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Abstract

We continue our study of the concepts of amenability and co-amenability for algebraic
quantum groups in the sense of A. Van Daele and our investigation of their relationship with
nuclearity and injectivity. One major tool for our analysis is that every non-degenerate *-
representation of the universal C*-algebra associated to an algebraic quantum group has a
unitary generator which may be described in a concrete way.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The present paper is a continuation of our previous paper [3], where we initiated a
study of the concepts of amenability and co-amenability for algebraic quantum
groups (see also [2]). We gave there several equivalent formulations of co-
amenability and showed that co-amenability of an algebraic quantum group
(4, 4) always implies amenability of its dual algebraic quantum group (/i, ﬁ). We
also obtained some results concerning the relationship between co-amenability of
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(4,4), injectivity of the von Neumann algebra M associated to (4,4) and
amenability of (/I , ﬁ). The algebra M is the von Neumann algebra generated by A4,
where (4, 4;) denotes the analytic extension of (4, 4).

One may construct a unique universal C*-algebraic quantum group (Ay,4y)
associated to an algebraic quantum group (4, 4) (see [9]). We show in Section 4
of the present paper that co-amenability of (A4,4) is equivalent to the fact that
the canonical homomorphism from A, onto A, is injective (see [2] for the compact
case). This generalizes a classical result in the case that (A4,4) is the algebraic
quantum group associated to the group algebra of a discrete group. Further,
we establish the following result, which is also well-known in the group algebra case
(see [14]):

Theorem 1.1. Let (A, A) be an algebraic quantum group.
Consider the following statements:

(1) (4,4) is co-amenable
(2) (4, 4) is amenable
(3) Ay is nuclear

(4) A is nuclear

(5) M is injective

Then (1) = (2) = (3) = (4) = (5).
If (A, A) is compact and has a tracial Haar functional, then we also have (5) = (1),
that is, all statements above are equivalent.

The main new part of this result is the fact that (2) implies (3). It is possible to
deduce that (1) implies (3) from Ng’s paper [13] on Hopf C*-algebras. His proof is
related to the one given by Blanchard ([4], see also [1]) in the setting of regular
multiplicative unitaries. Our proof is quite different and relies on the characteriza-
tion of the nuclearity of a C*-algebra B in terms of the injectivity of B**. The
equivalence between (1), (2) and (5) in the compact tracial case may be deduced from
Ruan’s main result (Theorem 4.5) in [15]. We propose a proof that (5) implies (1) in
this case, which we believe is somewhat more accessible than his. The interesting
question as to whether any (or all) of the statements (2),(3),(4) or (5) always implies
(1) seems quite hard to answer. As a pendant to this question, we show that for a
compact (A4,4), injectivity of M always implies a kind of “perturbed” co-
amenability, involving the notion of quantum dimension (of irreducible unitary
corepresentations).

An important tool in our approach is the fact that any non-degenerate
x-representation of 4, on some Hilbert space has a unitary “‘generator” which
may be described in a concrete way. We present a self-contained proof of
this Kirchberg-type result in Section 3. Similar results (using the universal
corepresentation and a certain L'-algebra) have been previously obtained by
Kustermans in [9,10]. The classical result of Kirchberg for Kac algebras may be
found in [7].
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The reader should consult [3] for an introduction to this subject, including
a more extensive list of references to related papers. Section 2 contains a review of
most of the necessary background material required for understanding the present

paper.

2. Preliminaries

We recall in this section some definitions and results from [2,11,18,19]. We also
prove some technical lemmas that we need later on.

We begin with some terminology that will be used throughout the paper.

Every algebra will be a (not necessarily unital) associative algebra over the
complex field C. The identity map on a set V' will be denoted by 1y, or simply by 1, if
no ambiguity is involved.

If V' and W are linear spaces, V' denotes the linear space of linear functionals on
V and V'® W denotes the linear space tensor product of V' and W. The flip map
from V® W to W® V is the linear map sending v®w onto w®uv, for all ve I and
weW. If V' and W are Hilbert spaces, V' ® W denotes their Hilbert space tensor
product; we denote by B(V) and By(V') the C*-algebras of bounded linear operators
and compact operators on V', respectively. If veV and we W, w,,, denotes the
weakly continuous bounded linear functional on B(V) that maps x onto (x(v), w).
We set w, = w,,. We will often also use the notation w, to denote a restriction to a
C*-subalgebra of B(V) (the domain of w, will be determined by the context).

If V and W are algebras, V® W denotes their algebra tensor product. We
sometimes denote this algebraic tensor product by V'O W if we feel there is some
danger of confusion. If " and W are C*-algebras, then V' ® W will denote their C*-
tensor product with respect to the minimal (spatial) C*-norm. If V" and W are von
Neumann algebras, then V' ® W will denote their von Neumann algebra tensor
product.

For a review of some results related to multiplier algebras, especially multiplier
algebras of C*-algebras, and to slice maps, we refer to [2]. We will use repeatedly
these results and also most of the terminology introduced in this paper. For the ease
of the reader and to fix notation, we recall here some of the basic definitions and
properties of algebraic quantum groups.

Let 4 be a non-degenerate x-algebra and let 4 be a non-degenerate x-
homomorphism from A into the multiplier algebra M(4® A). Suppose that the
following conditions hold:

() (4®1)4 = (®4)4;
(2) The linear mappings defined by the assignments a®b+— A4(a)(b®1) and
a®br— A(a)(1®b) are bijections from 4® A4 onto itself.

Then the pair (4, A) is called a multiplier Hopf x-algebra.
In Condition (1), we are regarding both maps as maps into M(A® A® A), so that
their equality makes sense. It follows from Condition (2), by taking adjoints, that the
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maps defined by the assignments a®@b+— (b®1)4(a) and a®b— (1R b)A(a) are
also bijections from 4 ® A onto itself.

Let (A4, 4) be a multiplier Hopf x-algebra and let w be a linear functional on 4 and
a an element in 4. There is a unique element (w0 ®1)4(a) in M(A) for which

(w®1)(4(a))b = (0®1)(4(a)(1®D))
and
b(w®1)(4(a)) = (0@1)((1®b)4(a))

for all beA. The element (1®w)4(a) in M(A) is determined similarly. Thus, w
induces linear maps (0w ®1)4 and (1@ w)4 from A to M(A).

There exists a unique non-zero *-homomorphism ¢ from 4 to C such that, for all
acA,

(e®1)d(a) = (1®¢)4(a) = a.

The map ¢ is called the co-umit of (A,4). Also, there exists a unique anti-
multiplicative linear isomorphism S on A4 that satisfies the conditions

m(S@1)(4(a)(1®b)) = &(a)b
and
m(1®S)((b®1)4(a)) = &(a)b

for all a,be A. Here m: A® A— A denotes the linearization of the multiplication
map A x A—A. The map S is called the antipode of (4, 4). The antipode is in
general neither x-preserving, nor involutive; however, we have S(S(a*)") = a for all
aeA. We also have AS = y(S® S)4, where y denotes the (induced) flip map on
MA®A).

If wed’, we say w is left invariant if (1®w)4(a) = w(a)l, for all ae A. Right
invariance is defined similarly. If a non-zero left-invariant linear functional on A4
exists, it is unique, up to multiplication by a non-zero scalar. A similar statement
holds for a non-zero right-invariant linear functional. If ¢ is a left-invariant
functional on A, the functional ¥ = ¢S is right invariant.

If A admits a non-zero, left-invariant, positive linear functional ¢, we call (4, 4)
an algebraic quantum group and we call ¢ a left Haar integral on (A4, A). Faithfulness
of ¢ is automatic.

Note that although y = ¢S is right invariant, it may not be positive. On the other
hand, it is proved in [11] that a non-zero, right-invariant, positive linear functional
on A—a right Haar integral—necessarily exists. As for a left Haar integral, a right
Haar integral is necessarily faithful.

The left Haar functional ¢ is not necessarily tracial (or central). However, there is
a unique bijective homomorphism p: 4—A such that ¢(ab) = ¢(bp(a)), for all
a,be A. It satisfies p(p(a*)”) = a for all ae A and Ap = (S>®p)4.
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One useful property, which will be used several times in the sequel, is that every
element of A has “compact support™: given a€ A4, there exists some be A such that
ab = ba = a. (In fact, a more general result is true [8].) Another property we will
need is the so-called strong left invariance of ¢, which is proved in [18, Proposition
3.11]. It says that

(1®0)(1®a)4(b)) = S(1®¢)(4(a)(1®D)))

holds for all a,be A.
We now turn to a short discussion of duality. If (4, 4) is an algebraic quantum

group, denote by A the linear subspace of A’ consisting of all functionals ¢a,

where acA. Since ga = p(a)p, we have 4 = {ap |acA}. If w,wyeA, one can
define a linear functional (w;®wy)4 on A by setting (w; ®wy)d(a)=
(0 ®¢)((a) ®az)A(a)), where w; = @a; and w, = @a,. Using this, the space A can
be made into a non-degenerate x-algebra. The multiplication is given by wjw; =
(w1 ®wy)4 and the involution is given by setting w*(a) = o(S(a)")”, for all ac 4
and wl,wz,weﬁ; it is clear that wjw,,w*€A’ but one can show that, in fact,
wla)z,w*e/f.

One can realize M (A) as a linear space by identifying it as the linear subspace of A’
consisting of all we A’ for which (w®1)4(a) and (1 ® w)4(a) belong to A. (It is clear
that A belongs to this subspace.) In this identification of M (/f), the multiplication
and involution are determined by

(@10:)(a) = 01 (1@ 02)4(a)) = ma((01 ®@1)4(a))

and

for all ae 4 and w;, Wy, we M(A).

Note that the co-unit & of 4 is the unit of the *-algebra M (A4).

There is a unique *-homomorphism A from A4 to M(A® A) such that for all
w1, eA and a,be A,

(@ @D A(w2))(a®b) = (01 ®w1)(4(a)(1®b))
and
(4(@)(1®@))(a®b) = (01 ®@ws)((a®1)4(b)).

Of course, we are here identifying A’ ® A’ as a linear subspace of (A®A)' in the
usual way, so that elements of A ®/i can be regarded as linear functionals on 4 ® A.

The pair (A, A) is an algebraic quantum group, called the dual of (A, A). Its co-unit
¢ and antipode S are given by &(ap) = ¢(a) and S(a) = (ap)-S, for all ac A.
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There is an algebraic quantum group version of Pontryagin’s duality theorem for
locally compact abelian groups that asserts that (A4, 4) is canonically isomorphic to
the dual of (4, 4); that is, (4, 4) is isomorphic to its double dual (4™, 4™).

We now turn to the analytic theory of algebraic quantum groups. We first recall
the concept of a GNS pair. Suppose given a positive linear functional w on a *-
algebra A. Let H be a Hilbert space, and let A: 4A— H be a linear map with dense
range for which (A(a), A(b)) = w(b*a), for all a,be A. Then we call (H,A) a GNS
pair associated to w. As is well known, such a pair always exists and is essentially
unique. For, if (H’, A") is another GNS pair associated to , the map, A(a)— A'(a),
extends to a unitary U: H— H'.

If ¢ is a left Haar integral on an algebraic quantum group (4, 4), and (H, A) is an
associated GNS pair, then it can be shown that there is a unique *-homomorphism
n: A— B(H) such that n(a)A(b) = A(ab), for all a,be A. Moreover, 7 is faithful and
non-degenerate. We let 4, denote the norm closure of n(A4) in B(H). Thus, 4, is a
non-degenerate C*-subalgebra of B(H). The x-representation n:A— B(H) is
essentially unique, for if (H’,A’) is another GNS pair associated to ¢, and
n': A— B(H') is the corresponding x-representation, then, as we observed above,
there exists a unitary U:H—H’ such that UA(a) = A'(a), for all aeA, and
consequently, 7'(a) = Un(a) U*.

We shall use the symbol M to denote the von Neumann algebra generated by A..
Of course, 4, and n(A) are weakly dense in M.

Now observe that there exists a unique non-degenerate x-homomorphism
Ay Ay — M(A: ® A;) such that, for all ae 4 and all xe A® A4, we have

4:(n(a))(r@7)(x) = (n@7)(4(a)x)
and
(r@®7)(x)4r(n(a)) = (n@m)(x4(a)).
We also recall that
Ar = [(0@1)(4i(x)) [ xe 4y, wed]]=[1@0)(4i(x)) | xe4:, wed].

The pair (4, 4;) is a reduced locally compact quantum group in the
sense of Definition 4.1 of [12]; it is called the analytic extension of (A4, A) associated
to ¢.

We also need to recall that there is a unique unitary operator W on H ® H such
that

W((A®A)(4(b)(a®1))) = A(a) ® A(b),
for all a,be A. This unitary satisfies the equation

WiWiz W = Was Wi,
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thus, it is a multiplicative unitary, said to be associated to (H, A). Here we have used
the leg numbering notation of [1]. One can show that WeM(A,® By(H)), so
especially We (A4, ®By(H))" = M® B(H), and that A, is the norm closure of the
linear space {(1®w)(W) | weBy(H)*}. Also, 4,(a) = W*(1®a)W, for all ae 4,.

Since the map 4, is unitarily implemented, it has a unique weakly continuous
extension to a unital x-homomorphism 4,: M - M ® M, given explicitly by 4,(a) =
W*(1®a)W, for all ae M. The Banach space M, may be regarded as a Banach
algebra when equipped with the canonical multiplication induced by 4;; thus, the
product of two elements w and ¢ is given by we = (0 ®¢)o4;.

We use the same symbol R to denote the anti-unitary antipode of A4, and of M,
and we denote by 7 the scaling group of (4;, 4;) (see [11,12]).

Consider now the algebraic dual (A4,4) of (4,4). A right-invariant linear
functional y/ is defined on A by setting y/(d) = &(a), for all ae A. Here d = ag and ¢ is
the co-unit of (A4,4). Since the linear map, A4 —A, a—d, is a bijection (by
faithfulness of ¢), the functional  is well defined. Now define a linear map A: 4 — H
by setting A(d) = A(a), for all ae.«7. Since /(b )*d) = @(b*a) = (A(a), A(b)), for all
a,be A, it follows that (H, ;1) is a GNS-pair associated to x/; It can be shown that it is
unitarily equivalent to the GNS-pair for a left Haar integral ¢ of (/I, ﬁ). Hence, we
can use (H,A) to define a representation of the analytic extension (A, 4,) of (4, A)
on the space H. There is a unique *-homomorphism 7:A4— B(H) such that
#(a)A(b) = A(ab), for all a, be A. Moreover, 7 is faithful and non-degenerate. Let A,
be the norm closure of #(4) in B(H), so A, is a non-degenerate C*-subalgebra of
B(H). One can show that W e M (By(H)® A;) and that A, is the norm closure of the
linear space {(w®1)(W)|weBy(H)"}. Define a linear map A, : A, — M (A, ® 4,) by
setting A (a) = W(a® 1)W*, for all a€ A,. Then A, is the unique *-homomorphism
A, /Ir—>M(ffr®/Ir) such that, for all ae 4 and xeﬁ@fi,

4:(7(a)) (@ 7) (x) = (F@7)(4(a)x)
and
(R@%)(x)4e(#(a) = (@7)(x4(a)).

Note that one can show that We M (4, ® 4;) and (4, ®1)(W) = W3 Was.

An algebraic quantum group (4, 4) is of compact type if A is unital, and of discrete
type if there exists a non-zero element s e A satisfying ah = ha = ¢(a)h, for allae 4. Tt
is known that (4, 4) is of compact type (respectively, of discrete type) if, and only if,
its dual (A, A) is of discrete type (respectively, of compact type).

We use the symbol M to denote the von Neumann algebra generated by A, so that

A, and 7%(14) are weakly dense in M. As with 4., since A, is unitarily implemented,
it has a unique extension to a weakly continuous unital x-homomorphism

At M- M® M, given explicitly by A;(a) = W(a® 1)W*, for all ac M.
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It should be noted that both M and M are in the standard representation. This
follows easily from [11] and standard von Neumann algebra theory (see [16], for
example). As a consequence, all normal states on these algebras are (restriction of)
vector states.

We now recall the definition of co-amenability of an algebraic quantum group.
Suppose that (A4, 4) is an algebraic quantum group and let (H,A) be a GNS pair
associated to a left Haar integral. As the representation n: A —» B(H) is injective, we
can use it to endow A with a C*-norm by setting ||a|| = ||z(a)||, for a€e A. Following
[3] (see also [2]), we say that (A4, A) is co-amenable if its co-unit ¢ is norm-bounded
with respect to this norm. Several characterizations of co-amenability are given in
[3]. We just remind the reader that the algebraic quantum group of compact type
associated to the group algebra of a discrete group I' is co-amenable according to
this definition if, and only if, I" is amenable. Also, co-amenability is automatic in the
case of a discrete type algebraic quantum group.

We also recall from [3] the definition of amenability for an algebraic quantum
group. Let (A4, 4) be an algebraic quantum group with von Neumann algebra M.
A right-invariant mean for (A, 4) is a state m on M such that

m((1®@w)4:(x)) = (1)m(x)

for all xe M and we M,.. A left-invariant mean is defined analogously. We say that
(A, 4) is amenable if (A, A) admits a right-invariant mean. Using the existence of the
anti-unitary antipode R on (M, 4;) ([11,12]), this is easily seen to be equivalent to
requiring that (4, 4) admits a left-invariant mean. The algebraic quantum group
associated to the algebra of complex functions with finite support on a discrete group
I' is amenable if, and only if, the group I' is amenable, by the very definition of the
amenability of a group. Amenability is automatic for an algebraic quantum group
(4, 4) of compact type.

We end this section with some technical lemmas.

We denote by ¢ the modular “function” of (4, 4). Especially, ¢ is an invertible,
self-adjoint element of M (A) satisfying

A(0) =0®3, ¢0) =1, S©B)=05".
Further, there exists ueT such that
@S(a) = p(ad) = pe(da)

for all ae A.

Lemma 2.1. Let ac A. Then we have
(1) (@)" = (S(a)"0)",
(2) 6" = p(as™")",
(3) S(a)p'S = as,

—

@ p(a*)S™' = ' (S(a*)0)".
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Proof. (1) See [11, Lemma 7.14].
(2) Observe that

0(57'b) = p(57'557'8) = pe (657651 = up(bs )

for all be A. Hence we get
(@5 )(e) =d(57'¢) = (6 ca)

= up(cas™") = p(as™")" (¢)

for all ce A.
(3) We have
(S(a)p~'8)(b) = (p~" (S(6))S(a)) = ¢(S(a)S(D))
= pS(ba) = ¢(bad) = ad(b)
for all be A.
(4) We have

for all bed. 0O

Let now § denote the automorphism of A satisfying

Y(ab) = y(bp(d))
for all a,be A. (The existence of p is proved in a similar way as the existence of p.)

Lemma 2.2. Let ac A. Then we have

(1) pld) = (S (™)

@ A(S@)")) = d

Proof. (1) For all be A we have
Y((b) pld)) =d(ab)) = (@) (s)")
=y(((S(a)*0)")*(S(h)*6)") (using Lemma 2.1, (1))
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= ((S(a)'8)" S(b)6) = 0(6"S(@)S(b)'9) = p(3S(a) S~ (°)9)

= S(S(@)S™ (1) = o(b"S@)d ™) = d((5) (SP(@)s ™)),
and the assertion follows from the faithfulness of .

(2) Observe that
SASHa)") =S(S(S*(@)")) = S(57($%(@")")
=5(S(a")") = a.
Hence, using (1) from Lemma 2.1, and (1) above, we get
AUS(@)) ™)) =A((S(S(@))'0)") = p(($*(a")0)")
= (S(S2(@)9)07)" = (SX(S*@))$2(0)67)" = (S(S(a))" =d

as desired. [

Lemma 2.3. Define F: A— A by F(d) = S(/a*\). Then F is antilinear, antimultiplicative
and involutive.

Proof. We only show antimultiplicativity as the other two properties are easily
checked.
Let a,be A. Write a®b = >""_| A(p;)(¢;®1) for some p;,q;eA,i =1, ...,n. Then

@)= o(a)p
=1
Indeed, we have
(ab)(c) =(@®b)4(c) = (p®@¢)(4(c)(a®b))

n

= (p®0)(4 ZA(p @®1) = (p®¢)(4(cp)(q:®1))

i=1
= 207 cpi)o(qi) = ( (Z@ ai)p )) = (Zn: @(qi)ﬁl) (€)

for all ce 4. Using this expression, we get

F(db)(c) = (Z F(cp(q»ﬁ,»)) =3 o@)SENE =3 olg)o(cS()).
i=1

i=1 i=1
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On the other hand, recalling that y denote the flip map on M(4® A), we have

=(e®¢)(4(c)(S(b*)®S(a")))

_ Z (0®)(A()(S®S)(104)74(7))

- Z (@®@)(A(c)((S®S)z4(p}))(1®S(q})))
_ Z (0@ @) (A (US®S) A1) (1@ S(q)))
_ Z (p®¢)(A(S(F)) 1@ 5())))

_ ;‘ (@S ®0)(4(cS(P) (™ ®S(g)))

_ Z (@S ®0)(4(cS(p})5™)(1®6S(q))))

_ Z 0S(cS(p})5 " )e(5S(q)))

- Z o(cS(p})) =>_ o(g)e(eS()))

for all ce A, and the antimultiplicativity of F follows. [

Lemma 2.4. Let ac A. Pick ce A such that S(/a-*\) = €S®. Then we have

(1®)(1®c")4(a) = a.

Proof. Using Lemma 2.3, we get dSG:-*\) = d. Now, to prove the assertion, it is clearly
enough to show that

(e®@)((b"®c)4(a)) = ¢(ba)
holds for all be A. This may be established as follows:
(P®@)((b"®c")4(a)) = p(b"(1® pc™)A(a))
=9S(" (1@ ¢c")4(a)d7") = p(3((S® pc*)A(a))S(b))
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=0(0((S®@pc"S™18)A(a))S(b"))
=¢(5((pc" S ®1)4(S(a)))S(5"))
=1"'o(((pc" S @1)4(S(a)))S(67'b"))

=1 lp(p 'S0 ) (9" ST ®@1)A(S(a))))

— 1 o(((pe" ST S@A(p7'S(5715)))S(a))

(where we have used strong left invariance of ¢)

—_—

= (pc" ®S(a)p)Ap~'S(67'%) = 1 (p(c*) ® S(a))Ap~' S(67'b)

=i (p(c) ®S(@))(S2@p " )AS(5”'b)

=1 (S@®p(c))(p @S (S®S)4(57'b")

=1 (S(@)p ' S®p(c)S™AG'b") = u (a6 ® S(c*)0)A(57' ")
(where we have used Lemma 2.1, (3) and (4))

= 1 (@@ S(c*)8)(07' ®5)AbY) = AP (a® S(e*))A(b)

(where we have used Lemma 2.1, (2))

—

= (aS(c*))(b") = d(b*) = p(b*a),

—

where we have used that dS(c*) = d.
This finishes the proof. [

Lemma 2.5. Let a,be A. Pick a\,by, ...,a,,b,€A such that
AD)(a®1) = ar@by.
k=1

Then, for all we A, we have

b‘)
Il

((a0)S)

Z o(ag)by.

>
Il



E. Bédos et al. | Journal of Functional Analysis 201 (2003) 303340 315

Proof. Let ce A, wefA. Then
(((aw)$)b)(e) = (((a)S) ® (bp)) 4(c) = (aw)S(1® (b)) 4(c)
= (aw)S1®¢)(4(c)(1®b)) = (aw)(1® @)((1®c)4(b)),

using strong left invariance of ¢. Hence,

(((a)$)b)(c) = (0@ p)(1®)4(b)(a®1))

=(0®9) ((1 ®c) (i: ak®bk>>
k=1

= Z o(chr) = (i: w(ak)l;k> (¢).

k=1

This shows the assertion. [

Lemma 2.6. Let a,b,ce A. Write
A4(b)(a®1) Zak®bk, b®c—ZA(p Ngi®1)

for some ay, by, ...,a,,b,, 01,91, - Py qm € A. Further, for each i =1, ..., m, write

)(a®1) Zx,j@)y,j

Jor some xi1, yi1, ..., Xis(i), Visi) €A. Then

s(i) n
(/) qi y11®xz/ Z bié®ay.
1 k=1

m
i=1

Proof. Set X =", Z]‘g 0(¢:)7; ®x; and ¥ = 31_, bré®ay, which are both

elements in A ® A. To show that X = Y, it suffices, using separation, to prove that
(e®(pf)X = (e®(@f))Y for all e, f € A. Note that we regard here e as an element
of the double dual of A4.
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Let e,f e A. Then

(€@ (@MNX =D ola)elevy)o(fxy)

iil‘

= Z (@0 ®@¢)(10e®f)(qi®y;®x;))

= Z (@90 ®¢)(1®e®/)(¢:® (dop(pi)(1®a))))
= (0 ® (pe) ® (agf) (Z ql®Aop(p)>

= (9®(9e)® (a0)) ((z@Aop> (Z q,@,,,>>

= (@ ® (9e) ® (agf))(1® 40p)(S™' ®1)(4(c))(b® 1)),

using here the formula established in [11, Proposition 2.2] at the last step.
Continuing this computation, we get

(e® (@)X = (((bp)S™' @ (pe) ® (ap/))((1® Aop)A(c))
= (((bp)S™' ® (agf) ® (9e)) (1® 4)4(c))
=(((b9)S™' ® (anf) ® (pe)) (4®1)4(c))
= (((b9)S™" ® (apf)) A((1® (¢e)) A(c))
=(((b9)S™ ® (af)) A(1© ) ((1®e)4(c)))
=(((b9)S™ ® (apf))A(S(1® ¢)(4(e)(1®0)))),

using strong left invariance of ¢.
This gives

(e®(0f)X = (((apf)S)® (b)) A((1@ ¢)(4(e)(1®¢))))
= (((ag/)S) ® (b)) A((1®¢)4(e))
= (((a@f)S) ®b®E)(4®1)4(e)
= (((a0/)S) ®b® ) (1@ 4)A(e)
= (((a@)S) ® (b)) 4(e) = (((ap/)S)bé) e).
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On the other hand, we have

@MY =3 (5. ®)A©)(of ar)
k=1

=3 G of ) (ar) = ((Z <<pf><ak>b‘k>é> (e).

k=1 k=1

Hence, the assertion will be proved if we can show that
n

((agf)S)b = (@f )(ax)bx

k=1

holds for all feA. But this clearly follows from Lemma 2.5, and the proof is
finished. [J

3. Non-degenerate representations and unitary generators

We let (4,4) be an algebraic quantum group throughout this section and use
notation and terminology introduced in the previous section.

Following [9], we first introduce the universal C*-algebraic quantum group
(Ay, 4,) associated to (4, 4). The C*-algebra A, is the completion of 4 with respect
to the C*-norm || - ||, on 4 defined by

[lall, = sup{||p(a)||| ¢ is a *-homomorphism from A into some C*-algebra}.

(The non-trivial fact that this gives a well-defined norm on A, is shown in [9].) Let ©,
denote the identity mapping from A into A,. The co-product map 4, is defined
in such way that it is the unique non-degenerate x-homomorphism
Ay Ay—> M (A, ® Ay) satisfying

(mu @7y ) (x) Au(mu(a)) = (my @7y ) (x4(a))
and
Ay(mu(@))(my @ 1u) (x) = (7w @ 7y ) (4(a)x)

for all ae 4 and xe AR A.

The universality of 4, makes it possible to extend uniquely from 4 to 4, any x*-
homomorphism from A4 into some C*-algebra. Especially, the co-unit ¢ of (4, A4)
extends to a *-homomorphism ¢, : A, — C such that g,om, = ¢. One easily checks that
g, satisfies the co-unit property, that is,

(ea®1)Ay(a) = 1®ey)dy(a) = a, acA,.

It follows immediately from this that 4, is injective. Also, there exists a unique *-
homomorphism 7, from 4, onto A, satisfying m.om, = 7. By construction, we have
(m ® 7y )ody = Apory.
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We remark that one easily verifies that our definition of co-amenability of (4, 4)
may now be rephrased as saying that ¢, is weakly contained in 7, that is,
ker(m,) = ker(gy).

One of the off-springs of [9] is that there is a bijective correspondence between
non-degenerate x-homomorphisms of A4, and unitary corepresentations of (Ar,ﬁr)
(this may be seen by combining results from Sections 7 and 13 in [9]). Kustermans
has also established a similar result for more general locally compact quantum
groups in [10]. For completeness, we recall the definition of a unitary corepresenta-
tion. Consider a C*-algebraic quantum semigroup (B, I’), that is, a C*-algebra B
equipped with a co-product map I'. Then a unitary corepresentation of (B,I') on a
(non-zero) Hilbert space K is a unitary element Ue M (B® By(K)) such that
(F@l)U = U13U23.

In this section we show that any non-degenerate x-representation of 4, on a
Hilbert space has a unitary ‘“‘generator”, that is, it arises from some unitary
corepresentation of (/Ir,Aﬂr’op). By Aﬁmp we mean throughout this paper the co-
product on A, opposite to A,. It may be seen as a matter of taste choosing to work
with the opposite co-product on the dual side. However, one reason for this choice is
that this is the one tacitly adopted by Kustermans and Vaes [12] in the setting of
locally compact quantum groups: the “dual” of (A4;,4;) in their sense is in fact
precisely (Ar,jnop).

For completeness, we recall how AArjop is defined. Let 7 : /I,-@/Ir—)/Ir@/ir denote
the flip map. We also denote by the same symbol its extension to a x-automorphism
of M(/ir®/ir). Then lep = }foﬁr.

One can also describe ﬁmp with the help of a multiplicative unitary W related to
W, in the spirit of [1]. Indeed, let X denote the flip map on H® H and set W =
2W+*X. Then one checks readily that

Arop(y) = W (1@0)W

for all y €A, We may use this formula to extend Arﬁop to a map from M into M® M,

which we also denote by the same symbol. The pair (M, ﬁr,op) is then a Hopf von
Neumann algebra.

We equip A (resp. M,) with the product induced by AAT’OP, that is wn =
(@) Ar.op (resp. oy = (w®1n)Arop). It is then straightforward to check that the
Banach space A,* (resp. M,) is a Banach algebra under this product.

Our approach relies on the following fundamental result, which takes advantage
of the fact that we are dealing with algebraic quantum groups.

Proposition 3.1. Let notation be as above. Then:

(a) There exists a (unique) injective homomorphism Q: A — M, satisfying

Q(@)[#(5)] = ¢(S" (a)h)
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for all a,be A. If ae A, and ce A is chosen so that

éS(/a*\) = S(/a*\)a
then Q(a) =  g(a),4(c) (restricted to M).
(b) The algebra Q(A) is norm-dense in M.,.
(c) If © denotes the canonical x-homomorphism from (A, A) onto its double dual,
then Q(a)or = (S~ (a)) for all ae A.
(d) Let Q; denote the map from A into /I;‘ obtained by restricting each Q(a) to A
Then Q, is also an injective homomorphism.

Proof. Let ac A. We define a linear functional P(a) on 7(A) by

P(a)[#(5)] = o(S™(a)b)

—

for all he A. Now choose ce 4 such that ¢ S(a*) = S(Tz*\). Then we have

P(@)[7(5)] = ®agaa0) (7(B))

for all be A. Indeed, let be A. Then

as asserted.
It follows clearly from the formula just established that P(a) has a unique

extension Q:(a)e A, and also a unique extension to Q(a)e M,, both determined by
restricting suitably @ 4(q) 4(c)-
We show now that assertion (c) holds. Let ae A. Then we have

(Q(a)o)(b) = Q(a)(7(b)) = (S~ (a) b)
=b(S"'(a) = (O(57(@)))(1)

for all be A. Hence, Q(a)ort = O(S~!(a)), as desired.

oft
The map Q:a—Q(a) from A into M, is clearly linear. We show that Q is
multiplicative.



320 E. Bédos et al. | Journal of Functional Analysis 201 (2003) 303340

Let ay,a,€A. For all be A we have

(Q(ar) Q(a2))(#(b)) = (Qa1) ® Q(a2)) (Arop (b))

As #(4 ) is weakly dense in M, the multiplicativity of Q follows.

To finish the proof of (a), it remains only to show that Q is injective. Let ae 4 and
assume that Q(a) = 0.

Then, for all beA, we have 0= Q(a)(A(b
b=(5"(a))", we get (S~'(a) (S~'(a))") =0,
on A. Thus, a = 0, as desired.

A little thought shows that assertion (d) is also established by the arguments given
so far. We finally prove assertion (b).

We first show that Q(4) = {® 4, 41 | €./ €4}-

The inclusion < is obvious from what we already have seen. To prove the reverse
inclusion, let e, f € A.

Then, choosing d € 4 such that (S~1(d)*)" = fp~'(é)", we have

') = ¢(S'(a)b). Hence, inserting
that is, S~!(a) = 0 since ¢ is faithful

D pe), ()M = o(d).

Indeed, for all he A, we have

A A A PP ~

= (A(b &), 4()) =d(f* b &) =¥(5"(&) [ b)
=J((SH))" b) = o(SH(d)b) = QD) (#()).

This proves the reverse inclusion. Now, since the action of M on H is standard, we
have M, = {o, oM | u,ve H}. Further, the following inequality, which is surely well-
known, is easy to prove:

Let u,veH,a,be A. Then
vy uin7 = @ aay apyail [ < e = A@)[ o] + | Aa)]| |[v — A(b)]].

As A(A) is dense in H, the norm-density of Q(4) in M, clearly follows. This finishes
the proof of (b), and thereby of the proposition. [
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Theorem 3.2. Let U be a unitary corepresentation of (/ir, AAr,op) on a Hilbert space K.
Define ny : A— B(K) by

ny(a) = (Qr(a)®1) U, aecA.
Then my is a non-degenerate x-representation of A on K, that is, it is a x-homo-
morphism of A into B(K) which is non-degenerate in the sense that [ny(A)K] = K.
We shall also denote by ny the associated non-degenerate x-representation of A, on

K, and call U the generator of my.

Proof. We write 7 instead of 7y in this proof.

Let ac A. Since Q;(a) € A¥, it is clear that 7(a) € B(K). The linearity of 7 is evident.
The multiplicativity of = follows from the corepresentation property of U and the
multiplicativity of Q. Indeed, we have

n(ab) = (Qr(ab) ®1) U = ((Qr(a) 0:(b)) ®1) U
= ((Q:(@)® () Arop ®1) U = (01(a) ® Qr(h) ® 1)(4r0p ®1) U
=(0r(a) @ Or(b) ®1) Ui3Uns = ((Qr(a) ®@1) U)((Qr(b) ®1) U) = n(a)n(b)
for all a,be A.

To prove that n is *-preserving, we have to adapt some arguments from [12].
We set W = ZW*X. As pointed out before, we have

Arop(y) = W (1@ Y)W, yedr.
It follows that
Uiz Uy = (Avop @ 1)U = Wiy Usy Wia,
hence that
(x) Wiy Uiy = Uy Wiy Us;.
Let pe Bo(H)",ne By(K)". Then define ye By(H)" by
7(x) = (p@n)(U(x®1) U"), xeBy(H).

Applying :® p®n to (x) above, we get

(1®p) M)((1@NU) = (1®7y) W.
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As in [12], we can then conclude that ((1®p) W)((1®n) U) € D(Sr.op), and
Seop((1®p) W)((1© 1) U)) = (1©7)(W")
=(1®p®n)(Ux Wi, Usy)
=(1®p@n)(Ujs Wiy) (using (x))
=(®n)(U")(1®p)(W")
=(1@n)(U")Srop((1©p) W).

Now, as the set {(1®p) W|peBy(K)*} is a core for S;op, and S;p is closed, this

implies that x((1®#n) U) € D(S;,0p) and

Srop(x((1®@n) U)) = (1@n)(U)Sp0p(x),  Vx€D(Spop)-

From this, we can conclude that (1®n)U e D(S;0p) and

2

Srop((1®@MU) = (1®n)(U")

(see [12, Remark 5.44]).
Let ac A. We define Q,(a)” to be the linear functional on 7,(A4) given by

Q,(a)*(ﬁ,(g)) = Qr(“)(ﬁr(gop(l;)*))7 beA.

Then we have

for all be A. This shows that Q,(a)* extends to an element of A*, which is in fact
equal to Q,(a*).
Now, let O,(a) have its usual meaning, that is Q,(a)e A" is defined by

R ~

0:(a)(y) = Qr(@)(y*), yed:.
We have then

A

0,(a)"(x) = 0 (a)(Srop(x)),  xED(Srop).
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Since D(SA'LOP) is a strict bounded core for SAr,Op (see [12, Remark 5.44] again), we get

Or(a)(x) = Qr(a)(gr@p(x))a XGD(SAr,Op)-
Combining this with what we have seen previously, we obtain

n((Qr(a)" ®1)U) = Qy(a)" (1®n)V)

= 0,(a)(Srop(1®N)V)) = O(a)(1®n)(U"))

=n((2-(@)®@1)(U")) = n((2-a)® ) U)"),

hence
n(n(@)) =n((Qr(a") ®@1)U)
=n((Qr(a) ®@1)U) = n(((Qr(a) ®1)V)")
=n(n(a)").

As this holds for all ne By(K)", we can conclude that n(a*) = n(a)", that is, 7 is -
preserving.

Finally, we prove that n is non-degenerate. Let ve K be such that n(a)v = 0 for all
ae A. Using that © is x-preserving, it is then enough to prove that v = 0.

Let a,be A,weK. Set

L= (U(A(a)®@v), A(b) ®w) = (((ws(a),a5) ® 1) U)v, W).

Now, it follows from the proof of Proposition 3.1 that we may pick d € 4 such that
0:(d) is equal to the restriction of () 1) tO A,. Hence, we get

L= ({(O:(d)®1)U)v,w) = (n(d)v,w) = 0.

As this holds for all he 4, we K, this implies that U(A(a) ®v) = 0 for all ae A. Thus,
Ala)®v=U*"U(A(a) ®v) =0 for all ae 4. Since A(A) is dense in H, this implies
v =0, as desired. [

Remark. Let Ue M ® B(K) be a unitary such that (Aﬁrvop ®1)U = U,3Uy;. Then the
map %y : A— B(K) defined by #y(a) = (Q(a)®1)U, ae A, may also be seen to be a
non-degenerate x-homomorphism, by a similar proof. This x-homomorphism
extends by universality to a x-representation of 4, on K. It will follow from our

next result that we in fact have Ue M (A4; ® By(K)). This means that U is indeed a
unitary corepresentation of (/ir, Aﬁr,op) and iy = ny.

We now show that every non-degenerate *-representation of A, has a unitary
generator. Alternatively, one may formulate this result for non-degenerate x-
representations of A.
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Theorem 3.3. Let ¢ be a non-degenerate x-representation of Ay on some Hilbert space
K. Set Ay = ¢p(A,) = ¢(A) = B(K). Then there exists a unique unitary corepresenta-
tion U = U(¢) of (Ar,jr,op) on K such that

¢(a) = (0:(a)®1)U, aecA.

Hence, in the notation of Theorem 3.2, we have nyy) = ¢.

The norm-closure of {(w®1)U |weBy(H)"} is equal to Ay and U belongs to
M(A,®Ay).

Finally, we have U(n,) = Wand U(g,) = 1y ® 1, which may be equivalently written
as my = m; and T, @1 = &y.

Proof. Let veK and define 4,: 4A— K by

Now let a,be A and choose ay, by, ...,a,,b,€ A such that
(+) A@)(b®]1) Z bi®a;.

Then observe that
S Ala)®d(b)o = (A0 4,) (Z a,@bi) — (A0A) (A (B 1)).

i=1 i=1

So the left-hand side above is independent of the choice of the ¢;’s and b;’s as long as
they satisfy (x). We set therefore

UA@@B)) =3 Ala) ® (b

i=1

Observe now that

i bibip(a;a;) —(l®<0)< b ®da; ) (Zn: bi®ai>>

ij=1 Jj= i=1
=(1®0)((4 (a)(b®1)) (4(a)(b®1)))
=(1®e)((b*®@1)A(a*a)(b®1))

=b*bp(a*a) (by left invariance of ¢).
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Therefore, we have

n

1U(A(@) ®p(b)o)||* = Z (A(a;) ® ¢ (bi)v, A(a;) ® p(b;)v)

= 3 (Al@). Aa))(B(b)v. d(by))

If we now extend U by linearity to a map from A(4) © ¢(A4)K into itself, the same
kind of argument as above shows that U is a well-defined isometry on
A(A)© $(A)K, and thereby that the map U is well defined. Since ¢ is assumed to
be non-degenerate, we can extend U to a linear isometry on H ® K. Moreover, using
the cancellation properties of (4, 4), one easily checks that U is surjective, hence that
it is a unitary on H ® K.

We now show that Ue M (4, ® 4y).

Let a,be A. Write 4(b)(a®1) = >_;_, ax @by for some ay, by, ..., a,, by A. Then

n

(x) U@RB)@(a) =) w(be) ® dlar)-

k=1
To prove this, consider ce 4,ve K. It suffices to show that

n

(U(h) ® $(a)(A(&) ®v) = (Z (b)) ® ¢(ak)> (A(O)®v),

k=1

that is,

n

(kx%)  U(AbBE) @ p(a)v) =Y A(beé) @ lai)v.

k=1

Let L denote the left side of equation (x x x). Write b®c =Y _._; 4(pi)(¢;®1) for
SOMe pi,qi, ..., Pr, gr € A. Then we have bé = S7_, ¢(g;)p; (as in the proof of Lemma
2.3). Further, for each i=1,...,r, write 4(p;)(a®1) = 2‘2 x;j®y; for some

j
Xils Yily -5 Xis(i) Vis(i) eA.



326 E. Bédos et al. | Journal of Functional Analysis 201 (2003) 303340

Then, using the definition of U at the second step, we get

L= i ¢(q)U(A(pi) ® ¢(a)v)
i—1
m s(i)
=3 > 0(g)(Ay) @ d(xy)v)
i1 =1
m s(i)
= A(@(q:)71) @ d(xy)v.
T

=1 j=

i=

Set X =531, ng o(qi)vi ®x,»je/fOA. Then, to show that (x x *) holds, it clearly
suffices to prove that X =/, bré®ay. But this is precisely what is established in
Lemma 2.6. Hence, we have shown that (xx) holds.

Let 7 : A— A denote the “Fourier transform”, that is # (a) = d, a€A. Then (%)
may be rewritten as

UR(b)®¢(a) = (RO P)(F O)x(4(b)(a®1)), a,bed.

This means that U(7(4)Q¢(A))cr(A)O¢(4). Since F is bijective and
A(A)(1®A) = A® A, we get in fact equality. A continuity argument gives then
U4, ®Ay) = (A, ®Ay). As U is unitary, we also get U*(4,®Ay) = (A, @ Ay).
Applying the -operation in B(H ® K), we then get (4, ® 44)U = (4, ® A4). Hence,
we have shown that Ue M(4,® A,).

Next we show that UeM(A4,® By(K)). To this end, we first prove that
U(A; ® By(K)) = A; @ By(K). Now, for all a,b,ce A and u,ve K, we have

U(#(50) @ (-, u)pla)y) = U(R(5) ® $(a))(#() @ (-, u)v) e 7(A) © Bo(K)
as we have seen that U(#(b)® ¢ (a))er(A) O ¢(A). Since 4> = A and ¢ is non-
degenerate, it follows from a continuity argument that U(A4; ® By(K)) = A; ® By(K),
as desired. Now, using that U*(#(4) © ¢(A4))=#(A) O p(A4), we get similarly that
U*(A; ® Bo(K)) = A; ® By(K). Taking adjoints, we get (A, ® By(K))U < A, ® By(K).
Hence, we have shown that Ue M (A4, ® By(K)).
We now establish the following formula:

(k5 x%) (040 @DU = (1@ 9)((1®D7)4(a))), a,beA.

Let de A and v,weK.
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Write A(a)(d®1) = >"1, di®a; for ay,d, ...,a,,d,€ A. Then

(@40).400)®1) U(D(d)v, w) = (U(A(a) @ P(d)v), A(b) @ w)

( (@) ® ¢(d)v, A(b) @ w)

HM_) H'Mx

@b a;)($(di)v, w)
(;S( Y o(b*a;) ,>v w>
i=1
</><z®<p (Zd@b*m)) )

((1®@@)(1®D7)4(a)(d@1)))o,w)
= (@((1®@)(1®b7)4(a))) p(d)v,w),

I
N N

“S~

which shows (s s sx).

Using this formula, the norm-closure of {(w®1)U | we By(H)"} is easily seen to
be equal to A4y.

We are now in position to prove the formula relating ¢ and U, that is,

¢a) = (Or(a)®@1)U, acA.

Let ac A. Pick ce 4 such that

—_ -

éS(ar) = S(a*)é = S(a*).
Then we have

(Or(a)®1)U = (0 4(a),4(c)® 1)U (using Proposition 3.1)
=o((1®¢)((1®c*)A4(a))) (using (x * *x) above)
=¢(a) (using Lemma 2.4),

as desired.
Once this fundamental formula is established, the corepresentation property and

the uniqueness of U follow readily from the norm-density of Q(A4) in M,. For
example, regarding (ﬁr,op® 1)U and U3 Uy; as lying in MAM® B(K), as we may,
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we have

= (2 (@) @) U)((2:(h)®1)U)

= (@) ®1)U)((Q(b)®1)U)

= (Q(a)® Q(b) ®1)(U13Un)
for all a,be A.

Finally, we check the last assertion of the theorem. Let a,b, ce A and choose a;’s
and b;’s such as () holds. Then we have

W(A(@)@n:(b)A(c) = (EW*Z)(A(a) ® A(bc)) = (EW*)(A(be) ® A(a))

=2(A0A)(4(a)(bc®1)) =2(AOA) (Zn: bic®ai)

(A0 A)(a; ®bic)
T

n
i=

= 3" A(@) ®m(b)A(C) = Ulr)(A(a) ® () A(c)
i=1

and

This clearly implies that W = U(x,) and 15 ®1 = U(e,), as desired. [

Remark. It is clear that Theorems 3.2 and 3.3 together provide a bijective
correspondence between unitary corepresentations of (/ir, Aﬁmp) and non-degenerate
x-representations of 4,. In a similar way, one may prove that there is a bijective

correspondence between unitary corepresentations of (/ir, A;) and non-degenerate *-
representations of A,, as proved in [9] in a quite different way. Alternatively,
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one may use here that U— U* gives a bijective correspondence between unitary

corepresentations of (/ir, AAr_rop) and unitary corepresentations of (/ir, ﬁr).
We also mention that Theorems 3.2 and 3.3 may easily be dualized to produce a
bijective correspondence between unitary corepresentations of (A4;,4;) and non-

degenerate x-representations of Ay

Remark. Let Ve M® B(K) be a unitary such that (AAr,Op® 1)V = V13V and let #p
be the associated x-representation of A4, defined in our previous remark. As a
consequence of Theorem 3.3 we then get

= (@ (@) @) U(y) = (Q(a) @) U(1ty)

for all ae 4. This implies that V' = U(7@y).
Especially, we have Ve M (A, ® By(K)), as mentioned in a previous remark.

Remark. Let U be a unitary corepresentation of (/Ir,AAr’Op) on K. We can define a
representation @y of the Banach algebra M, on K by &y (w) = (0 ®1)U, we M,.
Then we have (®yoQ)(a) =ny(a), acAd, so PyoQ is x-preserving and non-
degenerate. One easily sees that the map U — @y gives a bijective correspondence
between all unitary corepresentations of (/Ir, ﬁr,op) and all representations @ of M,
such that @-Q is x-preserving and non-degenerate.

4. Amenability, co-amenability and nuclearity
We prove in this section the results stated in the Introduction.

Theorem 4.1. Let (A, A) be an algebraic quantum group. Then (A, A) is co-amenable if
and only if A, = A, that is, the canonical map . from A, onto A; is injective.

Proof. Assume that 4, = 4;. Then =, is an isometry.
Let ae A. Then we have ||ny(a)||, = ||n:(mu(a))|| = ||=(a)||- Hence,

le(@)] = lew(mu(@))[<ma(@)]]y = ||m(a)]]-

This shows that ¢ is bounded on 4 with respect to the reduced norm, that is, (4, 4)
is co-amenable.

Assume now that (4, 4) is co-amenable, that is, |e(a)|<||n(a)|| for all ae A. Using
Theorem 3.3, we can express this as

1(Q(a)®1) (17 ®1)|<|(Q(a)® 1) W], acA.



330 E. Bédos et al. | Journal of Functional Analysis 201 (2003) 303340

Using the norm-density of Q(4) in M, (cf. Proposition 3.1) and a continuity
argument, we can conclude that

o(1n)| = [(@®&)(1r®@)|<|[(@&)W]|, weM..

To show that A, = A, it is enough to show that 7, is isometric on 4 = 7, (4), or,
equivalently, that ||a||,<||n(a)||, a€ A4 (since the reverse inequality always holds by
definition of the universal norm). To show this inequality, it suffices to show that

l¢(a)][<lm(a)]]

for any given non-degenerate *-representation ¢ of 4 on some Hilbert space K and
any given ac€ 4.

Now, let U= U(¢p) be a generator for ¢ (extended to 4, to be pedantic),
according to Theorem 3.3. Then this amounts to show

() ll(Q@&nU[I<I(Q(a)&1) W]].

To show (x), we adapt an argument from [4, Proposition 5.5] (where Blanchard
characterizes the amenability of regular multiplicative unitaries).

Let v,weK, ||v]| = ||w|| = 1. Define we M, by
o(x) = (Q(a) @) (x@1)U), xeM.
Then
o(lx) = (Q(@) @) U = w,((Q(a) ® 1) V).
Hence we have
(%) oo ((Q@ @) U)| = |o(1x)| <[|(0® 1) W|.
Now, recall (from the proof of Theorem 3.2) that we have

WTz Uy Wiy = U3 Uns.

Therefore, applying 1®o to this equation, where ¢ denotes the flip map from
B(H®K) to B(K® H), we get

U Wi3Usy = Wi3Una.
Using this, we obtain
(@®N)W = (Q(a) ®wu ®1)(W13Un)
= (0(a) ® wy,w ® 1) (Un W13 U3y)

= (5w ®1)(a(U)(1x ® (Q(a) ®1) W)a(U)"),
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which implies that

A

(%) [[(@@)WII<I(Q(a) @ 1) W]].

Combining (xx) and (x * %), we get

A

|00 ((Q(@) @) U)[ < (@) @ 1) W1|-

As this holds for all v,weK, ||v|]| =|/w|| =1, this implies that (%) holds, which
finishes the proof. [

Remark. In [l, Appendice], Baaj and Skandalis introduce the notions of
amenability and co-amenability for regular multiplicative unitaries (see also [4]).
These notions may be adapted to multiplicative unitaries associated to algebraic
quantum groups as follows. We first remark that, from the point of view
adopted in [1], it is quite natural to consider V = W as the multiplicative
unitary associated with an algebraic quantum group (4, 4); this point of view is
supported by the fact that =, =, which we pointed out in Theorem 3.3.
However, this is essentially a matter of convention. The adapted Baaj-Skandalis
definition of co-amenability of V' = W amounts then to require that Ty Ay — Ar is
injective, in which case one also says that W is amenable. Co-amenability of W
and amenability of 7 may be defined similarly by considering W to be the
multiplicative unitary associated with (/I, A ). Using this terminology, Theorem 4.1
just says that (4, 4) is co-amenable if, and only if, ¥ = W is co-amenable (resp. W is
amenable).

Before stating our next result, we recall that a von Neumann algebra N acting on a
Hilbert space K is called injective [14] if there exists a linear, norm one projection
map from B(K) onto N.

Theorem 4.2. Assume that (A, A) is an algebraic quantum group such that (4, A) is
amenable. Let ¢ be any non-degenerate x-representation of A, on some Hilbert space
K. Then the von Neumann algebra N = ¢(A,)" = B(K) is injective.

Proof. By a classical result of Tomiyama [14,17], we can equivalently show that
N = (b(Au)/ = ([)(A)/ is injective, that is, we have to construct a linear, norm one
projection of B(K) onto ¢(A4)".

Let U be a unitary generator for ¢, so Ue M (A, ® By(K)) = M& B(K), according
to Theorem 3.3. We introduce the unital (injective) normal x-homomorphism
«: B(K)—M® B(K) given by

a(x) =U*(1®x)U, xeB(K).
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Then « is an action of M on B(K), in the sense that (1@ a)x = (4;.0p @ 1)e. Indeed,
we have

(1®@a)a(x) = (@) (U (1@x)VU) = (1®2)U)" (1®@a(x))(1®@2)U)
= (U5 U13Un)" (1@ U (1@x) U)(Us3 U3 Uss)
= (UnUj3Ux3) Uy (1@ 1 ®X) Uns (U3 U3 Uns)
=UnUi(1010x)UisUs = (Ui Us) (10 1@ x) U3 Ux

= ((4rop®1) U)*(jrﬁop(l) ®x)(jr,op ®)U

= (Arop @)U (1®x)U) = (Arop ®1) ()

for all xe B(K).
Set

B(K)* = {xeB(K) | «(x) = | ®x}.
Then, using the density of Q(4) in M, and Theorem 3.3, we have

B(K)* ={xeB(K)|(1®@x)U = U(1®x)}
={xeB(K) | (Q(a)®1)((1®x)U) = (Q(a) ®1)(U(1®x)), Yaec A}
={xeB(K) | x((Q(a)®1)U) = ((Q(a) ®1)U)x, VacA}
={xeB(K) | x¢(a) = Pp(a)x, Yac A}

=¢(4)"

We shall now adapt an argument of Enock and Schwartz given in the proof
of [7, Theorem 3.1] to construct a linear, norm one projection from B(K) onto
B(K)" = p(4)'.

Using our amenability assumption, we can pick a right-invariant mean m for
(4, Aop) (picking first a left-invariant mean for (4, 4) and combining it with the anti-
unitary antipode of M).

Using that [m((1®n)a(x))|<||n|| ||x|| for all ne B(K),, xe B(K), one easily sees
that there exists a linear contraction map E : B(K)— B(K) such that

n(E(x)) = m((1@n)a(x)), neB(K),, xeB(K).
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For we M,, neB(K),, we have

m((1® (0 @n)a)u(x)) = m((1@wQn)(1®x)x(x))

=m((1® 0@ n)(drop @ 1)(x)) = m((1® ) Arop((1 @ 1)()))

=m((1®@n)a(x))w(l) (using right-invariance of m)
=n(E(x))o(l) = (0@n) (1 & E(x)).

It follows that a(E(x)) = 1 ® E(x) for all xe B(K), hence that E maps B(K) into
B(K)”. Further, if xe B(K)”, that is, a(x) = 1 ®x, then

n(E(x)) =m((1®n)(1®@x)) = m(1)n(x) = n(x)

for all ne B(K),. Thus, E(x) = x for all xe B(K)". It clearly follows that E is a norm
one projection from B(K) onto B(K)”, which finishes the proof. [

Corollary 4.3. Assume that (A, A) is an algebraic quantum group such that (A4, A) is
amenable. Then A, is nuclear.

Proof. By applying Theorem 4.2 to the universal x-representation ¢ of A,, we obtain
that the second dual A" = &(4,)" is injective. By a famous result of Connes,
Choi and Effros (see [14, 2.35] for references), this is equivalent to the nuclearity
of 4,. O

We shall now give a simplified proof of a result which is essentially due to Ruan
(see [15, Theorem 4.5]).

Theorem 4.4. Assume that (A,A) is an algebraic quantum group such that its
associated von Neumann algebra M < B(H) is injective. Assume further that (A, A) is
compact with unit 1 and has a tracial Haar functional (that is, equivalently, (M, A,) is a
compact Kac algebra [7]).

Then (A, A) is co-amenable.

Proof. As usual in the compact case, we work with the normalized Haar functional
@ of (A4,A4). It is known [1,22] that the traciality of ¢ is equivalent to S =1, or,
equivalently, to S being x-preserving.

Using the traciality assumption and the fact that ¢ is S-invariant, it is
straightforward to check that the linear map Vj:A(A)—>A(A) defined by
Vo(A(a)) = A(S(a)), a€ A, is an isometry, which extends to a self-adjoint unitary
V on H. (See [1, Proposition 5.2] for a similar statement in the non-tracial case,
which we will use in the proof of our next result). A simple calculation gives



334 E. Bédos et al. | Journal of Functional Analysis 201 (2003) 303340

Va(a)Vr(b) = n(b)Vr(a)V for all a,be A. Hence, Ad(V) maps 4, (and M) into
n(4) =M.

Now, we recall that injectivity of M implies that the x-homomorphism
P:M(OM - B(H) determined by

P(x®y) =xy, xeM, ye M’

has a bounded extension P:M@M’—»B(H), where we stress that ® denotes the
minimal tensor product (as opposed to the von Neumann algebra tensor product).
Note that this deep result is not mentioned explicitly in [14]. It may be deduced from
the literature as follows. Injectivity is equivalent to semidiscreteness, as first shown
by Connes [5] in the factor case. A direct proof of the forward implication due to
Wassermann may be found in [20]. The backward implication is shown by Effros
and Lance [6], who also show that semidiscreteness is equivalent to the above
property.
We use P to define a map & : A, —C by

g0(x) = ((P-(1®AA(V))o4)(x)) A(1), A(1)), x€A,.
Clearly, g is a state on A,. Further, we have & (n(a)) = ¢(a),ac A. Before
establishing this fact, we point out that it clearly implies that ¢ is bounded with

respect to the reduced norm of 4., that is, (4, 4) is co-amenable.
Let ae 4 and write A(a) =, a;®b; for some ay, by, ...,a,, by, A. Then

(P-(1@Ad(V))o4:)(n(a))) A(1)
(1®Ad(V))o(r®m)(4(a)))A(1)

(P
(Z ) V) ((bi)A(1)
A

( > A(m(1®S)4(a))
&(a)

A(1).

A(

Hence,
eo(n(a)) = (P-(1@AA(V))odr)(n(a)) A(1), A(1))
= (e(@)A(1), A(1)) = &(a),
as asserted. [J

It would be interesting to know whether the traciality assumption in Theorem 4.4
is redundant. We shall now prove a related result, saying that injectivity of M implies
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a kind of perturbed co-amenability of (4, 4). We recall first some more facts about
the compact case.

Let (4, 4) be a compact algebraic quantum group with unit 1. It is immediate that
(A4;, 4;) is a compact quantum group in the sense of Woronowicz [21,22], with Haar
state given by the restriction of w () to 4;. The unique dense Hopf *-subalgebra [2]
of (A4;, 4;) may be identified with (4, 4, ¢, S) (via the Hopf *-algebra isomorphism 7).
Using this identification, we may introduce the remarkable family (f2)._ of
multiplicative linear functionals on 4 constructed by Woronowicz (see [21,22]).

Some of the properties of this family are fy =¢; f. xf. = f.1, where w*n =
(0®n)4, w,neAd’; the maps a—f.xa=(1Q®f.)4(a) and a— (f-®1)4(a) are
automorphisms of A; we have f = f_: and f.oS =f_.; for all a,beA, we have
o(ab) = o(b(fi xaxf1)) and S?(a) =f_1 * axfi.

We also mention that the following three conditions are equivalent:

@ is tracial; f. = ¢ for all zeC; f] =e.

Theorem 4.5. Assume that (A, A) is a compact algebraic quantum group such that its

associated von Neumann algebra M is injective. Let (u”) denote a complete set of

pairwise inequivalent irreducible unitary corepresentations of the compact quantum

group (A;, A;) and let ny, (resp. d,) denote the ordinary (resp. quantum) dimension of u*.
Then there exists a state g1 on A, such that

Ny .
e1 (u) :d—é,-j, 1<i, j<n,.
o

Proof. We recall first that d, = > _7*, fi(u%). In other words, d, is the trace of the
matrix F, = (fi O 1)u”.

Next, we define §: 4— 4 by S(a) = fi * S(a), aeA.(This map is sometimes called
the twisted antipode of (A4, 4)). Using the properties of the f.’s mentioned above, one

checks easily that S is an involutive anti-automorphism of A.
Further, as shown in the proof of [l, Proposition 5.2], the linear map

Up: A(A)— A(A) defined by Uy(A(a)) = A(S(a)),acA, is an isometry, which
extends to a self-adjoint unitary U on H satisfying

(Ad(U)(n(a)))A(b) = A(bS(a)), a,beA.

It follows readily that Ad(U)(x)en(4) = M’, for all xe M. (In fact, one may
check that Ad(U)(x) = JR(x*)J for all xe M, where J : H— H denotes the Tomita—
Takesaki map such that (H,J) is standard for M.)

Now, let P be as in the proof of Theorem 4.4. We then define a state ¢; on 4, by

e1(x) = (P-(1@AA(U))odr)(x)) A1), A(1)),  x€A:.

Using the orthogonality relations [21,22] for the u}’s, one checks that ¢ satisfies
the stated property. More precisely, the computation goes as follows. Fix o, set
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n=ny,d = d, and write u}; = n(v;), v; € A. The matrix (vy) is then an n X n unitary
matrix over A, and one of the orthogonality relations for the uz's gives

(P(UikU;;) - (l/d)éljfl(vdf)v ivjv k,SE{l, ,I’l}

Using this, we get

(Po(1®Ad(U))o(n@m)(4(vy)) A(1), A(1))

sl(ulj)

=

(m(vi) (Ad(U) (m(vg)))A(1), A(1))

k=1

=3 (S, AD) =3 0(oS(o))
k=1 k=1

= ol # i) = 3 ow((OAAW)
k=1 k=1

=Y o vt )fi (v) = (1/d) Z 0uf1 (v )1 (V)
k=1

=(1/d)doyfi (Z uskufgk> = (1/d)dyfi(n1) = (n/d)d;
k,s=1

as desired. 0O

Remark. Assume the existence of a state ¢; satisfying the statement of Theorem 4.5.
If we also assume that d, = n, for all a (especially, if we also assume that (4, 4) has a
tracial Haar functional), then ¢;om coincides with the co-unit ¢ of (4, 4), and we can
then conclude that (4, 4) is co-amenable. Hence, Theorem 4.4 is just a special case of
Theorem 4.5.

In the general case, it is known that the ordinary dimension is always smaller
than the quantum dimension (which is always positive and less than infinity).
Thus ¢, = n,/d, € <0, 1]. However, for the relevant examples (like quantum SU(2)
etc) it tends exponentially to zero with ‘increasing’ o’s. Of course, one may
wonder whether it is possible to use the existence of the state ¢; to deduce that ¢ is
bounded.

One natural way to proceed is to consider ¢; as an element of the Banach algebra
A’ and try to use spectral calculus to ““press” up the values g, to 1. For any function
f which is analytic on a region in the complex plane containing the closed unit disk
with center at the origin and satisfies f(0) = 0, one may check that

S (e1)uf; = 1 (42)0;

for all & and i,j. However, it seems difficult to proceed further without introducing
some other assumptions. We also mention that A4} is in fact a Banach *-algebra with
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x-operation given by

Y (a) = Y(R(a"))

for all y e 47 and ae A. One may show that ;R = ¢, hence that ¢} = ¢, but it is not
clear that this may be of any help.

Another possible approach is to consider the bounded linear map from A, into
itself given by Y, = (1®e¢;)4,. It is not difficult to show that it is injective. If one

could show surjectivity of ¥/, then, appealing to the Open Mapping Theorem, wfl

would be bounded. Further, we would have eon~! = 8101//1_] on n(A4). Hence, we
would then be able to conclude that (A4, 4) is co-amenable. We are so far only able to
see that ¥, has dense range, as it contains n(4).

Remark. Let J and V be the Tomita—Takesaki maps associated to 4(A4), considered
as a left Hilbert algebra in H, so that

IJV'2A(a) = A(a*)

for all ae 4. Further, let 7 denote the scaling group of (4, 4) (see [11]).
For zeC, define a map Q. :n(4)—> M’ by

Q.n(a) = JV *(Re_.n(a))"V=J

for all ae A4.
Clearly, Q. is unital, multiplicative and linear. Setting z = i/2 gives,

Oippm(a) = JA*r(S(a)") 47" 2T

for all ae A.
If z = tis real, then Q, is *-preserving and bounded, and it may be extended to M.
Note also that

Qo(x) =JR(x")J, xeM.
Now, define a unital linear functional ¢, on n(A4) by
¢.m(a) = (P(rO Q:m)4(a)A(1), A(1))

for all aed and zeC,P: MOM'—B(H) being defined as in the proof of
Theorem 4.4.
For general ze C, one may easily show that

$n(uf) =D oS iriza * (7)) *fiizr2)

k

for all « and all /,;.
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From this we see that
d’f/zn(“f}) =05 = 8(“?})

for all o and i,j, so ¢;/,m = ¢. Hence, co-amenability of (4, 4) is equivalent to the
boundedness of ¢;,.

Now, observe that when z = ¢ is real and M is assumed to be injective, then ¢, may
be extended to a state on A, such that

¢, (x) = (P(1® 01)4,(x)A(1), A(1))

for all xe 4,, P being defined as in the proof of Theorem 4.5. Note that ¢, is then
just equal to the state &; obtained in this theorem. One may wonder whether some
analytic continuation argument could be used in this situation to deduce that ¢, , is
bounded.

Co-amenability of (4,4) may be characterized by the existence of a non-zero
multiplicative linear functional on 4, [3]. However, when 4, = SU,(2),q€(0, 1), we
have checked that none of the ¢, are multiplicative, even though SU,(2) is known to
be co-amenable.

Remark. Some of the essence of Theorems 4.4 and 4.5 may be presented in a more
conceptual manner. Assume that (4, 4) is a compact algebraic quantum group. We
define the adjoint representation C of 4 on B(H) as follows. Let P be the map
introduced in the proof of Theorem 4.4 and U be the unitary on H introduced in the
proof of Theorem 4.5. Then set

C(a) = (Ps(1OAd(U))sA;)(n(a)), acA.

(A more explicit way of defining C is
Cla)A(b) = A(a;ibS(d}))
f

for a,be A, and A(a) =3 | a;®a.)

Using the map P introduced in the proof of Theorem 4.4, one easily deduces that
the injectivity of M implies that C is weakly contained in 7, that is, more precisely,
that the associated x-representation C, of 4, is weakly contained in 7. On the other
hand, if the Haar state of (4, 4) is tracial, then S = S and the last part of the proof
of Theorem 4.4 shows that ¢, is weakly contained in C,. Combining these two
assertions reproves Theorem 4.4. An open question is then whether ¢, is always
weakly contained in C,. A negative answer to this question is not unlikely, and it
would then be of interest to find a more general condition than traciality of the Haar
state ensuring the weak containment of ¢, in C,,.

We conclude with a proof of Theorem 1.1.
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Proof of Theorem 1.1. (1) implies (2): This result is shown in [3]. For the ease of the
reader, we sketch the argument. When (4, 4) is co-amenable, then (4, 4;) has a
bounded co-unit & which is a state on A, and satisfies (¢, ®1)(W) = 1. A right-

invariant mean for (/i, Zl) is then obtained by considering the restriction to M of any
state extension of ¢ to B(H).

(2) implies (3): This is Corollary 4.3.

(3) implies (4): As A, is a quotient of A4,, this follows from the fact that quotients
of nuclear C*-algebras are nuclear [6].

(4) implies (5): As M = A, this follows from the fact that any von Neumann
algebra generated by a nuclear C*-algebra is injective (this is easily seen by using that
the double dual of a nuclear C*-algebra is injective, as pointed out in the proof of
Theorem 4.2).

Assume that (4, A4) is compact and has a tracial Haar functional. Then (5) implies
(1) is shown in Theorem 4.4. [

Finally, we remark that different proofs of (1) implies (5), and of (5) implies (2) in
the compact tracial case, were given in [3].
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