, . 

8.7. LEMMA. Every X E H has a neighborhood B, in H, , such that if Y E B, , 
then: 

(a) There exists a neighborhood F of p in M where given a trajectory of Y! F , 
one of the following situations is possible: 

(i) the given trajectory is the quasi-generic critical element P, E 2%‘; 

(ii) the given trajectory meets &II tranwersally and 

(iii) the given trajectory “tends to P, transversally to EM.” 

(b) i’f X has n and only n critical points (hyperbolics) in int(M), then Y 
has n and only n critical points (hyperbolics) in int(M); any YE B, sati.$es Sz, , 

.Q, , Q, , Q, , B, , B, , B., , B, , and B, . 

Part (a) of 8.7 follows by the transvcrsality theory and parts (b) and (c) 
by [5] and 8.11. 

Proof of 8.3. Proposition 8.3(a) is a direct consequence of 8. I, 8.2, 8.6, and 
8.7. WC will demonstrate part (b) of 8.3. 

If X E H, , then we have the following-possibilities: (0,) p is a saddle point; 
(0,) p is a nondegenerate node; (0,) p is a generic focus. We will consider these 
cases separately. 

(0,) Let X E 2’ be a reprcscntative of X. Denote by IT’ a neighborhood 
of p in LV, such that x p is generic; hcncc the separatrices Si , i = I, 2, 3, 4 
of p meet # transversally. These trajectories of 8 determine four subregions Ti 
of E (see Fig. 7); let Ti = Ti n .?I (i = l,..., 4), F = Pn M, L : 2 2p n $2, 
and Lz = P n ZM. Assume there is no saddle separatrix different from .Ti , 
no trajectory tangent to EM, and no periodic trajectory of X meeting F. 
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FIG. 7. The neighborhood F of a saddle poinr. 

We know that p can be chosen such that X is tangent to ilfi at only four 
points; assume without loss of gcncrality that only one point q, belongs to :I2 
and c,, E T, . Assume L2 E S (S, S’, S given in 8.5) and X transversal to 
S - {p} (see 8.9). 

Consider a, E S- n F i, a2 c S-- n F. and assume for simplicity that if we 

go through (&& , we meet first one stable separatrix St and then one unstable 
separatrix S, , whkrc S, n L, = K, and S, n L, Ka . 

11’~ can assume that L, satisfies the conditions: 

(i) there is a neighborhood R of X in ,I/, such that, if 1. c H,, n H, , 
then pr E F; 

(ii) the separatrices of pr , S’, , and &ii,, corresponding to S, and Sa , 
respectively, meet I., in K, and K, transversally; 

(iii) M, = M - (int F) is a C’= submanifold of M; 

(iv) the contact hctween X and L, at c, is generic; 

(v) X is transverse to L, , except at p. 

Since X \,? is generic (by construction of :I!,), thcrc exists a neighborhood 
of X in xr, B C B,, such that, if Y t B A H then Y!,\,,, is conjugate to X,,w ; 
so WC have a homeomorphism (close to the idcntity)Uh: 42, k J!r, mappmg 
trajectories of X &, onto those of Y.,\, . In the process of the extension of h, 
to homeomorphis~ h: M + M, conjugating X to Y, we note that the critical 
region of X I; is formed by the union of the following trajectories: (I! , u2 , p, 

ccl C 9 L,, and S, (SW Fig. 7). Then we apply the technique of Peisoto [S] and 
we obtain without difficulties the homeomorphism h. 

(0,) Consider the following objects given below, and X’, F, F, fzl , L, , 
s, s , 9, a 1 9 and a2 given in (0,). Call Et the cigenspace such that the trajcc- 
tories of X, except one that we denote by y2 , arc tangent to it. F can bc chosen 
such that X is transverse to I,, except at one unique c,, (c,, 4 ye) and to L, except 
at p. Assume there is no saddle separatrix and no trajectory of .X tangent to ZM, 
meeting L, ; furthermore no periodic trajectory of X meets F. Finally WC 
must observe that the critical region of X, is formed by the union of or ( a,, 
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. P, Ye,,, and y2 9 for I’ close to X, there exist the corresponding objects 

~1 , ~2 , Pr 1 QG), and 72 , respectively. Then we use standard techniques 
to give the proof (see Fig. 8). 

Frc. 8. ‘Ihe neighborhood F of a node. 

(0,) In the same same way as in (0,) (or (0,)) we can prove easily the case 
when [(u(X, P))~ - 4d(X, p)] < 0 (see Fig. 9). 

FIG. 9. ‘I’he neighborhood F of a focus. 

8.8. LEMMA. ff, iS O@?fZ in ,I"'. 

The proof of 8.8 depends on the lemmas given in 8.9. 

8.9. Remarks. The following lemmas discuss the behavior of the trajcctorics 
of a field Y around a hyperbolic critical point, with respect to one given curve. 
Let V be a neighborhood of a point p of R2 and let X be a field on ZP of class P, 
T > 2, such that p is one unique singularity of X, V ; furthermore p is a hyperbolic 
critical point of X. Denote by A1 , A, the eigenvalues of JIX, and by Tr , T, 
their respectivcs eigenspaccs. Consider s: I = [ -1, l] - R’ a Cm imbedding 
with s(0) -- p and S :: s(l). 

8.9a. ~,EMMA. Suppose A, , AZ E R, A1 f= A, an S transcersal to T, , i = i, 2. 
Then there exist neighborhoods V, of p in R2, V, C V and B, of X in f(R2), 
such that: 

(i) each Y E B, has one unique hyperbolic singularity P, E V, of the 
same kind as p; 

(ii) there exists a C’ junction a: B, + R, such that, if I’, $ S n 1;1 , 
then Y(s(m(Y)) is tanRent to S at s((Y( Y)), joy YE B, ; 

(iii) the contact between I’ and S in s(a(Y)) is generic. 

Proof. It is known that there are neighborhoods B, of X in f(R2) and V,, 
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of p in R2, such that each 1. E B, has one unique singularity P, in V, . Consider 
the sets S, = S n V,, and I,, = s-~(S,,). 

Define a Cr function G: B, x 1, -+ R by G(Y, a) :: Y(s(a)) A s’(a); it is 
obvious that G(X, 0) = 0. 

Let x = (x1 , sa) be a system of coordinates around p (say in V,) with 
a/axi E T, , i = 1, 2. In these coordinates the components of X, X, , and X, , 
satisfy 

and 
&p 
ax, (PI = 4. 

If s(a) : (sr(~y), ~(a)), by hypothesis we have s,‘(O) f 0 and s,‘(O) -/. 0. 
Thus G(Y, a) .- Y*(s(,)) ~~‘(a) - Ya(s(,)) s,‘(a) and wc get (aG/&)(X, 0) - 
s,‘(O) %?‘W, - Q. 

Since A, f A, , then (aG/k%x)(X, 0) :# 0. 
By the Implicit Function Theorem, there exist neighborhoods B, of X in 

xr(Rz) (B, C B,), I, of a = 0 in R (1, C I,), and a C’ function ct: B, + I, , 
such that a(X) -.= 0 and G( Y, a) =L- 0 if and only if OL = a(Y) = (or . 

If Y(s(+)) :# 0, then this vector and s’(o~r) are linearly dependents. 
The above assertions imply (i) and (ii); part (iii) follows immcdiatcly from 

(ZGi&)(Y, 0~~) f 0. This ends the proof of 8.9a. 

8.9b. I~EMMA. Suppose hi complex, i = 1, 2. Then there exist nezghborhoods, 
V, ofp in V, B, of X in xr(R2), such that: 

(i) each Y E B, has one unique singularity py in V that is hyperbolic and 
of the same hind as p; 

(ii) there exists a C’ function 0~: B, --f R, such that if p, I$ S n V, then 
Y(s(a( Y)) is tangent to S at s(a(Y)), YE B, ; 

(iii) the contact between Y and S at s(a(Y)) is generic. 

Proof. Let S, ,I, , V, , and G be the objects given in the last demonstration. 
Let x == (xi , ss) be a system of coordinates around p (say in Vo), with 

a/ax, -: s’(0). Thus we have EX’/&, = aXa/&a = 01 and &P/ax, = 
--3X*/&, = ,!3 (a + 0, /3 # 0). In the same way as 8.9a we prove this lemma 
without difficulties. 

8.9~. LEMMA. Suppose p is a hyperbolic critical point of X E xT(R2), such 
that A, < AZ < 0 (or 0 < A, < A,). Let s: I -b R2 be the imbedding gizlen in 
8.1 la having the following property. There exists one unique saddle (hyperbolic) 
separatrix yx , of length L < 00, such that p is its w limit and yx n S = 0. 
Then there exist netghborhoods V, of p in R2 and B, of X in xr(R2), such that: 

(i) each Y E B, is transverse to ZV, (a V, is a Cm curve); 
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(ii) each Y E B, has a saddle separatrix yx meeting 31: at one unique 
point CO,, and the correspondence I’ -+ wy is Cr; 

(iii) 44Y)) f YY , where s(cY(>‘)) is the point of S obtained in 8.1 la. 

proof. Parts (i) and (ii) follow by [5], and its verification is similar to [9, 
Lemma 4.3, p. 271. 

Consider V, and B, given in (i) and (ii) and satisfying Lemma 8.9a; assume 
S is transverse to ?I’, and (I,‘-, -. S) and has two connected components, S, 
and S, (see I;ig. 10). 

1:~;. IO. The neighborhood V, 

Since wx = yx n ir I’, Q S, assume by continuity that wy $ S n Sl’, for 
every Y E B, . 

Fix in I’, the coordinates x -. (x1 , .x2) around p, given in 8.9a; for k’ > 0, 

by [Z P. 9% K can be chosen such that 1 P(q)/X*(q)! < E for QE I’, and 
y*(y) is not tangent to y’, , . so this inequality holds for YE B, and y does not 
belong to the trajectory of Y close to T, [2, p. 871. Observe that 

0 < K, < I s~‘((Y);s~‘(cY) < 03, for aEI. 

Assume 7-r and T2 determine in L’r four quadrants Q, , i = 1, 2, 3, 4 (see 
Fig. IO). 

Assume, for simplicity, that S n Qr u Q23 -- p and wy E Q,, n S, ; we will 
analyze the cases: 

(1) If pr E S then the demonstration is trivial. 

(2) If PY E s2 n Ql Y since this point is the w limit of yr , then yr n S --= 
A, has (a) one unique point or (b) two points, at least. If (a) occurs then 
s(a( Y)) E ‘4, , since the contact between Y and S in this case is generic. If 
(b) occurs then the continuity of Yin S implies the existence in S of two points 
of tangency between the field and curve, and this is an absurdity. 

(3) If py E Qa n S, then yv does not meet S for I’ close enough to X; 

so 44 Y)) c YY . 

The other cases are similar. 



CENEHIC BIFCRCATIOX 85 

8.9d. LEMMA. Lemma 8.9~ holds if yx is the unique trajectory tangent to 
an imbedded tt(Tzle in R2 (distinct from S) at the unique point q where the contact 
is generic. 

Proof of 8.8. If p is a saddle point (case (0,)), consider neighborhoods H 
of X in xT and F of p in Al given in 8.6 and satisfying: 

(i) no saddle separatrix of Y E B, except the ones of pr , meets F; 

(ii) no trajectory of YE B, tangent to SM, meets F. This is possible 
since the numbers of points of tangency between X and 6.W and critical points 
of the field are finite. 

Lemma 8.9a permits us to choose B and F such that if I- c B and f (E’) + 0, 
then there exists one unique trajectory yu of 1’ tangent to C.ld at qr E F, 
generically: so I’ E B satisfies B5 and B, . 

Since the conditions Q, , Q, , I&, Q, , H, , B,, B,, and B, are trivially 
satisfied for Y close enough to X and f(Y) # 0, \ve have Y c 2;, for 1’ E B 
and f (Y) + 0. 

Using 8.9 we can finish this demonstration without difficulties; i.e., there 
exists a neighborhood of X in x’, such that every YE R either belongs to II, 
or belongs to Z, . 

9 

9.1. PROPOSITIOK. Denote by H, the set of fields X 6 x7, such that: 

(1) there exists p E L?AZ, that is a quasi-generic critical element of X of type & 
as n uniqz4e nongeneric critical element of X; 

(2) X satisfies Q, , Q, , Q, , and Q, . Then H, satisfies the M, E, and .-1 
conditions. 

WC have to state two preliminary lemmas. 

9.2. Lewv1.4. Ecery X E Ii, has a neighborhood B in x’, such that ef:ery 
Y E R satisfies R, , Qg , Q, , Q, , B?, R, , and B4 . 

9.3. Remark. Lemma 9.4 proves in particular that R can be chosen such 
that if J-E: B then 1’ satisfies B, . 

9.4. LEMhIA. Let X E x7, Y ‘2 3, hating II trajectory yx tangent to 2M at 
the unique point p where the contact between the curve and the field is qztasi-getzeric. 
Then there exist tzezkhborhoods B, of X in xr, F of p in M, and a C’-* function 

f: B, - R, such that: 

(a) f(Y) .= 0 z’f and only if Y has a trajectory yr tangetzt to iAl at /he 
unique point p,. E F, satisfying the Q.G. condition with respert to 1’; if f (Y) :> 0, 
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then any trajectory of Y meeting F is transverse to ail4 in F, if f(Y) < 0 then 
there exist two and only two dbtinct trajectories of Y meeting F, each one tangent 
to %M at one point and both satisfying the G condition with respect to Y; 

(b) dfx f 0 (see Fig. 2). 

Proof. Consider the neighborhoods B, of X in xr, and F of p in M, such 
that no YE 23, has a critical point in F. 

Define the C’ germ G: (B, x R, (X, 0)) + (R, 0) by G(Y, a) = Y(s(a)) A 
s’(a), where s is the imbedding given in 4.2. We have 

g (y, a) = & [Y(s(a))] As’(a) -. Y(s(a)) As”(a)‘, 

g (Y, a) .--_ -g [Y(s(a))] As’(a) -- 2 -& Y(s(a)) 1 As”(a) -1 Y(s(a))As”(a). 

By a direct calculation, we obtain (cG/&)(X, 0) = 0 and (3G/2a2)(X, 0) $; 0 
(we used here the quasi-generic property of the contact between X and SM 

at P). 
Thus by the Implicit Function Theorem, there exist neighborhoods B, 

ofXinXr(B,CB,),]ofa=O in R, and a (7-l function a: B, -• J, satisfying 
a(X) == 0 and (2G/&)(Y, a) = 0 if and only if o! = a(Y) = I?, . Assume for 
simplicity that (BsG/Sas)(X, 0) > 0 (the other case is similar). Choose B, 
and J such that (~G/&Y”)( Y, a) > 0 for (Y, a) E Bs x J. 

So ar is the minimum of gr(a) = G( Y, a) for each YE B, , and: 

(i) if gr(orr) > 0 then g,(a) > 0, a E I; this means that Y is transverse 
to 2M around p in M; 

(ii) if g,(ar) = 0, then gr(a) = 0 (a E j) only if a = 3, ; 

(iii) if gr(&) < 0, by the Intermediate Value Theorem there 
exist aI , a, E R, a1 < a+ < 01~ , such that gr(a,) - gy(a2) = 0; however, 
(ZG/Ba)( Y, ai) # 0, i = 1, 2. 

If ~,(a~) == 0 and (aG/Za)(Y, ar) =: 0 th en the contact between Y and ail2 
at s(ar) is nongeneric; (a2G/&x2)(Y, ar) + 0 implies that the contact is quasi- 
generic. 

If gr(&) = 0 and (aG/aa)(Y, &) # 0 (0~ E J), then the contact noted above 
at s(G) is generic. 

The application f(Y) = G(Y, ar) h s ows part (a) of 9.4. We will prove 
df, f 0. 

WC have f(X) = 0 and df,(Y) = dG(x,O)( Y, 0) + (aG,/Za)(X, 0) da,(Y). 
Since (c”G/i%)(X, 0) = 0, we need only show that 

dG(,,,,(Y, 0) + 0. 
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Consider coordinates around p in M, y = (y, , ya) withy(p) = 0, a/Zyr := X 
and a bump function I+%: M -+ R with support in [y(y), < 6, S > 0 and small 
enough; furthermore #(q) = 1 for I y(q)1 < 6, , with 0 < 8, < 8. 

If y = VW~YP), consider the Cr curve h: [-7, TJ --, xr defined by h(X) = 
X -,- hY; call h(h) = Y,, . In coordinates Y = (1, X) and G(YA (0) = h. This 
proves 9.4. 

f(Y)<0 f(Y)=0 f lYl>O 

FIG. II. The unfolding of X E H, . 

P~ooj of 9.1. The M and A conditions follow from 9.2, 9.3, and 9.4, while 
the E condition is dcmonstratcd by already known methods. 

10 

Part 3. The Submanifold Z, 

Consider the sets Sj = Q, U Qe(i) U Qa(i) U HI U I&(i) U k&(i) U H,(i) U 
H5 and .Zi = U9-i Qj U,“=, H,. By 1.2, 2.1, 3.4, 5.6, 6.5, 7.6, 8.3, and 9.1 
each Si (i = 0, 1, 2 ,...) satisfies the :M condition; since Si C S+i and Zi = 
Ui Si , this subset of X’ satisfies the I condition. 

Proof of Theorem A. The above considerations guarantee us the existence 
of&. Part (b) follows from 1 .l, 2.1, 3. I, 5.1, 7.1, 8.3, and 9.1. Part (a) follows 
from a sequence of approximations similar to those used in [5] (to get the 
density of Z;, in x’) and [22]. By a straightforward computation one proves 
the following lemmas. 

LEMMA A. Denote by Qzo the set offields X E xT having nongeneric periodic 
trajectories contained in int(M). Then Q2 is dense in Qzo. 

LEMMA B. Denote by Q1” the set oj$elds X E xlr having nongeneric critical 
points contained in int(M). Then Q1 is dense in QIO. 

LEMMA C. Denote by QSo the set ojfields X E x1’ which have saddle cmnec- 
tions (contained in int(M)) or nontrivial recurrent orbits, and all the field’s critical 
points and periodic trajectories are in int(M). Then Q, u Q2 u Q3 i.s dense in Q&O. 

LEMMA D. Denote 6y HSo the set ojfields X E x,r having periodic trajectories 
tangent to &llil. Then Hz0 C Ad(ll, u QJ. 



88 MARCO ANTONIO TEIXEIRA 

LEMMA E. Denote by II,0 the set of fields X E x1+ having critical points 
in SM. Then H,O C Ad& u Q,). 

LEMMA F. Denote by H;,O the set of$elds A’ E x,’ having trajectories tangent 
to 8M in more than one point, none of then being periodic or saddle separatrix. 
Then H,O C Ad(H.J. 

I,EMMA G. Denote by fI.,O the set of fields X E ,Y~T having saddle separatrices 
tangent to %M. Then II, C Ad(H, u Ha u Q1 u Q,). 

LEMMA H. Denote by II,O the set of fields X E x1’ having one point p t i)M 
such that it does not satisfy the G condition zcith respect to X. Then H,” C Ad(Z1). 

Since xrr 7 0,” u O,O u Qan u f-It0 u Ha0 u Hxo u II.,” u H50, Lemmas A-H -- 
imply immediately that Z, is dense in xtr. 

Il. Final Remark.! 

1 I. 1. Remark. Denote by zr the set of first-order structurally stable vector 
fields of x’ (see the definition in [IO, p. 351). Then 2, = Qr U & U o3 U 

H, u I?, u ZIa u H3 u II, ; furthermore & satisfics the :%I and A conditions. 
This follows by 1.4, 2.1, 3.3, 5.7, 6.1, 7.1, 8.8, and 9.1. 

11.2. Remark. Let I = [a, b] be a closed interval. Denote by @ the space 
of Cl mappings [: I .--+ xr, with the CJ topology. We say h, E J is an ordinary 
value of 4 E @r if there is a neighborhood X of A0 such that t(A) is topologically 
equivalent to [(A,) f or every /\ E ti, if h, is not an ordinary value of 5, it is called 
a bifurcation value of 5. Obviously, if ((ho) E .Z’(, , (resp. t(h) E x1’), X0 is an 
ordinary (resp. bifurcation) value of 5. If E is transverse to Zr then every 
X,, E t-t(&) is a bifurcation value of l. 

1 I .3. Remark. We say & and [, of 0 are conjugate if there is a homco- 
morphism 1): I - I and a map H: I - homeo.(M), such that H(X) is a con- 
jugation between [,(,I) and &(h(h)) (homeo.(M) denotes the group of homeo- 
morphisms of M). With this concept of conjugacy, the structural stability 
in 0’ is defined in an obvious way. I,et us denote by A’, the collection of the 
elcmcnts 6 E: 0’ such that: 

(1) ~(~)czbuZ; 

(2) E is transversal to 2, ; 

(3) t(a) and t(b) are in Z. . We have the result, “Any [ E A’ is structuraly 
stable.” 
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