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O B J E C T I V E S This study sought to determine the effects of a p38 mitogen-activated protein kinase

inhibitor, losmapimod, on vascular inflammation, by 18F-fluorodeoxyglucose (FDG) positron emission

tomography/computed tomography imaging.

B A C K G R O U N D The p38 mitogen-activated protein kinase cascade plays an important role in the

initiation and progression of inflammatory diseases, including atherosclerosis.

M E T H O D S Patients with atherosclerosis on stable statin therapy (n � 99) were randomized to

receive losmapimod 7.5 mg once daily (lower dose [LD]), twice daily (higher dose [HD]) or placebo for

84 days. Vascular inflammation was assessed by FDG positron emission tomography/computed

tomography imaging of the carotid arteries and aorta; analyses focused on the index vessel (the artery

with the highest average maximum tissue-to-background ratio [TBR] at baseline). Serum inflammatory

biomarkers and FDG uptake in visceral and subcutaneous fat were also measured.

R E S U L T S The primary endpoint, change from baseline in average TBR across all segments in the

index vessel, was not significantly different between HD and placebo (∆TBR: �0.04 [95% confidence

interval [CI]: �0.14 to �0.06], p � 0.452) or LD and placebo (∆TBR: �0.02 [95% CI: �0.11 to �0.06],

p � 0.579). However, there was a statistically significant reduction in average TBR in active segments (TBR

�1.6) (HD vs. placebo: ∆TBR: �0.10 [95% CI: �0.19 to �0.02], p � 0.0125; LD vs. placebo: ∆TBR: �0.10 [95%

CI: �0.18 to �0.02], p � 0.0194). The probability of a segment being active was also significantly

reduced for HD when compared with placebo (OR: 0.57 [95% CI: 0.41 to 0.81], p � 0.002). Within the HD

group, reductions were observed in placebo-corrected inflammatory biomarkers including high-

sensitivity C-reactive protein (% reduction: �28% [95% CI: �46 to �5], p � 0.023) as well as FDG uptake

in visceral fat (∆SUV: �0.05 [95% CI: �0.09 to �0.01], p � 0.018), but not subcutaneous fat.

C O N C L U S I O N S Despite nonsignificant changes for the primary endpoint of average vessel TBR,

HD losmapimod reduced vascular inflammation in the most inflamed regions, concurrent with a

reduction in inflammatory biomarkers and FDG uptake in visceral fat. These results suggest a systemic

anti-inflammatory effect. (A Study to Evaluate the Effects of 3 Months Dosing With GW856553, as

Assessed FDG-PET/CT Imaging; NCT00633022) (J Am Coll Cardiol Img 2012;5:911–22) © 2012 by the

American College of Cardiology Foundation
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therosclerosis is considered to be a complex,
chronic, progressive inflammatory condition
(1), involving cytokines that direct the ad-

hesion and transmigration of monocytes
into the vascular wall. This complex process requires
the modulation of a number of cell signaling
pathways in which p38 mitogen-activated protein
kinases (MAPK) play a fundamental role (2,3). Four
p38 MAPK isoforms have been identified, with the
alpha and beta isotypes being prominent in the heart
and vasculature, and delta and lambda isotypes in
skeletal muscle, lung, and renal tissues. The expression
and activity of p38 MAPKs are relatively low in
healthy vasculature yet markedly elevated in macro-
phages of atherosclerotic lesions (2).

In pre-clinical models of cardiovascular disease, p38
MAPK inhibition improves endothelial dysfunction,
limits atherogenesis, and improves survival (4,5). Addi-
tionally, p38 MAPK inhibition reduces macrophage-
associated plaque inflammation in apolipoprotein
E–deficient mice, assessed using magnetic resonance
imaging (6). We have previously demonstrated that
p38 MAPK inhibition attenuates release of high-
sensitivity C-reactive protein (hsCRP) in patients
undergoing angioplasty (7), and, using a potent and
specific alpha/beta p38 MAPK inhibitor, losmapimod
(5), improves vasoregulation in hypercholesterolemic
atients (8), supporting translation of pre-clinical re-
ults into humans.
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omputed tomography (PET/CT), correlates with
acrophage glucose consumption (9), macrophage

number (10,11), and is also influenced by the degree of
hypoxia (12) in atherosclerosis, all potential markers of
plaque vulnerability. FDG-PET/CT imaging has been
successfully used to deter-
mine culprit plaques re-
sponsible for transient
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FDG uptake is attenu-
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and human models of ath-
erosclerosis (10,14). Al-
though FDG-PET/CT
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predicting cardiovascular
events, it may serve to an-
swer mechanistic ques-
tions about macrophage-
focused effects on vascular
inflammation when assessing novel anti-inflammatory
compounds (13–16).

In this exploratory study, the primary objective
was to test the hypothesis that selective p38 MAPK
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inhibition with losmapimod reduces vascular in-
flammation (as assessed with FDG-PET/CT im-
aging) in stable atherosclerotic patients on concur-
rent statin therapy. Pre-specified secondary
objectives included safety, tolerability, and effects
on serum inflammatory biomarkers. Finally, to
determine effects on extravascular inflammation,
FDG uptake in visceral and subcutaneous fat was
also measured. Visceral fat is relevant to the meta-
bolic risk associated with cardiovascular disease
(17,18).

M E T H O D S

Study design. This was a phase II, randomized,
ouble-blind, placebo-controlled study conducted
t 4 sites in the United Kingdom (Cambridge
niversity Hospitals National Health Service
oundation Trust; Bart’s and The London School
f Medicine and Dentistry; University of Oxford;
nd King’s Health Partners, London). The protocol
as approved by Oxfordshire Research Ethics
ommittee and registered with ClinicalTrials.gov

NCT00633022). The study complied with the
eclaration of Helsinki and written informed con-

ent was obtained from all participants.
Study population. Patients age 50 to 80 years with a
history of atherosclerosis (clinically stable, at least 6
months after myocardial infarction, transient isch-
emic attack/stroke, or symptomatic peripheral vas-
cular disease) and with a body mass index between
19 and 35 kg/m2 were eligible. Patients were on
table statin therapy. Prior to enrolment, eligible
atients underwent a screening PET/CT to deter-
ine whether they had sufficient vascular inflam-
ation for study entry, defined as an average arterial
DG whole vessel tissue-to-background ratio

TBR) of �1.6 (11) in either of the carotids or the
scending aorta. Patients with New York Heart
ssociation functional class II to IV heart failure,

trial fibrillation, hepatic or renal disease, poorly
ontrolled type II diabetes, insulin-dependent dia-
etics, and those with chronic inflammatory condi-
ions and malignancy were excluded.
Intervention. Patients were randomized (1:1:1) to
receive oral losmapimod 7.5 mg twice daily (higher
dose [HD]), losmapimod 7.5 mg once daily (lower
dose [LD]), or placebo for 84 days. Losmapimod
and placebo tablets were indistinguishable and
study personnel and patients were blinded to treat-
ment allocation until the trial was complete. Study

medication was manufactured by GlaxoSmithKline. w
Vascular and fat PET/CT imaging. Vascular PET/CT
imaging (19,20) was performed at study entry
(pre-dose) and repeated at day 84. Vessels were
identified and sectioned into 5-mm contiguous
“segments.” Regions of interest were drawn around
the arterial wall (in the axial plane) for every
segment of the coregistered PET/CT images. The
maximum standard uptake value (SUV) of FDG in
each segment was recorded and normalized to
background blood FDG activity, yielding a TBR.
For each patient, the artery with the highest average
maximum TBR at baseline was designated the
“index vessel” (either carotid artery or aorta) and
was used for further analyses. The index vessels
were evaluated using a “whole vessel” approach and
an “active segment” approach (Fig. 1). With the
whole vessel approach, all segments composing the
index vessel were analyzed, regardless of whether or
not active inflammation was present at baseline. In
the active segment approach, noninflamed seg-
ments were excluded, similar to previous work in
which the effect of simvastatin was assessed only in
locations with increased FDG uptake at baseline
(14,21). Prior FDG-PET imaging studies with
pathological correlations demonstrate that a TBR
value �1.6 is associated with �5% inflammation
within the atheroma (11,22–24). Therefore, seg-
ments with TBR �1.6 were defined as active.
Measurements of visceral and subcutaneous fat
were performed as previously described (25). See
the supplementary methods in the Online Appen-
dix for additional details.
Laboratory assessments. Blood samples were col-
lected pre-dose on days 1, 7, 14, 28, 56, and 84 and
2 weeks post-cessation of drug for measurement of
hsCRP and pre-dose on days 1, 28 or 42, and 84 for
measurement of inflammatory biomarkers. All anal-
yses were conducted centrally using standard labo-
ratory methods.
Safety assessments. Adverse events, safety labora-
tory parameters, hemodynamic variables, and elec-
trocardiograms were assessed throughout the study.
Statistical methods. A sample size of 30 patients per
roup provided 90% power to detect a 15% differ-
nce in change from baseline in TBR across all
egments within the index vessel with a 5% level of
ignificance (14).

The safety population included patients who
eceived at least 1 dose of the investigational prod-
ct. Change from baseline analyses for pharmaco-
ynamics and FDG-PET/CT included patients

ith both baseline and post-baseline values.

http://www.clinicaltrials.gov/ct2/show/NCT00633022?term=NCT00633022&rank=1
http://www.clinicaltrials.gov/ct2/show/NCT00633022?term=NCT00633022&rank=1
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We used 3 approaches to quantify vascular in-
flammation (Fig. 1): 1) the pre-specified whole
vessel primary endpoint of change in the average
maximum TBR for all segments within the index

All Segments

Average TBR TBR Distributio

# 
S

lic
es

TBR

Example
Values

2.0

2.2

2.5

2.0

1.2

1.3
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2.2
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2.0

2.0

1.2

1.3

1.8

Mean = 1.86

Figure 1. Analysis Methods Used To Quantify Vascular Inflamm

A series of contiguous segments from the index vessel are illustrate
The value within each segment represents the maximum tissue-to-b
defined as segments with TBR �1.6.

Screen

Losmapimod
(lower
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Completed 84 day
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PET/CT scans:
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Figure 2. Flow of Patients Through the Trial
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LD � lower dose; SAE � serious adverse event; TBR � tissue-to-backgr
vessel (19), with a complementary post hoc analysis
displaying the group distribution of TBR using a
frequency histogram; 2) an analysis of change from
baseline in average maximum TBR for active seg-
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ments within the index vessel; and 3) an analysis of
the probability of a segment being active within the
index vessel.

Change from baseline in average maximum TBR
was analyzed using analysis of covariance, fitting
treatment as fixed effect, and including baseline
value as a covariate. Point estimates and corre-
sponding 95% confidence intervals (CI) were con-
structed for the relevant comparisons of interest.

TBR data were plotted to show the distribution
from all segments from all index vessels within each
treatment group (at pre-dose and post-dose). The
Kolmogorov-Smirnov statistic was applied to these
data to measure the effect of treatment on TBR
distribution. The difference between losmapimod

Table 1. Demographic and Baseline Characteristics

Placebo

Demographics

Male/female 2

Age, yrs 63.7

Body mass index, kg/m2 28.9

Medical history

Current or ex-smoker 22

Acute coronary syndrome or myocardial infarction 17

Transient ischemic attack/stroke 4

Peripheral vascular disease 5

Type 2 diabetes mellitus 3

Concomitant medications*

Antiplatelet therapies 28

ACEI or ARB 22

Beta-blockers 18

Other antihypertensives 15

Oral hypoglycemics 2

Baseline values†

Systolic blood pressure, mm Hg 130

Diastolic blood pressure, mm Hg 76

Glucose, mmol/l 5.81

Glucose, mg/dl 104.60

Cholesterol, mmol/l 4.20

Cholesterol, mg/dl 150.97

HDL cholesterol, mmol/l 1.23

HDL cholesterol, mg/dl 47.49

LDL cholesterol, mmol/l 2.22

LDL cholesterol, mg/dl 85.71

Triglycerides, mmol/l 1.63

Triglycerides, mg/dl 144.25

hsCRP, mg/l‡ 1.00

Adiponectin, ng/ml† 11,219

Values are mean � SD or n (%). *All patients were on statins for at least 3 m
(% coefficient of variation). ‡hsCRP values �10 mg/l were omitted.
ACEI � angiotensin-converting enzyme inhibitor; ARB � angiotensin receptor
lipoprotein; hsCRP � high-sensitivity C-reactive protein; LD � lower dose (losmapim
and placebo was calculated and tested using a
nonparametric permutation test at the patient level.
Baseline correction is not feasible with this analysis
approach.

The number of active segments and the total
number of segments were included in logistic re-
gression analyses to model the probability of a
segment being active. For baseline correction within
each group, a model was fitted with terms for
treatment and day. For placebo and baseline cor-
rection, a model was fitted with treatment term and
including the baseline proportion of active segments
as covariate. In the baseline correction within each
group model, the generalized estimating equation
method was used to adjust for the fact that multiple

� 32)

Losmapimod

Total (n � 99)LD (n � 33) HD (n � 34)

28/5 29/5 85/14

.37 65.3 � 5.94 62.3 � 5.90 63.8 � 6.01

44 28.0 � 3.35 29.8 � 3.68 28.9 � 3.46

) 22 (67) 27 (79) 71 (72)

) 18 (55) 22 (65) 57 (58)

) 10 (30) 10 (29) 24 (24)

) 3 (9) 4 (12) 12 (12)

1 (3) 2 (6) 6 (6)

) 30 (91) 29 (85) 87 (88)

) 24 (73) 26 (76) 72(73)

) 15 (45) 22 (65) 55 (56)

) 10 (30) 14 (41) 39 (39)

0 3 (9) 5 (5)

) 133 (16) 135 (17) 133 (17)

77 (11) 79 (9) 77 (9)

2) 5.74 (0.60) 5.99 (1.05) 5.85 (0.90)

.41) 103.30 (10.82) 107.80 (18.83) 105.30 (16.27)

8) 3.91 (0.75) 3.71 (0.74) 3.78 (0.94)

.64) 144.24 (28.76) 143.24 (28.65) 146.07 (36.41)

8) 1.23 (0.32) 1.16 (0.30) 1.20 (0.30)

.66) 47.49 (12.39) 44.79 (11.97) 46.56 (11.59)

7) 2.01 (0.51) 1.91 (0.61)* 2.05 (0.59)

.79) 77.61 (19.85) 74.32 (23.63)* 79.10 (22.96)

6) 1.46 (0.74) 1.40 (0.51) 1.49 (0.60)

.65) 129.20 (65.66) 123.89 (45.04) 132.24 (53.58)

3) 1.30 (146) 1.30 (114) 1.20 (122)

) 10,932 (45) 10,110 (37) 10,732 (38)

s before the study. †hsCRP and adiponectin are reported as geometric mean

ker; HD � higher dose (losmapimod 7.5 mg twice daily); HDL � high-density
(n

8/4

� 6

� 3.

(69

(53

(13

(16

(9)

(88

(69

(56

(47

(6)

(19

(8)

(1.0

(18

(0.8

(49

(0.2

(10

(0.6

(25

(0.5

(49

(13

(31

onth

bloc

od 7.5 mg once daily); LDL � low-density lipoprotein.
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data points (day 1 and day 84) were from the same
vessel (patient). Point estimates and corresponding
95% CI were constructed to establish the odds ratio
for the relevant comparisons of interest.

Biomarker data were analyzed by analysis of
covariance fitting terms for regimen, day, and in-
teraction of day and regimen as fixed effects; patient
as a random effect; and baseline biomarker at day 1
as a covariate.

Statistical analyses were performed using SAS ver-
sion 9.2 (SAS Institute, Cary, North Carolina). No
multiplicity adjustment was made and p values �0.05
were considered statistically significant.

R E S U L T S

The flow of participants through the study is shown
in Figure 2: 159 patients were screened; 99 were
andomized; 92 completed the 84-day dosing pe-
iod; and 93 were included in FDG-PET/CT

Figure 3. Typical FDG-PET/CT Images

(A) From left to right, sagittal CT, PET, and combined CT and PET im
images from the same patient after 84 days of treatment with losm
ing heterogeneous atherosclerotic fluorine 18F-fluorodeoxyglucose

Figure 2.
analyses. Demographic and baseline characteristics
are summarized in Table 1. A summary of index
vessel types for each group is shown in Online
Table 1.
Vascular PET/CT imaging. ALL SEGMENTS. Figure 3
illustrates the patchy nature of vascular inflamma-
tion in atherosclerosis. The magnitude of reduction
in average maximum TBR of all segments within
the index vessel was larger in the losmapimod
groups, but there was no significant difference when
compared with placebo (Table 2). There was, how-
ever, a significant leftward shift in TBR distribution
from baseline to day 84 in the losmapimod groups
(HD vs. placebo: p � 0.007; LD vs. placebo: p �
0.031), with no significant change in the placebo
group (Fig. 4).

ACTIVE SEGMENTS. When only active segments
ere considered, there was a statistically significant

eduction in average maximum TBR in these in-

es from a patient at pre-dose (baseline) are shown. (B) Matching
od HD. The arrows highlight the descending aorta, demonstrat-
) uptake, which is lowered post-dose. Other abbreviations as in
ag
apim
(FDG
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flamed areas for both HD and LD losmapimod
compared with placebo (p � 0.0125 and p �
0.0194, respectively) (Table 2).

1 2 3 4
TBR

A

D
en
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0.53 1.6 4

1.5

1.0

0.5

0.0

1.5
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0.0
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1 2

D
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ty

0.53 1.6

Figure 4. Frequency Histograms of All Segments From the Inde

Frequency histograms of all segments from the index vessel histog
the placebo group (A) at pre-dose baseline (black dashed line) and
pre-dose baseline (green dashed line) and after 84 days (green so

Table 2. Change from Baseline in FDG Uptake in the Index Ves

Change From Baseline in Averag

Group

Mean � SD TBR

Baseline Day 84 Differe

HD, n � 32 2.07 � 0.31 1.93 � 0.30 �0.1

LD, n � 32 2.05 � 0.22 1.93 � 0.20 �0.1

Placebo, n � 29 1.94 � 0.24 1.89 � 0.25 �0.0

Change From Baseline in Average Maxim

Group

Mean � SD TBR

Baseline Day 84 Differe

HD, n � 32 2.03 � 0.30 1.86 � 0.27 �0.1

LD, n � 32 2.03 � 0.22 1.87 � 0.19 �0.1

Placebo, n � 29 1.86 � 0.20 1.84 � 0.20 �0.0

Change From Baseline in

Group

% of Active Segments � SD

Baseline Day 84 Odd

HD, n � 32 94.4% � 9.4 84.6% � 21.3

LD, n � 32 95.3% � 8.2 89.1% � 19.7

Placebo, n � 29 88.3% � 19.2 82.2% � 24.4

*Difference, 95% CI, and p value for comparison derived from analysis of covar
scale. Day 84 versus baseline result is from the model of baseline correction withi
CI � confidence interval; FDG � fluorodeoxyglucose; NA � not applicable; T
(pink dashed line) and after 84 days (pink solid line).
The odds of having an active segment on day 84
was significantly lower than on day 1 for the HD
group (p � 0.001) and the LD group (p � 0.001),

B

1 2 3 4

.5

.0

.5

.0

TBR
0.53 1.6 4.57

3 4
R

4.57

ssel

show tissue-to-background ratio (TBR) data from all patients in
er 84 days (black solid line), in the losmapimod LD group (B) at
ne), and in the losmapimod HD group (C) at pre-dose baseline

aximum TBR for All Segments Within the Index Vessel

Day 84 Versus Baseline* Placebo and Base

95% CI p Value Difference 95%

�0.21 to �0.05 0.003 �0.04 �0.14 t

�0.17 to �0.06 �0.001 �0.02 �0.11 t

�0.16 to �0.03 0.005 NA N

TBR for Active Segments (Segments With Maximum TBR >1.6)

Day 84 Versus Baseline* Placebo and Basel

95% CI p Value Difference 95%

�0.20 to �0.08 �0.001 �0.10 �0.19 to

�0.20 to �0.07 �0.001 �0.10 �0.18 to

�0.09 to 0.02 0.177 NA NA

bability of a Segment Being Active (TBR >1.6)

Day 84 Versus Baseline† Placebo and Base

atio 95% CI p Value Odds Ratio 95%

0.08 to 0.47 �0.001 0.57 0.41 t

0.22 to 0.69 0.001 1.17 0.80 t

0.50 to 1.62 0.736 NA N

. †Odds ratio, 95% CI, and p value for comparison derived from logistic regressi
h group; placebo and baseline corrected result is from the model with both placeb
ssue-to-background ratio; other abbreviations as in Table 1.
.57
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line Corrected*

nce CI p Value

3 o 0.06 0.452

2 o 0.06 0.579

9 A NA

um

ine Corrected*

nce CI p Value

4 �0.02 0.013

4 �0.02 0.019

4 NA

Pro

line Corrected†

s R CI p Value

0.19 o 0.81 0.002

0.39 o 1.71 0.429

0.90 A NA

iance on analyses on odds ratio
n eac o and baseline correction.
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without significant change in the placebo group
(p � 0.736) (Table 2, Fig. 5). After adjusting for
aseline and correcting for placebo, the odds of
aving an active segment on day 84 were signifi-
antly lower in the HD group than in the placebo
roup (p � 0.002), but no significant difference was
bserved for the LD group versus the placebo group
p � 0.429). This result was maintained irrespective
f the TBR cutoff used to define significant inflam-
ation (Online Table 2).

Biomarkers. There was a statistically significant de-
rease from baseline in average hsCRP over the
4-day treatment period in the HD group com-
ared with the placebo group, and there was a
onsignificant trend for a decrease in the LD group
Table 3, Fig. 6). There was a rebound in hsCRP
bove baseline levels 2 weeks after cessation of
osmapimod treatment (Fig. 6). In the HD group,
ompared with the placebo group, statistically sig-
ificant reductions from baseline were also observed
t day 84 for interleukin 8, matrix metalloproteinase
-neutrophil gelatinase associated lipocalin dimer,
nd monocyte chemotactic protein-1. No reduc-
ions were observed for other biomarkers (Table 3).
Visceral and subcutaneous fat imaging. At baseline,
there were no significant differences between groups
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Day 84, Mean (SD)

Placebo (n = 32)

88.3% (19.2)

82.2% (24.4)

OR 0.90
p = 0.736

p

Figure 5. Change in Probability of a Segment Being Active

This figure depicts the odds ratio (OR) and associated 95% confiden
index vessel on day 84 versus baseline in the placebo, losmapimod
denote the comparison within each group on day 84 compared wi
tion within each group); p values above the horizontal parentheses
baseline adjustment (based on logistic regression model with both
show the mean (SD) of proportion of active segments at baseline a
in SUV for FDG for either subcutaneous or visceral
fat (Table 4). At day 84, there was a significant
reduction from baseline in the HD (but not LD)
group in maximum SUV for visceral fat (p � 0.002)
that remained statistically significant when com-
pared with placebo (p � 0.018) (Table 4). There
were no changes from baseline in maximum SUV
for subcutaneous fat in any of the groups. There
were no changes in glucose, adiponectin, or insulin
levels or body mass index over the course of the
study (data not shown).
Safety. Losmapimod was well-tolerated in this
study. There were no clinically meaningful changes
in laboratory parameters, vital signs, or electrocar-
diograms over time in any of the groups. Adverse
events were reported by a similar proportion of
patients in each group (Online Table 3).

D I S C U S S I O N

We conducted an experimental study to assess the
effect of a novel anti-inflammatory agent on vascu-
lar inflammation, over 3 months, in stable athero-
sclerotic patients receiving statin therapy. Despite a
negative primary endpoint, we demonstrated that
losmapimod reduced arterial inflammation, as mea-
sured by FDG-PET/CT imaging in the most active

LD (n = 33)

95.3% (8.2)

89.1% (19.7)

OR 0.39
p = 0.001

.429

p = 0.002

HD (n = 34)

94.4% (9.4)

84.6% (21.3)

OR 0.19
p < 0.001

intervals for having an inflamed arterial segment (TBR �1.6) in the
and losmapimod HD groups. The p values above each bar
aseline (based on logistic regression model with baseline correc-
ote the comparison for LD or HD groups versus placebo, after
eline and placebo correction). The numbers underneath the x-axis
ay 84 for each group. Abbreviations as in Figures 1 and 2.
 = 0

ce
LD,

th b
den
bas
discrete segments (pre-defined as a TBR of �1.6)
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of selected arteries, suggesting influence predomi-
nantly in the most inflamed areas. Complementing
this finding, there was a shift in the distribution of
active segments using our frequency analysis. The
modest vascular effects were accompanied by
significant reductions in circulating inflammatory
biomarkers, in line with previous results using
this compound (8), and in visceral fat FDG
uptake.

A linear correlation in a previous small study
between TBR vessel average (which ranged from
approximately 1.0 to 4.0) and the tissue level of
macrophage marker CD68 (11) drove the decision
on our primary endpoint. However, a dearth of
segments in our study with baseline TBR substan-
tially �2.0, observed within a narrow range, in
addition to the modest effect size, encouraged a
more thorough analytic review of the data. FDG-
PET/CT imaging is a relatively new, noninvasive
method to assess arterial inflammation (26). To
date, most interventional FDG-PET/CT studies in
cardiovascular patients have been small (14,15) and
without clear consensus on the most relevant
method of analysis (27). Whereas tests of reproduc-
ibility can reasonably employ averaging strategies

Table 3. Percentage Change From Baseline in Blood Biomarkers

Biomarker Group

Day

% Difference

IL6 HD, n � 34 �21.2

LD, n � 33 12.2

Placebo, n � 32 �7.1

IL8 HD, n � 34 �20.9

LD, n � 33 2.1

Placebo, n � 32 8.3

MCP1 HD, n � 34 �8.3

LD, n � 33 0.2

Placebo, n � 32 12.6

MMP9 HD, n � 34 �33.4

LD, n � 33 �19.4

Placebo, n � 32 �11.6

MMP9-NGAL HD, n � 34 �38.0

LD, n � 33 �27.7

Placebo, n � 32 �6.2

hsCRP HD, n � 34 �17.2

LD, n � 33 �1.0

Placebo, n � 32 6.2

hsCRP average† HD, n � 34 �31.4

LD, n � 33 �24.0

Placebo, n � 32 �4.4

*Percentage difference, 95% CI, and p value for comparison derived from anal
IL � interleukin; MCP � monocyte chemotactic protein; MMP � matrix me
(20), interventional therapeutic studies often tar-
get pre-identified lesions (14,28). We used a
variety of methods to examine vascular inflam-
mation across the whole vessel and a more
specific focus on active segments of the vascular
tree, emulating the evolution of analytic tech-
niques for imaging plaques using coronary intra-
vascular ultrasound (29).

FDG uptake and macrophage activation are
closely related in humans (11). The reduction in
FDG uptake with therapy in the current study
could be due to an attenuation of cellular glucose
uptake (30), reduction in macrophage number, or
reductions in macrophage hypoxia (12). Although
this study cannot determine the precise mecha-
nisms, the original hypothesis for macrophage re-
duction was based on the correlation between
FDG-PET/CT in-vivo and macrophage cell num-
ber ex vivo (11).

We also found a significant differential reduction
in uptake of FDG in visceral versus subcutaneous
adipose tissue following HD losmapimod. FDG-
PET imaging of fat to detect its glucose usage is a
promising technique in understanding metabolic
differences between adipose tissue compartments
(31). The fact that this change only occurred in

ersus Baseline* Placebo and Baseline

95% CI p Value % Difference 95%

44.7 to 12.3 0.185 �15.2 �49.3 to

18.9 to 55.3 0.482 20.8 �26.3 to

36.0 to 34.9 0.697 NA NA

33.6 to �5.9 0.009 �26.9 �43.2 to

13.9 to 21.1 0.813 �5.7 �26.6 to

9.8 to 30.0 0.393 NA NA

17.2 to 1.5 0.093 �18.6 �29.9 to

9.5 to 11.0 0.965 �11.0 �23.3 to

0.9 to 25.6 0.034 NA NA

45.5 to �18.6 �0.001 �24.7 �43.9 to

34.3 to �1.1 0.039 �8.8 �32.3 to

28.8 to 9.8 0.264 NA NA

51.0 to �21.5 �0.001 �33.8 �53.3 to

43.1 to �8.0 0.009 �22.8 �45.6 to

27.3 to 21.0 0.619 NA NA

35.7 to 6.5 0.142 �22.0 �46.1 to

24.0 to 28.9 0.940 �6.8 �36.1 to

19.0 to 39.2 0.665 NA NA

43.9 to �16.2 �0.001 �28.3 �46.1 to

38.1 to �6.7 0.009 �20.5 �40.4 to

22.0 to 17.2 0.664 NA NA

f covariance. †Average change from baseline over 84-day treatment period.
proteinase; NGAL � neutrophil gelatinase-associated lipocalin; other abbreviation
84 V Corrected*

CI p Value

� 41.9 0.526

� 98.2 0.450

� NA

� �6.0 0.015

� 21.1 0.643

� NA

� �5.5 0.007

� 3.4 0.127

NA

� 1.2 0.060

� 22.8 0.542

� NA

� �6.4 0.020

� 9.5 0.146

� NA

� 12.9 0.187

� 36.1 0.716

� NA

� �4.5 0.023

� 6.2 0.120

� NA

ysis o
visceral fat implies that there was not a generalized
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reduction in FDG uptake in all fat cells. Consistent
with this notion, serum glucose levels were not
influenced by losmapimod treatment (data not
shown). It has previously been shown that visceral
fat has a relatively greater FDG uptake than sub-
cutaneous fat does, which was attributed to differ-
ential stromal macrophage activity (17). However,
adipose cells express p38 MAPK, with glucose
uptake thought to be related to tumor necrosis
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Figure 6. Percentage Change From Baseline in hsCRP

Percentage change from baseline in high-sensitivity C-reactive prot
line in hsCRP in the placebo group (black dashed line), losmapimo
line). Day 7 data includes a subset of the total population (HD: n �

Baseline in FDG Uptake in Subcutaneous and Visceral Fat

Change From Baseline in Average Maximum

Mean � SD SUV Day 84 Versus Ba

Baseline Day 84 Difference 95% CI

0.32 � 0.085 0.30 � 0.095 �0.02 �0.05 to 0.00

0.34 � 0.084 0.31 � 0.079 �0.03 �0.05 to �0.0

0.34 � 0.112 0.32 � 0.108 �0.02 �0.05 to 0.01

Change From Baseline in Average Maximu

Mean � SD SUV Day 84 Versus Bas

Baseline Day 84 Difference 95% CI

0.59 � 0.110 0.53 � 0.120 �0.06 �0.09 to �0.0

0.58 � 0.133 0.56 � 0.140 �0.02 �0.06 to 0.02

0.57 � 0.130 0.57 � 0.081 �0.01 �0.03 to 0.02

value for comparison derived from analysis of covariance.

alue; other abbreviations as in Tables 1 and 2.
factor alpha expression (a p38 MAPK-mediated
cytokine) (32,33). Whereas our findings suggest a
selective reduction in macrophage activity with p38
MAPK inhibition, we did not perform adipose
tissue biopsies to confirm this hypothesis. In future
work, more specific biological imaging agents might
help determine whether the effect of losmapimod is
due to a reduction in glucose consumption in
macrophages or within the adipocytes themselves.

ay 28 Day 56 Day 84 Follow-up

hsCRP) percentage change (95% confidence intervals) from base-
group (green solid line), and losmapimod HD group (pink solid

; LD: n � 13; placebo: n � 14). Abbreviations as in Figure 2.

for Subcutaneous Fat

e* Placebo and Baseline Corrected*

p Value Difference 95% CI p Value

0.060 �0.00 �0.04 to 0.03 0.815

0.020 �0.01 �0.05 to 0.03 0.636

0.168 NA NA NA

UV for Visceral Fat

* Placebo and Baseline Corrected*

p Value Difference 95% CI p Value

0.002 �0.05 �0.09 to �0.01 0.018

0.274 �0.02 �0.06 to 0.03 0.502

0.654 NA NA NA
D

ein (
d LD
Table 4. Change From

SUV

Group

selin

HD, n � 33

LD, n � 32 0

Placebo, n � 30

m S

Group

eline

HD, n � 33 2

LD, n � 32

Placebo, n � 30

*Difference, 95% CI, and p
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Study limitations. A limitation of our exploratory
study is that a stable patient group was enrolled
with well-controlled risk factors, low levels of sys-
temic inflammation, and background statin therapy,
likely making any apparent change more difficult to
determine. It is possible that the effect would have
been greater in patients with higher inflammatory
burden. We also excluded patients with chronic
disease without active vessel inflammation in whom
plaques may be particularly quiescent; therefore, the
effect of losmapimod in these especially stable
patients is unknown. Finally, we accept the explor-
atory nature of our approach including the imaging
technique and analyses we used to determine vas-
cular effect. The 10% change in FDG-PET/CT
observed in a previous statin study (15) suggests
that the additional changes reported herein could
have clinical relevance.

C O N C L U S I O N S

In summary, we demonstrate that losmapimod
265–71.

1

1

1

augments glucose
lar inflammation in actively inflamed segments, in
conjunction with significant reductions in circulat-
ing inflammatory biomarkers as well as FDG up-
take in visceral adipose tissue. Inflammation is an
important predictor of future cardiovascular events
(34,35). We suggest that the role of p38 MAPK
inhibition requires further evaluation as a novel
therapeutic intervention for atherosclerosis.
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