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Abstract

We propose that a simple, closed-form mathematical expression—the Wedge–Dipole mapping—provides a concise approximation to
the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex,
acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge–Dipole parameters is provided via 2DG data of
central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement
is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the devel-
opment of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that
have been in common use. One reason is that topography has traditionally supplied an important aspect of ‘‘ground truth,’’ or valida-
tion, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition,
several important insights into the nature of cortical topography follow from this work. The presence of anisotropy in cortical magni-
fication factor is shown to follow mathematically from the shared boundary conditions at the V1–V2 and V2–V3 borders, and therefore
may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge–Dipole
model to localizing aspects of visual processing to specific cortical areas—extending previous work in correlating V1 cortical magnifica-
tion factor to retinal anatomy or visual psychophysics data—is briefly discussed.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Visual cortex; Retinotopic; Quasiconformal mapping; Topographic modeling; Topographic map complex
1. Introduction

The existence of a map of the visual field in cerebral cor-
tex was inferred at the beginning of the twentieth century
from human lesion studies (Adams & Horton, 2001; Glick-
stein & Whitteridge, 1987; Inouye, 1909) and was first
observed electrophysiologically in the mid-twentieth centu-
ry (Daniel & Whitteridge, 1961; Talbot & Marshall, 1941).
The first direct observation of this map via brain imaging
was made at Brookhaven National Laboratory using an
early positron emission tomography (PET) scanner
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following administration of 19F-labeled 2-deoxyglucose
(2DG) to human subjects who viewed a logarithmically
structured ‘‘ring-ray’’ stimulus (Schwartz, 1981; Schwartz,
Christman, & Wolf, 1984). Subsequent imaging studies
using 2DG autoradiography provided much higher detail,
indicating that the visuotopic map in macaque primary
visual cortex (V1) is well structured down to the level of
100–200 lm (Schwartz, 1994, chap. 9; Tootell, Silverman,
Switkes, & DeValois, 1982).

In the 1990s, functional magnetic resonance imaging
(fMRI) studies of visual topography provided the primary
demonstration, in vivo, that fMRI could resolve functional
activity within individual brain areas down to the level of
several millimeters (e.g., Engel et al., 1994; Ogawa et al.,
1992; Sereno et al., 1995). In the near term, the accuracy
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of quantitative measurements made through fMRI will
improve due to the increasing availability of higher mag-
netic field strengths [e.g., visual topography data acquired
at 7T field strength has been recently demonstrated (Poli-
meni et al., 2005)] together with advances in fMRI distor-
tion correction techniques. Therefore, understanding of
the quantitative details of visual topography must also
improve in order to provide a useful in vivo validation of
these improvements. The modeling work presented in this
report is part of a larger, ongoing effort to develop non-in-
vasive, high-resolution brain imaging methodologies and to
quantify their accuracy.

The basis for the present investigation into human visual
topography is represented by the summary provided in
Fig. 1, which was generated from a series of careful lesion
studies conducted by Horton and Hoyt (1991a, 1991b).
Three key features are immediately evident by visual
inspection of the topographic layout of human visual cor-
tex. First, there appears to be a single continuous mapping
extending across all three mapped areas—the area bound-
aries do not disrupt the smoothness of the iso-eccentricity
contours. Second, both V2 and V3 appear to be com-
pressed relative to V1 in the direction of the iso-eccentricity
contours. Finally, the topographic map reverses at each
area border; mathematically, this corresponds to a change
in handedness of the underlying coordinate systems in each
area (i.e., a ‘‘field sign reversal’’).

Although semi-quantitative in nature, the V1–V2–V3
map provided by Horton and Hoyt (1991a) is very well
informed and holds up in detail to the quantitative analysis
provided below. It also provides a view of the topographic
representation over the entire visual field that is currently
lacking in fMRI-based observations. The question that it
raises, which is addressed in the current report, is how to
develop a two-dimensional mathematical model of joint
Fig. 1. The topography of human visual areas V1, V2, and V3. The
‘‘HM’’ and ‘‘VM’’ mark the representations of the horizontal and vertical
meridians, respectively. Iso-eccentricity contours run roughly vertically in
this layout, and iso-azimuthal contours run roughly horizontally. Repro-
duced from Horton and Hoyt (1991a).
V1, V2, and V3 topography that is sufficiently well struc-
tured so as to provide a basis for current and future quan-
titative investigations, but that can also supply meaningful
characterizations of visual topography.

Here, we have restricted attention to data obtained from
the macaque monkey, since the accuracy of these data is
considerably higher than that of current human fMRI
data, and, crucially, includes valuable topographic data
from the peripheral visual field. Encouragingly, several
recent fMRI studies have provided quantitative two-di-
mensional fits to parafoveal human V1 (Duncan & Boyn-
ton, 2003) and V1, V2, and V3 (Polimeni et al., 2005)
that are in very close agreement to the macaque parameters
estimated in this report. This fact is of central importance,
since prior estimates of both human and macaque visual
topography have been widely scattered (reviewed in
Gulyàs, 1997, chap. 16; Levi, Klein, & Aitsebaomo, 1985;
Schwartz, 1994; Wilson, Levi, Maffei, Rovamo, &
DeValois, 1990, chap. 10). Through the use of well-defined
mathematical models and accurate cortical surface
flattening, it appears that the variance both within and
across the macaque and human species may be far smaller
than previously indicated. In this report, we provide a
review of several decades of attempts to provide a mathe-
matical description of cortical topography, then present a
quantitative application of a recent two-dimensional model
to characterize macaque 2DG and electrophysiology data.

In previous work, we showed that a closed-form quasi-
conformal mapping of visual field coordinates provides a
multi-area, qualitative model of the two-dimensional visuo-
topic structure of macaque and human cortical areas V1,
V2, and V3 (Balasubramanian, Polimeni, & Schwartz,
2002). Conformal mappings provide a good approximation
to the structure of macaque V1 visual topography
(Schwartz, 1994), but assume local isotropy. Quasicon-
formal mappings (Ahlfors, 1966b) allow local anisotropy,
and thus provide a more general tool for modeling
arbitrary two-dimensional, continuous mappings. The pro-
posed mapping is termed the ‘‘Wedge–Dipole’’ map, since
it is the composition of a constant azimuthal shear
‘‘wedge’’ map and a conformal ‘‘dipole’’ map that is an
extension of the standard log-polar or complex logarithm
mapping (Schwartz, 1977b, 1980, 1994).

In the present report, we establish the quantitative valid-
ity of the Wedge–Dipole model by fitting the model to two
data sets of macaque visual topography data. Statistical
analysis supports the quantitative validity of the fits (with
correlation coefficient r P 0.98). This result suggests that
the V1 and V2 maps share the same conformal parameters,
differing only in the handedness of the V2 map [i.e., the V2
topographic map is a mirror reflection of the V1 map
around the representation of the vertical meridian (Talbot,
1942)] and in the amount of azimuthal shear: the full-field,
global topographic map shows that, on average, V1 is only
slightly sheared and V2 is significantly sheared. Based on
existing semi-quantitative data, V3 appears as a mirror-re-
flected version of V2 and we estimate that it is sheared
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substantially more than V2 (a precise definition of shear is
presented below).

Allman and Kaas (1974a, 1974b) originally suggested
that multiple visuotopic areas with shared boundaries can
be considered to be a single entity. They applied the term
‘‘functional unit’’ to both V1–V2 and MT–DL in the owl
monkey (Allman & Kaas, 1974b, p. 208). Subsequent
investigators have used alternative terms: e.g., ‘‘functional
dyads’’ (Gattass, Gross, & Sandell, 1981, p. 537), ‘‘supra-
areal topography’’ (Rosa, 1997, chap. 4, p. 179), and
‘‘map clusters’’ (Wandell, Brewer, & Dougherty, 2005).
In previous work (Balasubramanian et al., 2002), we intro-
duced the term visuotopic map complex to describe multiple
topographic areas which not only share qualitative fea-
tures, but which also share a common mathematical under-
pinning in the form of an explicit visuotopic map function.
Thus, beyond providing a quantitative model accounting
for the internal topographic details of V1, V2, and V3,
the Wedge–Dipole model is capable of jointly modeling
V1, V2, and V3 with a single map function, suggesting that
these three areas be considered as a single topographic enti-
ty, the V1–V2–V3 complex. The quantitative details of the
visuotopic map complex in macaque are the subject of the
present report.

A preliminary account of this work has appeared in
abstract form (Polimeni, Balasubramanian, & Schwartz,
2003).

2. Modeling methods

2.1. Visuotopy and retinotopy: Local and global measurements

2.1.1. Visuotopy

The term visuotopy refers to the mapping of points in the visual field
to points in cortex, where the mapping is specified by identifying the
punctate visual stimulus that maximally excites a spatially localized set
of neurons in cortex. The monocular visual field is typically represented
as a spherical surface centered at the visual axis and is therefore param-
eterized using the standard terminology of spherical polar coordinates
for eccentricity, which for a fixed point in the visual field is typically
defined as the angle between the visual axis and the line connecting that
point with the anterior nodal point of the eye, and azimuth, defined as
the projected angle around the visual axis (Morse & Feshbach, 1953).
Often, the term ‘‘polar angle’’ is used in place of azimuth in the vision
literature.

The idea of a visuotopic map function goes back to the early obser-
vations of Inouye (1909; see also Adams & Horton, 2001; Glickstein &
Whitteridge, 1987), Holmes and Lister (1916), Polyak (1941), and was
first electrophysiologically demonstrated by Talbot and Marshall
(1941) and Daniel and Whitteridge (1961). During the past fifty years,
experimental measurements of visuotopy have been performed using a
wide range of techniques, including single-unit and multi-unit micro-
electrode recording, evoked potentials, 2DG autoradiography, optical
recording, PET imaging, and fMRI. The vast majority of this work
has been in V1, although, more recently, V2 has received attention,
and several studies have been performed in V3 and further extra-stri-
ate areas.

2.1.2. Retinotopy

The term retinotopy, as a specialization of the category receptotopy,
refers to the anatomical mapping of the surface of the retina to a central
target area such as V1.
The distinction between retinotopy and visuotopy lies in the non-triv-
ial nature of the mapping of the visual field onto the retina. The visual
field is projected onto the retina via an optical system, the eye, but the
retina is not precisely spherical, and the wide-angle optics of the eye are
not simple. Thus, although the target or range of the topographic map-
ping is the same (e.g., V1), the domain is different for the case of ret-
inotopy and visuotopy. Furthermore, in studies employing binocular
visual stimuli, such as those conducted with fMRI, the mappings of
the visual field onto the retinae are generally not in perfect correspon-
dence. Retinal disparity, or differences in how the visual field is project-
ed onto the two retinae, arises when the subject is not fixating at
optical infinity and the two eyes are in a state of vergence (Howard
& Rogers, 1995). Furthermore, recent studies show that the two eyes
will also rotate inward or outward when fixating on targets that are
above or below the horizontal plane (Schreiber, Crawford, Fetter, &
Tweed, 2001; Van Rijn & Van den Berg, 1993). Virtually all existing
measurements to date are visuotopic, with the exception of the recent
work of Adams and Horton (2002, 2003b), who measured cortical
angioscotomas in the squirrel monkey to produce a high-precision reti-
notopic map of the ‘‘shadows’’ of retinal blood vessels in V1.

When describing or modeling visuotopic (or retinotopic) maps it is
often convenient to assume that the mapping is an invertible one-to-one
point-mapping sending zero-dimensional points in the visual (or retinal)
coordinate system to zero-dimensional points in the cortical coordinate
system. In reality, individual photoreceptor cells may ultimately project
to multiple target cortical cells, or individual cortical cells may receive
input from multiple photoreceptor cells, in which case a one-to-many or
many-to-one mapping would be implemented. This distinction is particu-
larly relevant in machine vision systems that mimic the space variant sam-
pling seen in biological vision systems—in these systems, the sampling and
pooling of pixels from the sensory surface is explicit and simplifying
assumptions of continuity must be discarded (see, e.g., Rojer & Schwartz,
1990).

2.1.3. Experimental difficulties with visuotopic and retinotopic measurements

One experimental problem associated with visuotopic measurements
is that the optical system of the eye is usually not carefully considered.
For example, wide-angle eye models (e.g., Drasdo & Fowler, 1974) sug-
gest that there is significant anisotropy, or shear, in the peripheral field
due to the optics of the eye. Second, it is difficult to precisely fix the
visual axis: paralyzed preparations tend to have an error in the range
of 0.5� in the location of the (slowly drifting) fovea (Van Essen, New-
some, & Maunsell, 1984). This can provide a large source of error in a
topographic map estimate, since the central 1� of visual field occupies a
significant fraction of the entire surface area of V1. Current PET and
fMRI experiments depend on human subjects holding exact binocular
fixation for tens of minutes—a difficult task to perform reliably. Final-
ly, most current analysis of topographic structure is based on flat
approximations of the cortex which are produced either by physical
or numerical flattening. The geometrical error, even in optimal numer-
ical flattening, is on the order of 10–20% (Schwartz, Shaw, & Wolfson,
1989b), while the errors in physical flattening can be much larger. In
one study, the opercular surface alone of macaque V1, when flattened
under glass, showed local error distortions that were as large as 30%
(Schwartz, Munsiff, & Albright, 1989a), with considerably larger errors
expected for the full macaque V1. For this reason, in the present study
we consider only numerically flattened data (see Section 3).

2.1.4. Global measurement: 2DG, cytochrome oxidase, PET, and fMRI

Global measurements of topographic mappings have been per-
formed via metabolic labeling techniques, such as 2DG autoradiogra-
phy (Schwartz et al., 1989a; Tootell et al., 1982), cytochrome oxidase
histochemistry of angioscotomas (Adams & Horton, 2003b), and in
human, using 2DG PET scanning (Fox, Miezin, Allman, Van Essen,
& Raichle, 1987; Schwartz, 1981; Schwartz et al., 1984), and fMRI
(Engel, Glover, & Wandell, 1997; Sereno et al., 1995). Mathematical
modeling of the global structure of V1 began with the use of the com-
plex logarithmic mapping (Schwartz, 1977b, 1980), which is agreed to
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be a ‘‘good approximation’’ to the central 20� of macaque visual cortex
(Dow, Vautin, & Bauer, 1985; Tootell, Silverman, Switkes, & DeValois,
1985; Van Essen et al., 1984), and which is the only closed-form, two-
dimensional model currently used for V1 topography that is in general
agreement with existing data.

2.1.5. Local measurement: Magnification factor

Despite the fact that quantitative measurement of cortical topography
provides one of the clearest applications of computational neuroscience,
and one which requires a two-dimensional mathematical analysis, visual
topography has been most often summarized in terms of a single one-di-
mensional magnification function.

Cortical magnification factor was originally defined, in the context of
visual topography, as the ratio of the difference in cortical position (in mil-
limeters) to visual field position (in degrees) of a small movement of a visu-
al stimulus (Daniel & Whitteridge, 1961). This quantity is clearly a
differential measurement: it is the ratio of small displacements in the range
of the topographic map function to small displacements in its domain (ret-
ina or visual field). However, it is important to emphasize that the com-
mon practice of inferring global characteristics based on a scalar
magnification factor is not sufficient—even for the case of a conformal
mapping—for the following reasons.

2.1.5.1. The differential of a general two-dimensional map is a matrix, not a

scalar. The differential of a general two-dimensional map requires four
parameters to be measured at each point, not a single scalar such as mag-
nification factor (Schwartz, 1984). A mapping from a two-dimensional
surface (e.g., the visual field or the retina) to a two-dimensional cortical
surface can be written as f: (x,y) # (u,v), where (x,y) represents a point
in the domain (e.g., the visual field) and (u,v) represents a point in the
range (i.e., the cortex). The differential of the mapping, df, can be repre-
sented by the matrix of partial derivatives ux, uy, vx, and vy. These four
parameters are, in the case of visuotopic mapping, the ratio of two orthog-
onal small steps in the visual field and the corresponding two small, line-
arly independent steps in the cortex, which are the four partial derivatives
that make up the Jacobian matrix (see Schwartz, 1994, for detailed discus-
sion). If a map is conformal and thus locally isotropic, then magnification
factor characterizes the map function. For conformal maps, magnification
factor is equal to the square root of the determinant of the Jacobian
matrix. However, global isotropy does not necessarily follow from local
isotropy.

2.1.5.2. A conformal map is (almost) never globally isotropic. It has
sometimes been incorrectly assumed in the vision literature that a con-
formal map, which is locally isotropic by definition, is also globally iso-
tropic, i.e., that magnification factor is identical along the horizontal,
vertical, and all other meridians (e.g., see Tootell et al., 1982, or Sakitt,
1982; cf. Letelier & Varela, 1984; Schwartz, 1985). For the simple con-
formal map function k log(z + a), where z = x + iy is complex valued,
the derivative or magnification factor evaluated along the horizontal
meridian is k/(x + a), while the magnification factor along the vertical
meridian is k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ a2

p
. This yields a maximum difference of

ffiffiffi
2
p

, i.e.,
about 40%, at the point where x = y = a. This demonstrates that the
length of the vertical and horizontal meridians need not be equal, even
for manifestly conformal maps such as k log(z + a). In general, magni-
fication factor is significantly different along different meridians, even
when a map is conformal and thus locally isotropic. In the special case
where the conformal map is simply a geometric similarity (i.e., a scaling
or rigid transformation), then the map is both locally and globally
isotropic.

In the light of this fact, it is possible to correct a confusion which
can be traced back to one of the earliest studies of cortical magnifica-
tion. Daniel and Whitteridge (1961) state that linear cortical magnifica-
tion factor is both locally isotropic and independent of azimuth and
therefore identical along the horizontal meridian and vertical meridian
representations, which means that the map is both locally and globally
isotropic. As discussed above, this is a mathematical impossibility
unless the map function were a simple uniform scaling, which follows
from the uniqueness property of conformal mappings guaranteed by the
Riemann Mapping Theorem (Ahlfors, 1966a). Therefore, the joint require-
ment of local and global isotropy cannot, in general, be satisfied.

2.2. Canonical two-dimensional topographic mapping

The existence of continuous topographic maps is sometimes called into
question due to the lack of continuity posed by the existence of multiple
feature maps representing other variables across a cortical surface. Ocular
dominance columns in V1 (Hubel, Wiesel, & LeVay, 1974; LeVay, Hubel,
& Wiesel, 1975) and the columnar systems of V2 (Roe & Ts’o, 1995; Too-
tell & Hamilton, 1989) are examples which seem to contradict the exis-
tence of a single continuous map of visual coordinates to the cortical
surface. Therefore, it is important to emphasize the utility of the concept
of a topographic map that operates on a scale that is larger than that of
individual V1 or V2 columnar systems. We use the term canonical two-di-

mensional topographic map to refer to an empirically defined, scale-depen-
dent summary of these types of data sets. [A similar point of view is
adopted by Shipp and Zeki (2002) in the context of V2 visuotopy.] Exper-
imental techniques addressing topography usually do not spatially resolve
columnar-level data. The intention of the concept of canonical topogra-
phy is to explain and summarize experimental data collected mainly via
multi-unit recording, 2DG autoradiography, optical recording, cyto-
chrome oxidase staining, or fMRI. In these contexts, there is a canonical

continuous, two-dimensional map structure. The goal of this report is to
provide a mathematical framework within which these levels of supra-
neuronal architecture can be concisely summarized and conceptualized.
The much more difficult problem of jointly characterizing columnar-level
and canonical-level topographic data using the mapping formalism (see
Landau & Schwartz, 1992, 1994) is outside the scope of the present
report.

In two dimensions, a generalization of the class of conformal map-
pings is the quasiconformal mappings, which can be expressed as a com-
position of a conformal and non-conformal mapping. Conformal
mappings are mappings that locally preserve angles and are therefore
locally isotropic. Quasiconformal mappings are a natural generalization
of conformal mappings that allow for bounded local anisotropy. Thus,
quasiconformal mappings represent the most general class of regular

(non-singular) mappings in two dimensions (Ahlfors, 1966b). Ahlfors
and Bers (1960) proved that an arbitrary quasiconformal mapping
may be represented as a conformal mapping with respect to a suitable
change in metric.

2.3. The monopole mapping

The reciprocal of the V1 magnification factor has been reported to
be approximately linear (Schwartz, 1977b; Wilson et al., 1990). The
complex logarithm, w = log(z), with z restricted to the half-disc, is
therefore an obvious candidate to model the two-dimensional structure
of the mapping, as the magnitude of its derivative is also inverse-linear.
However, the complex logarithm has a singularity at the point z = 0.
One can remove the singular point from the mapping domain by choos-
ing the function w = k log(z + a), which places the singularity at z = �a

(see Figs. 2A and B), where the real parameter k normalizes the area,
and the parameter a determines a relative scaling of the size of the
foveal representation in cortex. Note that we are implicitly representing
the two hemispheres of cortex, and the corresponding visual hemi-fields,
as independent maps (see Mathematical Appendix). Since the complex
logarithm describes the electrostatic potential in two dimensions of a
single charge located at z = �a (Morse & Feshbach, 1953), we call it
an a-monopole mapping (henceforth simply the monopole mapping).
The monopole mapping captures the approximate shape of flattened
V1, as well as the internal details of the topography (Schwartz,
1977b, 1980). However, it does not adequately capture the far periphe-
ral data where the inverse magnification factor is markedly super-linear
(Schwartz, 1983, 1984; Van Essen et al., 1984), nor does it capture the
shape of the flattened cortex in its far peripheral-field representation.
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Remarkably, the addition of a second logarithmic pole of opposite sign
makes up for these deficiencies (Schwartz, 1983), hence the dipole
mapping.

2.4. The dipole mapping

In electrostatics, the potential of a pair of opposite unit charges (a
dipole) is given by the sum of two oppositely charged monopole poten-
tials: w = k [log(z + a) � log(z + b)], where the positive charge is at
z = � a and the negative at z = � b (Morse & Feshbach, 1953). We
shall refer to this function as the ab-dipole mapping (henceforth the
dipole mapping). The second parameter b approximates the shape of
the V1 boundary exhibited at the peripheral representation (see
Fig. 2C) as well as the super-linearity of the inverse cortical magnifica-
tion factor in the peripheral field (Schwartz, 1983, 1984; Van Essen
et al., 1984), and the real parameter k again normalizes the area. The
dipole mapping therefore provides a three-parameter conformal map
model of the full-field topography of primary visual cortex.1 The
remaining feature to be accounted for is topographic shear.
2.5. Azimuthal shear in V1 and V2

In the next section, we introduce a very simple form of topographic

shear: a constant compression along the azimuth coordinate direction in
each area. (The term ‘‘shear’’ is the technically accepted term to describe
local anisotropy, i.e., different ‘‘magnification’’ in different directions, at
a given point; see Segel, 1977.) This shear model is consistent with reports
(e.g., Roe & Ts’o, 1995, chap. 7, 1997; Rosa, Sousa, & Gattass, 1988;
Shipp & Zeki, 2002), that the V2 magnification factor measured in the azi-
muth direction (perpendicular to the V1–V2 border) is much smaller than
that measured in the eccentricity direction (parallel to the V1–V2 border),
and that a similarly oriented, although smaller, magnification factor
anisotropy exists in V1 (see, e.g., Blasdel & Campbell, 2001). This is an
approximation to what has been reported for V1 and V2 along their
1 The full dipole model should only be used if there is peripheral-field
data available to constrain the value of the b parameter. The value of an
unconstrained b parameter can converge to a value close to the value of
the foveal parameter, a, when fitting the map to data. In this case, the b

parameter, whose purpose is to characterize peripheral-field data, will
instead influence the map fit within the central-field. This will lead to both
a and b simultaneously characterizing the central-field, producing
misleading values for both a and b. Thus, when only central-field data
are available the monopole model should be used.
common boundary, as is evident from casual inspection of numerically
flattened maps of the three areas—V2 and V3 appear ‘‘squeezed’’ in the
direction perpendicular to their shared boundaries, as shown in Fig. 1.

To quantify the amount of shear observed in a given area, many
authors choose to report a ratio of one-dimensional magnification fac-
tors along different coordinate directions. For example, Van Essen et al.
(1984) and Adams and Horton (2003b) report an anisotropy index

across cortex, which is the ratio of the magnification factor in the
eccentricity coordinate direction to the magnification factor in the azi-
muth coordinate direction. Note that this assumes that the principle
axes of the shear are aligned with the coordinate directions of eccentric-
ity and azimuth, as is assumed in our model as well. Thus, we follow
the convention of reporting topographic shear by the ratio of magnifi-
cation factor in the eccentricity direction to magnification factor in the
azimuth direction. For example, a 5:2 anisotropy index corresponds to
a 2.5 · compression along the azimuth direction relative to the
eccentricity direction, resulting in ð5

2
� 1Þ � 100% ¼ 150% compressive

azimuthal shear.
The magnitude and distribution of V1 shear are somewhat controver-

sial, and at least three distinct statements have been made on this subject
over the years. In the following, the particular shear model will be named
after the authors of the respective articles.

LeVay et al. shear: LeVay et al. (1975) made electrode penetrations

perpendicular to the boundaries of ocular dominance column stripes

in layer IV of macaque V1 and found that the local magnification fac-

tor was twice as large in the direction parallel to the stripe boundary

than in the perpendicular direction (see also Hubel & Wiesel, 1977;

Hubel et al., 1974). Since the ocular dominance column stripe bound-

aries generally intersect the V1–V2 border at right angles, and are

therefore aligned with the azimuth coordinate direction there, the find-

ings of LeVay et al. (1975) suggest that the ‘‘sub-columnar’’ topo-

graphic representation in layer IV exhibits a anisotropy index of 1:2,

eccentricity to azimuth. They suggested that this would allow for an

interlacing of the two complete maps for the left and right eye such

as to allow for a ‘‘supra-columnar’’ shear of 1:1 in the combined

map consisting of the two monocular mappings viewed as a single bin-

ocular map. (In this context, sub-columnar denotes a scale that is small-

er than a single hypercolumn and supra-columnar denotes a scale that

is larger than a single hypercolumn.)
Tootell, Switkes, Silverman, and Hamilton shear: Based on a macaque

2DG study, Tootell, Switkes, Silverman, andHamilton (1988) suggested

that magnification factor was the same in the two directions (perpendic-

ular and parallel to the local ocular dominance columnmap) within sin-

gle ocular dominance column stripes, i.e., a sub-columnar anisotropy

index of 1:1, contradicting LeVay et al. (1975). If this were true, the

overall, supra-columnar topographic map would need to be grossly
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sheared by a factor of about 2:1, eccentricity to azimuth. Thus, the Too-

tell et al. (1988) shear has no sub-columnar shear, but on average exhibits

a large supra-columnar shear.
Blasdel and Campbell shear: Using optical recording in macaque, Blas-

del and Campbell (2001) reported a result intermediate to the previous

two claims. In this study, the supra-columnar anisotropy was calculated

directly by measuring the azimuth and eccentricity magnification fac-

tors across 1–4 mm regions of cortex. Magnification factor across mul-

tiple pairs of ocular dominance column stripes was averaged together in

each calculation, but the measurement was still confined to a small,

localized region of V1, resulting in a direct, supra-columnar measure-

ment. Near the vertical meridian, they found a anisotropy index of

about 1.5:1; however, much smaller ratios were calculated near the hor-

izontal meridian (1.15:1). They attributed this difference to the lack of

order of stripe direction near the horizontal meridian compared to the

vertical meridian. Others have also observed that shear is largest near

the vertical meridian, while smaller at other locations (Schwartz,

1994; Van Essen et al., 1984), which is in general agreement with the

small values of shear reported by Blasdel and Campbell (2001) in

regions far from the vertical meridian representation.

The reported shear in V2 (see, e.g., Roe & Ts’o, 1995, 1997; Rosa et al.,
1988; Shipp & Zeki, 2002) is less discussed, and there has been to date only
one shear model proposed.
Roe and Ts’o shear: Roe and Ts’o (1995) observed that topographic

shear in V2 compresses the visual representation in a direction perpen-

dicular to the V2 columnar borders. V2 columns are triply represented

in the thick-thin-interstripe columnar system [but see Sincich and Hor-

ton (2002) for evidence countering the ‘‘triple representation’’ model].

Roe and Ts’o (1995) found the sub-columnar V2 magnification factor

to be highly anisotropic with a ratio of about 2:1 (eccentricity to azi-

muth), resulting in a supra-columnar shear which Roe and Ts’o

(1995) hypothesized to be 6:1, following reasoning similar to that of

Tootell et al. (1988) relating sub-columnar shear to supra-columnar

topography in V1.

If there were a supra-columnar shear of 2:1 in V1, as suggested by
Tootell et al. (1988), it would be unlikely that conformal models of V1
would be as good an approximation as they are (cf. Schwartz, 1994; see
also Section 3). All four models of shear share the assumption that the
shear axes are aligned with the local columnar system—the ocular dom-
inance system in V1 and the thick-thin-interstripe system in V2. For
these reasons, we have adopted a simplifying model in which a uniform
azimuthal shear is present in V1 and V2, which we hypothesize to be
extended into V3. More complicated, and more plausible, assumptions
are possible. The next simplest assumption is that the shear may be
modeled as being largely azimuthal but not uniform—it has been
observed by Blasdel and Campbell (2001) that the topographic shear
is larger near the vertical meridian in V1 and decreases near the repre-
sentation of the horizontal meridian. This possibility is briefly consid-
ered in Section 4 (see Fig. 18).

In the fully general case in which the shear is not constant or aligned with
the spherical coordinate directions, it is necessary to compute the magnitude
and direction of the shear at each point. This general solution, requiring fit-
ting the Jacobian matrix of the topographic mapping, is described in detail in
earlier work (Schwartz, 1984, 1994).

We have found that the simplest assumption, that of constant azi-
muthal shear, provides a good quantitative fit to the existing data with
a minimal number of extra parameters beyond those characterizing the
conformal component of the mapping. This will now be demonstrated.

2.6. Model goals

The visual topography of human V1, V2, and V3 is shown diagram-
matically in Fig. 1. An inspection of this figure, along with the prior dis-
cussion of shear, suggests the following goals for a model of the
topography of V1, V2, and V3.
G1. The model map function is explicitly quasiconformal: Topographic
shear must be accounted for in V1, V2, and V3.

G2. Global anatomy is correct: The model must approximate the
global shapes of V1, V2, and V3, as well as their relative surface areas,
which are significantly different in the human and the macaque.

G3. Correct boundary conditions: Adjacent topographic areas must
exhibit boundary conditions such that V1 and V2 share a boundary along
the vertical meridian representation, and V2 and V3 share a boundary
along the horizontal meridian representation.

G4. Mirror reflection around boundaries: The Jacobian determinant of
the topographic map must reverse sign across the boundaries between V1,
V2, and V3, exhibiting the field reversal property observed by Talbot
(1942), Zeki (1969), and exploited by Sereno, McDonald, and Allman
(1994), Sereno et al. (1995).

G5. V1 magnification factor is roughly inverse-linear in the foveal and par-

afoveal representations: Iso-eccentricity lines must be located approximately
logarithmically with respect to the visual field eccentricity coordinate, in
order to be consistent with previous studies. This means that inverse
magnification factor is approximately linear. In the periphery (beyond
20�), the inverse magnification factor is super-linear, i.e., it rises more
quickly in the periphery than in the central representations (Schwartz,
1983, 1984; Van Essen et al., 1984). A power-law fit (rather than a linear
fit) to inverse eccentricity magnification factor over the full visual field
was performed by Van Essen et al. (1984), resulting in an exponent of
1.11. This differs somewhat from the exponent of 1.00 corresponding to
the monopole map, which accounts for only the foveal and parafoveal fields.

G6. Quantitative agreement with data: An error analysis of the two-
dimensional model fit to existing data, although rarely present in
topographic modeling studies, must be provided.

We now present the Wedge–Dipole model, which provides a unified
model of V1, V2, and V3 that meets the stated goals G1–G6 above.

2.7. The Wedge–Dipole model

The Wedge–Dipole model accounts for the topographic structure of
striate and extra-striate cortex by means of a quasiconformal map function

that assigns coordinates of the spherical visual field to the two-dimension-
al cortical surface.

The mapping given by the Wedge–Dipole model results from con-
straining the map function to meet each of the stated goals for the topo-
graphic model. It consists of the composition of a (quasiconformal) wedge
mapping with a (conformal) dipole mapping. A simple geometric account
of the Wedge–Dipole model will be presented in terms of a series of illus-
trative figures. The mathematical details of the composite Wedge–Dipole
mapping can be found explicitly in the first section of the Mathematical
Appendix, and an algorithm for computing the Wedge–Dipole mapping
is presented, in the form of executable code, in the second section of the
Mathematical Appendix.

2.7.1. Projection of the visual field

In order to represent the spherical visual field as a planar model, we use
an azimuthal equidistant projection of the hemisphere to the plane to produce
the half-disc (Milnor, 1969). This projection identifies eccentricity as the
radial coordinate in the plane and azimuth as the angular coordinate in
the plane, resulting in a two-dimensional polar coordinate system represent-
ing the visual field. The azimuthal equidistant projection is a simple, closed-
form near-isometric flattening method that maximally preserves the
geometry of the original three-dimensional spherical surface (Milnor, 1969;
Pearson, 1982). Any global coordinate parameterization of the visual field
is acceptable, although, naturally, the parameters of any visual field mapping
to the cortex will depend on the specific choice of visual field projection.

Also, we ignore the fact that the peripheral visual field does not con-
form exactly to a half-disc, but is a somewhat irregular shape, as indicated
in classical perimetry (e.g., Inouye, 1909; Polyak, 1941). Were more quan-
titative peripheral data available, it would be straightforward to account
for the non-circular full-field by masking the present model with the
observed perimetric boundaries.



Fig. 3. The wedge mapping for V1 consists of an angular compression of
the contralateral visual hemi-field by a factor of a1 such that the visual
hemi-field maps to a wedge-shaped representation of equal radius. The
labels ‘‘HM’’ and ‘‘VM’’ mark the horizontal meridian and vertical
meridian representations, respectively, and the ‘‘w’’ denotes the location
of the foveal representation.
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2.7.2. Wedge mapping V1

Fig. 3 illustrates the basic, non-conformal wedge mapping. A half-disc,
representing the projected contralateral visual hemi-field, is mapped into a
circular sector that we call a visual field ‘‘wedge,’’ parameterized by the
angular compression factor, a1. This parameter is simply the reciprocal
of the anisotropy index proposed by Van Essen et al. (1984). In geometri-
cal terms, this mapping is accomplished by ‘‘squeezing’’ the angular polar
coordinate of each point in the half-disc by an amount equal to the azi-
muthal shear, or, equivalently, by the reciprocal of the anisotropy index.
This mapping is explicitly non-conformal—at each point, there is a differ-
ent scaling applied in the radial and angular coordinate directions, thus
the mapping is locally anisotropic.

2.7.3. Wedge mapping and mirroring V2

Fig. 4 shows a similar wedge mapping, parameterized by the angular
compression a2, applied to the contralateral visual field representation
within V2. The four panels of the figure show:
angular compression

Fig. 4. The wedge mapping for V2 requires extra steps to induce the field re
compression of the contralateral visual hemi-field by the factor of a2 maps the v
the wedge is mirrored about the y axis. Finally, the compressed wedge is split a
the upper hemi-field and lower hemi-field, which are then each rotated away fro
that of the V1 wedge, shown in Fig. 3. Note that the angle /1 represents the a
wedge map. The labels ‘‘HM’’ and ‘‘VM’’ mark the horizontal meridian and
location of the foveal representation.
1. A projected half-disc representing the contralateral visual hemi-field;
2. the wedge map of half-disc, with azimuthal shear parameter a2;
3. mirror image of the wedge map with respect to the vertical axis; and
4. the wedge map split along horizontal meridian and rotated until the V1

and V2 vertical meridians are coincident.

Since V1 and V2 share boundary conditions along the vertical meridian,
and since the contralateral visual hemi-field representation in V2 is a mirror
image of the representation in V1 reflected across the vertical meridian, this
construction is required. The goal is to provide a single domain that consists
of multiple visual hemi-field projections, one for each of V1 and V2, with
the correct boundary conditions. In the case of V1 and V2, this consists
of forcing the vertical meridian representations to be coincident in the
domain of the mapping. Then, since the map function and its inverse are
presumed to be continuous, the meridians will also be coincident in the
range, i.e., V1 and V2 will share the same cortical representation along
the vertical meridian (cf. Gattass, Sousa, & Gross, 1988; Mallot, 1985).

Note that the V2 wedge mapping can be easily extended to allow for
independent values for the constant azimuthal shear in the upper and low-
er quadrants of the visual hemi-field. This simple generalization is useful
when describing data that exhibits asymmetric visual field representations
in dorsal and ventral V2.

A very similar process is applied to incorporate V3 into the wedge
complex, but this time mirroring with respect to the V2 representation
of the horizontal meridian, since V2 and V3 meet at a shared horizontal
meridian representation.

2.7.4. The wedge map composed with the dipole map

Fig. 5A shows three copies of the (projected) visual hemi-field, repre-
sented as half-discs. They are mapped into individual wedges, mirrored,
and re-aligned, and finally combined into a single wedge complex in
Fig. 5B. The final cortical image—the dipole complex obtained by apply-
ing a dipole map to the wedge complex—is shown in Fig. 5C.

The formulation of the Wedge–Dipole model in terms of three copies
of the visual field being mapped in parallel into visual cortex was chosen
for its simplicity. However, a hierarchical conceptualization in which the
visual field representation first maps into V1, then the V1 representation
is mapped directly into V2, and V2 into V3, is the actual biological reali-
zation. It is straightforward to formally express the V1–V2–V3 Wedge–Di-
pole mappings in a hierarchical or feed-forward form by properly
composing combinations of the wedge and dipole maps and their inverses,
but the resultant expressions are far more complicated.
versal and to meet the boundary condition imposed by V1. The angular
isual hemi-field into a wedge-shaped representation of equal radius. Then,
long the horizontal meridian representation into half-wedges representing
m the negative x axis until the vertical meridian representation aligns with
ngle between the vertical meridian representation and the y axis in the V1
vertical meridian representations, respectively, and the ‘‘w’’ denotes the



Fig. 5. Schematic of the mapping composition. (A) Three copies of the contralateral visual field (one each for V1, V2, and V3) are mapped into the wedges
shown in (B) by the wedge map. The dipole map is then applied to the wedges, resulting in the full Wedge–Dipole map, shown in (C). The ‘‘w’’ denotes the
location of the foveal representation. The quadrants of each visual hemi-field are labeled as ‘‘V1U,’’ ‘‘V2U,’’ and ‘‘V3U’’ for the upper field, and ‘‘V1L,’’
‘‘V2L,’’ and ‘‘V3L’’ for the lower field. The horizontal meridian and vertical meridian are labeled as ‘‘HM’’ and ‘‘VM,’’ respectively.
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A useful feature of the Wedge–Dipole construction is that since the
dipole mapping is conformal and, therefore, introduces no shear, the total
shear in the composite mapping is equal to the shear in the wedge map-
ping. Thus, we can fully characterize the shear in each cortical topographic
area with the corresponding azimuthal shear parameter a.

We can summarize the Wedge–Dipole mapping via two main points.

1. The wedge mapping takes three copies of the visual hemi-field, and
compresses them azimuthally, mirrors, and combines them to
construct a single domain with the correct boundary conditions and
azimuthal shear.

2. A single dipole map, applied to this composite domain, provides the
final cortical layout of V1, V2, and V3.

The previous figures have focused on illustrating the mapping of the
boundaries of V1, V2, and V3. Figs. 6 and 7 illustrate the combined wedge
and dipole map for the iso-eccentricity and iso-azimuth lines as well. These
diagrams emphasize the continuous nature of the V1–V2–V3 complex, in
the sense that the cortical representation of all three areas can be viewed as
a single map complex, relative to the domain represented by the wedge
complex. Additionally, each diagram depicts the mapping of the upper
visual hemi-field to the ventral half and the lower visual hemi-field to
the dorsal half of the dipole complex.

Thus far, the Wedge–Dipole model has been shown to achieve the first
five goals outlined above.

G1. The model map function is explicitly quasiconformal: The wedge
map imposes a constant compressive shear in the azimuth direction. This
results in a compression along the iso-eccentricity contours of the dipole
map, inducing a simple form of shear in each of the areas of the
Wedge–Dipole map.
Fig. 6. Schematic visual field eccentricity mapping into the wedge complex and
wedge complex for V1, V2, and V3 demonstrates that the azimuthal compressi
eccentricity. The representation of eccentricity is also shown to be continuous a
space, after applying the dipole mapping to the wedge complex. The eccentricity
of the foveal representation as well as the compression of the periphery in all t
intersect each region boundary orthogonally and to be continuous across the b
eccentricity on the visual hemi-field in pseudocolor.
G2. Global anatomy is correct: The dipole parameters a and b deter-
mine the overall shape of the area borders, and the compression parame-
ters a1, a2, and a3 not only prescribe the shear, but also allow the relative
surface areas to be varied to match the data.

G3. Correct boundary conditions: The wedge map construction enforces
the boundary conditions between adjacent areas—image points of the V1
vertical meridians correspond to image points of the V2 vertical meridian,
and likewise image points of the V2 horizontal meridians correspond to
image points of the V3 horizontal meridians.

G4. Mirror reflection around boundaries: Since the mapping derivative
in the iso-eccentricity direction reverses sign across the V1–V2 boundary
and V2–V3 boundary, the Jacobian determinant of the Wedge–Dipole
map reverses sign across the borders of adjacent areas.

G5. V1 magnification factor is roughly inverse-linear in the foveal and

parafoveal representations: By construction, the dipole mapping ensures
logarithmic spacing of iso-eccentricity lines, with a super-linear inverse
magnification factor in the peripheral representation.

The quantitative agreement with data required for goal G6 is demon-
strated below.
3. Results

The Wedge–Dipole model provides a good qualitative fit
to the estimated topography of visual areas V1, V2, and V3
in human provided by Horton and Hoyt (1991a) and esti-
mates of owl monkey topography in V1 and V2 provided
by Allman and Kaas (1975), as demonstrated in Figs. 8
and 9, respectively. However, these data are semi-quantita-
the dipole complex. (A) The eccentricity of the visual field for the combined
on induced by the wedge mapping changes the azimuth but does not affect
cross the region boundaries. (B) The visual field representation in cortical
of the internal topographic representation demonstrates the magnification
hree regions shown. Additionally, the iso-eccentricity bands are shown to
oundaries. The half-disc inset in the upper right of each panel provides the



Fig. 7. Schematic of the visual field azimuth mapping into the wedge complex and the dipole complex. (A) The azimuth of the visual field for the combined
wedge complex consists of the wedge mappings of V1, V2, and V3, demonstrating the azimuthal compression of the visual field as well as the field reversal
across wedge boundaries. (B) The outcome of applying the dipole mapping to the wedge complex shows the field reversal property in cortical coordinates:
across any given border between two cortical regions the direction of increasing azimuth reverses. The V1/V2 border represents the vertical meridian of the
visual field, whereas the V2/V3 border represents the horizontal meridian, resulting in the the ventral half of the cortical space representing the upper
quadrant of the visual field and the dorsal half representing the lower quadrant. The labels ‘‘V2v’’ and ‘‘V3v’’ indicate the ventral halves of V2 and V3, and
‘‘V2d’’ and ‘‘V3d’’ indicate the dorsal halves. The half-disc inset in the upper right of each panel provides the azimuth on the visual hemi-field in
pseudocolor.
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tive estimates of topography. Although they were essential
to the formulation and development of the Wedge–Dipole
model, they are ultimately inadequate for quantitative
modeling. In this section, we demonstrate quantitative,
two-dimensional model fits to two independent sets of
macaque visual topography data.

3.1. 2DG labeling of macaque V1

To obtain an accurate characterization of the two-di-
mensional topographic mapping in macaque V1, we first
fit the standard monopole model to previously published,
two-dimensional macaca fascicularis visual topography
data in the form of 2DG-labeled V1 activation evoked
Fig. 8. The topography of human visual areas V1, V2, and V3 from
Horton and Hoyt (1991a) (as shown in Fig. 1) with the iso-eccentricity and
iso-azimuth contours predicted by the Wedge–Dipole model superimposed
on the three areas. The model parameters used here were a = 0.9�,
b = 180�, a1 = 0.95, a2 = 0.5, and a3 = 0.2. The value of a here is
somewhat higher than we have found for quantitative analysis of macaque
and human, possibly due to the semi-quantitative nature of this data set.
The representation of the horizontal meridian in the Wedge–Dipole model
is shown with thick dashed lines, and the representation of the vertical
meridian is shown with thick solid lines.
during presentation of a visual stimulus (Schwartz, 1994;
Schwartz et al., 1989a). In this experiment, the stimulus
consisted of spatially static, logarithmically spaced rings,
and uniformly spaced rays together with square textured
figures, which were flashed in counter-phase on a computer
monitor. This data set is unique in that it contains visual
topography data for both hemispheres of one subject and
the two hemispheres were each processed differently. The
activity patterns seen in the flattened cortex from both
hemispheres, along with the visual stimulus pattern, are
shown in Fig. 10B.

The surface representing the full extent of macaque V1
from the left hemisphere was reconstructed from serial
coronal tissue sections and the 2DG-labeled activity pat-
tern from layer IV was texture mapped onto a near-isomet-
ric flattening (Schwartz et al., 1989b) of the V1 surface
mesh. The reconstructed three-dimensional surface consist-
ed of 2125 triangle faces composing 804 mm2 of surface
area. The surface flattening exhibited a weighted root-
mean-square (RMS) error of 13.3% (Balasubramanian,
Polimeni, & Schwartz, 2005). (The weighted RMS error is
an RMS error measure adjusted for non-uniform spacing
of mesh vertices on the surface.)

The data from the right hemisphere, in contrast, consist
of the opercular cortex physically flattened between glass
cover slips, cut tangentially through layer IV, and pro-
cessed for 2DG autoradiography. The surface area of the
flattened tissue was about 400 mm2. The peak metric error
introduced by this physical flattening procedure applied to
macaque opercular cortex has been demonstrated to be at
least 30% (Schwartz et al., 1989b), with considerably larger
errors expected for physical flattening applied to the full
macaque V1 or to additional tissue from extra-striate areas.
For this reason, we do not fit our quantitative model to the
topography data of the hand-flattened V1.

However, the availability of both hemispheres from the
same individual provides the unique ability to directly
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Fig. 9. The topography of owl monkey visual cortex is shown in (A) from the data of Allman and Kaas (1975) (reproduced from Kaas, 1997, chap. 3).
Two Wedge–Dipole maps are shown superimposed on this data set in (B), one for the V1–V2 complex (model parameters a = 0.8�, b = 85�, a1 = 1.05, and
a2 = 0.33), and one for the MT–DL complex (model parameters a = 10�, b = 70�, a1 = 1, and a2 = 0.5). The MT–DL model has been scaled by a factor of
0.65 relative to the V1–V2 model. ‘‘HM’’ and ‘‘VM’’ mark the cortical representation of the horizontal meridian and vertical meridian, respectively, in the
data. The representation of the horizontal meridian in the Wedge–Dipole model is shown with thick dashed lines, and the representation of the vertical
meridian is shown with thick solid lines.
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Fig. 10. (A) Visuotopy data obtained from tangential section through layer IV of physically flattened macaque V1 of right hemisphere. (B) The visuotopic
mapping stimulus consisted of a ring and ray pattern of black-and-white checks and subtended approximately 20� of the visual field. (C) Near-
isometrically flattened computer reconstruction of macaque V1 visuotopy data from the left hemisphere of the same macaque. The local coordinate
directions for the opercular cortex are given in the legend. Abbreviations: cas, calcarine sulcus; lus, lunate sulcus; ios, inferior occipital sulcus; and lcs,
lateral calcarine sulcus.
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validate measurements of the fixational offset and cyclotor-
sion exhibited by the paralyzed eye, which resulted in a dis-
placement of the stimulus origin from the center of the
fovea. In this experiment, the stimulus was presented mon-
ocularly to the right eye, and the activity pattern corre-
sponding to the center of the stimulus pattern can be
clearly seen in the right hemisphere data shown in
Fig. 10A. The eye offset was estimated to be 1� to the right
of the stimulus origin with an 11� counter-clockwise rota-
tion relative to the stimulus reflecting the combination of
paralysis-induced eye intorsion and residual rotation with
respect to the stimulus display (Schwartz, 1994).

In the original study of this data set, the computer-flat-
tened data were fit to a numerical conformal mapping to
test the conformality of the visuotopic mapping function
(see Schwartz, 1994). The conclusions from the original
study were that the mapping exhibited strong local isotropy
and closely resembled the standard monopole model. For
the present study, we directly tested the fit of the monopole
model to the data and used the model to characterize the
two-dimensional topographic mapping. To do this, fea-
tures of the visual stimulus in the 2DG-labeled data were
identified and the monopole model was fit to the data using
these point correspondences. The point correspondences
between the stimulus and activity pattern in V1 are present-
ed in Fig. 11 for the reconstruction of V1 from the left
hemisphere.

To optimize the fit of the monopole model to the data,
we first constructed an error measure that quantifies the
model fit. Let (xj,yj) be the Cartesian coordinates of vertex
j in the flat map shown in Fig. 11B. The eccentricity and
azimuth of the point Pj in the visual field corresponding
to this vertex are specified in the 2DG data, and can there-
fore be used to compute the mapping of Pj to a point
ðx̂j; ŷjÞ in cortex via the monopole model, given a particular
choice of model parameters. In other words, the monopole
model predicts that Pj will map to a point in cortex with
Cartesian coordinates ðx̂j; ŷjÞ, whereas the measurements
indicate that Pj maps to a point in cortex with coordinates
(xj,yj). Therefore, the displacement between (xj,yj) and



Fig. 11. (A) The numbered red circles mark features of the visual stimulus within the right hemi-field identified in the 2DG labeling of V1 that were used
for the model fit. (B) Computer reconstruction of V1 from the left hemisphere. The 2DG-labeled activity pattern from layer IV was texture mapped onto
numerically flattened V1 surface mesh. The numbered blue squares correspond to the locations of the visual stimulus features shown in (A).
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ðx̂j; ŷjÞ provides a measure of the error between the data
and the model for any given vertex j. Let dj be the (Euclid-
ean) magnitude of this displacement—that is,

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂j � xjÞ2 þ ðŷj � yjÞ

2
q

. ð1Þ

The RMS value of dj was chosen as an error measure,
ERMS, over the entire mesh. The RMS displacement error
is given by

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1

d2
j

vuut . ð2Þ

Note that ERMS depends (via x̂j and ŷj) on the monopole
parameter a as well as the global scale (i.e., parameter k),
rotation, and translation of the cortical map. The Nel-
der–Mead Simplex algorithm (Lagarias, Reeds, Wright,
& Wright, 1998; Nelder & Mead, 1965) was used to mini-
mize ERMS, resulting in best-fitting parameter values for
the monopole model of a = 0.72� and k = 8.72 mm/� for
the 14 usable stimulus features from the near-isometric flat-
tening of the left hemisphere. (The implementation of the
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Fig. 12. Monopole model fits to computer-reconstructed macaque visuotopy. (A
were obtained by minimizing the RMS error between the model prediction and
model prediction for each data point, and the red line segments connect corresp
predicted locations of the rings and rays of the visual stimulus, which match th
measured versus predicted coordinate values for each data point. The correla
position along the dorsal–ventral axis was 0.98 and 0.99, respectively, indicatin
provided a good fit.
Nelder–Mead Simplex algorithm used for this study was
the implementation in MATLAB 6.1, i.e., the function
fminsearch.)

To ensure that these parameter values reflected the glob-
al minimum of the RMS error function, several trials of the
optimization were computed each with a randomly chosen
set of initial conditions for the parameter values. This pro-
cedure provides a measure of the parameter value error
attributable to the fitting method. However, in all trials
the resulting parameter values were identical, indicating
that these parameter values provide the global optimum
for our figure-of-merit function.

The resulting monopole fit is presented in Fig. 12.
Fig. 12A shows the residual errors between the measured
and predicted positions as well as the estimated projection
of the rings and rays of the visual stimulus. The measure-
ments and model predictions are in excellent agreement.
The resulting median error is 0.95 mm, the mean error is
0.95 mm, and the RMS error is 1.07 mm. Taken as a percent-
age of the size of V1, the relative RMS error is about 3%.

Another measure of the ability of the model to fit the
data can be constructed by considering how well xj and
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tion coefficient for the position along the anterior–posterior axis and the
g that the model was able to account for the variance in the data and thus
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yj correlate with x̂j and ŷj. These correlations between the
measurements and the model predictions, shown in
Fig. 12B, were extremely high, indicating that the model
was able to account for the variance in the data and thus
provided a good fit.

Given the relatively small number of data points com-
prising this data set, and the existing demonstration of
global visuotopic conformality of this data set (Schwartz,
1994), we chose to fit the conformal monopole model to
the data rather than a model with topographic shear since
the conformal monopole model requires fewer parameters.
To test whether a quasiconformal generalization of the
monopole model could provide a better fit to the data at
the expense of an additional parameter, we also fit the data
to a mapping given by the Wedge–Monopole model—that
is, a monopole mapping composed with a wedge mapping
that introduces azimuthal topographic shear parameterized
by a1 as described in Section 2. The Wedge–Monopole fit
produced parameter values a = 0.78�, k = 8.95 mm/�, and
a1 = 0.98, with an RMS fitting error of 1.07 mm. The a

and k parameter values are virtually identical to those pro-
duced by the monopole fit. Surprisingly, the RMS errors
exhibited by the fits to the two models were identical
despite the additional degree of freedom possessed by the
Wedge–Monopole model granted by the shear parameter
a1. Since the value of the constant azimuthal shear param-
eter a1 is nearly unity, the quasiconformal generalization of
the monopole mapping is unwarranted in this case: the
conformal monopole mapping suffices. To confirm that
the addition of the shear parameter a1 does not reduce
model prediction error for this data set, we calculated the
‘‘leave-one-out’’ or N-fold cross-validation error (Hastie,
Tibshirani, & Friedman, 2001), where N is the number of
data points, for both model fits. As with the RMS fitting
error, the cross-validation error was identical (0.98 mm)
for the two models, indicating that the constant azimuthal
shear parameter a1 is redundant for describing the topo-
graphic mapping of this data set. We believe that the neg-
ligible shear demonstrated by the 2DG data may be due to
Fig. 13. (A) A lateral view of V1 (light gray) and V2 (medium gray) of macaq
sulcus. Several iso-eccentricity and iso-azimuth contours are shown (as solid l
white line) mark the cortical representation of the horizontal meridian and vert
‘‘V1’’ marks striate cortex, and ‘‘V2d’’ and ‘‘V2v’’ mark dorsal and ventral V
flattened representation of these areas, as shown in Fig. 14A.
the concentration of the usable image features in the gener-
al region of the horizontal meridian representation, with a
consequent under-representation of the region containing
the vertical meridian representation where independent evi-
dence suggests that the shear is largest.

These measurements of macaque topography provided
by the monopole model offer a two-dimensional character-
ization of the V1 topography based on the central-field
topography of V1 alone, supplying an initial estimate of
the monopole model parameters a and k. A much more
extensive data set, including data from the visual field
periphery, is required to fit the full set of Wedge–Dipole
parameters. Fortunately, there is a publicly available data
set of this form that consists of measured and estimated
topographic markers on a cortical surface mesh, enabling
the application of accurate brain flattening algorithms to
represent the topographic data in the plane. This data set
is analyzed in the next section.

3.2. Full-field macaque V1–V2 electrophysiology data

Quantitative topography data gathered from extensive
microelectrode recordings has been made publicly available
by D. C. Van Essen and colleagues (see http://brainmap.
wustl.edu/). In particular, one of the available data sets (atlas
F99UA1) provides a triangular mesh reconstruction of the
right hemisphere of macaque cerebral cortex, along with
the corresponding values of visual field eccentricity and azi-
muth for each vertex in V1 and V2; there was no V3 topo-
graphic data provided with this atlas. Fig. 13 shows two
views of V1 and V2 from this data set, with several iso-eccen-
tricity and iso-azimuth lines overlaid on the surface.

The V1 topography data in this data set originated from
a study by Van Essen et al. (1984). V2 topography was
mapped onto the atlas using an additional data set, where
the topography data were estimated using a combination of
anatomical connectivity information (between V1 and V2)
and physiological mapping (Van Essen, Felleman, DeYoe,
Olavarria, & Knierim, 1990).
ue visual cortex. (B) A medial view of V1 and V2, exposing the calcarine
ines) on the cortical surface. ‘‘HM’’ (dashed white line) and ‘‘VM’’ (solid
ical meridian, respectively, and ‘‘F’’ marks the representation of the fovea.
2, respectively. The topography of V1 and V2 is easier to visualize on a

http://brainmap.wustl.edu/
http://brainmap.wustl.edu/
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The mesh shown in Fig. 13, representing the cortical
surface within areas V1 and V2, was flattened using
the DMflatten near-isometric flattening algorithm (Bal-
asubramanian et al., 2005), yielding a weighted RMS
error of 19.2%. The resulting flattened cortical surface
is shown in Fig. 14A. From this figure, it can be seen
that ventral V2 (which contains a representation of the
upper visual hemi-field) appears to be much larger in
surface area than dorsal V2. To account for this asym-
metry, we extended the model to incorporate two shear
parameters for V2, aV

2 and aD
2 , which can be adjusted

independently to match the area of each half of V2
(see Mathematical Appendix for model equations). This
replaces the original V2 uniform shear parameter a2 with
two different uniform shear parameters aV

2 and aD
2 for the

upper and lower visual quarter-field representations in
this hemisphere, respectively. In other words, aV

2 is the
azimuthal shear for ventral V2 and aD

2 is the azimuthal
shear for dorsal V2.

The optimization procedure for computing the best-fit-
ting parameters was identical to that described in Section
3.1, except that here the Wedge–Dipole model is fit to the
full-field V1 and V2 F99UA1 data. Thus, ERMS now
depends on the wedge map parameters a1, aV

2 , and aD
2 ;

the dipole parameters a and b; and the global scale, rota-
tion, and translation (see Mathematical Appendix). The
resulting best-fitting parameter values for the asymmetric
Wedge–Dipole model were a = 0.75�, b = 76.8�,
a1 = 0.78, aV

2 ¼ 0:55, and aD
2 ¼ 0:49.

The measurement of Wedge–Dipole parameter a, which
characterizes the percentage of macaque visual cortex
devoted to representing the central visual field, is based
on data compiled from the full visual field as well as both
areas V1 and V2, but is in good agreement with the mea-
surements made from the 2DG data presented in Section
3.1 that are based on central-field data from V1 alone.

The resulting global azimuthal shear ratio measured in
V1 is in agreement with the supra-columnar V1 anisotropy
Fig. 14. (A) Near-isometric flattening of macaque V1 (light gray) and V2 (med
black lines. ‘‘HM’’ and ‘‘VM’’ mark the cortical representation of the hori
representation of the fovea. ‘‘V1’’ marks striate cortex, and ‘‘V2d’’ and ‘‘V2
eccentricity and iso-azimuth contours are shown (as dotted lines) for a fit of
obtained by minimizing the RMS value of the error per vertex. The short bla
eccentricity lines with the iso-azimuth lines in the model to the corresponding lo
the lines in (A) do not intersect due to missing data. (C) A histogram of mod
of a1 = 0.66 near the vertical meridian and a1 = 0.87 near
horizontal meridian, reported by Blasdel and Campbell
(2001), and in disagreement with the hypothesis for V1
columnar-topographic relationships of Tootell et al.
(1988). Our results for V2 shear are in strong disagreement
with the hypothesized supra-columnar anisotropy of
a2 = 0.16 suggested by Roe and Ts’o (1995). Their hypoth-
esis is based on extrapolation of sub-columnar measure-
ments via a hypothesis of how these relate to global
topography. This hypothesis is identical in concept to that
proposed for V1 topography by Tootell et al. (1988), and
leads to V2 global shear which is many times larger than
that observed in the data. However, our results agree more
with both the experimental observations of Rosa et al.
(1988) in cebus monkey and of Shipp and Zeki (2002) in
macaque, who reported a V2 anisotropy of a2 = 0.58–
0.66 based on direct, supra-columnar measurements.

The Wedge–Dipole model with our optimized parame-
ter settings is shown in Fig. 14B, along with the displace-
ment between the measured location and the predicted
location of the image of a few points in the visual field.
A histogram of the errors dj is shown in Fig. 14C. The
cross-validation error is 2.4 mm, the median error is
2.1 mm, the mean error is 2.4 mm, and the RMS error is
2.9 mm, which is about 5% of the width of V1–V2 (approx-
imately 60 mm for the F99UA1 macaque).

The resulting correlation coefficient quantifying how
well xj correlates with x̂j, rx, is 0.98 for the resulting fit.
Similarly, we obtain a correlation coefficient ry = 0.99 for
the correlation of yj with ŷj (see Fig. 15). Computing the
r2 statistic, we obtain r2

x ¼ 0:97 for the x-coordinate and
r2

y ¼ 0:98 for the y-coordinate. This statistic tells us that
the model accounts for over 97% of the variance of
x- and y-coordinates of the vertices.

From Fig. 14B it can be seen that the Wedge–Dipole
model fits the data well, with the larger errors located at
the cortical representation of the fovea and the far
periphery. It is interesting to note that these regions are
ium gray), with several iso-eccentricity and iso-azimuth contours shown as
zontal meridian and vertical meridian, respectively, and ‘‘F’’ marks the
v’’ mark dorsal and ventral V2, respectively. (B) The corresponding iso-
the Wedge–Dipole map to the data in (A). The model parameters were

ck line segments indicate displacements from the intersections of the iso-
cations in the data in (A). The black squares correspond to locations where
eling errors (i.e., distances between the data and the model predictions).



unpinched wedge complex unpinched dipole complex

V1

V2d

V2v

V1

V2d

V2v

A B

Fig. 16. (A) ‘‘Unpinching’’ the wedge complex consists of moving the
complex to the right of the origin then bending the complex around the
origin. The inset shows a close-up of the unpinched wedge complex at
the foveal representation. (B) The result of mapping the unpinched wedge
complex through the dipole mapping is a dipole complex in which the the
foveal representation in V2 assumes more cortical area (cf. Fig. 1).
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Fig. 15. The results of minimizing the RMS error of the Wedge–Dipole model fit to V1 and V2 topography in the F99UA1 data set. The cortical
coordinates of the data points plotted against model predictions for (A) the x coordinate and (B) the y coordinate.
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the ones in which it is most difficult to collect accurate
visuotopic data: close to the foveal representation, uncer-
tainties in eye fixation result in large displacement errors
in cortex, and in the far periphery, it is technically difficult
to collect precise spatial data due to large receptive field
size.

Note that the F99UA1 topography data were construct-
ed by registering V1 topographic data from one study (Van
Essen et al., 1984) to V2 topographic data from a separate
study (Van Essen et al., 1990). As uncertainties arise in
each stage of registration, it is not clear how much of the
error we have reported for the model fit is simply due to
errors in the registration process.

4. Discussion

4.1. Possible extensions of the Wedge–Dipole model

4.1.1. Removal of ‘‘pinch’’ in foveal representation

One characteristic of the Wedge–Dipole model is that
the foveal representations of V2 and V3 meet V1 at a single
point, as shown in Fig. 5. Although little data are available
concerning the foveal representation of V1, V2, or V3, it is
possible that the foveal representation in V2 may extend
beyond the V1 representation before the horizontal merid-
ian representation bifurcates, as demonstrated in Fig. 1.

To examine this possibility, we considered an eccentric

power function, similar to that used by Mallot (1985) as a
component in a model of the topographic mapping of areas
17, 18, and 19 of cat visual cortex. The eccentric power
function consists of a simple translation of the V1–V2
wedge complex, followed by an exponentiation, which
together require two additional parameters. This auxiliary
mapping results in a modified wedge complex whose foveal
representation in V2 extends away from the foveal repre-
sentation of V1. When this modified wedge complex is
transformed by the dipole mapping, the effect is to alleviate
the ‘‘pinch’’ at the foveal representation, thus we refer to
this new modification as ‘‘unpinching’’ the V2 foveal repre-
sentation. Example unpinched wedge and dipole complexes
appear in Fig. 16, and the mathematical description of this
unpinching map is presented in the Mathematical
Appendix.

Although this modification provides a reasonable exten-
sion to the area of the V2 foveal representation, the lack of
quantitative foveal data obstructs detailed exploration of
spatial mapping in the region of the foveal confluence at
the present time.

4.1.2. The monocular crescent

The boundary of the peripheral visual field representa-
tion in V1 predicted by the dipole mapping is clearly con-

cave—in Fig. 2, one can see a ‘‘notch’’ missing in the
peripheral representation corresponding to the furthest
extent of the visual half-disc under the mapping. However,
it has been observed anatomically that the peripheral bor-
der of V1 is not concave but rather appears flat, resulting in
a convex border for V1.

Interestingly, the border between binocular and monoc-
ular V1 situated in the peripheral visual hemi-field repre-
sentation is also concave (see, e.g., Adams & Horton,
2003b; Horton, Dagi, McCrane, & de Monasterio, 1990;
Horton & Hocking, 1996). This can be explored by
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Fig. 18. Wedge–Dipole model with alternate azimuthal shear distribution.
This extension includes a non-uniformity in the azimuthal shear term that
induces greater azimuthal shear along the area boundaries. V1 is shown in
light gray, V2 in medium gray, and V3 in dark gray. The solid lines
internal to the areas represent the iso-azimuth contours of the visuotopic
mapping, and the dotted lines represent the iso-eccentricity contours. The
shear non-uniformity manifests as a tighter spacing of the iso-azimuth
contours near the area boundaries (cf. Fig. 2C). The particular non-
uniformity shown here corresponds to a sigmoidal compression near to the
boundaries and expansion in the interior.
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adopting a more realistic visual hemi-field geometry that
includes both the binocular and monocular components
of the visual hemi-field. Fig. 17A demonstrates a more real-
istic visual hemi-field perimeter that includes an explicit
monocular region (cf. Inouye, 1909; Polyak, 1941). Under
the dipole mapping, the cortical representation of the mon-
ocular visual field occupies the area of V1 that is the ana-
tomical region known as the monocular crescent, as is
shown in Fig. 17B.

As with the foveal confluence, we do not yet possess
detailed information about the monocular and binocular
visuotopy in the peripheral representations in visual cortex.
Therefore this extension of the Wedge–Dipole model is
merely a suggestion to account for the observed anatomical
boundaries.

4.1.3. Non-uniformity in azimuthal shear

Thus far, we have assumed a constant azimuthal shear
for the Wedge–Dipole mapping that has induced parame-
terized topographic anisotropy along the iso-eccentricity
contours, based on reports that the compression of the
visuotopic map in V1 is aligned parallel to the iso-eccen-
tricity contours (see, e.g., Blasdel & Campbell, 2001; LeVay
et al., 1975; Tootell et al., 1988).

Recently, Blasdel and Campbell (2001) have reported
that the visuotopic anisotropy in macaque V1 is larger
close to the V1–V2 boundary, and that the map is more
nearly isotropic along the internal horizontal meridian
representation [see also Adams and Horton (2003b) for
similar results in squirrel monkey V1]. A first attempt
at accommodating these observations is to use a slightly
more complicated form of azimuthal compression—one
that induces larger anisotropy near the V1–V2 boundary,
falling to smaller values near the representation of the
horizontal meridian. Fig. 18 demonstrates the results
of applying a simple shear heuristic that unevenly
spaces iso-eccentricity contours by introducing a single
binocular monocular binocular

ralucono
m

A B

Fig. 17. Representation of monocular component of the visual hemi-field
in V1 under the dipole mapping. (A) A qualitative model of the right
visual hemi-field, with the monocular and binocular fields demarcated (cf.
Polyak, 1941). (B) The representation of both the binocular and
monocular visual hemi-field components in primary visual cortex under
the Wedge–Dipole mapping. The outline of the monocular field represen-
tation, appearing in the peripheral area of V1, fills in the concave gap in
the dipole mapping and resembles the anatomical shape of the monocular
crescent.
additional ‘‘shear non-uniformity’’ parameter for each
topographic area that causes the azimuthal shear to be
a sigmoidal function of azimuthal distance from the ver-
tical meridian.

As with the unpinching map introduced in the previous
section, we currently do not have access to sufficiently pre-
cise topographic data to quantitatively characterize shear
in V1 more accurately, and, therefore, to evaluate more
sophisticated shear models such as the one illustrated in
Fig. 18. We conclude that the uniform-shear Wedge–
Dipole model provides a simple, first-order model that
works well for currently available data. Extensions to more
realistic forms of shear, along the lines of the previous dis-
cussion, may, in the future, be easily incorporated into this
model if more extensive data are available. In particular, as
the topographic shear function becomes increasingly
detailed and complicated, it would become efficient to sim-
ply resort to a numerical, as opposed to a closed-form,
model. Methods for numerical quasiconformal modeling
are briefly outlined below.

4.2. Conformal and quasiconformal models

4.2.1. Near-conformal case
To the extent that we can conceptualize the topographic

structure of visual cortex in terms of a continuous map,
strong mathematical constraints impose themselves on
the data. First, any regular (i.e., quasiconformal) map
can be decomposed into a term that is locally the sum of
a conformal map and a shear map (Ahlfors & Bers, 1960;
Segel, 1977).
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If the shear component is small on average, as seems to
be the case for macaque V1, then, without doubt, a confor-
mal map of the data provides the simplest description. This
is because conformal maps have powerful numerical attri-
butes—the boundary or ‘‘shape’’ of V1 in addition to a sin-

gle corresponding point between the visual hemi-field and
cortex determine the entire map. This statement follows
from the classical Riemann Mapping Theorem (Ahlfors,
1966a), and has been used to statistically characterize the
accuracy of 2DG topography data via the Symm algorithm
(a standard numerical algorithm for computing conformal
mappings; see Kythe, 1998; Symm, 1966) using a jackknife
replication technique (Schwartz, 1994). Briefly, a collection
of retino- or visuo-cortical correspondences can be used,
one at a time, to fix the conformal map model. Repeating
this for each point in turn (i.e., performing jackknife repli-
cation) provides an estimate in the error of the conformal
assumption, as has been previously performed on the flat-
tened 2DG data presented in Fig. 11. The results suggest
a conformal approximation for V1 which has an accuracy
of 10–20% (Schwartz, 1994). The Riemann Mapping The-
orem motivates this analysis, since it guarantees that the
entire (conformal) topographic map reduces to a three-
parameter fit (a single point correspondence and an
orientation).

4.2.2. Simple global shear functions

If the shear function can be modeled as a constant glob-
al shear represented by a single parameter, then an almost
equally favorable situation holds. As discussed above, it is
a mathematical fact that all regular maps are locally the
sum of a conformal and shear component. It is shown in
the present report that this can be extended globally, writ-
ing the multi-area visuotopic map in terms of separate con-
formal (dipole) and shear (wedge) constructs. This is an
enormous simplification that reduces the size of the param-
eter space needed to summarize the data. Thus, even
though it is not likely that the shear in full-field V1 and
V2 is strictly azimuthal, this simple ansatz has allowed us
to obtain a statistically reliable summary of the F99UA1
data set, and has also worked well in preliminary analysis
of human parafoveal fMRI data in V1, V2, and V3 (Poli-
meni et al., 2005).

4.2.3. Fully general shear function

In V1, it is unlikely that the shear is uniform as is
assumed in the basic uniform-shear Wedge–Dipole model.
For example, it may be that the monocular crescent, lack-
ing two independent monocular afferent inputs, has a fun-
damentally different pattern of shear than the parafoveal
representation. If so, then the closed-form analytic expres-
sions developed in this report will need to be improved by a
more general numerical solution.

To generalize the numerical methods outlined above,
we can exploit our ability to decompose quasiconformal
maps into an independent conformal component and
shear component and model each independently. Since
we assume that the underlying shear distribution is
orderly and changes slowly across cortex, then the
remaining task is to find a simple model for the shear
component, using as few parameters as possible. Howev-
er, if the shear map was fully free to vary in a point-to-
point manner, then any fitting function—e.g., a two-di-
mensional polynomial, a triangular mesh (Van Essen
et al., 1984), or an affine image warp (Adams & Horton,
2003b)—with enough degrees of freedom, would suffice
to characterize the shear, and there would be no great
utility in using a conformal-plus-shear decomposition.
Simple, closed-form models, such as the one presented
in this report, serve as a useful conceptual guide, since
full numerical solutions, while more accurate, provide
much less insight or understanding.

4.3. Dipole structures in visual areas

4.3.1. Mapping singularities

One insight provided by the visuotopic mapping of the
Wedge–Dipole model is that it leads us to a possible func-
tional relationship between mapping singularities and
topographic shear. The points z = �a and z = �b in the
wedge representation’s coordinate system locate logarith-

mic singularities of the dipole mapping—at these points
the dipole mapping takes on an infinite value, i.e.,
log(0) = �1 and log(1/0) = +1. One interpretation of
the role of the wedge mapping is that it acts to alter the
domain of the map function by splitting the contralateral
visual hemi-field representation in V2 along the horizontal
meridian and shearing it away from the singularities.

In Fig. 19, we show that reduction of the compressive
azimuthal shear causes the V2 wedge to expand toward
the dipole mapping singularities located along the negative
real axis. This causes the surface area of the V2 cortical
representation to markedly expand. Note that the area of
the cortical representation increases non-linearly with the
azimuthal shear parameter a2.

Finally, when the azimuthal shear is reduced to the
point where the V2 wedge mapping is conformal, the V2
wedge encroaches upon the singularities, causing the area
of V2 under the dipole mapping to approach infinity. In
this case, the a-parameter singularity, lying near the foveal
representation, is mapped to log(0) = �1, whereas the b-
parameter singularity in the peripheral representation is
mapped to log(1/0) = +1. This example shows that if both
V1 and V2 conformally map the contralateral visual hemi-
field with the dipole mapping, the presence of mapping sin-
gularities in the mapping domain cause the area of V2 to
become infinite, thus some form of shear is necessary to
deform the complex away from the singularities to prevent
the map from diverging. In fact, even when the V1 map-
ping is approximately conformal the V2 mapping requires
a significant amount of shear to compress V2 into a realis-
tic size and shape.

Mapping singularities of this kind are not unique to the
dipole mapping. In fact, most proposed models of central-



Fig. 19. Demonstration of the effect of logarithmic singularities on V2 surface area under Wedge–Dipole mapping as a function of the azimuthal shear
parameter, a2. Each row depicts a pair of wedge and dipole complexes corresponding to a given value of a2. (A–C) The wedge complex representation of
the right hemi-field of V1 and V2. Visual field coordinates representing eccentricity and azimuth appear as labeled iso-contours, with the foveal
representation at the origin. The location of the logarithmic singularities corresponding to the a and b dipole parameters is denoted with the symbols ‘‘s’’
and ‘‘·,’’ respectively. (D–F) The cortical representation of the two visual areas under the wedge and dipole mappings. In each dipole mapping depicted
above, the mapping parameters were k = 1 mm/�, a = 2.5�, and b = 75�, with a maximum eccentricity of 100 � and zero azimuthal shear in V1, a1 = 0 (see
Mathematical Appendix for explanation of mapping parameters). (D) A moderate amount of azimuthal shear in V2 (a2 = 0.5) causes the area of V2 under
the dipole to be comparable to that of V1, as is observed in the existing macaque data. (E) Applying less azimuthal shear (a2 = 0.9) results in the borders of
the wedge representation closing in on the singularities, leading to a dramatic expansion of area in V2. (F) Finally, when the shear is reduced enough to
allow the wedge representation of V2 to approach the singularities (a2 = 1), the area of the V2 cortical representation becomes infinite (see Section 4.3.1).
The dashed lines represent the V2 boundary segment at infinity. This is the case in which both V1 and V2 are simultaneously conformal.
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field V1 cortical magnification to date have been of the
form M(r) = k(r + a)�c along the horizontal meridian,
where r represents visual eccentricity, a is a real-valued
constant representing a shift in the visual field eccentricity,
and the exponent c is unity for monopole models and is
near unity for other models [e.g., Van Essen et al. (1984)
reported c = 1.11]. Any isotropic two-dimensional map-
ping based on a linear magnification function of this form
will impose a mapping singularity within the domain of the
mapping of the contralateral visual hemi-field within V2.
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The reported location of the singularity typically falls
somewhere along the negative real axis: when a = 0.05�
to 4.0� (Levi et al., 1985; Schwartz, 1994; Wilson et al.,
1990) the singularity is placed in the domain of the V2
mapping but outside of the domain of the V1 mapping,
and when a = 0� (Brewer, Press, Logothetis, & Wandell,
2002) the singularity is placed at the origin—that is, in
the foveal confluence—resulting in an infinite topographic
mapping for V1 as well. In either case, the mapping singu-
larity is located in the domain of the V2 visuotopic map-
ping if the V2 mapping is conformal.

These models serve to characterize the topography in
V1, and we have demonstrated in the present report that
these mappings may be extended to characterize V2
topography as well. However, the above argument hing-
es upon the assumption that the V2 topographic map-
ping must be of the same form as the V1 mapping,
which only then makes it susceptible to the divergence
caused by the singularities. Why must the conformal
mapping of the mirror-reversed contralateral visual
hemi-field representation in V2 be identical to that of
the corresponding contralateral visual hemi-field repre-
sentation in V1? Is there some other conformal mapping
for V2 topography whose singularities, if any exist, are
safely outside of the mapping domain? Strikingly, the
answer is negative. Because the topographic maps in
V1 and V2 are identical along their shared border along
the vertical meridian representation, if the V2 mapping
was conformal the entire mapping of the visual hemi-
field would be determined by its values along this border
[by the uniqueness property of conformal mappings
guaranteed by the Riemann Mapping Theorem (Ahlfors,
1966a)]. That is to say, if the V1 mapping were the
dipole mapping and if the V2 mapping were conformal,
the V2 mapping would also be the dipole mapping of
the corresponding V2 wedge. This is why conformality
is such a strong property!

In other words, if (i) the linear cortical magnification
factor of the two-dimensional topographic maps in V1
and V2 is of the form M(r) = k(r + a)�c along the hori-
zontal meridian as explained above, (ii) the two maps are
identical along the shared V1–V2 boundaries, and (iii)
each map projects the contralateral visual hemi-field into
cortex, then both maps cannot be locally isotropic.

The conclusion is that it is not possible for the topo-
graphic mappings of V1 and V2 to be simultaneously con-
formal while maintaining the observed boundary
conditions and surface areas. Furthermore, if the V1 map-
ping is roughly conformal, the V2 mapping must be sig-
nificantly sheared to achieve a representation whose
surface area matches the observed surface area of V2.
These observations impact areas beyond V2, such as V3,
that are included in the topographic complex. The V3
mapping must exhibit substantial shear to be included
in the complex without diverging, suggesting that to avoid
the mapping singularities these complexes consist of a lim-
ited number of independent visual areas.
4.3.2. Topographic complexes are limited in the number of

independent visual areas

The demonstration given in Fig. 19 suggests that there is
a relation between the number of areas in a given topo-
graphic map complex and the amount of azimuthal shear
within the individual regions. Only one member of a map
complex of this form can be conformal, with shear required
in the other mappings. Conversely, if multiple cortical
regions were assigned a fixed amount of azimuthal shear,
then the maximum number of allowable regions that can
be combined into a single complex is fixed. For example,
if each region exhibited a constant shear ratio of 3:1, then
the number of areas that could participate in a single com-
plex would have to be less than six to guarantee that the
wedge complex would not intersect the singularities. This
is because the multiple wedges must ‘‘fit’’ around the unit
circle without ‘‘touching’’ the negative real axis, where
the singularities associated with the parameters a and b live
(see Fig. 19).

A consequence of this ‘‘scarcity’’ of conformality is that
there is a limit to the number of visual areas that can par-
ticipate in a single map complex, e.g., the V1–V2–V3 com-
plex. This would imply that additional independent map
complexes would need to exist to accommodate the large
number of feature maps that exist in extra-striate cortex.

In fact, other visual areas also appear to have the struc-
ture of a dipole complex. In the owl monkey, visual areas
MT and DL bear a superficial resemblance to a V1–V2
complex (see Fig. 9), as originally pointed out by Allman
and Kaas (1975). However, recent studies have shown that
DL may be composed of multiple cortical areas (Kaas &
Morel, 1993; Sereno et al., 1994), one of which consists
of a crescent-shaped subregion—known as MTc or
DLa—surrounding most of MT. This area both contains
a complete or nearly complete representation of the contra-
lateral visual hemi-field and exhibits a mirror-reversed (rel-
ative to MT) topographic map across the shared border
representation of the vertical meridian. This new data sug-
gest that the area surrounding MT may be much narrower
than it was originally described, implying that MTc/DLa
may exhibit a larger amount of topographic shear, and that
the presumptive MT–DL complex may include a greater
number of visual areas.

4.3.3. Development and the dipole map function?

Why might dipole structures be a basic ‘‘design prin-
ciple’’ in the primate visual system? The answer to this
question may come from establishing a connection
between flows along chemical and morphogenetic gradi-
ents, which are thought to play a critical role in neural
development, and the observation that the dipole map
is the steady-state solution to a diffusion equation with
a single source and sink (Morse & Feshbach, 1953).
More generally, the steady-state solution to the diffusion
equation is a harmonic function, which, by Dirichlet’s

Principle (Courant, 1950), is the ‘‘smoothest’’ function
satisfying the boundary conditions. A pair of harmonic
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functions with complementary boundary conditions spec-
ifies a two-dimensional conformal mapping (Ahlfors,
1966a). It is for this reason that conformal topographic
maps, such as the dipole map, could easily arise natural-
ly during neural development. The anisotropy imposed
by the existence of topographic shear requires only a
slight extension to a non-linear diffusion equation with
a spatially variable diffusion constant. Partial differential
equations, such as the diffusion equation with appropri-
ate boundary conditions, have been proposed previously
as models of receptotopic map layout and formation
during development [i.e., the idea of ‘‘systems matching’’
explored by Schwartz (1977a)].

4.4. Relationship of columnar systems and visuotopic maps

Clearly, the axes of topographic shear and the direction
of columnar systems in V1 and V2 are related. But which is
the prior cause?

It is widely assumed that the existence of observable
topographic shear in V1 and V2, and the existence of
columnar systems whose boundaries follow the principle
axes of shear, are causally related, i.e., the columnar
systems drive the shear. In fact, we have shown that
observable shear, for example in V2, is not necessarily
causally related to the existence of columnar systems
in V2, as has been suggested by Roe and Ts’o (1995,
1997). The reason is that the same general form of
shear would necessarily exist in any case, simply due
to the shared boundary conditions and overall surface
area at the level of canonical topography in V1 and
V2 (cf. Fig. 19). Additionally, Adams and Horton
(2003a) demonstrated that, in squirrel monkey, V1
retains the same shape regardless of whether or not
an individual exhibits ocular dominance column stripes.
It may well be that the stripe boundaries simply follow
the principle axes of the topographic shear—perhaps the
shear drives the layout of columnar systems, and not
the other way around.

V1 shear peaks near the V1–V2 border in macaque.
This may be caused by the fact that V2 shear is, on aver-
age, larger than that in V1. According to Roe and Ts’o
(1995), it is several times larger; according to Shipp and
Zeki (2002) and our results, the observed V2 shear is
similar to the peak V1 shear (located along the V1–V2
border) observed by Blasdel and Campbell (2001) in
macaque. [Blasdel and Campbell (2001) also observe that
the V1 visuotopic map in squirrel monkey is nearly iso-
tropic; however, Adams and Horton (2003b) report sig-
nificant retinotopic anisotropy near the V1–V2 border
of squirrel monkey visual cortex.] It may be that there
is a tendency to avoid jumps in shear in the V1–V2–
V3 complex, causing larger shear in V2 to ‘‘spill over’’
into the V1 representation across the vertical meridian.
From a developmental standpoint, this would arise if
the spatially variable diffusion constant governing the
topographic anisotropy, as discussed above, gradually
varied over the topographic complex. This hypothesis is
consistent with our suggestion that the entire V1–V2–
V3 complex is, from a topographic point of view, a sin-
gle entity.

4.5. On publicly available data and code

The existence of publicly available data was crucial to
the development of this work. The Van Essen laboratory,
by providing a unique public data resource (see Van Essen,
2002), have taken an important step in the direction of
‘‘reproducible research’’ (Schwab, Karrenbach, & Claerb-
out, 2000) by providing public data sets on their web site.

We make a small step in this direction by providing the
code for the Wedge–Dipole model in the Mathematical
Appendix, and we are in the process of providing the
remaining components of our computational environment
(e.g., our near-isometric brain flattening software) on our
laboratory’s web site, http://eslab.bu.edu. We feel that it
is increasingly important, in computational neuroscience,
to provide publicly available code, since the vast majority
of modeling studies currently do not do so, thereby making
it difficult to verify computational claims.

4.6. Comparison of macaque and human topography

Contemporary fMRI studies have demonstrated that
the two-dimensional complex logarithm models—which
were originally developed to characterize macaque visu-
otopy—generalize to human visuotopy. Duncan and
Boynton (2003) demonstrated that the monopole model
provides a good fit to central-field human V1 visuoto-
py, but commented that a more general model extend-
ing into V2 and V3 topography was needed. Recently,
Polimeni et al. (2005) jointly characterized the central-
field visuotopy in human V1, V2, and V3, estimating
the value of a for human visual cortex to be
0.62� ± 0.15� over eight hemispheres. Interestingly, Dun-
can and Boynton (2003) independently estimated a for
human V1 to be 0.76�, and the estimates of Horton
and Hoyt (1991b) based on lesion studies of human
V1 also present a = 0.7�. These values of a are very
similar to the macaque values obtained in the present
report for both 2DG (a = 0.72�) and electrophysiologi-
cal data (a = 0.75�), indicating a convergence in the
estimates of cortical magnification factor whereas previ-
ous estimates have been widely scattered in the range
of a = 0.05� to 4.0� (Gulyàs, 1997; Levi et al., 1985;
Schwartz, 1994; Wilson et al., 1990).

The cortical magnification factor of the visuotopic
map, defined by Daniel and Whitteridge (1961) as the
ratio of the difference in cortical position to visual field
position of a small movement of a visual stimulus, is
itself dependent upon the size of whichever retinotopic
area it describes. If, for example, two subjects have iden-
tical retinotopic mappings that differ only by a fixed
scale factor, the cortical magnification factors for each

http://eslab.bu.edu
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subject will reflect this scale difference. A more effective
parametric characterization of the topographic map is
one that is not dependent on the overall size of the reti-
notopic area. The parameter a of the monopole and
dipole models characterizes the space variance of the
visuotopic mapping, in a manner similar to the E2

parameter used in psychophysical for acuity threshold
measurements (Beard, Levi, & Klein, 1997; Levi, Klein,
& Aitsebaomo, 1984; Levi et al., 1985; Whitaker, Rov-
amo, MacVeigh, & Makela, 1992). The parameter a

quantifies the percentage of V1 devoted to representing
the central visual field and therefore provides a meaning-
ful, quantitative measurement of the mapping that does
not depend on the absolute size of V1. Similar remarks
hold for b and the peripheral representation—the fovea
and periphery are each characterized by a logarithmic
singularity in this model, but with opposite sign. These
observations are useful for cross-subject comparison,
since significant variations in the overall surface area of
V1 have been observed in macaque (e.g., Sincich, Adams,
& Horton, 2003; Van Essen et al., 1984) and in human
(e.g., Amunts, Malikovic, Mohlberg, Schormann, &
Zilles, 2000; Stensaas, Eddington, & Dobelle, 1974).
However, as noted by Horton and Hoyt (1991b), the
‘‘normalized’’ cortical parameter a enables meaningful,
quantitative comparisons of central-field V1 visual
topography across species. The currently available data
indicate that, in both macaque and human, the
Wedge–Dipole model extends our ability to make these
comparisons by including both peripheral-field topogra-
phy characterized by b and the anisotropy characterized
by azimuthal shear parameters for V1, V2, and V3.

Historically, indirect estimates of ‘‘cortical magnifica-
tion’’ within human V1 have been made through the
anatomical measurement of retinal ganglion cell density
(Drasdo, 1977; Rolls & Cowey, 1970; Wässle, Grünert,
Röhrenbeck, & Boycott, 1990; see also Adams & Hor-
ton, 2003b; Azzopardi & Cowey, 1993; Perry & Cowey,
1985; Tolhurst & Ling, 1988) and through the psycho-
physical measurement of visual acuity, hyperacuity, and
stimulus contrast sensitivity (Rovamo & Virsu, 1979;
Virsu & Rovamo, 1979; Wilson et al., 1990). Most stud-
ies, however, hypothesize that these measurements corre-
late with one-dimensional cortical magnification factor in
V1, and assume a functional form for the scalar magni-
fication based on fits to macaque physiological data. The
Wedge–Dipole model provides the more general ability
to test the correlation of retinal anatomy and visual psy-
chophysics with the two-dimensional structure of the
topographic mapping throughout the full visual field rep-
resentation in V1, V2, and possibly V3. Perhaps more
significantly, the Wedge–Dipole model—by establishing
an independent topographic shear parameter for V1,
V2, and V3—introduces a tool for psychophysically dis-
criminating which aspects of cortical visual processing
are more likely to occur in a specific visual area by mea-
suring the dependence of behavioral performance on the
anisotropy of the visual stimulus, since the a and b

parameters are common to V1, V2 and V3.
One of the goals of the present work is to achieve an

accurate functional form for topographic maps with a
small number of parameters for use in high-precision
fMRI studies of cortical visuotopy. Minimizing the
parameter count is crucial to statistical fitting, given
the relatively sparse and often noisy data available from
both electrophysiology and fMRI. High field strength
(7T) fMRI measurements of human V1 have already
been demonstrated (Polimeni et al., 2005), and it is
certain that in the near future much more detailed and
accurate data will be available, underscoring the need
for a careful parametric treatment that respects the
two-dimensional structure of cortical topography.
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Appendix A. Mathematical appendix

A.1. Wedge–Dipole model equations

The mathematical formulae describing the Wedge–Di-
pole mapping have been presented elsewhere (Balasubra-
manian et al., 2002), and are reproduced here for
convenience. A purely geometrical description of the
Wedge–Dipole mapping can be found in Section 2.

Any point in the right visual hemi-field can be represent-
ed by the complex variable z ¼ reih 2 C1 with Re{z} P 0,
where 0 6 r 6 rmax represents eccentricity and
� p

2
6 h 6 þ p

2
represents azimuth. The wedge map for corti-

cal area Vn, n = 1,2,3, within the left cerebral hemisphere is
the map Kn : C1 ! C1 given by

KnðreihÞ ¼ reiHnðhÞ; ð3Þ
where the angle function H1 for V1 is given by

H1ðhÞ ¼ a1h; ð4Þ
the function H2 for V2 is given by

H2ðhÞ ¼
�aV

2 ðh� p
2
Þ þH1ðþ p

2
Þ if 0þ 6 h 6 þ p

2
;

�aD
2 ðhþ p

2
Þ þH1ð� p

2
Þ if � p

2
6 h 6 0�;

(
ð5Þ

and the function H3 for V3 is given by

H3ðhÞ ¼
aV

3 hþH2ð0þÞ if 0þ 6 h 6 þ p
2
;

aD
3 hþH2ð0�Þ if � p

2
6 h 6 0�;

(
ð6Þ
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Fig. 20. Example MATLAB code for Wedge–Dipole mapping.
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where 0+ � lim 0 + jej and 0� � lim 0 � jej as e! 0. As de-
scribed in Section 3, the shear parameters aV

n and aD
n control

the amount of uniform azimuthal shear within the ventral
and dorsal sections of Vn. Here, we assume that the shear
in the ventral and dorsal quadrants of V1 is symmetric, i.e.,
aV

1 ¼ aD
1 ¼ a1. Note that for any given region, a < 1 corre-

sponds to a compression and a > 1 corresponds to an expan-
sion. Here, we consider only compressive azimuthal
shearing, but expansive shearing is possible within this
framework.

For a point in the visual hemi-field represented by the
complex coordinate z0, the wedge map n1 = K1(z0), where
n1 2 C1, provides the complex coordinate of the corre-
sponding point within the V1 wedge, and similarly the
mapping functions n2 = K2(z0) and n3 = K3(z0), where
n2; n3 2 C1, provide the coordinate transformations of the
point into V2 and V3, respectively. The wedge coordi-
nates are subsequently fed into the standard dipole
mapping DPL : C1 ! C1, which is a function DPL =
DPL(n,a,b) of one complex-valued variable n 2 C1, and
two real parameters a; b 2 R1, given by

wn ¼ DPLðnn; a; bÞ ¼ log
nn þ a
nn þ b

� �
; ð7Þ

where wn 2 C1 signifies the complex coordinate for the
nth visual area Vn in the contralateral visual cortex.
The two real parameters of the dipole mapping, a and
b, are global parameters for the topographic complex
that apply to all cortical areas V1 through Vn. (The cor-
tical mapping for the opposite visual hemi-field and cor-
responding cortical hemisphere is easily constructed by
substituting z 7! � z and wn 7! � wn.)

In addition to the mapping parameters, in practice the
Wedge–Dipole model may also include four position
parameters for the global scale ðk 2 RþÞ, rotation
ðu 2 ½0; 2pÞ � R1Þ, and translation (s 2 C1) of the dipole
coordinates with respect to the cortical surface. These
parameters do not affect the shape of the topographic com-
plex or the relative surface areas between cortical regions,
but rather are used to fix the absolute distances (typically
in units of mm) for the model. When computing the opti-
mal parameters to fit the Wedge–Dipole model to existing
data, these global positional parameters are employed, as
discussed in Section 3.

A.2. Unpinching map equations

This section summarizes the mathematical details of
the unpinching map presented in Section 4. The goal
of the unpinching map is to expand V2 within the
dipole complex at the foveal representation such that
it wraps around V1 roughly evenly along the entire
extent of their shared border, thus eliminating the
‘‘pinch’’ exhibited at the fovea of V2 that can been seen
in Fig. 5. This is accomplished by manipulating the
wedge complex prior to the application of the dipole
mapping.
If n1 2W1 � C1 is the complex coordinate of the V1
wedge and n2 2W2 � C1 is the complex coordinate of
the V2 wedge, then under the eccentric power function,

n01 ¼ ðn1 þ dÞb ð8:aÞ
for V1, and for V2,

n02 ¼ ðn2 þ dÞb ð8:bÞ
such that n01; n

0
2 2 C1 denote the complex coordinates for

the V1 and V2 representations of the unpinched wedge
complex, and the parameters b; d 2 Rþ control the unpin-
ching. The output of the unpinching map may then be
fed into the dipole mapping function described above.

Appendix B. Example code for Wedge–Dipole mapping

As an example of how to compute the Wedge–Dipole
mapping of visual field coordinates to cortical coordi-
nates, we have included the following code listing for
MATLAB (The MathWorks, Natick, MA) (Fig. 20). The
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mapping itself requires three global parameters, k, a, and
b, and three shear parameters, alpha1, alpha2, and
alpha3, as discussed in the previous section of the
Appendix, as well as three additional discretization
parameters, ecc, Necc, and Npol. The output is an
array containing the visual field coordinates, z, three
arrays containing the wedge representations, zV1, zV2,
and zV3, and three arrays containing the cortical repre-
sentations, wV1, wV2, and wV3.
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