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Keywords:
Colloidal spheres attached to a quartz crystal microbalance (QCM) produce the so-called “coupled resonances”.
They are resonators of their own, characterized by a particle resonance frequency, a resonance bandwidth, and
amodalmass.When the frequency of themain resonator comes close to the frequency of the coupled resonance,
the bandwidth goes through a maximum. A coupled resonance can be viewed as an absorption line in acoustic
shear-wave spectroscopy. The known concepts from spectroscopy apply. This includes the mode assignment
problem, selection rules, and the oscillator strength. In this work, the mode assignment problem was addressed
with Finite Element calculations. These reveal that a rigid sphere in contact with a QCM displays twomodes of
vibration, termed “slipping” and “rocking”. In the slipping mode, the sphere rotates about its center; it exerts a
tangential force onto the resonator surface at the point of contact. In the rocking mode, the sphere rotates
about the point of contact; it exerts a torque onto the substrate. In liquids, both axes of rotation are slightly
displaced from their ideal positions. Characteristic for spectroscopy, the twomodes do not couple to themechan-
ical excitation equally well. The degree of coupling is quantified by an oscillator strength. Because the rocking
mode mostly exerts a torque (rather than a tangential force), its coupling to the resonator's tangential motion
is weak; the oscillator strength consequently is small. Recent experiments on surface-adsorbed colloidal spheres
can be explained by the mode of vibration being of the rocking type.
. This is an ope
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The quartz crystal microbalance is well known to the scientific com-
munity as a film thickness monitor [1] and, further, as a tool to study of
soft layers beyond gravimetry [2,3]. Central to the advanced QCM is the
ability to determine the resonance bandwidth in addition to resonance
frequency and to compare shifts of frequency and bandwidth between
overtones [4]. The models of stratified viscoelastic layer systems on a
QCM surface are well-established [5,6].

Many samples of practical interest are not stratified layers. This in-
cludes particles [7–9], cell layers [10], vesicles [11], viruses [12,13],
and bacteria [14–16]. Generally speaking, the prediction of the shifts
in frequency and bandwidth (Δf andΔΓ) induced by structured samples
is challenging. Numerical methods are required [17]. There is one group
of heterogeneous samples, though, which is amenable to analytical de-
scription. If the particle of interest contacts the resonator surface across
a sufficiently narrow contact (a “point contact”), and if, further, neigh-
boring contacts are elastically independent from each other, the only
parameters of relevance are the tangential force and the torque. Since
the zone of deformation is small, one can define a tangential displace-
ment and an angle of rotation, to be evaluated far away from the
n access article under
deformed zone (Fig. 1A). The deformed region in the following is called
“the contact”. The fact that the contact is localized is critical to the
analysis.

In the past, the complications arising from themotion of the external
object being a superposition of translation and rotation have often been
avoided by choosing the external objects so heavy that they were
clamped in space by inertia [18,19]. Large spheres do not follow the
MHz oscillation of the resonator, they undergo neither rotation nor
translation. The angle of rotation then is zero; the displacement be-
tween the two sides of the contact is equal to the displacement of the
resonator surface, given as u0cos(ωt) with u0 the amplitude of oscilla-
tion. Dividing force by displacement, one obtains the contact's tangen-
tial stiffness.

The arguments below are concerned with situations, where the ex-
ternal object is too small to be clamped in space. Most bio-colloids fall
into that class. The prospect of being able to measure the stiffness of a
link between a bio-colloid and a solid substrate has attracted much in-
terest. The situation evidently becomes more complicated than for
large immobile spheres, but as long as the object is stiff, translation
and rotation can be accounted for with suitably modified equations.

Particles in themicron-size range give rise to a phenomenon known
since 1985, which is the “coupled resonance” [20]. (Coupled resonances
were known before, but they were put into the context of QCM-based
sensing by Dybwad at that time.) An introduction to coupled resonances
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1.A: Sketch of a contact between a sphere and the resonator surface. It is essential that
the contact is smaller than the sphere and, also, is smaller than the wavelength of sound.
Only the region close to the contact (dashed circle) is deformed. Together with the
deformed region of the substrate, it forms a Hookean spring. B: Mechanical equivalent
circuit. Viscous dissipation is accounted for by a dashpot.
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is given in Section 2. It turns out that a coupled resonance amounts to an
absorption line in shear-wave spectroscopy. A particle linked to the sur-
face has its own frequencyof vibration.With aQCM, one cando vibration-
al spectroscopy on surface-attached colloids. The conceptual analogies
between coupled resonances and shear-wave spectroscopy are far-
reaching. Keywords are mode-assignment, modal mass, modal stiffness,
homogeneous linewidth, heterogeneous linewidth, degeneracy, selection
rules, and oscillator strength. These terms can all be applied to shear-
wave spectroscopy. The oscillator strength, in particular, is non-trivial.
The oscillator strength is needed to explain experimental results.

A complication not appreciated by Dybwad was the fact that there
are (at least) two dynamic variables, which are the position of the par-
ticle along the direction of surface displacement and the angle of rota-
tion into the same direction. The conjugate variables are a tangential
force and a torque. Because there are two dynamic variables, there are
two coupled resonances. Dybwad'smodelmisses this aspect. He depicts
the geometry as one-dimensional. The way he draws his central dia-
gram alludes to rotation, but he does not elaborate. The following dis-
cussion closes this gap.

2. Coupled resonances

Central to the prediction of the frequency shift is the small-load ap-
proximation, which states that the complex frequency shift (Δf ̃ =
Δf + iΔΓ, with Γ the half-bandwidth at half-height) is proportional to
the load impedance, Z̃L. The load impedance is the area-averaged ratio
of stress and velocity at the resonator surface. We have:

Δ~f
f F

¼ Δ f þ iΔΓ
f F

≈
i

πZq

~σ0

~v0

� �
area

¼ i
πZq

~ZL ð1Þ

A tilde denotes a complex variable and an index 0 denotes a complex
amplitude of a time-harmonic variable. Γ (the half-bandwidth) is relat-
ed to thewidely used “dissipation factor” [21],D, by the relationD=2Γ/
f. fF is the fundamental frequency, Zq = 8.8 · 106 kg m−2 s−1 is the
acoustic wave impedance of AT-cut quartz. σ is the tangential stress, v
is the tangential velocity, and ZL̃ ≤~σ0/ṽ0 N is the load impedance (the
ratio of stress and velocity). Angle brackets denote an area average.

For discrete contacts, the load impedance can be expressed as NP/A
F ̃0/ṽ0 = NP/A Z ̃mech with NP the number of particles and A the active
area, F̃0 the amplitude of the periodic force exerted at the contact, and
Z̃mech the mechanical impedance of the sphere in contact with the sur-
face (the force-to-velocity ratio, see below). In the following discussion,
we exploit the electromechanical analogy. The sphere-plate assembly
can be modeled by a mechanical equivalent circuit as depicted in Fig.
1B. The force exerted by an arrangement of dashpots, springs, and
point-masses follows from themechanical impedances of the individual
elements and certain rules of how to add impedances together. These
rules are the analogs of the Kirchhoff rules in electrical engineering.
There is a complication with regard to the mechanical Kirchhoff rules:
In mechanical circuits, impedances are additive if the elements are
placed in parallel, while inverse impedances are additive if the elements
are placed in series. In this regard, the rules differ from electricity, where
impedances are additive for elements arranged in series. The mechani-
cal impedances entering the problemare iωMP, (originating from a rigid
point-mass MP), κP/(iω) with κP the spring constant of a Hookean
spring, and ξP, where ξP is the drag coefficient of a dashpot. κP, ξP, and
MP will have to be interpreted as a modal stiffness, a modal damping,
and a modal mass later on. The meaning of these parameters depends
on the mode of vibration. At this point, we assume κP, ξP, and MP to be
the same for all spheres, that is, we ignore heterogeneity. Also, κP and
ξP might depend on frequency, but we treat them as constant for sim-
plicity. κP is also called “contact stiffness” in the following. Note that
this definition pertains to an individual contact (as opposed to the stiff-
ness of an interface between rough surfaces).

Representing a particle in contact with the resonator surface by an
equivalent circuit as in Fig. 1B, one finds the load impedance as

~ZL ¼ NP

A
κP

iω
þ ξP

� �−1
þ iωMPð Þ−1

� �−1

¼ NP

A
~κP

iω

� �−1

þ iωMPð Þ−1

 !−1

¼ NP

A
iωMP~κP

~κP−ω2MP

ð2Þ

In step 2, the spring constant and the drag coefficient were sub-
sumed under a single complex spring constant, ~κP , given as ~κP =
κP + iωξP. Inserting Eq. (2) into Eq. (1), one finds

Δ~f
f F

¼ NP

A
−ωMP

πZq

~κP

~κP−ω2MP
¼ NP

A
−ωMP

πZq

κP þ iωξP
κP þ iωξP−ω2MP

ð3Þ

Eq. (3) can be simplified by introducing the “particle resonance fre-
quency”, ~ωP , as

~ω2
P ¼ 4π2~f

2
P ¼ ~κP

MP
¼ κP

MP
þ iωξP

MP
¼ ω2

P þ iωγP ð4Þ

In the last step, the damping factor was introduced, which is defined
as γP = ξP/MP. γP has dimensions of frequency. If the damping of the
coupled resonance is small (only then), γP/(2π) is equal to the band-
width of the coupled resonance (see Fig. 2). One can then write ~ωP

≈ ωP + iγP/2 close to the resonance. To see that, write

~ωP ¼ ωP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iωγP

ω2
P

s
≈ωP 1þ iωγP

2ω2
P

 !
≈ωP þ iγP

2
ð5Þ

Taylor-expansion of the square root was used in step 2;ω≈ωP was
used in step 3. For narrow resonances, the imaginary part of the com-
plex resonance frequency is equal to half the bandwidth (see, for exam-
ple, Section 4.1.3 in Ref. [22]). Note, however, that coupled resonances
often are highly damped. γP should therefore not be viewed as the
bandwidth.

Inserting Eq. (4) into Eq. (2) and using the small load approximation
(Eq. (1)), one finds

Δ~f
f F

¼ NP

A
−ωMP

πZq

~ω2
P

~ω2
P−ω2

ð6Þ

Δf and ΔΓ plotted versusω form a resonance curve on their own, hence
the name “coupled resonance”. The real and the imaginary parts of Eq.
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Fig. 2. A: When the sample gives rise to a coupled resonance, Δf and ΔΓ displayed versus
overtone order themselves look like a resonance curve. Displayed in polar form, they yield
a spiral (B). Squares and circleswere inserted to remind the reader thatω can only acquire
discrete values, given by the overtones. For this example, γP was chosen as 0.3ωP.
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Fig. 3. A and B: Δf/NP and ΔΓ/NP as a function of the overtone order n. A silica-coated
resonator surface had been exposed to glass spheres of radius 0.5 μm. The symbols
indicate ionic strength as given in the legend. C: When displayed in polar form, the data
form a spiral. They form a circle the limit of small damping.
Adapted from Ref. [23].
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(6) are
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Eqs. (6) and (7) simplify in the limits of large and smallωP. In the for-
mer case (small mass, tight coupling), the Sauerbrey limit is recovered
(Δf≈−2f fFNPMP/(AZq)). The particles movewith the resonator and in-
crease its mass. The opposite limit (large mass, small contact stiffness)
leads to elastic coupling [18] (Δf ≈ NPκP/(2nπ2AZq)). We are interested
in the intermediate range (ω ~ ωP) in the following. In this range, plots
ofΔf and ΔΓ versus overtone order (Fig. 2) display certain characteristic
features:

− Δf is negative on low harmonics and crosses over to positive values
inside the range of frequencies accessible to the QCM (5 to
65 MHz). One can define a “frequency of zero crossing” from inter-
polation. The frequency of zero crossing can serve as an estimate of
the particle resonance frequency, following the relation:

f ZC ¼ 1
2π

ωP
ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P−γ2

P

q
¼ 1

2π

ffiffiffiffiffiffiffi
κP
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r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ξ2P
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s ð8Þ

Eq. (8) is proven in the appendix. Clearly, the value of γP affects the
relation between fZC andωP. fZC only is an estimator ofωP, it must not
be identified with ωP.

− Close to the zero-crossing frequency, ΔΓ goes through a maximum.
− When plotting ΔΓ versus Δf in a polar diagram, one finds a spiral. In
the limit of small damping, the spiral turns into a circle, but, again,
small damping is not usually expected for coupled resonances. As
shown in Ref. [23], one can use the radius of the spiral evaluated at
ω = ωP (called RPD) as an estimate for the following combination
of parameters

RPD≈
1
2
ΔΓ ω ¼ ωPð Þ ¼ NP

A
f F

2πZq

κP

γP
ð9Þ

Eq. (9) will have to be modified later in order to account for hetero-
geneity and inefficient coupling. Still, the radius of the circle in the
polar diagram is a measure of the contact stiffness, κP.

These features are observed in experiment and they can be analyzed,
yielding a statement on the stiffness of the bond between the particle and
the surface. However, there is a problemwith the interpretation of the de-
rived parameters, which has to do with the mode of vibration. Before
going into the details, we discuss one data set from Ref. [23] together
with a fit with Eq. (5) and show that the derived parameters are inconsis-
tent with what is expected from the experimental conditions.

3. Experimental example

Fig. 3 shows a data set treated in depth in Ref. [23]. The surface of a
SiO2-coated resonator had been exposed to a dispersion of glass spheres
with radius 0.5 μm. Some of the spheres adsorb to the surface and shift
the resonance frequency and the bandwidth. The number of spheres per
unit area was determined with a camera. The camera showed that the
particles were adsorbed individually. The particles adsorb individually
because of their charge. We neglect interparticle interactions in the fol-
lowing discussion. All experiments occurred in aqueous electrolyte so-
lutions. Special about this experiment is the fact that the force of
adhesion can be tuned by varying ion concentration. The normal force
has three contributions, which are gravity, van-der-Waals (vdW) at-
traction, and electrostatic repulsion. The electrostatic repulsion is a
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consequence of the charge on both silica surfaces. Electrostatic repul-
sion opposes gravity and vdW attraction. In pure water, the repulsion
is so strong that the spheres can be washed away by pumping liquid
through the cell. Upon addition of salt, the electrostatic repulsion is
screened and the overall attractive force increases. Based on elementary
contact-mechanics, the contact stiffness can be expected to follow this
increase. The different symbols in Fig. 3 show thedifferent ion strengths.
The arrows indicate increasing ionic strength, that is, increasing force of
adhesion.

On a phenomenological level the essence of Fig. 3 can be summa-
rized as follows:

− The frequency shift crosses over from negative to positive values
within the accessible frequency range. The frequency of zero cross-
ing increases with ion strength. From Eq. (8), this can be interpreted
as an increase of contact stiffness with increasing force of adhesion.

− The radius of the circle in the polar diagram also increases with ion
strength. Following Eq. (9) this also amounts to an increase of con-
tact stiffness.

Given that the data set from Fig. 3 together with Eqs. (8) and (9)
forms a consistent picture, one might hope that quantitatively fitting
the data with Eq. (6) was possible and would make the above state-
mentsmore reliable and exact. There are two separate problems. Firstly,
thepeaks in bandwidth (Fig. 3B) are too broad to befittedwith Eq. (6). If
one makes γP large, the coupled resonance becomes asymmetric. With
γP NωP,Δf not even turns positive at high overtones. This problemclear-
ly is the consequence of assuming all contacts having equal properties. It
can be solved by using the following modified fit function

Δ~f ¼ −
NP

A
f FωMP

πZq

Z∞
0

g ωPð Þ ω2
P þ iωγP

ω2
P þ iωγP−ω2

dωP þ iΔΓoff ð10Þ

g(ωP) is a distribution function, assumed to be a Gaussian. An offset
in ΔΓ was introduced on a heuristic basis, reasoning that particles
should increase the viscous damping exerted by the liquid.

Fig. 4 shows one particular data set together with a prediction from
Eq. (10). The open symbols are the data from Fig. 3 with an ion strength
of 100 mM. The full line represents the model. The center of the Gauss-
ian distribution forωPwas at 2π·24MHz, thewidth of the Gaussianwas
σ = 2π·20 MHz, the mass was MP = 0.19 pg, the damping factor was
γP=2π·4MHz, and the offset on theΔΓ scale wasΔΓoff=30Hz. Clear-
ly, there are systematic deviations, but these can be removed by the use
of distributions ofωP other than aGaussian and by also usingdistributed
values ofγP. There aremany different choices for these distributions and
many of them are equally reasonable. The outcome of these modeling
efforts therefore cannot be unique.

The second problem with quantitative modeling is the value of the
parameter MP. MP is found to be 0.19 pg in Fig. 4. This value is robust.
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Fig. 4. One of the data sets from Fig. 3 (ion strength of 100 mM, right triangles in Fig. 3)
together with an attempt to model the data using Eq. (10). For the parameters see the
main text.
Adapted from Ref. [23].
When varying the other parameters of themodel, one shifts the features
of interest along the frequency scale. The size of the features on the y-
axis is largely unaffected. There is little cross-correlation between the
optimum value of MP, on the one hand, and all other fit parameters,
on the other.

The number ofMP≈ 0.19 pg is too small to be consistentwith exper-
iment. The mass of the sphere is given as 1.3 pg (following from a den-
sity of 2.5 g/cm3 and a radius of 0.5 μm). The sphere is embedded in a
liquid, which should increase the modal mass because the sphere
drags liquid along in its movement. If the sphere undergoes a rotation
rather than a translation (see Eq. (13) below), the modal mass should
be 2/5MP rather thanMP. Still, this factorwill not remove the discrepan-
cy between the result from modeling and the true mass. If Eq. (6) shall
be made tomatch the experiment, it must be extendedwith a prefactor
as

Δ~f
f F

¼ −
NP

A
f OS

ωMP

πZq

~ω2
P

~ω2
P−ω2

ð11Þ

The new factor is the “oscillator strength”, fOS. The nature of the os-
cillator strength can be explained invoking an analogy between the
coupled resonance and absorption lines in infrared spectroscopy. In IR
spectroscopy, the calculation of the oscillator strength involves the tran-
sition dipole moment. If the transition dipole moment is zero (that is, if
the vibration does not produce an electrical dipole antenna), the vibra-
tion does not couple to electromagnetic dipole radiation and therefore is
invisible to an IR spectrometer. A coupled resonance is an absorption
line in shear-wave spectroscopy. The statement that MP was smaller
than expected can be rephrased to say that the absorption line was
weaker than expected. A mode of vibration, which is weakly coupled
to themovement of the resonator surface can be reproduced in Finite El-
ement calculations, as shown below.

4. Finite element calculations, multiple modes

The working hypothesis that an adsorbed particle may resonate in
more than oneway and that these differentmodes couple to themotion
of the resonator to different extents, can be supported with a Finite Ele-
ment simulation. The simulation amounts to a clean experiment on a
computer. The technicalities of the calculation are discussed in Ref.
[17]. The user prescribes a geometry, the viscoelastic constants, and
the frequency of excitation; the software uses this information to calcu-
late the displacement pattern. The software does not exploit the concept
of “modes” or “selection rules”. It just solves the underlying partial dif-
ferential equations. From the displacement pattern, it calculates the
area-averaged stress at the resonator surface, which leads toΔf̃ after in-
sertion into the small-load approximation (Eq. (1)). A certain short-
coming of this particular code is that it only works in two dimensions.
The circle in Fig. 5 represents an infinite cylinder. It turns out that the
motion of the cylinder also displays two resonant modes.

Fig. 5 shows the geometry and theflow field. The resonator surface is
located to the left. A particle with a diameter of 4 μm touches the reso-
nator across a link. The link is a rectanglewith a thickness of 100nmand
a width of 600 nm. Its shear modulus is 1 GPa. The particle was given a
shear modulus of 10 GPa. The way this simulation is set up, the area of
the contact remains unchanged if the particle moves. There is neither
peeling not sliding.

Fig. 6 shows Δf(f) and ΔΓ(f) for frequencies between 1 MHz and
90 MHz. Clearly, there are two coupled resonances, not just one. More-
over, one of the peaks in ΔΓ(f) is smaller than the other. Since we know
the displacement patterns, we can look into the question of why the
mode at 4.2 MHz is coupled to the resonator's tangential movement
less efficiently than themode at 54 MHz. The Finite Element simulation
has solved the mode-assignment problem. The different panels in Fig. 5
correspond to different frequencies, which are 1, 4.2, 54, and 90MHz. At



Fig. 5. Displacement pattern around an adsorbed sphere as calculated by the Finite
Element Method. The quartz resonator is situated on the left-hand side. The sphere has
a diameter of 4 μm and is rigid. It is linked to the substrate across a link with a thickness
of 100 nm, a width of 600 nm, and a shear modulus of 1 GPa. The color encodes the
local tangential velocity, where red denotes large velocity. For panels A and B, the dark
lines are streamlines, where the velocity was is measured relative to the substrate. For
panels C and D, the streamlines denote the velocity relative the quiescent liquid at z =
∞. The panels on upper left, upper right, lower left, and lower right correspond to
oscillation frequencies of 1 MHz, 4.2 MHz, 54 MHz, and 90 MHz, respectively.
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low frequencies (1 MHz, panel A), the particle essentially moves with
the crystal. The sphere and the trapped liquid increase the resonator's
mass, thereby decreasing the resonance frequency. The decrease is
about proportional to the frequency itself, as shown on the left-hand
side in Fig. 6A. Clearly, this is the Sauerbrey limit. Panel D in Fig. 5
shows the opposite extreme of high frequencies (90 MHz). The particle
almost rests in place. It still rotates, but only by a small amount. The link
exerts a restoring force onto the resonator, which amounts to elastic
coupling as discussed in Ref. [18]. As the right-hand side in Fig. 6A
shows, Δf is not positive in this limit, although the frequency shift de-
creases with increasing ω. Δf is negative because the viscous drag
A

1 10

rocking

slipping

B

Fig. 6. Shifts of frequency and bandwidth as computed from the Finite Element model
shown in Fig. 5. The frequency is on a logarithmic scale. One observes two coupled
resonances, which are the rocking mode and the slipping mode. The integral over a peak
in ΔΓ(f) is proportional to the oscillator strength, fOS.
exerted by the liquid is superimposed onto the force exerted by the
sphere. The liquid creates a negative offset. (This effectmight be smaller
for spheres than for cylinders. This calculation occurred with cylinders.)

Panels B and C show the flow fields at the frequencies of the two res-
onances (4.2 MHz and 54 MHz). The sphere rotates about the point of
contact (or a point close to the contact) at 4.2 MHz, while it rotates
about its center (or a point close to that) at 54 MHz. When the sphere
rotates about the point of contact, it exerts a torque onto the substrate,
rather than a tangential stress, which is why this mode is weakly
coupled to the substrate's tangential motion.

5. Representation with a rigid sphere and a deformable link

In the introduction it was emphasized that Dybwad's model is one-
dimensional. The Dybwad model leaves open, how the particle moves.
The Finite Element Model treats a continuum, which amounts to an in-
finite number of degrees of freedom. (Of course the number of degrees
becomes finite after the simulation space has been coveredwith amesh
of finite resolution.) In the following, the problem is discussed at an in-
termediate level of abstraction, where the number of degrees of free-
dom is large enough to capture multiple modes, but still small enough
to allow for a rigorous analytical description. The model of choice is a
rigid sphere connected to the surface across a deformable link. The
model in a way is close to a mechanical equivalent circuit as shown in
Fig. 1B; it differs in that the link is not just a spring, but a rather a rod
which can be distorted in different ways. Likewise, the particle is not
just a point, but rather a sphere which can undergo translation and ro-
tation. Note: The sphere does not have internal degrees of freedom, it
cannot deform. The analytical model here differs from the Finite Ele-
ment Model, where the sphere was given a shear modulus of 10 GPa.
In the Finite ElementModel furthermodes appear at frequencies higher
than 90 MHz (not shown in Fig. 6), which correspond to the various
modes of internal deformation.

The six ways to deform a link are depicted in Fig. 7A. Three of the
modes translate the upper end of the link relative to the bottom,
while the three other ones rotate it. The modes are:

− Vertical translation, stretching the link
− In-plane translation along x and y, shearing the link
− Rotation about z, twisting the link
− Rotation of the sphere about horizontal axes (x and y) passing

through the link, bending the link.
Fig. 7. A link between a particle and a substrate (here displayed as a cylinder) can be
deformed from the two ends in 6 different ways (A). Only 2 of those deformations
couple to a periodic translation of the substrate along x. These are termed the “slipping
mode” and the “rocking mode” (B).
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Symmetry imposes certain constraints on the degeneracy (on differ-
ent modes having the same resonance frequency) and on the selection
rules. Because x and y are equivalent, the two modes shearing the
bond (along x or y) and the two modes bending the link (along x or y)
have the same frequency, respectively. Along similar lines: The sub-
strate performs a translation along x and therefore cannot excite shear
along y, bending along y, twist, or the stretchingmode. (It was assumed
that the substrate is rigid and oscillates along x, like the quartz surface
does.) These four modes are forbidden by symmetry. Actually, the
stretching mode would become weakly allowed, if there was a normal
contribution to the motion of the substrate. There might be such a con-
tribution in real experiments because of energy trapping, but we ignore
this possibility in the following. Similarly, shear along y and bending
along y will become weakly allowed if the mirror symmetry about the
y-axis is broken in someway. Thiswill happen if there is a hydrodynam-
ic interaction between the particle and a second particle in its
neighborhood.

The two interesting modes are the one shearing the contact along x
and the one bending it along x. These are again depicted in Fig. 7B,
where the particle itself was included in the diagram. The modes have
been renamed. The link is sheared if the particle performs a rotation
about its center. This mode was termed “slipping”. (“Slip” here is not
meant to denote slidingmotion in the sense of tribology. It denotes tan-
gential displacement, opposed by an elastic restoring force.) The link is
bent if the particle rotates about an axis passing through the link. This
mode was named “rocking” mode. An oscillation of the substrate
along x certainly couples to the slipping mode. This mode is allowed.
With regard to the rocking mode, the situation is more complicated.
One might think that bending of the link would only be induced by a
torque, not by a tangential stress. Following this argument, the rocking
modewould be forbidden. However, this argument only holds as long as
the axis of rotation passes exactly through the bond. If the axis of rota-
tion is slightly displaced from the bond, the rockingmode slightly shears
the bond and the rocking mode becomes weakly allowed. For the dis-
placement pattern shown in Fig. 5B, the axis of rotation is indeed
displaced from the bond and the rocking mode therefore is seen as a
weak absorption line in Fig. 6.

The equivalent circuit fromFig. 1B (containing amass, a spring, and a
dashpot) is not invalidated by these insights; it only needs a reinterpre-
tation. Consider the slippingmode, first. Themassmust be replaced by a
moment of inertia; the forcemust be replaced by a torque. Themoment
of inertia of a sphere rotating about its center is IP = (2/5)MPRP

2. The
torque exerted by the contact is given by F̃0RP with F̃0 the amplitude of
the force. The force is equal to ~κshearu0 and u0 is related to the angle of
rotation, θ0, as u0 = RPθ0. ~κ was given an index shear in order to distin-
guish it from the bond's bending stiffness. The systemobeys the dynam-
ical equation

−ω2IP−~κshearR
2
P

� �
θ0 ¼ 0 ð12Þ

The resonance frequency of the slipping mode follows as

~ωrot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~κshearR

2
P

IP

s
¼

ffiffiffi
5
2

r ffiffiffiffiffiffiffiffiffiffiffiffi
~κshear

MP

s
ð13Þ

Rotation can simply be accounted for by a prefactor of (5/2)1/2. The
factor of (5/2)1/2 originates from the relation between mass and mo-
ment of inertia. Should the axis of rotation be slightly displaced from
the center of the sphere, this shifts the values of IP and also the calcula-
tion of the torque, but the effects are not dramatic.

Now consider the rocking mode. If the axis of rotation is at the
point of contact, the moment of inertia is IP = 7/5 MPRP

2. The torque
exerted at the point of contact is equal to the bending stiffness of
contact, ~κbend, times the angle. The bending stiffness needs to be
calculated from contact mechanics. It has units of Nm. The ratio of
bending stiffness andmoment of inertia has units of s−2. The particle
resonance frequency is

~ωrock ¼
ffiffiffi
5
7

r ffiffiffiffiffiffiffiffiffiffiffiffi
~κbend

MPR
2
P

s
ð14Þ

Again, the factor of (5/7)1/2 originates from the relation between
mass and moment of inertia.

In Fig. 5 the rockingmode occurs at a frequency below the frequency
of the slipping mode. This statement holds as long as the radius of
contact, a, is much smaller than the particle radius, RP. For the
Hertzian contact with a ≪ RP, the shear stiffness and the bending
stiffness are

κshear ¼ bshearGa
κbend ¼ bbendGa

3 ð15Þ

bshear and bbend are numerical constants of the order of unity. G is the
shear modulus. Eq. (15) follows from dimensional arguments. The par-
ticle resonance frequencies for the slippingmode and the rockingmode
are

ωrot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κshearR

2
P

2=5 MPR
2
P

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5bshear

2

r ffiffiffiffiffiffiffi
Ga
MP

s

ωrock ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κbend

7=5 MPR
2
P

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5bbend

7

r ffiffiffiffiffiffiffi
Ga
MP

s
a
Rp

ð16Þ

If bshear and bbend are both of order unity and if a≪ RP, the rocking res-
onance has the lower frequency.

We conclude with an updated equation for the radius of the circle in
the polar diagram, RPD. Taking heterogeneous line broadening and the
nontrivial oscillator strength into account, the radius becomes

RPD≈ f OS
NP

A
f F

2πZq

κP

γhet
ð17Þ

γhet here is the heterogeneous linewidth, which takes the variability
of the contact stiffness between different particles into account.

Unfortunately, it is difficult to experimentally estimate fOS. One
would have to know, how far the axis of rotation is displaced from the
point of contact. If it is right at the point of contact, fOS is zero because
the contact then only exerts a torque. Even if the location of the axis
was known, the calculation of the transverse force exerted by the
particle's vibration would require a non-trivial calculation, possible in-
volving further unknown parameters.

6. Voigt-type links versus Maxwell-type links

In search of other representations of the link, which are simple, on
the hand, and potentially useful in the description of bio-adsorbates,
on the other, a second arrangement of a spring and a dashpot comes
to mind, which is the Maxwell-type link (Fig. 8B). The Maxwell-type
link contains two elements, just like theVoigt-type link (Fig. 8A). Simply
adding κP to iωξP amounts to the Voigt-type link, used in the discussion
so far. One might also place the dashpot and the spring in series. This
link does not need new free parameters. Computationally, it is almost
simple as the Voigt-type link. Considering that the spring and the dash-
pot are now arranged in parallel, the load impedance from Eq. (2) needs



1.0 1.5 2.0 2.5 3.0 0

C: Voigt Type Link

1.0 1.5 2.0 2.5 3.0 0

D: Maxwell Type Link

A B

Fig. 8. Lumped element representations of a particle and a link between the particle and
the substrate. The resonator surface is at the bottom. The particle is modeled as rigid.
The link is made to be viscoelastic. There is a choice between a parallel and a serial
arrangement of the spring and the dashpot (A, B). C, D: Shifts of frequency (Δf, full line)
and bandwidth (ΔΓ, dashed line) for a Voigt-type link (C) and for a Maxwell-type link
(D). The frequency scale was normalized to ω0. The damping coefficient was set to 0.3
ω0. So far, the link was modeled a spring and a dashpot arranged in parallel. The
complex stiffness of the link was expressed as κP + iωξP, where κP and ξP were assumed
to be independent of frequency. For biological colloids like bacteria or viruses, the link
between the object under study and the resonator surface will be a complex object,
itself. Representing its mechanical properties as in Fig. 1B may or may not be
appropriate. In general, the complex stiffness of the link will be some complicated
function of frequency. Writing it as κP + iωξP is not more than one particular choice.
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to be replaced by

~ZL;Maxwell ¼
NP

A
1
κP
iω
þ 1
ξP

þ 1
iωMP

 !−1

ð18Þ

Using ωP
2 = κP/mP and γP = ξP/mP as before, one can write

~ZL;Maxwell ¼
NP

A
iωMP

1

1−
ω2

ω2
P

þ iω
γP

ð19Þ

Eq. (11) is recovered if one writes ~ωP as

~ω2
P ¼ 1

MP

1
κP

þ 1
iωξP

� �−1

ð20Þ
The latter relation needs to be compared to Eq. (4). Note that the pa-
rameter ~ωP in both cases depends onω. Panels C andD in Fig. 8 show the
derived shifts of frequency and bandwidth. Clearly, the Maxwell-type
link yields much broader absorption lines, which is in agreement with
recent experiments [24].

7. Discussion

Both Finite Element Simulation and the analytical treatment in
Section 5 show that a QCM experiment amounts to shear-wave spec-
troscopy. The analysis is appealing because it connects different
branches of physics, in this case vibrational spectroscopy and acoustic
sensing. Beauty of the argument and educational value aside: Does
this analysis change the way, how we do acoustic sensing; does it
open up new opportunities? Clearly, one has to be careful not to raise
false expectations. The seminal paper, which opened up new avenues
for sensing was Dybwad's paper from 1985 [20]. Dybwad showed that
a contact stiffness can bemeasuredwith a QCM. A routinemethodology
to determine the stiffness between bio-colloids and solid surfaces
would be extremely valuable. The operation of the QCM is routine and
the QCM averages over the acoustically active area. Averaging is an im-
portant advantage. There is no need to pull on single objects or to me-
chanically actuate them in any way (as this is done in scanning force
microscopy [25] and with the colloidal force probe [26]). There is no
need to repeat experimentsmany times in order to obtain ameaningful
average of contact strength or contact stiffness. Contact mechanics with
a QCM - if it works – will be very useful.

At this point, it is not clear, howwell QCM-based contact mechanics
canwork on bio-colloids.What are the limits?Why is it difficult? Below
are some thoughts.

- Contactmechanics doeswork fairlywell (both in liquids and in air) if
the object under study is so large that it is held in place by inertia.
Typical objects of this type would be millimeter-sized glass spheres.
Possibly, themost promising route towards QCM-based biomechan-
ics is to place the sample of interest between the resonator surface
and such a large sphere. This might give an easier access to mechan-
ical stiffness of biocolloids than the coupled resonance.

- The analysis of experiments is easier in air than in liquids because
hydrodynamic effects cannot be accounted for easily. However, the
scientific problems are less interesting because the forces tend to
be non-specific (van-der-Waals forces, capillary forces).

- Quantitative determination of the contact stiffness is difficult be-
cause the prefactor fOS in Eq. (11) (the “oscillator strength”) is not
usually known. However, the prefactor cancels in the analysis of
the loss tangent, given as tan(δ) = ωξP/κP. The loss tangent can be
quantitatively inferred from the experimental data.

- Even using the simplest representations of the link, there is an inter-
esting choice between placing the spring and the dashpot in parallel
(as in the Voigt-type link) or in series (as in the Maxwell-type link).
These two arrangements can be distinguished, experimentally, from
the overtone-dependence of Δf and ΔΓ.

- Realistic numeric modeling of surface-adsorbed particles in 3D ac-
counting for hydrodynamics is under way [27]. This will allow for a
detailed quantitative comparison between theory and experiment,
at least for well-defined model systems.

- If one relies on the coupled resonance, the zero-crossing frequency
must be in the accessible frequency window for the method to
work. If themass of the particle can be chosen atwill, the zero-cross-
ing frequency can be moved towards the frequency window of the
QCM. Thiswould usually require spheres of somekind to be a central
component of the sample. Glass spheres (even with special surface
functionalization) often are available in different sizes.

- Spheres as a central component of the sample should always be
helpful in that they provide for a clean geometry. Experiments
with coupled resonances using bacteria have been done [28], but
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the quantitative analysis is more difficult than with glass spheres.
- Well-defined substrates should also be helpful. Possibly, supported
lipid membranes (SLBs, Ref. [29]) can make a difference.

- Tuning the interaction in whatever way should make data interpre-
tation easier. Electrostatic forces were used in Ref. [23]. Vollmer and
co-workers have used a QCM combined with a centrifuge for a sim-
ilar purpose [30].

- As always, combining the QCM with some other surface-analytical
technique (such asmicroscopy or electrochemical impedance analy-
sis) might help.

While one can be optimistic with regard to future progress, there of
course is a centralmessage from this analysis, which is relevant today: it
is more complicated than one might think. Translation and rotation
both come into play. Also: Experiments can only be understood if the
imperfect coupling (quantified by the oscillator strength) is accounted
for.

8. Conclusions

There is a close analogy betweenQCM-based sensing and vibrational
spectroscopy. The QCM can perform vibrational spectroscopy on sur-
face-adsorbed colloidal particles. The analysis shows that two separate
modes exist, where the first is a rotation about the point of contact
and the second is a rotation about the center of the particle. These two
modes are connected to the bond's bending stiffness and the bond's
shear stiffness, respectively. The most important consequence for the
contact resonancemodel is that a prefactor must be introduced (an “os-
cillator strength”) which accounts for imperfect coupling between the
resonator and the sample.
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Appendix A. Proof of Eq. (8)

At the frequency of zero-crossing, fZC=ωZC/(2π), the real part of Eq.
(6) to become zero. Ignoring the real prefactors, we have

~ω2
P

~ω2
P−ωZC

¼ ω2
P þ iωZCγP

ω2
P þ iωZCγP−ω2

ZC

¼ ω2
P þ iωZCγP
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ZC
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ωP
2 here is the real part of ~ωP2 . The real part of this expression turns to

zero if the real part of the numerator is zero:

0 ¼ ω2
P ω2

P−ω2
ZC

	 
þ ωZCγPð Þ2 ¼ ω4
P þω2

ZC γ2
P−ω2

P

	 
 ð22Þ

Solving for ωZC and only accepting the positive solutions, we obtain

ωZC ¼ 2π f ZC ¼ ω2
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P−γ2

P

q ð23Þ
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