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The response of the QED vacuum in an asymptotically large electromagnetic field is studied. In this
regime the vacuum energy is strongly influenced by the vacuum polarization effect. The possible in-
teraction between the virtual electromagnetic radiation and a superstrong magnetic field suggests that a
background of virtual photons is a source of magnetization to the whole vacuum. The corresponding con-
tribution to the vacuum magnetization density is determined by considering the individual contribution
of each vacuum polarization eigenmode in the Euler–Heisenberg Lagrangian. Additional issues concerning
the transverse pressures are analyzed. We also study the case in which the vacuum is occupied by a su-
perstrong electric field. It is discussed that, in addition to the electron–positron pairs, the vacuum could
create photons with different propagation modes. The possible relation between the emission of photons
and the birefringent character of the vacuum is shown as well.
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1. Introduction

Whilst there is some evidence that very large magnetic fields
|B| � Bc, Bc = m2/e = 4.42×1013 G1 exist in stellar objects identi-
fied as neutron stars [1–3], its origin and evolution remains poorly
understood [4]. Some investigations in this area provide theoreti-
cal evidence that |B| might be generated due to gravitational and
rotational effects, whereas other theories estimate that is self-
consistent due to the Bose–Einstein condensation of charged and
neutral boson gases in a superstrong magnetic field [5–8]. In this
framework the nonlinear QED-vacuum possesses the properties of
a paramagnetic medium and constitutes a source of magnetization,
induced by the external magnetic field. Its properties are primar-
ily determined by the vacuum energy of virtual electron–positron
pairs. Because of this, a negative pressure transversal to the ex-
ternal field is generated [9] in similarity with the Casimir effect
between metallic plates [10]. Moreover, the vacuum occupied by
the external field turns out to be an “exotic” scenario in which
processes like photon splitting [11,12] and photon capture [13–15]
could take place. These two phenomena depend on the photon dis-
persion relation which differs from the light cone, due to vacuum
polarization effects [16–19]. As a result, the issue of light propaga-
tion in empty space, in the presence of an external magnetic field,
is similar to the dispersion of light in an anisotropic “medium”.
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The phenomenological aspects associated with this problem
have been studied for a long time. In the meanwhile, other features
of nonlinear electrodynamics in a superstrong magnetic field have
been studied such as the dimensional reduction of the Coulomb
potential [20–23] and the possible existence of a photon anoma-
lous magnetic moment [24]. However, due to the vacuum polar-
ization effect, virtual photons can carry a magnetization as well.
As a consequence, they might be a source of magnetism to the
whole vacuum. Motivated by this idea, we address the question in
which way the virtual electromagnetic radiation contributes to the
vacuum magnetization and therefore to increase the external field
strength. The magnetic properties of the vacuum have been stud-
ied in [9,25–27] for weak (|B| � Bc) and moderate fields (|B| ∼
Bc) in one-loop approximation of the Euler–Heisenberg Lagrangian
[28] which involves the contribution from virtual electron–positron
pairs. The contribution of virtual photons, created and annihilated
spontaneously in the vacuum and interacting with B by means
of Πμν , is contained within the two-loop term of the Euler–
Heisenberg Lagrangian (see Fig. 1). The latter was computed many
years ago by Ritus [29,30] and has been recalculated by several
authors as well [31–34]. In all these works, however, it is re-
ally cumbersome to discern the individual contributions given by
each virtual photon propagation mode to the Euler–Heisenberg
Lagrangian which should allow to determine the magnetism and
pressure associated with each form of virtual mode. In this Letter
we analyze these contributions separately for very large magnetic
fields (|B| � Bc) since these allow to establish relations between
the birefringence of the vacuum [19,35,36] and the global proper-
ties of it.
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Fig. 1. Two-loop expansion of the Euler–Heisenberg Lagrangian. The double lines
represent the electron–positron Green’s functions, whereas the wavy line refers to
the photon. Here L(0) is the free Maxwell Lagrangian, L(1) represents the one loop
which gives the contribution of the virtual free electron–positron pairs created and
annihilated spontaneously in vacuum and interacting with the external field. The
radiative corrections (involved in L(2)) emerge from two loop due to exchange of
the virtual photons.

Besides the strongly magnetized vacuum, there is another in-
teresting external field configuration which deserves to be an-
alyzed: a supercritical electric field |E| � Ec with Ec = m2/e =
1.3 × 1016 V/cm. In this asymptotic region the Euler–Heisenberg
Lagrangian acquires an imaginary term which characterizes the in-
stability of the vacuum. This phenomenon is closely related to the
production of observable particles from the own vacuum. Certainly,
the creation of electron–positron pairs—the so-called Schwinger
mechanism—turns out to be the most remarkable effect predicted
through this procedure [28,37,38]. However, the imaginary part of
this effective Lagrangian is just a measure of the vacuum decay
and does neither give the actual rate of production of particles nor
the accessible decay channels [39]. Thereby not only the creation
of electron–positron pairs is a plausible effect but also the emis-
sion of observable photons [29,30]. The latter phenomenon was
analyzed by Gitman, Fradkin and Shvartsman [50–52]. Their re-
sults showed that the total probability of photon emission from
the vacuum, accompanied by the creation of an arbitrary number
of electron–positron pairs, is connected to the decay probability
of the vacuum and thus to the imaginary part arising from the
two-loop term of the Euler–Heisenberg Lagrangian. In this case the
corresponding decomposition in terms of the vacuum polarization
modes is particularly illuminating because it reveals that only two
of them contribute to the vacuum instability. It seems, therefore,
that the vacuum could create photons with different propagation
modes, an effect closely related to its own birefringence.

2. Preliminary remarks

In a magnetized vacuum the spatial symmetry is explic-
itly broken by the external field B. In this context, there is a
vectorial basis �

(i)
μ [20,40,41] which characterizes the vacuum

symmetry properties and fulfills both the orthogonality condi-
tion: �

(i)
σ �σ ( j) = δi j(�(i))2 and the completeness relation: δμ

ν −
kμkν

k2 = ∑3
i=1 �μ(i)�

(i)
ν /(�(i))2. Explicitly, the basis vectors read �

(1)
μ =

k2F 2
μλkλ − kμ(kF 2k), �

(2)
μ = F̃μλkλ , �

(3)
μ = Fμλkλ and �

(4)
μ = kμ .

These expressions involve the external field tensor Fμν and its
dual F̃μν = 1/2εμνρσ Fρσ . In this basis, the vacuum polarization
tensor is diagonal i.e.

Πμν =
4∑

i=0


i
�
(i)
μ �

(i)
ν

(�(i))2
(1)

whereas the dressed photon Green function can be expressed as

Dμν =
3∑

i=1

1

k2 − 
i

�
(i)
μ �

(i)
ν

(�(i))2
+ ζ

k2

kμkν

k2
. (2)

Here the 
i represent the Πμν -eigenvalues and ζ is the gauge
parameter. This diagonal decomposition of Πμν defines the en-
ergy spectrum of the electromagnetic field which differs from the
isotropic vacuum (B = 0).

Owing to the transversality property (kμΠμν = 0), the eigen-
value corresponding to the fourth eigenvector vanishes identically
(
(4) = 0). Furthermore, not all the remaining eigenmodes are
physical. In general, this depend on the direction of wave prop-
agation. To show this we consider �

(i)
μ (k) as the electromagnetic

four vector describing a photon. The corresponding electric and
magnetic fields of each mode are e(i) = i(k�

(i)
0 − ω(i)�(i)), b(i) =

−ik × �(i) . It follows that the mode i = 3 is a wave polarized in
the transverse plane to k whose electric e(3) ∼ k⊥ × n‖ and mag-
netic b(3) ∼ n‖k2⊥ − k⊥k‖ fields are orthogonal to each other. Here
the vectors k⊥ and k‖ are the components of k across and along
B with n‖ = B/|B|. For a pure longitudinal propagation to the ex-

ternal field k⊥ = 0, the mode �
(2)
μ is a longitudinal and nonphysical

electric wave e(2) ∼ n‖ . On the other hand, �
(1)
μ is transverse since

the associated electric field is e(1) ∼ k⊥ whereas the magnetic one
b(1) ∼ k⊥ ×k‖ . As a consequence, both �

(1)
μ and �

(3)
μ represent phys-

ical waves which may be combined to form a circularly polarized
transversal wave. In this case both modes propagate along B with
a dispersion law independents of the magnetic field strength [17,
19,41].

Now, if the photon propagation involves a nonvanishing trans-
versal momentum component k⊥ �= 0, we are allowed to perform
the analysis in a Lorentz frame that does not change the value
k⊥ , but gives k‖ = 0 and does not introduce an external elec-

tric field. In this Lorentz frame, the first eigenmode �
(1)
μ becomes

purely electric longitudinal and a nonphysical mode whereas �
(2)
μ

is transverse. Hence, for a photon whose three-momentum is di-
rected at any nonzero angle with the external magnetic field, the
two orthogonal polarization states �

(2)
μ and �

(3)
μ propagate. In this

framework the analytical structures of the corresponding eigenval-
ues 
2,3 are different. As a matter of fact, the vacuum behaves like
a birefringent medium with refraction indices [19,41]

η2 = |k|
ω2

=
(

1 + 
2

ω2
2

)1/2

and η3 = |k|
ω3

=
(

1 + 
3

ω2
3

)1/2

. (3)

Here ω2,3 are the corresponding solution of the dispersion equa-
tions k2 = 
2,3 arising from the poles of Dμν .

Considering these aspects, we analyze the Euler–Heisenberg La-
grangian

LEH = L(0)
R + L(1)

R + · · · (4)

where L(0)
R = − 1

2 B2 is the free renormalized Maxwell Lagrangian,

whereas L(1)
R denotes the one-loop regularized contribution of vir-

tual electron–positron pairs created and annihilated spontaneously
in vacuum and interacting with B [28]. In asymptotically large
magnetic fields it reads

L(1)
R (b) ≈ m4b2

24π2

{
ln

(
b

γπ

)
+ 6

π2
ζ ′(2)

}
. (5)

Here b = |B|/Bc, ln(γ ) = 0.577 . . . denotes the Euler constant
whereas 6π−2ζ ′(2) = −0.5699610 . . . and ζ(x) is the Riemann
zeta-function.

The contribution of a virtual photon interacting with external
field by means of the vacuum polarization tensor is expressed as
[29,31,34]

L(2) = i
∫

d4k
4
Πμν(k)D

μν
0 (k), (6)
2 (2π)
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Fig. 2. Diagrammatic decomposition of L(2) in terms of the vacuum polarization
eigenmodes.

where D
μν
0 (k) denotes the bare photon Green function which is

obtained by neglecting 
i in the denominator of Dμν . Using this
expression we find

L(2) = i

2

3∑
i=1

∫
–dk


i

k2
, (7)

where –dk ≡ d4k/(2π)4. To obtain the above expression we have in-
serted the diagonal decomposition of Πμν into Eq. (6) and used
the orthogonality condition. Certainly, the quantity 
ik−2 repre-
sents the interaction energy density of a virtual photon propa-
gation mode with B. Because the analytical properties of the 
i
differ from each other the contribution of each mode will be dif-
ferent. Therefore, the original two-loop graph can be decomposed
into three diagrams (see Fig. 2) whose properties are connected to
the birefringence property of the vacuum. Therefore, each individ-
ual term L(2)

i = i
2

∫ –dk 
i/k2 will be studied separately. As we shall
see very shortly, the decomposition of L(2) is also valid in an ex-
ternal electric field in which case some evidence on the possible
decay of the vacuum into observable photons emerges.

Obviously, the renormalized two-loop term decomposes as
well: L(2)

R = ∑3
i=1 L(2)

iR and the leading behavior of L(2)
iR in an

asymptotically large magnetic field is given by (for details see
Ref. [24])

L(2)
1R ≈ −αm4b2

16π3
N1,

L(2)
2R ≈ αm4b2

32π3

[
N2 ln

(
b

γπ

)
− 1

3
ln2

(
b

γπ

)
+ A

]
,

L(3)
3R ≈ αm4b2

32π3

[
N3 ln

(
b

γπ

)
+ 1

3
ln2

(
b

γπ

)
+ B

]
. (8)

These expressions are accurate up to terms that decrease with b

like ∼ b−1 ln(b) and faster. Here the numerical constants are

N1 = 1.25, N2 = 0.71, N3 = 0.29,

A = 4.21 and B = 0.69. (9)

Moreover, the asymptotic behavior of the full two-loop term is

L(2)
R ≈ αm4b2

32π3

[
ln

(
b

γπ

)
+ 2.4

]
, (10)

which coincides with the results reported in Refs. [29,31].

3. Properties of a highly magnetized vacuum

In the presence of an external magnetic field, the zero point
vacuum energy Evac is modified by the interaction between B
and the virtual QED-particles. The latter is determined by the
effective potential coming from the quantum-corrections to the
Maxwell Lagrangian which is also contained within the finite
temperature formalism. According to Eq. (4) it is expressed as
Evac = −L(1) −∑3

i=1 L(2) + · · · . Consequently the vacuum acquires
R iR
a nontrivial magnetization Mvac = −∂Evac/∂|B| induced by the
external magnetic field. In what follows we will write Mvac =
M (1)

vac + M (2)
vac + · · · in correspondence with the loop-term L(i)

R . In
this sense, the one-loop contribution at very large magnetic field
b � 1 can be computed by means of Eq. (5) and gives

M (1) = ∂L(1)
R

∂|B|
≈ m4b

24π2Bc

[
2 ln

(
b

γπ

)
+ 1 + 12ζ ′(2)

π2

]
. (11)

Incidentally, the above asymptotic behavior is also manifest in the
corresponding magnetization derived from the QCD vacuum in a
magnetic field |B| � Λ2

QCD/e. For more details we refer the reader
to Ref. [42].

The two-loop correction is given by M (2) = ∑3
i=1 M (2)

i where

M (2)
i = ∂L(2)

iR /∂|B| is the contribution corresponding to a photon
propagation mode. Making use of Eqs. (8) we find

M (2)
1 ≈ − αm4b

8π3Bc
N1, (12)

M (2)
2 ≈ − αm4b

32π3Bc

[
2

3
ln2

(
b

γπ

)

+ 8ζ ′(2)

π2
ln

(
b

γπ

)
− 9.13

]
, (13)

M (2)
3 ≈ αm4b

32π3Bc

[
2

3
ln2

(
b

γπ

)

+
(

2 + 8ζ ′(2)

π2

)
ln

(
b

γπ

)
+ 1.67

]
. (14)

According to these results, in a superstrong magnetic field
approximation, M (2)

1 < 0 and M (2)
2 < 0 behave diamagnetically

whereas M (2)
3 > 0 is purely paramagnetic. Moreover, while M (2)

1
depends linearly on b, the contributions of the second and third
propagation mode depend logarithmically on the external field. We
find, in particular, that for magnetic fields B ∼ 1018 G, the magneti-
zation generated by the first and second polarization mode reaches
values the order ∼ −1012 erg/(cm3 G) and ∼ −1013 erg/(cm3 G),
respectively. In the same context M (3) ∼ +1013 erg/(cm3 G). Note
that the leading behavior of the complete two-loop contribution is

M (2) ≈ αm4b

16π3Bc

[
ln

(
b

γπ

)
+ 2.9

]
> 0, (15)

which shows a dominance of the third mode. Indeed, for B ∼
1018 G, one finds M (2) ∼ +1012 erg/(cm3 G).

As it was expected M (1)/M (2) ∼ α−1. This ratio is also
manifested between the corresponding magnetic susceptibilities
(X (i) = ∂M (i)/∂|B|). Note that

X (1) ≈ m4

24π2B2
c

[
2 ln

(
b

γπ

)
+ 1.86

]
> 0, (16)

X (2) ≈ αm4

16π3B2
c

[
ln

(
b

γπ

)
+ 3.9

]
> 0. (17)

For magnetic fields b ∼ 105 corresponding to |B| ∼ 1018 G, the
magnetic susceptibility reaches values of the order of X (1) ∼
10−4 erg/(cm3 G2) which exceeds the values of many laboratory
materials, for example aluminum (XAl = 2.2×10−5 erg/(cm3 G2)).

Some additional comments are in order. First of all, even though
the previous decomposition of M (2) is not really observable, it
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turns out to be a transparent framework which illustrates, in a
phenomenological way, the magnetic property generated by each
photon propagation mode and thus, a connection with the birefrin-
gent property of the vacuum. The decomposition of M (2) in terms
of the photon modes allows, in addition, to establish similarities
and differences with the magnetization carried by observable pho-
tons.2 Indeed, similar to the latter the virtual radiation carries a
magnetization which depends on the polarization vector. However,
while an observable second mode has a paramagnetic response
[45], our result points out that the corresponding virtual polar-
ization generates a purely diamagnetic magnetization. Besides, we
have seen that the first propagation mode contributes to the mag-
netization of the vacuum. This is not expected for an observable
mode-1 photon since its dispersion law is independent on the
external field strength [17,19,41] and therefore does not carry a
magnetization.

Because of the anisotropy generated by B a magnetized vac-
uum exerts two different pressures [5–8]. One of them is positive
(P‖ = −Evac) and along B, whereas the remaining is transverse
to the external field direction (P⊥ = −Evac − M |B|). For b ∼ 1
the latter acquires negative values. At very large magnetic fields
(b � 1) the one-loop approximation of P⊥ can be computed by
making use of Eq. (5) and Eq. (11). In fact

P(1)
⊥ ≈ −m4b2

24π2

[
ln

(
b

γπ

)
+ 1 + 6ζ ′(2)

π2

]
< 0. (18)

Therefore, at asymptotically large values of the external field, the
interaction between B and the virtual electron–positron pairs gen-
erates a negative pressure which would tend to shrink inserted
matter in the plane transverse to B.

Again, the two-loop contribution can be written as the sum of
the corresponding terms due to the vacuum polarization modes
P(2)

⊥ = ∑3
i=1 P(2)

⊥i . According to Eqs. (8) and Eq. (14) they read:

P(2)
⊥1 ≈ αm4b2

16π3
N1 > 0, (19)

P(2)
⊥2 ≈ αm4b2

32π3

[
1

3
ln2

(
b

γπ

)
+

(
N2 + 8ζ ′(2)

π2

)

× ln

(
b

γπ

)
− 4.92

]
> 0, (20)

P(2)
⊥3 ≈ −αm4b2

32π3

[
1

3
ln2

(
b

γπ

)
+

(
1.71 + 8ζ ′(2)

π2

)

× ln

(
b

γπ

)
+ 0.98

]
< 0, (21)

with the complete two-loop term given by

P(2)
⊥ ≈ −αm4b2

32π3

[
ln

(
b

γπ

)
+ 3.4

]
< 0. (22)

For b ∼ 105, corresponding to magnetic fields B ∼ 1018 G, the
transverse pressure generated by the first and second polarization
mode are positive and reaches values of the order ∼ 1030 dyn/cm2

and ∼ 1031 dyn/cm2, respectively. In contrast, the contribution
given by the third mode is negative with P(2)

⊥3 ∼ −1031 dyn/cm2.
The combined result is negative and achieves values of the order
P(2)

⊥ ∼ −1031 dyn/cm2. This fact strengthens the analogy of the

2 The magnetic response of an observable photon was studied in [45] in two dif-
ferent regimes of the vacuum polarization tensor. On the one hand for low energies
in weak fields (|B| � Bc) and on the other hand (originally studied in Ref. [44]) near
the first pair creation threshold and for a moderate fields (|B| ∼ Bc).
considered problem with the Casimir effect in which the pressure
transversal to the parallel plates is also negative and dominated by
the virtual electromagnetic radiation [43].

4. The vacuum instability in a supercritical electric field

Ultra-high electric fields |E| � Ec = m2/e = 1.3 × 1016 V/cm
have been predicted to exist at the surface of strange stars [46–
49]. In this electric field regime, the asymptotic behavior of L(2)

iR
is obtained from Eqs. (8) by means of the duality transformation
b → −ie with e = |E|/Ec. As a consequence we can write

LEH = �[LEH] + Im[LEH] (23)

where �[LEH] constributes to the dispersive effects. Because of the
imaginary part the vacuum becomes unstable and creation of par-
ticles could take place. The probability associated with the vacuum
decay is P = 1 − |〈0out|0in〉|2 with 〈0out|0in〉 = eiVTLEH , where VT
is the volume element in 3 + 1 dimensions. With this in mind and
by considering Eq. (23) one has

P = 1 − e−2 Im[LEH]VT. (24)

As we have already mentioned in the introduction, the emission
of observable photons from the vacuum is also a plausible effect.
Indeed, the probability P of photon emission from the vacuum,
accompanied by the creation of an arbitrary number of electron–
positron pairs, can be determined by using the unitarity condition
for the dispersion matrix S = 1 + iT which leads to a relation of
the optical-theorem type∑
out

∣∣〈out|T |in〉∣∣2 = 2 Im〈in|T |in〉, (25)

where T is the sum of all Feynman graphs. However, the elec-
tron causal Green function for the matrix elements 〈in| . . . |in〉 is
quite different from the standard propagator in the Schwinger
proper-time representation of the out–in matrix elements. Let us
consider the relation above with the in-state having no photons
i.e. |in〉 = |0in〉. In addition, we will confine ourselves in the right-
and left-hand sides of Eq. (25) to the second order radiational in-
teraction. In this approximation, one can take the operator T on
the left-hand side to first order: T (1) = −∫

d4x jμ(x)aμ(x). Here
jμ = e

2 [ψ̄(x)γ μ,ψ(x)] is the current and aμ(x) denotes the radia-
tion field. Therefore, only one-photon states contribute to the sum
over the out-states 〈out| = 〈0in|ckibq1 · · ·bqn

dp1 · · ·dpn
. Whilst cki is

understood as the annihilation operator of a mode-i photon, b and
d are interpreted as the annihilation operators of electrons and
positrons, respectively. On the right-hand side of Eq. (25) T has
to be taken in second order T (2) = − i

2

∫
d4x d4x′ T [ jμ(x) jν(x′)×

aμ(x)aν(x′)], where T represents the time ordering operator. Con-
sidering the normal mode expansions of the dynamical fields and
by using the Wick theorem one obtains

P = 2 Im〈in|T (2)|in〉 = 2 Im L(2)

in (26)

where L(2)

in is given by Eq. (6) with the causal Feynman propaga-
tors replaced by the corresponding electron Green function appear-
ing in the mean values 〈in| . . . |in〉 of Eq. (25).

Now, the decay probability P is connected to the total proba-
bility of photon emission from the vacuum, accompanied by the
creation of an arbitrary number of electron–positron pairs P =
P + · · ·3 Obviously, the corresponding expansion up to second or-
der in α involves the imaginary part coming from the two-loop

3 For details, see the cited references of Fradkin, Gitman, Shvartsman.
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contribution of the Euler–Heisenberg Lagrangian. The latter can be
written as the sum of the corresponding terms due to the individ-
ual vacuum polarization modes Im[L(2)

R ] = ∑3
i=1 Im[L(2)

iR ] with

Im
[

L(2)
1R

] ≈ 0,

Im
[

L(2)
2R

] ≈ αm4e2

32π2

{
1

2
N2 − 1

3
ln

(
e

γπ

)}
< 0,

Im
[

L(2)
3R

] ≈ αm4e2

32π2

{
1

2
N3 + 1

3
ln

(
e

γπ

)}
> 0. (27)

Note that, because of the dominance of the third propagation
mode, the complete imaginary part arising from the two-loop term
is positive

Im
[

L(2)
R

] ≈ 3α

4π
Im

[
L(1)

R

]
> 0 (28)

where Im[L(1)
R ] � m4e2

48π is the imaginary part coming from the one-
loop contribution at very large electric field e � 1.

There is some interesting aspects in Eq. (27) which deserves
some comments. First of all, it reveals that the first propagation
mode does not contribute to the imaginary part of LEH. This sup-
pression provides an evidence that the vacuum does not generate
electromagnetic waves propagating along the external field E. On
the other hand, only the second and third mode contribute to the
vacuum instability. This is a signal that the vacuum could create
the corresponding propagation modes. However, the birefringence
character of the vacuum imposes that there is not a single ob-
servable mode-2 photon without the existence of a corresponding
mode-3 photon. Therefore, in addition to the electron–positron
pairs, the vacuum could create photons with different propaga-
tion modes. Note, however, that the described photon emission has
been predicted within the framework of equilibrium quantum field
theory, even though it is a far-from-equilibrium, time-dependent
phenomenon. Only further studies can tell us how far this pro-
cess can be stretched because a realistic treatment of this issue
requires a time evolution analysis of the photon number distribu-
tion functions, similar to that developed by Hebenstreit et al. for
electron–positron pairs within a quantum kinetic approach [53].

5. Summary and outlook

In summary, we have examined the magnetization of the QED
vacuum in the presence of a constant magnetic field in the strong
field regime, |B| � Bc. We have seen that the virtual electromag-
netic radiation is a source of magnetization to the whole vacuum.
In a superstrong magnetic field approximation, the two-loop con-
tribution of the magnetization density corresponding to the second
and third propagation mode depends nonlinearly on the external
magnetic field and their behavior is diamagnetic and paramagnetic,
respectively. On the other hand, the contribution coming from the
first mode is diamagnetic and depends linear on B. We have seen
that for very large magnetic field the contribution of the third
mode strongly dominates the analyzed quantities. In this regime
the latter tends to shrink inserted matter by exerting a negative
transverse pressures to the external field. On the contrary those
contributions coming from the first and second virtual mode are
positive and tend to expand the matter.

In the last section of this Letter we showed that only two pho-
ton propagation modes contribute to the instability of the vacuum
in an strong electric field. This instability is associated with the
emission of photon whose propagation modes differ each other.
A plausible connection between this mechanism and the birefrin-
gent character of the vacuum occupied by a supercritical electric
field was established and the suppression of vacuum decay into
pair of modes propagating along an external electric field was an-
alyzed as well.
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