Generic Bifurcation in Manifolds with Boundary*

Marco Antonio Teixeira
Universidnde Estadual de Campinas, IMECC, C.E.P.-13100, C.x.P.-1/70, Campinas-S.P., Brazil

Reccived September 22, 1975; revised March 9, 1976

Intronection

Let M be a C^{x} two-dimensional orientable compact manifold, with boundary $\partial M . \chi^{r}$ will denote the space of the C^{r} vector fields on M, with the C^{r} topology (it is a C^{x} Banach manifold).

We are concerned in this study with certain types of vector fields which are not structurally stable in χ^{r}; namely, in generic vector ficlds in $\chi_{1}{ }^{r}=$ $\chi^{r}-\Sigma_{0}$, where Σ_{0} is the set of structurally stable vector fields of χ^{r}.

The main result is the following.

Theorem A. For $r>3$, there exists a C^{r-1} submanifold Σ_{1}, having codimension one which is immersed in χ^{r}, and satisfies:
(a) $\quad \Sigma_{1}$ is dense in $\chi_{1}{ }^{\top}$ (both with the relative topology);
(b) for any X in Σ_{1}, there exists a neighborhood B_{1} in the intrinsic topology of Σ_{1}, such that any Y in B_{1} is topologically equivalent to X ".
${ }^{r}$ l'he part of Σ_{1} imbedded in χ^{r} coincides with elements of χ^{r} which are firstorder structurally stable.

In Section 0 we give definitions, recall standard facts, and establish our notation.

Section 1 is devoted to the construction of Σ_{1} and the proof of Theorem A. It is divided into three parts. In the first part we adapt the quasi-generic fields studicd by Sotomayor [22] to manifolds with a boundary. In part 2 we study fields which are nongeneric duc to the contact between the field and ∂M. Finally in part 3 we prove Theorem A. At the end of certain paragraphs we include some remarks which prepare the way for the study of first-order structurally stable fields.

[^0]
0 . Prfiliminaries

We will consider dynamical systems generated by tangent vector fields (differential equations) on manifolds with a boundary. For simplicity M will be imbedded on a two-dimensional C^{∞} manifold N, without a boundary.

Two vector fields $\widetilde{X}_{1}, \widetilde{X}_{2}$ on N are said to be germ equivalent on M if they coincide on a neighborhood of M. A vector field X on M is, by definition, a class of germ equivalent (on M) tangent vector fields defined on N. It is said to be of class C^{r} if it has a representative \tilde{X} of class C^{r} on N.

Let $\tilde{\Phi}$ be the flow of a representative \tilde{X} of $X ; \tilde{\Phi}$ is defined on a set $D(\tilde{X})=$ $\{(x, t) \in N \times R, t \in \tilde{I}(x)\}$, where $\tilde{I}(x)$ is an open interval with extremes $\tilde{x}(x)$, $\tilde{\omega}(x)$. The flow Φ of X is defined by $\Phi(x, t)=\tilde{\Phi}(x, t)$ for $x \in M$ and $t \in I(x)$, where $I(x)$ is the maximal interval containing $t=0(\Phi(x, 0)=x)$ for which $\widetilde{\Phi}(x, t) \in M$. We denote by $\alpha(x)(\operatorname{rcsp} . \omega(x))$ the lower (resp. upper) extreme of this interval; it may be that one, both, or none of the extremes of $I(x)$ are infinite, finite, or even zero. Clearly Φ and its domain $D(X)$ do not depend on the representative \tilde{X} of X. Furthermore, any two representatives of X define flows on N which coincide on a neighborhood of $D(X)$. We call $\tilde{\Phi}$ their germ on $D(X) ; \Phi=\left.\widetilde{\Phi}\right|_{D(X)}$.

The orbit $\gamma(x)$ of X, passing through $x \in M$ is by definition the image of $I(x)$ by the integral curve map $\Phi_{X}(x):, t \rightarrow \Phi_{X}(x, t)$. Orbits are oriented by the orientation induced by this map from the positive orientation of $I(x)$; an orbit of X, with no distinguished parametrization, is a trajectory of X.

Germ orbits and germ trajectories are defined similarly.
0.1. Definition. Two vector fields X, Y on M are said to be conjugate if there exists a homeomorphism $h: M \rightarrow M$ mapping trajectories of X onto trajectories of Y.

We denote by $\tilde{\chi}^{r}=\chi^{r}(N)$ the equivalent space of χ^{τ}.
0.2. Definition. $X \in \chi^{r}$ is structurally stable in χ^{r}, if it has a neighborhood B in χ^{r} such that X is conjugate to every $Y \in B$.

It has been shown in $[5,6]$ that Σ_{0} is open dense in $\chi^{r}(r>1)$ and coincides with the collection of vector fields X such that:
$\Omega_{1}: X$ has all its singular points generic (or hyperbolic);
$\Omega_{2}: X$ has all its periodic trajectories generic (or hyperbolic);
$\Omega_{3}: X$ does not have saddle connections;
$\Omega_{4}: X$ does not have nontrivial recurrent trajectories;
$B_{1}: X$ has all its singular points in the interior of M;
$B_{2}: X$ has all its periodic trajectories in the interior of M;
B_{3} : any trajectory of X has at most onc point of tangency with $\hat{C} M$;
B_{4} : any saddle separatrix of X is transverse to $\hat{c} M$;
B_{0} : if a trajectory of X is tangent to $\mathscr{O} M$ in p, then the contact between the two curves in p is of the 2 nd order;
B_{6} : there exist only a finite number of points of tangency of X and $\hat{C} M$.

It is proved in [11] that the conditions $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ imply B_{6}.
For the sake of reference, the concepts of generic singular point, gencric periodic trajectory, saddle connection, quasi-generic singular point, quasigeneric periodic trajectory, quasi-generic saddle connection are contained in [10].

We denote by $\Delta(X, p)$ and $\sigma(X, p)$ the determinant and the trace of $D X_{p}$ (derivative of X at p), respectively.
' Γ he definitions of imbedded and immersed Banach submanifolds of class C^{*} and codimension K of a Banach manifold of class C^{x} are given in [10, p. 7].
0.3. Observations and notations. (a) We will fix on N a Riemannian metric of differentiability class large enough for our purposes.
(b) The positive limit set of an orbit $\gamma(p)$ of X is the set of points $y \in M$ which are limit points of sequence of the form $\Phi\left(p, t_{n}\right)$ with t_{n} tending to $\omega(p)$; we denote this set by $L^{+}(p)$ and the negative limit set $L^{-}(p)$ has a similar definition. These definitions do not depend on $q \subset \gamma(p)$. If

$$
\omega(p)<+\infty \quad(\text { resp. } \alpha(p)>-\infty)
$$

then $L^{\prime}(p)\left(\right.$ resp. $\left.L^{-}(p)\right)$ is the single point $\Phi(p, \omega(p))$ (resp. $\left.\Phi(p, \alpha(p))\right)$ and belongs to $\overline{C M}$.
(c) The following notations will be used in the text.
(i) $M-F$ is the set of points $q \in M$, such that $q \notin F$;
(ii) $\operatorname{int}(M)$ is the interior (topologic) of M;
(iii) if $u, v \in T(M)(T(M)$ is the tangent space of $M)$, then $u \wedge v$ will denote the exterior product of u and v;
(iv) (F, p) is to be regarded as a flow box around p of some vector field. For $Q \in \chi^{r}$ we have the definitions:
0.4. We say that Q satisfies the I condition (resp. M condition) if it is an immersed (resp. imbedded) Banach submanifold of class C^{r-1} and codimension one of χ^{τ}.
0.5. We say that Q satisfies the E condition if every $X \in Q$ has a neighborhood B in Q such that cvery $Y \in B$ is conjugate to X.
0.6. We say that Q satisfics the A condition if Q is an open set of χ^{r}.

I. The Submanifold Σ_{1}

Part 1

We will consider in this part the quasi-generic elements of a vector field which belong to the interior of M; basically the demonstrations of $1.1,1.2$, 1.4,2.1, and 3.1 are due to Sotomayor [10].

1
1.1. Proposition. Denote by Q_{2} the set of zector fields $X \in \chi^{\tau}, r>2$, such that:
(1) X has one quasi-generic trajectory as unique nongeneric periodic trajectory;
(2) X satisfies $\Omega_{2}, \Omega_{3}, \Omega_{1}, B_{2}, B_{3}, B_{4}, B_{5}$, and B_{6}. Then Q_{2} satisfies the I and E conditions.

See the proof of 1.1 in [10, p. 9].
It is convenient to give the following.
1.2. Lemma. Call $Q_{2}(n)$ the set of $X \in Q_{2}$ such that its quasi-generic periodic trajectory has length less than n. Then $Q_{2}(n)$ satisfies the A, M, and E conditions.
1.3. Remark. Call ${O_{2}}_{2}$ the subset of Q_{2} of vector ficlds X, which satisfy:
(a) There exists no $q \in M \cdots \gamma_{x}$, such that $L^{+}(q)=L^{-}(q)=\gamma_{x}$.
(b) There exist no saddle points s_{i} of X in $M, i=1,2$, such that $L^{-}\left(W^{\prime u}\left(s_{1}\right)\right)=L .\left(W^{\prime s}\left(s_{2}\right)\right)-\gamma_{x}$, where W^{s} (resp. $W^{V^{u}}$) is the stable (resp. unstable) submanifold associated to the critical point.
(c) Associated to X there exist no $(s, q) \in M \times M$, where s is a saddle point of $X, q \subseteq \delta M$ and $X(q)$ is tangent to ∂M at this point, such that $L(q)=$ $L^{-}\left(W^{*}(s)\right)=\gamma_{X}$.
(d) 'Ihcre exists no $p_{i} \in \hat{C} M, i=1,2$, such that $X\left(p_{i}\right)$ is tangent to $\hat{O} M$ at p_{i}, with $L^{-}\left(p_{1}\right)=L^{-}\left(p_{2}\right)=\gamma_{x}$ (the case $p_{1}-p_{2}$ is not excluded).
1.4. Proposition. ${\underset{\sim}{2}}_{2}$ satisfies the M, E, and A conditions.
1.5. Remarks. (i) If γ_{X} is the α and ω limit of saddle separatrices, then
it can be shown that there is Y, arbitrarily close to X, which has saddle connections having arbitrarily large length.
(ii) If there exists a trajectory η of X, which has γ_{X} as the α and ω limits, then it can be shown that there is Y, arbitrarily close to X, which has a nongeneric periodic trajectory meeting F and arbitrarily large length.
(iii) If there exists a trajectory η_{1} of X which has γ_{x} as the α limit and a saddle separatrix η_{2} of X having γ_{x} as the ω limit then it can be shown there is Y, arbitrarily close to X, having a saddle separatrix tangent to $\dot{C} M$; furthermore, its length is arbitrarily large.
(iv) If there exist two distinct trajectories of X, both having tangency points of αM and having its α and ω limits coinciding with a quasi-generic periodic trajectory, then there exists Y close to λ, such that it has a trajectory which is tangent to $\hat{\sigma} M$ at two distinct points; furthermore its length is arbitrarily large.

2

2.1. Proposition. Denote by ${\underset{\sim}{1}}^{1}$ the set of vector fields $X \in \chi^{r}, R>1$, such that:
(1) X has a quasi-generic critical point as its unique nongeneric critical point;
(2) X satisfies $\Omega_{2}, \Omega_{3}, \Omega_{4}, B_{1}, B_{2}, B_{3}, B_{1}, B_{5}$, and B_{6}.

Then Q_{1} satisfies the M, E, and A conditions.

3

3.1. Proposition. Denote by Q_{3} the set of vector fields $X \equiv x^{r}, r>1$, such that:
(1) X has one quasi-generic saddle connection as its unique saddle connection;
(2) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{4}, B_{1}, B_{2}, B_{3}, B_{1}, B_{5}$, and B_{6}.

Then Q_{3} satisfies the I and E conditions.
3.2. Remark. Note that in 1.1, 2.1, and 3.1 the quasi-generic periodic trajectory, the quasi-generic critical point, and the quasi-generic saddle connection, respectively, are "away from" ∂M; then the B_{i} conditions, $i=1,2, \ldots, 6$ hold for small perturbation of $X \in Q_{1} \cup Q_{2} \cup Q_{3}$.
3.3. Remark. If the saddle conncction of $X \in Q_{3}$ is an autoconnection at a saddle p, then a closed curve C is constructed in [10] which is arbitrarily close to $\gamma_{X} \cup\{P\}$ and such that any Y close to X is transverse to C. Denote by \oint_{3} the subset of Q_{3} consisting of fields X which have the following properties:

No trajectory of X which is tangent to $\bar{C} M$ meets C and no saddle separatrix of X meets C. Then Q_{3} satisfies the M, E, and A conditions.
3.4. Remark. Call $Q_{3}(n)$ the set of $X \in Q_{3}$, such that the saddle connection

Part 2

In this section we are going to study the familics of nonstable fields, whose instability arises from the contact of the trajectories with ∂M. We will be using frequently techniques and results of Peixoto [6, 7] and Sotomayor [10].

4
4.1. Dffinition. $p \in \mathscr{C} M$ is a generic critical element of $X \in \chi^{r}$ if it satisfies the conditions:
$\left(b_{1}\right)$ no periodic trajectory of X is tangent to ∂M at p;
$\left(b_{2}\right) \quad X(p) \neq 0$;
$\left(b_{3}\right)$ if a trajectory γ of X is tangent to ∂M at p then γ is transversal to ∂M at any point $q \in \gamma, q \neq p$;
$\left(b_{4}\right)$ no saddle separatrix of X is tangent to $\hat{c} M$ at p;
$\left(b_{5}\right)$ if a trajectory γ of X is tangent to ∂M at p, then the contact between γ and ∂M at p is of 2 nd order (we will say that the contact between X and ∂M at p is generic; see construction 4.2).
4.2. A construction. Let $p \in \hat{c} M$, let $\gamma_{x}(p)$ be a trajectory of $X \in \chi^{\top}$ passing through p, and let $\tilde{X} \in \tilde{\chi}^{r}$ be a representative of X. Let $u:(R, 0) \rightarrow(N, p)$ be a C^{∞} germ of an imbedding, transverse to ∂M at p. Also, let $s:(R, 0) \cdots$ $(c M, p)$ be a C^{∞} germ of an imbedding. By the Implicit Function Theorem $\sigma=(s, u)$ is a C^{x} germ of a diffcomorphism $\sigma:\left(R^{2}, 0\right) \rightarrow(N, p)$. Denote by π the second component of the inverse function $\sigma^{-1}:(N, p) \rightarrow\left(R^{2}, 0\right)$. Finally we consider the germ $\pi_{\tilde{X}}:(R, 0) \rightarrow(R, 0)$ defined by $\pi_{\tilde{X}}(t)=\pi\left(\Phi_{\mathcal{P}}(p, t)\right)$. By continuity, $\pi\left(\Phi_{\tilde{Y}}(q, t)\right)$ is defined in a neighborhood $\tilde{B} \times \tilde{F}_{1}$ of (\tilde{X}, p) in $\tilde{\chi}^{r} \times N:$ For each $\bar{Y} \in \widetilde{B}$, consider the C^{r} germ $\pi_{\tilde{\gamma}}:(R, 0) \rightarrow(R, 0)$ defined by $\pi_{\mathcal{Y}}(t)=\pi\left(\Phi_{\tilde{Y}}(q, t)\right)$ for all $q \in \tilde{F}_{1}$. It is clear that γ_{X} is tangent to $\hat{o} M$ at p if and only if $\pi_{X}{ }^{\prime}(0)=0$ for every representative \tilde{X} of X. Obscrve that $\pi_{\mathcal{X}}:(R, 0) \rightarrow(R, 0)$ can be defined without difficulties for $t_{0} \neq 0$.
4.2.1. Definition. We say that $p \in \hat{o} M$ satisfics the G condition with respect to X, or the contact between X and ∂M at p is generic, if $\pi_{X^{\prime}}(0)=0$ and $\pi_{X}^{\prime \prime}(0) \neq 0$.
4.2.2. Definition. We say that $p \in \partial M$ satisfies the $Q G$ condition with respect to X or the contact between X and $\hat{c} M$ at p is quasi-generic, if $\pi x^{\prime}(0)==$ $\pi_{X}^{\prime \prime}(0)=0$, and $\pi_{X}^{\prime \prime \prime}(0) \neq 0$.

Obviously, these definitions depend neither on the transversal germ u, nor on the particular representative \bar{X} of X.
4.3. Remarks. (a) Condition b_{5} is equivalent to the G condition.
(b) For future reference consider the coordinates $x=\left(x_{1}, x_{2}\right)$ (defined in a neighborhood \tilde{F}_{1} of p in N where

$$
x_{1}(p)=x_{2}(p)-0, \quad x_{1} \circ s=i d, \quad x_{2} \circ u=i d, \quad x_{1} \circ u=x_{2} \circ s=0
$$

It is convenient to observe $\pi_{X}(t)=x_{2}\left(\Phi_{X}(p, t)\right)$.
(c) Denote by U and S arbitrarily small closed neighborhoods of p in $u(R)$ and $s(R)$, respectively. We will assume the positive orientation of ℓ given by the outward sense from M.
4.4. Lemaia. Assume the notations of 4.2. If the contact betseen $X \in \chi^{\top}$ and $\bar{C} M$ at $p \in \partial M(X(p) \neq 0)$ is generic, then there exist a neighborhood B_{0} of X in χ^{r} and a C^{r} function $\alpha: B_{0} \rightarrow R$ such that $Y(s(\alpha(Y))$ is tangent to óM at $s(\alpha(Y))$; furthernore, the contact between Y and ôM at $s(\alpha(Y))$ is generic.

Proof. Consider the germ $G:\left(x^{r} \times R,(X, 0)\right) \rightarrow(R, 0)$ of class C^{r}, defined by $G\left(I^{\prime}, \alpha\right)=Y(s(\alpha)) \wedge s^{\prime}(\alpha)$.

Let $x=\cdots\left(x_{1}, x_{2}\right)$ be a system of coordinates around p; assume $x_{1}(p)=$ $x_{2}(p)=0, \hat{a}, \hat{c} x_{1}=X(p)$, and that $s=\left(s_{1}, s_{2}\right)$ are the components of s in this system with $s(0):-\quad p$.

By a direct calculation we obtain $(\delta G / \delta \alpha)(X, 0)=s_{2}^{\prime \prime}(0) \neq 0$; this follows since the contact between X and ∂M at p is generic. By the Implicit Function Thcorem, there are a ncighborhood B_{0} of X in χ^{r} and a unique C^{r} function $\alpha: B_{0} \rightarrow R$ such that $\alpha(X):=0$ and $G(Y, \alpha)=0$ if and only if $\alpha=\alpha(Y)$. Furthermore, by continuity B_{0} can be determined such that the contact between Y and $\hat{c}: M$ at $s(\alpha(Y))$ is generic. This finishes the proof.
4.5. Definition. $p \in \hat{c} M$ is a quasi-generic critical element of $X \in \chi^{r}$ of the type:
β_{1} if $X(p)=0$ and
(a) p is hyperbolic;
(b) the eigenspaces of $D X_{y}$ are transverse to ∂M at p;
(c) the eigenvalues of $D X_{\nu}$ are not cquals;
(d) if p is a node (see [2]) then the trajectory of X that is tangent
to the eigenspace of $D X_{n}$ associated to the eigenvalue of larger absolute value, is not tangent to ∂M and is not a saddle separatrix;
β_{2} if there exists a generic periodic trajectory of X tangent to $\overline{C M} M$ only at p, whore the G condition is true;
β_{3} if the trajectory of X passing through p is neither periodic nor saddle separatrix and it has only one point of tangency q with $\hat{c} M$ besides p; furthermore, $p \nLeftarrow q$ and both satisfy the G condition with respect to the field;
β_{\downarrow} if there exists a saddle separatrix of X, tangent to ∂M only at p, satisfying the G condition with respect to the field;
β_{5} if there exists a trajectory of X that is neither saddle separatrix nor periodic, is tangent to $\hat{\delta} M$ at p, and satisfies the $Q G$ condition with respect to the field.
4.6. Remark. If p is a hyperbolic critical point of X and the eigenvalues of $D X_{p}$ are complex conjugate, then we are allowing it to satisfy condition (b) of the definition of the quasi-generic critical element of β_{1}.

5

5.1. Proposition. Denote by H_{2} the set of vector fields $X \in \chi^{r}, r>2$, such that:
(1) there exists one point $p \in c_{M}$ that is a quasi-generic critical element of X of the type β_{2}, a unique nongeneric critical element of X;
(2) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}$. Then H_{2} satisfies the M and E conditions.

The proof of 5.1 depends on scveral lemmas.
5.2. Lemma. Let $\tilde{X} \in \tilde{\chi}^{r}$ have a generic periodic trajectory γ_{8} of period τ_{0}. Given ϵ and T_{0}, positive integers, there exist neighborhoods \tilde{B} of \tilde{X} in $\tilde{\chi}^{r}$ and \tilde{V} of γ_{X} in \bar{N}, such that:
(a) to each field $\tilde{Y} \in \tilde{B}$ corresponds a unique generic periodic trajectory $\gamma_{\bar{Y}}$ contained in \check{V} with period smaller than $\mid \tau_{0}-\epsilon$;
(b) every trajectory of \bar{X} meeting $\partial \vec{V}$ is transverse to it and spends a time greater than T_{0} in N. Furthermore, $\hat{\partial} \dot{V}$ is the union of two closed curves.

Sec the proof of 5.2 in [4, part VIII].
5.3. Lemma. If $X \in H_{2}$ then there exists a neighborhood B of X in χ^{r}, such that:
(a) ecery ${ }^{\prime} \in B$ satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{1}, B_{1}, B_{i}, B_{6}$;
(b) if y \& $: R \cap H_{2}$ then Y satisfies B_{3} and B_{4}.

The proof of 5.3 follows immediately from [5].
5.4. Lemana. Let $\lambda^{\prime} \in \chi^{r}, r>2$, have one point p com as a quasi-generic critical element of the type β_{2}. Then there exist neighborhoods B_{2} of X in χ^{γ} : F of p in M, and a C^{r-1} function $f: B_{2} \rightarrow R$, satisfying:
(a) $f(Y)=0$ if and only if Y has one quasi-generic periodic trajectory that is tangent to $\hat{C} M$ only at the point $p_{Y} \in F$ and satisfies the G condition; if $f(Y) \neq-1$ then Y does not have a periodic trajectory meeting F and tangent to $2 M$;
(b) $d f_{X} \neq 0$ (see Fig. 4).

Proof. Denote by γ_{x} the generic periodic trajectory of X tangent to $o . W$ at p, by τ_{0} its period, and by $\Phi_{x}(p, t)$ its corresponding flow. Let $\tilde{X} \in \tilde{\chi}^{r}$ be a representative of X; obviously $\tau_{X}=\tau_{\tilde{X}}(p)$.

Take the neighborhoods \tilde{F}_{0} of p in $N, \tilde{F}_{0} \subset V$ and \tilde{B}_{0} of \tilde{X} in $\tilde{\chi}^{r}\left(\tilde{V}\right.$ and \tilde{B}_{0} were given in 5.2); assume \tilde{F}_{0} and \tilde{B}_{0} are contained in \tilde{F}_{1} and \tilde{B}_{1} (given in 4.2), respectively; furthermore, if $Y \subseteq \widetilde{B}_{0}$ then its generic periodic trajectory contained in $\overrightarrow{V_{1}}$ meets \cup transverscly at a unique point $u_{\mathcal{Y}}$; it is clear that the correspondence $\tilde{Y}>u_{\tilde{Y}}$ is C^{r}.

Let $G:\left(\bar{B}_{0} \times J_{n},(\tilde{X}, 0)\right) \cdots(R, 0)$ be a germ $\left(C^{r}\right)$ defined by $\bar{G}(\tilde{Y}, \tau) \cdots$ $\pi\left(\psi_{\hat{Y}}\left(u_{\hat{Y}},-\right)\right)$, where J_{0} is an interval containing the origin and π was given in 4.2.

We have $\tilde{G}(\tilde{X}, 0)=\left(\hat{c}(\hat{G} / \hat{\partial} \tau)(\tilde{X}, 0)=0\right.$ and $\left(\tilde{C}^{2} \tilde{G}^{2} / \sigma^{2}\right)(\tilde{X}, 0) \neq 0$; this follows from the generic property of the contact between X and ∂M at p. By the Implicit Function 'Theorem, there are neighborhnods $\bar{B}_{2} \subset \bar{B}_{0}$ of \bar{X}, J of $\tau \cdots 0$, and a unique C^{r-1} function $\tau:\left(\tilde{B}_{2}, \tilde{X}\right) \rightarrow(J, 0)$, such that $\tau(\tilde{Y}):--0$,
 $\tau(\tilde{Y}))<0$ for $\tilde{Y} \in \tilde{B}_{2}$. Hence $\tau(\tilde{Y})$ is the maximum (nondegencrate critical point) of the mapping $\tau \rightarrow \tilde{G}(\tilde{Y}, \tau)$ for each $\tilde{Y} \in \tilde{B}_{2}$.

The function $\tilde{f}:\left(\tilde{B}_{2}, \tilde{X}\right) \rightarrow(R, 0)$ defined by $\tilde{f}\left(Y^{x}\right)=\tilde{G}(\tilde{Y}, \tau(\tilde{Y}))$ is $C^{r} 1$ and

Now, we will prove $d f_{\mathcal{X}} \neq 0$.
First, consider the system of coordinates $y=\left(y_{1}, y_{2}\right)$ in a neighborhood $\tilde{F} \subset \tilde{f}_{0}$ of p, with $y_{1}(p)=y_{2}(p)=0,\left(\hat{c}_{i} \hat{y_{1}}\right)=\tilde{X}, y_{2} \subset u=i d$, and $y_{1}=u=0$. If δ is a positive small number, let $\psi_{1}: \gamma X \cap \tilde{F} \rightarrow R$ and $\psi_{2}: U \cap \tilde{F} \rightarrow R$ be C^{ω} bump functions, having supports in $: y_{1}!<\delta$ and, $y_{2} \mid<\delta$, respectively.

We casily obtain $d \tilde{f}_{\tilde{X}}(Y):=(\partial \tilde{G} / \partial \tilde{Y})(\tilde{X}, 0)$.
Given the field $\tilde{Y}=\Psi_{1} \Psi_{2}\left(\tilde{C} /\left(y_{2}\right)\right.$ in $\tilde{\chi}^{r}$, consider the C^{r} curve $h:(\eta, \eta) \cdots \tilde{\chi}^{r}$ defined by $h(\lambda)=\tilde{Y}_{A}=\tilde{X} \mid \lambda \tilde{Y}$. Clearly $\tilde{Y}_{0}=\tilde{X}$ and $\tau\left(\tilde{Y}_{\lambda}\right)=0$. By a known formula for the derivative of solutions of differential equations depending on parameters $[3, \mathrm{p} .94]$ we have $\left(\partial \sigma_{i} \hat{C} \tilde{Y}\right)(\tilde{X}, 0)-\left(d G_{i}^{\prime} d \lambda\right)(\tilde{X} \text {, } \lambda \tilde{Y})_{i=0} \neq 0$. Therefore $d j_{x} \neq 0$.

Now, consider the neighborhood of X in $\chi^{r}, B_{2}=\left\{Y \in \chi^{r}\right.$; there exists $\tilde{Y} \in \tilde{B}$ with $\left.\widetilde{Y}_{\mid M} \ldots Y\right\}$ and the C^{r-1} function $f: B_{2} \rightarrow R$ defined by $f(Y)=\tilde{f}(\tilde{Y})$ where $\hat{Y} \in \widetilde{B}_{2}$ is a continuous extension (at X) of $Y \in B_{2}$ [12, p. 67].

As $d \tilde{f}_{\mathscr{X}} \neq 0$ we get $d f_{X}:=0$ and the proof of part (a) of the lemma follows from the definition of the function f.

Proof of 5.1. Part (a) follows from 5.2, 5.3, and 5.4. It remains only to demonstrate part (b).

By an elementary technique, determinc a neighborhood V of τ_{X} in M, satisfying:
(i) no periodic trajectory (except $\tau_{\boldsymbol{x}}$) and critical point of X meet V;
(ii) $M_{2}=M-\operatorname{int}(V)$ is a C^{x} submanifold of M;
(iii) $X_{i_{1}}$ is generic;
(iv) there is a unique point c_{0} of tangency between $\hat{c} V$ and X, besides p (the trajectory passing through c_{0} is contained in V and is different from τ_{X});
(v) $\partial V=C_{1} \cup C_{2} \cup S_{1}$ (see Fig. 1), where $C_{1} \cap \partial M=\Phi, C_{2} \cup \partial M=$ $\left\{v_{1}\right\} \cup\left\{v_{2}\right\}$, and $S_{1} \subset S \subset \partial M$ (see 4.2); furthermore $c_{0} \in C_{2}$.

Fic. 1. The ncighborhood V of τ_{x}.
V can be obtained such that any saddle separatrix and any trajectory (of X) that is tangent to $\hat{c} M$ meet C_{2}; if S is the arc of ∂M given in 4.2 , we consider $s[-1,1]=S, \quad s(0)=p, S^{-}=s[1,0), \quad S=s(0,1], \quad S_{1}=S_{\mathrm{t}} \cap S^{-}$, and $S_{1} \cdot=S_{1} \cap S^{+}$.

Let B_{2} be the neighborhood of X in χ^{r} satisfying. If $Y \in B_{2} \cap H_{2}$, then the generic periodic trajectory of $Y, \tau_{y}(\bar{p})$, which is tangent to ∂M at $\bar{p} \in S_{1}$, is contained in V and any trajectory of Y mecting V is transversc to C_{1}, C_{2}, and S, except at \bar{p} and \tilde{c}_{0}, where $\tilde{c}_{0} \in C_{2}$ is the corresponding point to c_{0}, associated to $Y^{-}\left(\tilde{c}_{0}\right.$ is close to $\left.c_{0}\right)$.

As $X_{i M_{2}}$ is generic, there is a ncighborhood B of X in $\chi^{r}, B \subset B_{2}$, such that if $Y \in B \cap H_{2}$ then there exists a homeomorphism $h_{2}: M_{2} \rightarrow M_{2}$ (close to the identity) mapping trajectories of $X_{i M_{2}}$ on to trajectories of $Y^{\prime} \Lambda_{2}$.

Necessarily $h_{2}\left(c_{0}\right)=\tilde{c}_{0}$ and we require $h_{2}\left(v_{i}\right)=v_{i}, i=1,2$; this is possible because each v_{i} is contained in a canonical region of $Y \in B$ (see definition of canonical region in [10, p. 8]).

Now we will construct a homeomorphism $h: M \rightarrow M$, which is a conjugacy of X with $Y \in B \cap H_{2}$; this homeomorphism will be an extension of h_{2}.

Consider the following subregions of V^{*} :
(a) V_{1}, bounded by C_{1} and τ_{x};
(b) V_{2}, bounded by τ_{X} and C_{2} (sec Fig. 2).

Fig. 2. The subregions V_{1} and V_{2} of V.

We begin by constructing h in V_{1}. Let Q be an arc in V_{1} through to $q \in C_{1}$ and transverse to X; as h_{2} is close to the identity, we determine an arc \tilde{Q} (close to Q), joining \bar{p} to $h_{2}(q)=\bar{q}$, transverse to Y; necessarily $h(p)=\bar{p}$ and we definc h for all the points of V_{1} similarly to [22, p. 12] (note $h\left(V_{1}^{r}\right)=-V_{1}$).

Let us construct h in V_{2}. We will determine three subregions (canonicals with respect to $X_{\mid V_{2}}$) in V_{2} which will facilitate the above mentioned construction.

By the continuity of X, the trajectory of X passing through c_{0} meets $S_{1}{ }^{\text {i}}$ at c_{2} and S_{1}^{-}at c_{1}. For $Y \in B \cap H_{2}$, there exist the correspondents $\tilde{c}_{1}, \tilde{c}_{2}$, and $\tilde{\gamma}_{0}$. We require $h\left(c_{i}\right)=\tilde{c}_{i}, i=1,2$. Thus γ_{0} (resp. $\tilde{\gamma}_{0}$) determine in V_{0} the following subregions (see Fig. 3):
(1) T_{1} (resp. T_{1}): bounded by $\left(\widehat{v_{1} c_{1}}\right)_{\partial M},\left(\widehat{v}_{1} c_{0}\right)_{\partial M_{2}}$, and $\left(\hat{c}_{0} \hat{c}_{1}\right)_{\gamma_{0}}$ (resp. $\left(\overparen{v_{1} c_{1}}\right)_{\partial M},\left(\overparen{v_{1} c_{0}}\right)_{\partial M_{2}}$, and $\left.\left(\overparen{\tilde{c}_{0} \bar{c}_{1}}\right)_{\dot{\gamma}_{0}}\right)$;
(2) T_{2} (resp. \widehat{T}_{2}): bounded by $\left(\overparen{C_{2} v_{2}}\right)_{\partial M},\left(\overparen{c_{0} v_{2}}\right)_{\partial M}$, and $\left(\widehat{c_{2} c_{0}}\right)_{\partial M_{2}}$ (resp. $\left(\overparen{\tilde{c}_{2} v_{2}}\right)_{\partial M},\left(\overparen{\tilde{c}_{0} v_{2}}\right)_{\partial M_{2}}$, and $\left.\left(\overparen{\tilde{c}_{2} \hat{c}_{0}}\right)_{\tilde{\gamma}_{0}}\right)$;
(3) (resp. $\left.\tilde{T}_{3}\right)$: bounded by $\left(\widehat{\tilde{c}_{1} c_{2}}\right)_{\partial M}, \gamma_{X}(p)$, and $\left(\widetilde{c_{2} c_{1}}\right)_{\gamma_{0}}$ (resp. $\left(\widehat{\tilde{c}_{1}} \tilde{\tilde{c}}_{2}\right)_{\partial M}$, $\gamma_{Y}(\hat{p})$, and $\left.\left(\widetilde{\tilde{c}_{2}} \hat{\tilde{i}}_{1}\right)_{\dot{\gamma}_{0}}\right)$.

Fig. 3. The subregions T, of V_{2}.

The critical region of $X_{: \nu_{2}}$ is formed by the union of $\gamma_{X}(p), \gamma_{0}, v_{1}$, and v_{2}; we have similarly the critical region of $Y_{\mid V_{2}}$.

By the same techniques used at [10, p. 12] and [6, p. 153] we finally construct the homeomorphism h. By ratio of arc length we construct: $h\left[\left(\tilde{c}_{0} c_{1}\right)_{\gamma_{0}}\right]:\left({\tilde{c_{0}} \dot{c}_{1}}_{)_{0}}\right.$;
 T_{i} to its correspondent \tilde{T}_{i}; this is done in the following way:

On T_{3} : Let U be an are in T_{3}, joining $q \in \gamma_{x}(p)$ to c_{0}, transverse to X and let K be an $\operatorname{arc} C^{1}$, close to U joining $h_{2}(q)=q$ to $\tilde{c}_{\mathbf{0}}$. By ratio of arc length, we construct $h\left[\left(c_{1}, p\right)_{\partial M}\right]-\left(\tilde{c_{1}}, \tilde{p}\right)_{\partial_{M}}$. If $q_{2} \in\left(\widetilde{p c_{2}}\right)_{\partial M}$ and $\gamma_{X}\left(q_{2}\right)$ mects $\left(\widehat{c_{1} p}\right)_{\hat{c}_{M}}$ at q_{1}, we define $h\left(q_{2}\right)=\tilde{q}_{2}$, where \tilde{q}_{2} is the intersection of $\gamma_{Y}\left(h\left(q_{1}\right)\right)$ and $\left(\bar{p} \tilde{c}_{2}\right)_{C M}$. On U, h acts in the following manner: If $u \in U, \gamma_{X}(u)$ meets $u_{1} \in\left(c_{1} p\right)_{\partial_{M}}$ and $u_{2} \in\left(\widehat{p c_{2}}\right)_{C M}$; assume $h(u)=\tilde{u}$, where \tilde{u} is the intersection of $\gamma_{\gamma}\left(h\left(u_{1}\right)\right)$ and \bar{l}. Now by a straightforward computation we construct h on T_{3}. Finally, by similar techniques, h is easily defined on T_{1} and T_{2}.

Since every point of V_{2} belongs to one trajectory, h is a one-to-one mapping of V_{2} on to itself; it is continuous by the standard theorem on the continuous dependence of trajectories on initial data.

This ends the proof of 5.1.
5.5. Remark. Given any positive number $L>0$, the neighborhood B of X may be taken, such that the length of every trajectory of $Y \in B$ is greater than L, in V_{1}; this is obvious by 5.2 ; furthermore any trajectory of $Y \in B$ mecting C_{2} is transverse to ∂M in V.
5.6. Remark. Denote by $H_{2}(n)$ the set of $X \in H_{2}$ such that its periodic trajectory tangent to ∂M has length $I_{0}<n$; by continuity arguments we verify that 5.1 holds for $H_{2}(n)$.

It is not difficult to prove the following.
5.7. Proposition. Denote by \tilde{H}_{2} the subset of H_{2}, of fields X which satisfy the following additional axiom: (3) The periodic trajectory of X tangent to ∂M is neither the α nor the ω limit, of either the saddle separatrices or of the trajectory tangent to ∂M. Then:
(a) \tilde{H}_{2} satisfies the M, E, and A conditions;
(b) $\tilde{H}_{2}^{\prime}=H_{2}-\bar{H}_{2}$ is open in H_{2};
(c) if $X \in \tilde{H}_{2}^{\prime}$ then there exists a neighborhood B of X in χ^{\top}, such that, if $\mathrm{J} \in B \cap H_{2}$ we have (i) $Y \in \Sigma_{0}$, (ii) Y has one unique saddle separatrix tangent to $\hat{C} M$, or (iii) Y has one unique trajectory tangent to $\hat{C} M$ at two and only two points. Moreover, in (ii) and (iii) the contact between Y and $\bar{o} M$ is generic.

Fig. 4. The unfolding of $X \subset \mathrm{CH}_{2}$.
6
6.1. Proposition. Denote by H_{3} the set of fields $X \in \chi^{r}, r>2$, such that:
(1) There is one point $p \in \partial M$, that is a quasi-generic critical element of X of type β_{b}, as the unique nongeneric critical element of X;
(2) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}$.

Then I_{3} satisfies the M, E, and A conditions.
The proof of 6.1 depends on scveral lemmas.
6.2. Lemma. If $X \in H_{3}$, then there exists a neighborhood B of X in χ^{r} such that any $Y \in B$ satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, B_{1}, B_{2}, B_{4}, B_{5}$, and B_{6}.

The proof of this lemma follows immediately from [5] and 4.4.
We can prove the next lemma in the same way as 5.4.
6.3. Lemma. Let $X \in \chi^{r}$, such that there exists one trajectory γ_{X} tangent to CM only at two points P_{1} and $P_{2}\left(P_{1} \neq P_{2}\right)$. Suppose the contact between X and $0 . W$ at P_{1} and P_{12} is generic. Then, there exist neighborhoods B_{3} of X in χ^{r}, F_{i} of P_{i} in $\mathcal{N}(i=1,2)$, and $a C^{r-1}$ function $f: B_{3} \rightarrow R$, such that:
(a) $f(Y)=0$ if and only if the trajectory of Y is tangent to $\hat{c} M$ at two points $q_{1} \in F_{1}$ and $q_{2} \in F_{2}$, whose contact between the curve and the field is generic: if $f(Y) \neq 0$, then there exists a unique trajectory tangent to $\hat{c} M$ in F_{1} (resp. F_{a}) at a unique point and it is not tangent to ∂M at any other point;
(b) $d f_{x} \neq 0$ (see Fig. 5).

$\mathrm{f}(\mathrm{Y})<0$

$f(Y)=0$

$f(Y)>0$

Fig. 5. The unfolding of $X \in H_{3}$.

Now, the proof of 6.1 is analogous to 5.1.
6.4. Remark. $\quad A d\left(H_{3}\right) \cap Q_{2} \neq \Phi$ and $A d\left(H_{3}\right) \cap H_{2}-\gamma^{\prime} \Phi$.
6.5. Remark. Denote by $H_{3}(n)$ the subset of H_{3} of fields X, such that γ_{X} has length $L<n$. Then 6.1 holds for $H_{3}(n)$.

7

The proof of the following proposition is similar to 5.1.
7.1. Proposition. Denote by H_{4} the set of fields $X \in \chi^{r}, r>2$, such that:
(1) there is a $p \in \partial M$, that is a quasi-generic critical element of X of type β_{4} as a unique nongeneric critical element of X;
(2) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{2}, \Omega_{4}$. Then H_{3} satisfies the M, E, and A conditions.

It is convenient to state the following two lemmas.
7.2. Lemma. If $X \in H_{4}$, then there exists a neighborhood B of X in χ^{\top}, such that every $Y \in B$ satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, B_{1}, B_{2}, B_{3}, B_{5}$, and B_{6}.

We can prove the next lemma in the same way as 5.4.
7.3. Lemma. Let $X \in H_{4}$ have a saddle separatrix tangent to $\bar{\partial} M$ at only one point p. Then there exist neighborhoods B_{4} of X in χ^{r}, F of p in M, and a C^{r-1} function $F: B_{4} \rightarrow R$, such that:
(a) $f(Y)=0$ if and only if there exists a saddle separatrix tangent to $\bar{c} M$ at only one point $P_{Y} \in F$, and satisfying the G condition with respect to the field; if $f(Y) \neq 0$ then there is no saddle separatrix of Y tangent to $\bar{c} M$ in F;
(b) $d f_{x} \neq 0$ (see Fig. 6).

$f(Y)=0$

Fic. 6. The unfolding of $X \in H_{4}$.
7.5. Remark. $\quad \operatorname{Ad}\left(H_{4}\right) \cap Q_{2} \neq \Phi$ and $\operatorname{Ad}\left(H_{4}\right) \cap H_{2} \neq \Phi$.
7.6. Remark. Denote by $H_{4}(n)$ the subset of H_{4}, of fields X such that the saddle scparatrix tangent to ∂M has length $L<n$. Then 6.1 holds for $H_{4}(n)$.

8

8.1. Lemma. Let $p \in \partial M$ be a simple critical point of $X \in \chi^{\top}$. Then there exist neighborhoods B_{0} of X in χ^{r}, F of p in M, and a C^{r} function $f: B_{0} \rightarrow R$, such that:
(a) $f(Y)=0$ if and only if Y has one unique critical point $p_{Y} \in \partial M \cap F$; furthermore p_{Y} is simple;
(b) if $f(Y)>0, Y$ has no critical point in F;
(c) if $f(Y)<0, Y$ has one unique simple critical point $p_{Y} \in F$, and $p_{r} \in \operatorname{int}(M)$.

Proof. Choose $\tilde{X} \in \tilde{\chi}^{r}$ a representative of X, \tilde{F}_{i} a neighborhood of p in \hat{N}, and \check{B}_{0} a neighborhood of \tilde{X} in $\tilde{\chi}^{r}$ such that each $\tilde{Y} \in \widetilde{B}_{0}$ has one unique critical point $p_{\tilde{Y}}$ in \tilde{F}_{1}, which is simple; it is clear that the correspondence $\vec{Y} \rightarrow p_{\tilde{Y}}$ is C^{r}.

Define a C^{r} mapping $\tilde{f}: \check{B}_{0} \rightarrow R$ by $\tilde{f}(\tilde{Y})=\pi\left(力_{\tilde{Y}}\right) ;$ it is obvious that $f(\tilde{X})=0$.
Now we will prove that $d \tilde{f}_{X} \neq 0$.
Let $x=\left(x_{1}, x_{2}\right)$ be the system of coordinates around p given in 4.3. Let $\psi: N \rightarrow R$ be a C^{α} bump function with support in $F_{\delta}=\{q \in N$ with $|x(q)|<\delta\}$ $(\delta>0)$ and $\psi(q)=-1$ if $|x(q)|<\delta$.

Since p is a simple critical point suppose, for simplicity, that $\left(\hat{c} X_{1}^{1} \partial x_{1}\right)(p) \neq 0$. The equality $d \tilde{f}_{\tilde{X}}(\mathrm{E})-\pi\left[\left(D \tilde{X}_{P}\right)^{-1}(Z(p))\right]$ (see [10, p. 24]) implies $d \tilde{f}_{\tilde{X}}(\tilde{V}) \neq 0$, where $\tilde{V}=\psi\left(\partial / \partial x_{2}\right) \div(1--\psi) \tilde{X}$.

Consider the neighborhood B_{0} of X in χ^{r} given by $B_{0}--\left\{Y \in \chi^{r}\right.$ such that there exist $\tilde{Y} \in \tilde{B}_{0}$ and $\left.\tilde{Y}_{\mid A M}-Y\right\}$ and the C^{r} function $f: B_{0} \rightarrow R$, defined by $f(Y)=\tilde{f}(\tilde{Y})$, where \tilde{Y} is a continuous extension of $Y($ at $X)$ in $\tilde{\chi}^{r}$. Now, the proposition follows immediately.
8.2. Remark. Denote by $H_{1}{ }^{1}$ the set of fields $Y \in \chi^{\top}$, such that:
(1) Y has one unique simple critical point $p_{Y} \in \hat{c} M$ which is the unique nongeneric critical element of Y;
(2) Y satisfies $\Omega_{2}, \Omega_{3}, \Omega_{4}$, and all the critical points of Y except p_{Y} are hyperbolic. Let D_{1} be the subsct of $H_{1}{ }^{1}$ of fields Y satisfying the additional axiom: "The eigenvalues of $D Y_{P_{Y}}$ are real and are equals." Then $H_{1}{ }^{1}-D_{1}$ is open and dense $H_{1}{ }^{1}$; this follows by considering the C^{r} function

$$
g(Y)=\sigma^{2}\left(Y ; p_{y}\right)-4 \Delta\left(Y ; p_{Y}\right)
$$

8.3. Proposition. Denote by H_{1} the set of fields $X \in \chi^{\top}$, such that:
(a) there exists one point $p \in \delta M$, that is a quasi-generic critical element of type β_{1} as the unique nongeneric critical element;
(b) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}$. Then H_{1} satisfies the M and E conditions.

The proof of 8.3 depends on the following.
8.4. Remark. If $X \in H_{1}$, by condition (b) of the definition of the quasigeneric critical element of type β_{1}, there exists a neighborhood F of p in M, such that any trajectory of $X_{1 F}$ meets $\hat{\partial} M$ transversally, does not meet $\hat{\partial} M$, or if p is the α or ω limit of the trajectory, then "it tends transversally to $\hat{o} M$ at p."
8.5. Remark. Take $X \in H_{1}$, such that $p \in \partial M, X(p)=0$ and $\left[\sigma^{2}(x, p)-\right.$ $4 \Delta(X, p)]<0$. If s is the imbedding given in $4.3(s[-1,1]=S)$, the construction made in [10, pp. 24-25] implies that there exists a C^{r-1} diffcomorphism Θ_{X} of $S^{-}=s[-1,0]$ on to $S^{+}=s[0,1]$ satisfying the conditions: $\Theta_{X}(s(-1))=$ $s(1), \Theta_{X}(p)=p$, and, for each $\alpha, s(\alpha)$ and $\Theta_{X}(s(\alpha))$ belong to the same trajectory; furthermore, every trajectory of X, except p, is transverse to $(S-\{p\})$.
8.6. Lemma. If $X \in H_{1}$, then there exists a neighborhood B of X in χ^{r}, such that any $Y \in B$ satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}$, and Ω_{4}.
8.7. Lemma. Fvery $X \in H$ has a neighborhood B_{0} in H_{1}, such that if $Y \in B_{0}$, then:
(a) There exists a neighborhood F of p in M where given a trajectory of $Y_{!F}$, one of the following situations is possible:
(i) the given trajectory is the quasi-generic critical element $P_{Y} \in \partial M$;
(ii) the given trajectory meets ∂M transversally and
(iii) the given trajectory "tends to P_{Y} transversally to $\bar{c} M$."
(b) If X has n and only n critical points (hyperbolics) in $\operatorname{int}(M)$, then Y has n and only n critical points (hyperbolics) in $\operatorname{int}(M)$; any $Y \in B_{0}$ satisfies Ω_{1}, $\Omega_{2}, \Omega_{3}, \Omega_{4}, B_{2}, B_{3}, B_{4}, B_{5}$, and B_{6}.

Part (a) of 8.7 follows by the transversality theory and parts (b) and (c) by [5] and 8.11 .

Proof of 8.3. Proposition 8.3(a) is a direct consequence of 8.1, 8.2, 8.6, and 8.7. We will demonstrate part (b) of 8.3.

If $X \in H_{1}$, then we have the following possibilities: $\left(0_{1}\right) p$ is a saddle point; $\left(0_{2}\right) p$ is a nondegenerate node; $\left(0_{3}\right) p$ is a generic focus. We will consider these cases separatcly.
$\left(0_{1}\right)$ Let $\vec{X} \in \tilde{\chi}^{r}$ be a representative of X. Denote by \tilde{F} a neighborhood of p in N, such that $\tilde{X}_{\tilde{F}}$ is generic; hence the separatrices $S_{i}, i=1,2,3,4$ of p meet $\tilde{c} \tilde{F}$ transversally. These trajectorics of \tilde{X} determine four subregions T_{i} of \tilde{F} (see Fig. 7); let $T_{i}=\tilde{T}_{i} \cap M(i \ldots 1, \ldots, 4), F=\tilde{F} \cap M, L:-\partial \tilde{F} \cap M$, and $L_{\mathbf{2}}=\tilde{F} \cap \partial M$. Assume there is no saddle separatrix different from S_{i}, no trajectory tangent to ∂M, and no periodic trajectory of X meeting F.

Fig. 7. The neighborhood F of a saddle point.

We know that \hat{F} can be chosen such that \tilde{X} is tangent to $\hat{o} \vec{F}$ at only four points; assume without loss of generality that only one point c_{0} belongs to M and $c_{0} \in T_{1}$. Assume $L_{2} \subsetneq S(S, S, S$ given in 8.5$)$ and X transversal to $S-\{p\}(\operatorname{scc} 8.9)$.

Consider $a_{1} \in S^{-} \cap F^{*}, a_{2} \in S^{-} \cap F^{*}$ and assume for simplicity that if we go through $\left(a_{1} a_{2}\right)_{L_{1}}$, we meet first one stable separatrix S_{1} and then onc unstable separatrix S_{2}, where $S_{1} \cap L_{1}=K_{1}$ and $S_{2} \cap L_{1} \ldots K_{2}$.

We can assume that L_{1} satisfies the conditions:
(i) there is a neighborhood B of X in χ^{r}, such that, if $Y \subset B_{11} \cap H_{1}$, then $p_{Y} \in F$;
(ii) the separatrices of p_{Y}, \bar{S}_{1}, and \bar{S}_{2}, corresponding to S_{1} and S_{2}, respectively, meet L_{1} in K_{1} and \bar{K}_{2} transversally;
(iii) $\quad M_{2}=M-($ int $F)$ is a C^{∞} submanifold of M;
(iv) the contact between X and L_{1} at c_{0} is generic;
(v) X is transverse to L_{2}, except at p.

Since $X_{i M_{2}}$ is generic (by construction of M_{2}), therc exists a neighborhood of X in $\chi^{r}, \bar{B} \subset B_{0}$, such that, if $Y \in B \cap H$ then $Y_{1 M_{2}}$ is conjugate to $X_{M_{2}}$; so we have a homeomorphism (close to the identity) $h: M_{2} \cdots M_{2}$ mapping trajectories of $X_{M_{2}}$ onto those of $Y_{M_{2}}$. In the process of the extension of h_{2} to homeomorphism $h: M \rightarrow M$, conjugating X to Y, we note that the critical region of X_{F} is formed by the union of the following trajectories: a_{1}, a_{2}, p, c_{0}, S_{1}, and S_{2} (sec Fig. 7). Then we apply the technique of Peixoto [5] and we obtain without difficulties the homeomorphism h.
$\left(O_{2}\right)$ Consider the following objects given below, and $\tilde{X}, \tilde{F}, F, I_{1}, L_{2}$, S, S^{-}, S^{-}, a_{1}, and a_{2} given in $\left(0_{1}\right)$. Call E_{1} the cigenspace such that the trajectories of X, except one that we denote by γ_{2}, are tangent to it. F can be chosen such that X is transverse to L_{1} except at one unique $c_{10}\left(c_{1} \stackrel{\&}{!} \gamma_{2}\right)$ and to L_{2} except at p. Assumc there is no saddle separatrix and no trajectory of X tangent to $\dot{c} M$, meeting L_{2}; furthermore no periodic trajectory of X meets F. Finally we must observe that the critical region of $X_{!5}$ is formed by the union of a_{1}, a_{2},
$p, \gamma_{X_{F}}\left(c_{0}\right)$, and γ_{2}; for Y close to X, there exist the corresponding objects $a_{1}, a_{2}, p_{Y}, \gamma_{Y_{1 f}}\left(\bar{c}_{0}\right)$, and $\bar{\gamma}_{2}$, respectively. Then we use standard techniques to give the proof (see Fig. 8).

Fig. 8. The neighborhood F of a node.
$\left(0_{3}\right)$ In the same same way as in $\left(0_{1}\right)$ (or $\left.\left(0_{2}\right)\right)$ we can prove easily the case when $\left[(\sigma(X, p))^{2}-4 \Delta(X, p)\right]<0$ (see Fig. 9).

Fir. 9. 'The neighborhood F of a focus.

8.8. Lemma. H_{1} is open in $\chi_{1}{ }^{r}$.

The proof of 8.8 depends on the lemmas given in 8.9.
8.9. Remarks. The following lemmas discuss the behavior of the trajectories of a field Y around a hyperbolic critical point, with respect to one given curve. Let V be a neighborhood of a point p of R^{2} and let X be a field on R^{2} of class C^{r}, $r>2$, such that p is one unique singularity of $X_{V v}$; furthermore p is a hyperbolic critical point of X. Denote by λ_{1}, λ_{2} the eigenvalues of $D X_{p}$ and by T_{1}, T_{2} their respectives eigenspaces. Consider s: $I=[-1,1] \rightarrow R^{2}$ a C^{∞} imbedding with $s(0)=p$ and $S \because s(I)$.
8.9a. Lemma. Suppose $\lambda_{1}, \lambda_{2} \in R, \lambda_{1} \neq \lambda_{2}$ an S transversal to $T_{i}, i=i, 2$. Then there exist neighborhoods V_{1} of p in $R^{2}, V_{1} \subset V$ and B_{1} of X in $\chi^{7}\left(R^{2}\right)$, such that:
(i) each $Y \in B_{1}$ has one unique hyperbolic singularity $P_{Y} \in V_{1}$ of the same kind as p;
(ii) there exists a C^{r} function $\alpha: B_{1} \rightarrow R$, such that, if $P_{Y} \notin S \cap V_{1}$, then $Y\left(s(\alpha(Y))\right.$ is tangent to S at $s(\alpha(Y))$, for $Y \in B_{1}$;
(iii) the contact between Y and S in $s(\alpha(Y))$ is generic.

Proof. It is known that there are neighborhoods B_{0} of X in $\chi^{r}\left(R^{2}\right)$ and V_{0}
of p in R^{2}, such that each $Y \in B_{0}$ has one unique singularity P_{γ} in V_{0}. Consider the sets $S_{0}=S \cap V_{0}$ and $I_{0}=s^{-1}\left(S_{0}\right)$.

Define a C^{r} function $G: B_{0} \times I_{0} \rightarrow R$ by $G(Y, \alpha) \sim: Y(s(x)) \wedge s^{\prime}(\alpha)$; it is obvious that $G(X, 0)=0$.

Let $x=\left(x_{1}, x_{2}\right)$ be a system of coordinates around p (say in V_{0}) with $\partial j \partial x_{i} \in T_{i}, i:=1,2$. In these coordinates the components of X, X_{1}, and X_{2}, satisfy

$$
\frac{\partial X^{1}}{\partial x_{2}}(p) \quad \frac{\partial X^{2}}{\partial x_{1}}(p) \quad 0, \quad \frac{\partial X^{1}}{\partial x_{1}}(p)-=\lambda_{1}, \quad \text { and } \quad \frac{\partial X^{2}}{\partial x_{2}}(p)=\lambda_{2}
$$

If $s(\alpha)=\left(s_{1}(\alpha), s_{2}(\alpha)\right)$, by hypothesis we have $s_{1}^{\prime}(0) \neq 0$ and $s_{2}^{\prime}(0) \neq 0$. Thus $G(Y, \alpha):-Y^{1}(s(\alpha)) s_{2}{ }^{\prime}(\alpha)-Y^{2}(s(\alpha)) s_{1}{ }^{\prime}(\alpha)$ and we get $(\partial G / \mathcal{C} \alpha)(X, 0)=$ $s_{1}{ }^{\prime}(0) s_{2}{ }^{\prime}(0)\left(\lambda_{1}-\lambda_{2}\right)$.

Since $\lambda_{1} \neq \lambda_{2}$, then $(\partial G / \partial \alpha)(X, 0): \neq 0$.
By the Implicit Function Theorem, there exist neighborhoods B_{1} of X in $\chi^{\top}\left(R^{2}\right)\left(B_{1} \subset B_{0}\right), I_{1}$ of $\alpha=0$ in $R\left(I_{1} \subset I_{0}\right)$, and a C^{r} function $\alpha: B_{1} \rightarrow I_{1}$, such that $\alpha(X)=0$ and $G(Y, \alpha)=0$ if and only if $\alpha=\alpha(Y)=\alpha_{Y}$.

If $Y\left(s\left(\alpha_{Y}\right)\right) \neq 0$, then this vector and $s^{\prime}\left(\alpha_{Y}\right)$ are linearly dependents.
The above assertions imply (i) and (ii); part (iii) follows immediatcly from $\left(\partial G_{/} \partial \alpha\right)\left(Y, \alpha_{Y}\right) \neq 0$. This ends the proof of 8.9 a .
8.9b. Lemma. Suppose λ_{i} complex, $i=1,2$. Then there exist neighborhoods, V_{1} of p in V, B_{3} of X in $\chi^{r}\left(R^{2}\right)$, such that:
(i) each $Y \in B_{1}$ has one unique singularity p_{r} in V that is hyperbolic and of the same kind as p;
(ii) there exists a C^{r} function $\alpha: B_{1} \rightarrow R$, such that if $p_{Y} \notin S \cap V_{1}$ then $Y\left(s(\alpha(Y))\right.$ is tangent to S at $s(\alpha(Y)), Y \in B_{1} ;$
(iii) the contact between Y and S at $s(\alpha(Y))$ is generic.

Proof. Let S_{0}, I_{0}, V_{0}, and G be the objects given in the last demonstration.
Let $x=\left(x_{1}, x_{2}\right)$ be a system of coordinates around p (say in V_{0}), with $\partial_{1} \partial x_{1} \cdots s^{\prime}(0)$. Thus we have $\hat{\sigma} X^{1} / \partial x_{1}=\partial X^{2} / \partial x_{2}=\alpha$ and $\partial X^{1} / \partial x_{2}=$ $-\hat{o} X^{2} / \partial x_{1}=\beta(\alpha \neq 0, \beta \neq 0)$. In the same way as 8.9 a we prove this lemma without difficulties.
8.9c. Lemma. Suppose p is a hyperbolic critical point of $X \in \chi^{7}\left(R^{2}\right)$, such that $\lambda_{1}<\lambda_{2}<0$ (or $0<\lambda_{1}<\lambda_{2}$). Let $s: I \rightarrow R^{2}$ be the imbedding given in 8.11a having the following property. There exists one unique saddle (hyperbolic) separatrix γ_{X}, of length $L<\infty$, such that p is its ω limit and $\gamma_{X} \cap S=\Phi$. Then there exist neighborhoods V_{1} of p in R^{2} and B_{1} of X in $\chi^{+}\left(R^{2}\right)$, such that:
(i) each $Y \in B_{1}$ is transverse to $\partial V_{1}\left(\partial V_{1}\right.$ is a C^{∞} curve);
(ii) each $Y \in B_{1}$ has a saddle separatrix γ_{x} meeting ∂V_{1} at one unique point ω_{Y} and the correspondence $Y \rightarrow \omega_{Y}$ is C^{r};
(iii) $s(\alpha(Y)) \notin \gamma_{Y}$, where $s(\alpha(Y))$ is the point of S obtained in 8.11a.

Proof. Parts (i) and (ii) follow by [5], and its verification is similar to [9, Lemma 4.3, p. 27].

Consider V_{1} and B_{1} given in (i) and (ii) and satisfying Lemma 8.9a; assume S is transverse to $\hat{\sigma} V_{1}$ and $\left(V_{1}-S\right)$ and has two connected components, S_{1} and S_{2} (see lig. 10).

1iIfi. 10. The neighborhood V_{1}.

Since $\omega_{X}=\gamma_{X} \cap \partial V_{1} \notin S$, assume by continuity that $\omega_{Y} \notin S \cap \hat{\partial} V_{1}$ for every $Y \in B_{1}$.

Fix in V_{1} the coordinates $x \cdots\left(x_{1}, x_{2}\right)$ around p, given in 8.9a; for $E>0$, by [2, p. 90], V_{1} can be chosen such that $\left|X^{1}(q) / X^{2}(q)\right|<E$ for $q \in V_{1}^{r}$ and $\gamma_{x}(q)$ is not tangent to T_{1}; so this inequality holds for $Y \in B_{1}$ and q does not belong to the trajectory of Y close to $T_{1}[2$, p. 87]. Observe that

$$
0<K_{1}<\left|s_{2}{ }^{\prime}(\alpha)\right|_{1} s_{1}^{\prime}(\alpha)<\infty, \quad \text { for } \quad \alpha \in I
$$

Assume T_{1} and T_{2} determine in V_{1} four quadrants $Q_{2}, i=1,2,3,4$ (see Fig. 10).

Assume, for simplicity, that $S \cap Q_{1} \cup Q_{3}-p$ and $\omega_{Y} \in Q_{1} \cap S_{1}$; we will analyze the cases:
(1) If $p_{Y} \in S$ then the demonstration is trivial.
(2) If $p_{Y} \in S_{2} \cap Q_{1}$, since this point is the ω limit of γ_{Y}, then $\gamma_{Y} \cap S=$ A_{y} has (a) one unique point or (b) two points, at least. If (a) occurs then $s(\alpha(Y)) \in A_{y}$, since the contact between Y and S in this case is generic. If (b) occurs then the continuity of Y in S implies the existence in S of two points of tangency between the field and curve, and this is an absurdity.
(3) If $p_{Y} \in Q_{3} \cap S_{1}$ then γ_{Y} does not mect S for Y close enough to X; so $s(\alpha(Y)) \notin \gamma_{Y}$.

The other cases are similar.
8.9d. Lemma. Lemma 8.9c holds if γ_{X} is the unique trajectory tangent to an imbedded curve in R^{2} (distinct from S) at the unique point q where the contact is generic.

Proof of 8.8. If p is a saddle point (case (0_{1}), consider neighborhoods B of X in χ^{r} and F of p in M given in 8.6 and satisfying:
(i) no saddle separatrix of $Y \in B$, except the ones of p_{Y}, meets F;
(ii) no trajectory of $Y \in B$, tangent to $\hat{\partial} M$, meets F. This is possible since the numbers of points of tangency between X and $\check{\partial M}$ and critical points of the field are finite.

Lemma 8.9a permits us to choose B and F such that if $Y^{\prime} \in B$ and $f\left(Y^{\prime}\right) \neq 0$, then there exists one unique trajectory γ_{Y} of Y^{\prime} tangent to δM at $q_{Y} \in F$, gencrically: so $Y \in B$ satisfies B_{5}^{5} and B_{n}.
Since the conditions $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, B_{1}, B_{2}, B_{3}$, and B_{4} are trivially satisfied for Y close enough to X and $f(Y) \neq 0$, we have $Y \in \Sigma_{0}$ for $Y \in B$ and $f(Y) \neq 0$.

Using 8.9 we can finish this demonstration without difficulties; i.e., there exists a neighborhood of X in χ^{\prime}, such that cvery $Y \in B$ either belongs to I_{1} or belongs to Σ_{0}.

9

9.1. Proposition. Denote by H_{5} the set of fields $X \in \chi^{\top}$, such that:
(1) there exists $p \in \partial M$, that is a quasi-generic critical element of X of type β_{5} as a unigue nongeneric critical element of X;
(2) X satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}$, and Ω_{4}. Then H_{5} satisfies the M, E, and A ronditions.

We have to state two preliminary lemmas.
9.2. Lemma. Every $X \in H_{5}$ has a neighborhond B in χ^{r}, such that every $Y \in B$ satisfies $\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, B_{2}, B_{3}$, and B_{4}.
9.3. Remark. Lemma 9.4 proves in particular that B can be chosen such that if $Y \in B$ then Y satisfies B_{6}.
9.4. Lemma. Let $X \in \chi^{r}, r>3$, having a trajectory γ_{X} tangent to $\overline{C M}$ at the unique point p where the contact between the curve and the field is quasi-generic. Then there exist neighborhoods B_{5} of X in χ^{r}, F of p in M, and a C^{r-1} function $f: B_{5} \rightarrow R$, such that:
(a) $f(Y)=0$ if and only if Y has a trajectory γ_{Y} tangent to $\overline{C M}$ at the unique point $p_{Y} \in F$, satisfying the $Q . G$. condition with respect to Y; if $f(Y)>0$,
then any trajectory of Y meeting F is transverse to ∂M in F; if $f(Y)<0$ then there exist two and only two distinct trajectories of Y meeting F, each one tangent to $\bar{c} M$ at one point and both satisfying the G condition with respect to Y;
(b) $d f_{X} \neq 0$ (see Fig. 2).

Proof. Consider the neighborhoods B_{0} of X in χ^{τ}, and F of p in M, such that no $Y \in B_{0}$ has a critical point in F.

Define the C^{r} germ $G:\left(B_{0} \times R,(X, 0)\right) \rightarrow(R, 0)$ by $G(Y, \alpha)=Y(s(\alpha)) \wedge$ $s^{\prime}(\alpha)$, where s is the imbedding given in 4.2. We have

$$
\begin{aligned}
\frac{\partial G}{\partial \alpha}(y, \alpha) & =\frac{d}{d \alpha}[Y(s(\alpha))] \Lambda s^{\prime}(\alpha)-Y(s(\alpha)) \Lambda s^{\prime \prime}(\alpha)^{\prime} \\
\frac{\hat{\sigma}^{2} G}{\partial \alpha^{2}}(Y, \alpha) & \left.=\frac{d^{2}}{d \alpha^{2}}[Y(s(\alpha))] \Lambda s^{\prime}(\alpha)-2 \frac{d}{d \alpha} Y(s(\alpha)) \right\rvert\, \Lambda s^{\prime \prime}(\alpha)+Y(s(\alpha)) \Lambda s^{\prime \prime \prime}(\alpha)
\end{aligned}
$$

By a direct calculation, we obtain $(\bar{c} G / \partial \alpha)(X, 0)=0$ and $\left(\partial^{2} G / \partial \alpha^{2}\right)(X, 0) \neq 0$ (we used here the quasi-generic property of the contact between X and $\hat{c} M$ at p).

Thus by the Implicit Function Theorem, there exist neighborhoods B_{5} of X in $\chi^{\top}\left(B_{5} \subset B_{0}\right), J$ of $\alpha=0$ in R, and a C^{r-1} function $\alpha: B_{5} \rightarrow J$, satisfying $\alpha(X)=0$ and $(\partial G / \partial \alpha)(Y, \alpha)=0$ if and only if $\alpha=\alpha(Y)=\hat{\partial}_{Y}$. Assume for simplicity that $\left(\hat{\partial}^{2} G / \hat{c} \alpha^{2}\right)(X, 0)>0$ (the other case is similar). Choose B_{5} and J such that $\left(\hat{c}^{2} G / \partial \alpha^{2}\right)(Y, \alpha)>0$ for $(Y, \alpha) \in B_{\mathbf{3}} \times J$.

So α_{Y} is the minimum of $g_{Y}(\alpha)=G(Y, \alpha)$ for cach $Y \in B_{5}$, and:
(i) if $g_{Y}\left(\alpha_{Y}\right)>0$ then $g_{Y}(\alpha)>0, \alpha \in J$; this means that Y is transverse to ∂M around p in M;
(ii) if $g_{Y}\left(\alpha_{Y}\right)=0$, then $g_{Y}(\alpha)=0(\alpha \in J)$ only if $\alpha-\partial_{Y}$;
(iii) if $g_{Y}\left(\partial_{Y}\right)<0$, by the Intermediate Value Theorem there exist $\alpha_{1}, \alpha_{2} \in R, \alpha_{1}<\alpha_{Y}<\alpha_{2}$, such that $g_{Y}\left(\alpha_{1}\right)=g_{Y}\left(\alpha_{2}\right)=0$; however, $(\partial G / \partial \alpha)\left(Y, \alpha_{i}\right) \neq 0, i=1,2$.

If $g_{Y}\left(\alpha_{Y}\right)=: 0$ and $(\partial G / \partial \alpha)\left(Y, \alpha_{Y}\right)=: 0$ then the contact between Y and ∂M at $s\left(\alpha_{Y}\right)$ is nongeneric; $\left(\partial^{2} G / \hat{\sigma} \alpha^{2}\right)\left(Y, \alpha_{Y}\right) \neq 0$ implies that the contact is quasigeneric.

If $g_{Y}(\bar{\alpha})=0$ and $(\partial G / \partial \alpha)(Y, \bar{\alpha}) \neq 0(\bar{\alpha} \in J)$, then the contact noted above at $s(\bar{\alpha})$ is generic.

The application $f(Y)=G\left(Y, \alpha_{Y}\right)$ shows part (a) of 9.4. We will prove $d f_{X} \neq 0$.

We have $f(X)=0$ and $d f_{X}(Y)=d G_{(X, 0)}(Y, 0)+(\partial G / \delta \alpha)(X, 0) d \alpha_{x}(Y)$.
Since $(c G / \partial \alpha)(X, 0)=0$, we need only show that

$$
d G_{(X, 0)}(Y, 0) \neq 0
$$

Consider coordinates around p in $M, y=\left(y_{1}, y_{2}\right)$ with $y(p)=0, \partial / \partial y_{1}=X$ and a bump function $\psi: M \rightarrow R$ with support in $\mid y(q)_{i} \leqslant \delta, \delta>0$ and small enough; furthermore $\psi(q)=1$ for $y(q) \mid<\delta_{1}$, with $0<\delta_{1}<\delta$.

If $Y=\psi\left(c / \partial y_{2}\right)$, consider the C^{r} curve $h:[-\eta, \eta] \rightarrow \chi^{r}$ defined by $h(\lambda)=$ $X-\lambda Y$; call $h(\lambda)=Y_{\lambda}$. In coordinates $Y=(1, \lambda)$ and $G\left(Y_{\lambda}, 0\right)=\lambda$. This proves 9.4.

Proof of 9.1. The M and A conditions follow from 9.2, 9.3, and 9.4, while the E condition is demonstrated by already known methods.

Part 3. The Submanifold Σ_{1}
10
Consider the sets $S_{i}=Q_{1} \cup Q_{2}(i) \cup Q_{3}(i) \cup H_{1} \cup H_{2}(i) \cup H_{3}(i) \cup H_{4}(i) \cup$ H_{5} and $\Sigma_{1}=\bigcup_{j-1}^{3} Q_{j} \bigcup_{k-1}^{5} H_{k}$. By 1.2, 2.1, 3.4, 5.6, 6.5, 7.6, 8.3, and 9.1 each $S_{i}(i=0,1,2, \ldots)$ satisfies the M condition; since $S_{i} \subset S_{i+1}$ and $\Sigma_{1}=$ $\bigcup_{i} S_{i}$, this subset of χ^{τ} satisfies the I condition.

Proof of Theorem A. The above considerations guarantee us the existence of Σ_{1}. Part (b) follows from 1.1, 2.1, 3.1, 5.1, 7.1, 8.3, and 9.1. Part (a) follows from a sequence of approximations similar to those used in [5] (to get the density of Σ_{0} in χ^{r}) and [22]. By a straightforward computation one proves the following lemmas.

Lemma A. Denote by $Q_{2}{ }^{0}$ the set of fields $X \in \chi^{r}$ having nongeneric periodic trajectories contained in $\operatorname{int}(M)$. Then Q_{2} is dense in $Q_{2}{ }^{0}$.

Lemma B. Denote by $Q_{1}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{r}$ having nongeneric critical points contained in $\operatorname{int}(M)$. Then Q_{1} is dense in $Q_{1}{ }^{0}$.

Lemma C. Denote by $Q_{3}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{r}$ which have saddle connections (contained in $\operatorname{int}(M)$) or nontrivial recurrent orbits, and all the field's critical points and periodic trajectories are in $\operatorname{int}(M)$. Then $Q_{1} \cup Q_{2} \cup Q_{3}$ is dense in $Q_{5}{ }^{0}$.

Lemma D. Denote by $H_{3}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{r}$ having periodic trajectories tangent to ∂M. Then $H_{2}{ }^{\circ} \subset \operatorname{Ad}\left(H_{2} \cup Q_{2}\right)$.

Lemma E. Denote by $I_{1}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{r}$ having critical points in δ M. Then $H_{1}{ }^{\circ} \subset \operatorname{Ad}\left(H_{1} \cup Q_{1}\right)$.

Lemma F. Denote by $H_{3}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{5}$ having trajectories tangent to $\hat{\sigma} M$ in more than one point, none of then being periodic or saddle separatrix. Then $H_{3}{ }^{0} \mathrm{C} \operatorname{Ad}\left(\mathrm{H}_{3}\right)$.

Lemma G. Denote by $H_{4}{ }^{0}$ the set of fields $X \in \chi_{1}{ }^{r}$ having saddle separatrices tangent to $\dot{d} M$. Then $H_{1} \subset \operatorname{Ad}\left(H_{1} \cup H_{4} \cup Q_{1} \cup Q_{3}\right)$.

Lemma H. Denote by $H_{5}{ }^{0}$ the set of fields $X \in{\chi_{1}}^{r}$ hazing one point $p \subseteq \partial M$ such that it does not satisfy the G condition zith respect to X. Then $H_{5}{ }^{0} \subset A d\left(\Sigma_{1}\right)$.

Since $\chi_{1}{ }^{r}-Q_{1}{ }^{0} \cup Q_{2}{ }^{0} \cup Q_{3}{ }^{0} \cup H_{1}{ }^{0} \cup H_{2}{ }^{0} \cup H_{3}{ }^{0} \cup H_{4}{ }^{0} \cup H_{5}{ }^{0}$, Lemmas $A-H$ imply immediately that Σ_{1} is dense in $\chi_{1}{ }^{r}$.

11. Final Remarks

11.1. Remark. Denote by Σ_{1} the set of first-order structurally stable vector ficlds of χ^{r} (see the definition in [10, p. 35]). Then $\tilde{\Sigma}_{1}=Q_{1} \cup{\underset{\sim}{2}}_{2} \cup{\underset{\sim}{O}}_{3} \cup$ $H_{1} \cup \tilde{H}_{2} \cup I_{3} \cup H_{4} \cup H_{5}$; furthermore $\tilde{\Sigma}_{1}$ satisfies the M and A conditions. This follows by $1.4,2.1,3.3,5.7,6.1,7.1,8.8$, and 9.1.
11.2. Remark. Let $I-[a, b]$ be a closed interval. Denote by Φ^{r} the space of C^{1} mappings $\xi: I \rightarrow \chi^{\top}$, with the $C^{\text { }}$ topology. We say $\lambda_{0} \in J$ is an ordinary value of $\xi \in \Phi^{r}$ if there is a neighborhood N of λ_{0} such that $\xi(\lambda)$ is topologically equivalent to $\xi\left(\lambda_{0}\right)$ for every $\lambda \in N$; if λ_{0} is not an ordinary value of ξ, it is called a bifurcation valuc of ξ. Obviously, if $\xi\left(\lambda_{0}\right) \in \Sigma_{0}$, (resp. $\xi\left(\lambda_{0}\right) \in \chi_{1}{ }^{\top}$), λ_{0} is an ordinary (resp. bifurcation) value of ξ. If ξ is transverse to Σ_{1} then every $\lambda_{0} \in \xi^{-1}\left(\Sigma_{1}\right)$ is a bifurcation value of ξ.
11.3. Remark. We say ξ_{1} and ξ_{2} of Φ^{r} are conjugate if there is a homcomorphism $h: I \rightarrow I$ and a map $H: I \rightarrow$ homeo. (M), such that $H(\lambda)$ is a conjugation between $\xi_{1}(\lambda)$ and $\xi_{2}(h(\lambda))$ (homeo. ($M /$) denotes the group of homeomorphisms of M). With this concept of conjugacy, the structural stability in Φ^{r} is defined in an obvious way. Let us denote by A^{r}, the collection of the elements $\xi \in \Phi^{r}$ such that:
(1) $\xi(I) \subset \Sigma_{0} \cup \tilde{\Sigma}_{1}$;
(2) ξ is transversal to Σ_{1};
(3) $\xi(a)$ and $\xi(b)$ are in Σ_{0}. We have the result, "Any $\xi \in \mathrm{A}^{r}$ is structuraly stable."

Acknowledgments

This paper is part of a doctoral dissertation at Instituto de Matemática e Fistatistica, Úniversidade de São Paulo, Brasil, 1975.

The author wishes to thank Professor A. Barone and Professor J. Sotomayor for many helpful conversations and suggestions on conducting this research.

References

1. A. Andionor avo E. Leontovich, Sur la théoric de la variation de la structure qualitative de la division du plan en trajectores, Dokl. Akad. Nauk 21 (1938).
2. W. Iterewirs, "Lectures on Ordinary Differential Equations," M.I.'T. Press, Cambridge, Mass., 1963.
3. S. Lavg, "Introduction to Differentiable Manifolds," Interscience, New York, 1962.
4. J. Palis, "Seminário de Sistemas Dinâmicos," [MPA, Rio de Janeiro, 1971.
5. M. C. Peixoto and M. M. Peixoto, Structural stability in the plane with enlarged conditions, An. Acad. Brasil. Ci. 1 (1959).
6. M. Mi. Perxoro, On structural stability, Ann. of Math. 69 (1959).
7. M. M. Pfixuto, Structural stability in two-dimensional manifolds, Topology 1 (1962).
8. M. M. Peixoto, "Dynamical Systems: Bahia Dynamical Systems Symposium," Academic Press, New York, 1973.
9. J. Suromayor, "Estabilidade Estrutural de Primeira Ordem cm Variedades de Banach," Thesis, IMPA, Rio de Janeiro, 1964.
10. J. Solomayor, "Gencric One Parameter Families of Vector Fields on Two-Dimensional Manifolds," Publ. Math. IEHS., No. 43, 1974.
11. J. Sotomayor, "Structural Stability in Manifolds with Boundary-Clobal Analysis and Its Applications," Vol. III, International Atomic Energy Agency, Vienna, 1974.
12. V. Pofvart, "Analyse Differentielle," Lectures Notes in Mathematics, SpringerVerlag, Berlin, 1974.

[^0]: * This research was partially supported by FINEP, Financiadora de Estudos e Projetos, Brazil.

