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Abstract 

This paper investigates the dynamic behaviors of a rotating shaft subjected to the double cutting force and time-varying mass 
effects. The Timoshenko beam theory is used to model the rotating shaft, and the general boundary condition is assumed as the 
clamped-hinged supports. This system is used to simulate the manufacture process of the double turret CNC lathes, and the mass 
of the rod which is reduced gradually in cutting process. The system equations of motion are derived based on the global 
assumed mode method, and the dynamic responses of the system are obtained by Runge-Kutta numerical method. The 
transformation matrix is derived to make the equation of motion completing the boundary geometric constraints. The numerical 
results compare the dynamic response in different moving speeds and skew angles of the cutting forces with/without the time-
varying mass effects. Additionally, this paper compares the response with single cutting force and double force. The results show 
that the double moving force system can reduce not only the machining time but also the amplitude of shaft vibration. 
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E , G                     Young’s modulus and shear modulus 
I   cross-section second moment of area of the shaft 

 , d pI I  diametrical and polar mass moment of inertial of the shaft 
k   shear coefficient 
L  length of shaft 

, ,M C K  mass matrix, gyroscopic matrix, and stiffness matrix 

pN   the number of terms of polynomial 

, Iq q  generalized coordinates 
[ ]R   transformation matrix due to boundary conditions 
r  radius of shaft 

   ,l rx x   support position of the right side and left side 
   sT , sU   kinetic energy and potential energy of the shaft 
   ( , , )U V W  responses in ( , , )X Y Z  direction 
   ( , )                rotations about Y and Z axes 
      non-dimensional moving speed 

  Rayleigh beam coefficient 
  skew angle of the moving skew force 
  density of shaft 

   ( )t   time dependent matrix due to axial force 
  whirl speed 

0   fundamental natural frequency of the stationary Euler- Bernoulli beam 
     ,  rotating speed and non-dimensional rotational speed 

1. Introduction 

The double spindle and double turret CNC lathes are generally used presently. Less production time and high 
economic efficiency are the main advantages of the double turret system. The CNC lathes with double turret system 
can be applied to multiple processes especially for the cylindrical products. Respecting the above description, the 
dynamic response of a rotating shaft beam subject to the double moving force is studied in this paper. 

The dynamic of the rotating shaft had been analyzed for a long time. Katz at al.[1] presented the study of the 
dynamic response of a rotating shaft subject to a moving load with constant velocity. The modal analysis and an 
integral transformation method were employed to obtain the dynamic response. Zu and Han[2] obtained closed-form 
solutions for the free vibration analysis of spinning Timoshenko beam for the classical boundary conditions. In 
addition, the dynamic response of a spinning Timoshenko beam with general boundary conditions under the effect 
of a moving load was also analyzed by Zu and Han[3]. Lee[4] analyzed the dynamic response of the beam with rigid 
simply supports at the ends and used the vibration modes of a simply supported beam as the assumed functions. The 
dynamic behaviors of a multi- span Euler-Bernoulli beam on one-sided point constraints was analyzed by using 
Hamilton’s principle and the assumed mode method[5]. Lee also considered the axial nonmoving compressive 
forces acting on the ends of the shaft and indicated that the effect caused the deflection of the shaft to increase and 
fluctuate significantly[6]. The dynamic behavior of a shaft subject to a moving deflection dependent load has been 
studied by Argento[7, 8], Huang and Chang[9]. The load represents the cutting force is varying in the turning 
process since the workpiece vibrates in the direction of the tool affecting the actual depth of cut. Phan et al.[10] used 
the finite element method to analyze the static deflection of the workpiece subject to the cutting force in turning, and 
boundary conditions were clamped-free, clamped-hinged and hinged-hinged. Generally, the FEM[10], Galerkin’s 
method (GM)[7–9], and mode superposition method (MSM)[1–6, 11-13] were employed to analyze the dynamic 
response of a single-span shaft. The Global Assumed Mode Method (GAMM) proposed by Shiau and Hwang[14] is 
employed in this paper. The mode shape functions used by GAMM are chosen as a series of polynomial functions. 
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Shiau et al.[15] introduced the transformation matrix constraining the boundaries of a single-span shaft to force the 
equations of motion to complete the geometric requirements. 

In this paper, the system equation of motion of a rotating shaft is formulated by Lagrangian’s approach with the 
combination of GAMM[14] and the transformation matrix[15] , which is derived to make the equation of motion for 
completing the boundary constraints. 

 

2. System equations of motion 

This paper presents the manufacture system of the shaft as shown in Fig. 1. Fig. 2 shows the configuration and 
coordinates of a rotating simply supported shaft with double moving cutting load. In this paper, the Timoshenko 
beam theory is used to model the rotating shaft. As shown in Fig. 2, two reference frames are adopted and they are 
the Newtonian reference frame X Y Z  and the rotating reference frame x y z . Both the X  and x  axes are 
collinear and coincident with un-deformed bearing centerline and O  is the origin at the middle of the shaft. The 
rotating frame rotates about the X  axis with a whirl speed of ;  is the rotating speed of the rotor system.  1F  
and 2F  are the cutting loads acting on the shaft and 1 , 2  are the skew angles between Y  direction and force 
directions. The deflections of any cross section of shaft include translations ( , ,U V W ) and rotations ( , ). By 
assumption, the deflections as functions of positions along the rotating axis x  and time t  can be expressed as: 

( , ) , ( , ) , ( , )
( , ), ( , )

U U x t V V x t W W x t
x t x t

        (1) 

With the GAMM [24], the associated deflections can be rewritten as 

1 1 1

1 1 1

1 1

1 1

( , ) ( ) , ( , ) ( )  , ( , ) ( )

( , ) ( ) , ( , ) ( )

Np Np Np
i i i

i i i
i i i
Np Np

i i
i i

i i

U x t a t x V x t b t x W x t c t x

x t d t x x t e t x
     (2) 

where ,  ,  ,i i i ia b c d  and ie  are time-dependent generalized coordinates, x  is the axial location of the shaft, 1ix  are 
the corresponding mode shape functions, and pN  is the number of polynomial terms. 
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           Fig. 1.  The manufacture system of the shaft               Fig. 2.  The coordinates of a rotating shaft with double cutting loads 

 

The derivation for equations of motion using the Lagrangian’s approach requires the calculation of the kinetic 
and potential energy of the system, which can be expressed in terms of the displacements. The kinetic energy sT  
and potential energy sU  of the rotating shaft are given by 
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where E  is the Young’s modulus, k  is the shear coefficient, G  is the shear modulus, rx  and lx  are the right and 
left end positions of the shaft, ,m UF  is the axial component of mF , 

mf
x  is the position of the cutting load mF ,  is 

the mass density, A  is the cross-sectional area of the shaft, dI  and pI  are the diametrical and polar mass moment 
of inertia, I  is the area moment of inertia of shaft. In this paper, at least those five parameters in the above are 
assumed as time depended in the cutting process, which are changed as the altering of the shaft radius. 
The virtual work of the moving force is 

2

, ,  
1
( )

m mwork m V f m W f
m

W F V F W   (5) 

where ,m VF , ,m WF  are the components of mF  in Y , Z  directions, respectively. 
Following the Lagrangian approach, the motion equation of shaft is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M t q t C t q t K t t q t F t      (6) 

Fig. 3 shows the configuration of the shaft with general boundary conditions as clamped-hinged beam conditions. 
The transformation matrix [15] is applied in this paper for the reason that the shaft does not complete the geometric 
constraints since the mode shape functions in the above are arbitrary functions. The geometric constraints of the 
clamped support and hinged support can be expressed as 

( , ) ( , ) 0, ( , ) ( , ) ( , ) 0,
( , ) ( , ) ( , ) 0, ( , ) ( , ) 0

l l l r l

l r l r r

U x t U x t V x t V x t V x t
W x t W x t W x t x t x t

  (7) 

 
Fig. 3.  The configurations of clamped-hinged rotating shaft 

 

Substituting ( , ) ( , ) ( , ) 0l r lV x t V x t V x t , ( , ) 0rx t  in Eq. (7) into Eq. (2), the geometric constraint equations 
for clamped-hinged condition can be expressed as: 

1 2{ } [ ]
p

T
N b Ib b b R b , 1 2{ } [ ]

p

T
N d Id d d R d   (8) 

where   

, 1 3 4{ } { }
p

T
I Nd d d d d  
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Base on the above transformation matrix, bR  and dR  can be obtained by considering the translation )(V  and 

rotation )(  to satisfy each boundary conditions. With the same formulations, the matrices aR , dR and eR  of 
each geometrical boundary can also be determined, respectively.  The system generalized coordinate vector }{q  in 
Eq. (6) can be rewritten as 

[ ] [0] [0] [0] [0] { }
[0] [ ] [0] [0] [0] { }

{ } [0] [0] [ ] [0] [0] [ ]{ }{ }
[0] [0] [0] [ ] [0] { }
[0] [0] [0] [0] [ ] { }

a I

b I

c II

d I

e I

R a
R b

q R R qc
R d

R e

  (9) 

And the system equation with associated geometric constraints can be represented as 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }T T T T
I I IR M R q R C R q R K R q R F   (10) 

 

3. Numerical results and discussions 

The dynamic response of a rotating shaft with general boundary condition subject to the double constant cutting 

load is investigated. Some parameters, such as the spin speed of the shaft, the moving velocity, and Rayleigh beam 

coefficient should be presented and described as the following symbols [6]. / crv v  is the non-dimensional 

moving velocity of the cutting load, where ( )crv L EI A . 0 /r L  is the Rayleigh beam coefficient for a 

circular cross section. 0r  is the radius of gyration. 0/  is the non-dimensional rotational speed, where 

2
0 ( )L EI A  is fundamental natural frequency of the stationary Euler- Bernoulli beam. 2 2EI /F L  is 

the Euler critical buckling load. / sU U , / sV V  and / sW W  are the non-dimensional deflections along the shaft due to 

the moving loads in Y  and  direction, respectively. sU  is the static deflection at the rigid end when the axial 

force is applied. sV  and sW  are the static deflections as the lateral force is applied at the midpoint of the shaft. The 

system parameters are considered as Lee[6] and Shiau et al.[15], the actual measurement data are not presented in 

this paper. 

In this paper, the cutting loads are assumed parallel in X Y  plane and move from the end of two sides to the 



391 W.C. Hsu et al.  /  Procedia Engineering   79  ( 2014 )  386 – 396 

middle of the shaft. m  represents the skew angle between Y  and force directions. The material properties and 

geometric dimensions of the shaft are given as: length 1.0 L m , density 37700 kg m , elastic modulus

207 E GPa , shear modulus 77.6 G GPa , shear coefficient 0.9k  and radius of the shaft 2r L [1, 5]. In 

the following cases, all the radii of static deflections sU , sV , sW  are selected with 0.2 . In order to analyse the 

dynamic response of this system, the numbers of GAMM polynomial terms pN  with clamped-hinged boundary 

condition are presented for the convergence analysis. In the process of the convergence analysis, the Rayleigh beam 

coefficient  is selected as 0.03 and rotational speed  is selected as 0. Table 1 shows the first three natural 

frequencies of the rotating shaft beam system with pN  from 8 to 13. Apply the convergence test results in this table, 

the number of pN  is selected as 12 in this paper. In the following cases, the parameters ,  are selected as 

0.2 , 2.5  and ,  are selected during 0.5 1.5 , 0 60 . Fig. 4 shows the configurations of the 

shafts, where r  is the radius of the shaft before manufacture, and R  is the radius after the manufacture. The 

abscissas in Fig. 5 and Fig. 6 are the positions of the cutting loads. In those figures, the solid lines mean the cutting 

load 1F  and the dashed lines mean the cutting load 2F . 

Table 1 The natural frequencies of shaft with clamped-hinged boundary condition ( 0.03 , 0 ) 
 Natural Frequency (rad/sec) 

Mode 1st 2nd 3rd Mode 1st 2nd 3rd 

Np=8 760 2448 5203 Np=11 760 2446 5052

Np=9 760 2447 5061 Np=12 760 2446 5052

Np=10 760 2446 5057 Np=13 760 2446 5052

 

 

nufacturebefore  ma
ufactureafter  man
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Fig. 4.  The configurations of the shafts before and after manufacture 
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(d) Double cutting forces with the different velocities 

Fig. 5.  The deflections of the shafts without time-varying mass effects subject to different manufacture velocities ( 0.2 , 2.5 , 30 ) 

3.1. Dynamic responses without time-varying mass effects 

In this case, the time-varying mass effects are not considered temporarily. Both the single cutting load and double 
cutting load are presented individually. Fig. 5 shows the deflections of the shafts with different manufacture 
velocities. The skew angles are selected as 1 2 30 . By comparing Fig. 5(a) with Fig. 5(b), the double cutting 
loads can reduce the deflections in each X , Y  and Z  directions obviously. As shown in Fig. 5(a) and Fig. 5(b), the 
change in manufacturing velocities will alter the deflections of shafts, but the deflections are not absolutely 
proportional directly or inversely to velocities. In Fig. 5(a), the maximum deflection occurs at  0.5  in Y  and Z  
directions. However, as the shown in Fig. 5(b), the maximum deflection under double forces occurs at 0.3 . In 
Fig. 5(b), a decrease in manufacture velocity will increase the frequencies of the deflections, which means the 
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roughness on the shaft surface will be increased at the same time. Fig. 5(c) and Fig. 5(d) show the deflections with 
different manufacturing velocity combinations. In Fig. 5(c) and Fig. 5(d), most of the deflections in Y  and Z  
directions are positive values if 1  are larger then 2 . And most of the deflections in Y  and Z  directions are 
negative values even though 1F  and 2F  act on the shaft in opposite directions if 1  are smaller then 2 . 
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Fig. 6.  The deflections of the shafts without time-varying mass effects subjected to different manufacture angles ( 0.2 , 2.5 , 0.5 ) 
 

Fig. 6 shows the deflections of shafts under different manufacture angles without time-varying mass effects. In 
Fig. 6(a) and Fig. 6(b), both the differences of the deflections in Y  and Z  directions during 300  are 
unobvious. For the reason that the components of the loadings in Y  direction are similar when the skew angles are 
small, the altering of skew angles just changes the magnitude of the cutting force in Y  direction. In Fig. 6(a) and Fig. 
6(b), the component of the cutting force in Y  direction is decreased with the increase of skew angle. The deflections 
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in Y  and Z  directions are decreased at the same time, but situations are opposite in Fig. 6(c) and Fig. 6(d). Fig. 6(c) 
and Fig. 6(d) show the deflections with different skew angle combinations. When 1  keeps the same value, the 
deflections in each positive directions are increased with the increase of 2 . When 2  keeps the same value, the 
deflections in each negative directions are increased with the increase of 1 . The reason is that the restraining effects 
by the double cutting force are decreased. 

 

s
U

U
/

Lx /

5.1
1.1
7.0
5.0

Lx /
sV

V
/

s
W

W
/

Lx /  
(a) Single cutting force 

s
U

U
/

Lx /

5.1
1.1
7.0
5.0

21

21

21

21

sV
V

/

Lx /
s

W
W

/
Lx /  

(b) Double cutting forces with the same velocity 

s
U

U
/

Lx /

5.1 ,5.0
7.0 ,5.0
3.0 ,5.0
5.1 ,3.0
7.0 ,3.0
5.0 ,3.0

21

21

21

21

21

21

sV
V

/

Lx /

s
W

W
/

Lx /  
(c) Double cutting forces 

s
U

U
/

Lx /

7.0 ,5.1
5.0 ,5.1
3.0 ,5.1
5.1 ,7.0
5.0 ,7.0
3.0 ,7.0

21

21

21

21

21

21

sV
V

/

Lx /

s
W

W
/

Lx /  
(d) Double cutting forces 

Fig. 7.  The deflections of the shafts with time-varying mass effects subject to different manufacture velocities ( 0.2 , 2.5 , 30 )
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Fig. 8.  The deflections of the shafts with time-varying mass effects subject to different manufacture angles ( 0.2 , 2.5 , 0.5 ) 

3.2. Dynamic responses with time-varying mass effects 

The time-varying mass effects are considered in the following cases. In this case, the radius R  in Fig. 4 is 
selected as 0.8r . Comparing the deflections with/without time-varying effects, the deflections subject to single 
cutting force in Y  and Z  directions are increased when the time-varying mass effects are considered. But the 
deflections subject to double cutting force are decreased when the time-varying mass effects are considered. It 
means that the restraining effects by the double cutting force are obvious when this mass effects are considered. In 
Fig. 7(a), the manufacture velocity is the maximum in this case, the deflections have the minimum values. In Fig. 
7(b), the deflection in Y  direction also has the minimum value when 1.5 , but the deflection in Z  direction is 
the maximum under the same manufacture velocity. Therefore, no matter the time-varying mass effects are 
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considered or not, the deflections of shafts are not absolutely proportional directly or inversely to manufacture 
velocity. By comparing with the deflections in Fig. 5(c) and Fig.7(c), the deflections with mass effects in Y  
direction are larger when 1 2 , though mass effects are not obvious as the cutting force is single. But the 
deflections in Z  direction are decreased when 1 2  such as 1 0.7 , 2 0.3  or 1 0.7 , 2 0.5 under the 
mass effects are considered. Comparing Fig. 7(c) with Fig. 7(d), the deflections of the left side for the shaft are close 
during the initial manufacture process when 1  is large, but this situation is not obvious when 2  is small. 

Fig. 8 shows the deflections of shafts under different manufacture angles with the mass effects. As shown in Fig. 
8(a) and Fig. 8(b), the deflections are increased when the time-varying mass effects are considered. But the 
deflections in Z  direction are decreased, as shown in Fig. 8(c) and Fig. 8(d), when the mass effects are considered 
under 1 2 . The effects of skew angle are small when the cutting forces are close to vertical of the shaft. As the 
shown in Fig. 6 and Fig. 8, the deflections of  the shaft are close during the initial manufacture process when 
different skew angle combinations are presented, no matter the time-varying mass effects are considered or not. 

 

4. Conclusions 

In this paper, the dynamic behaviors of a rotating shaft subject to the double moving force and time-varying mass 
effects are analyzed to simulate machining process of the double turret CNC lathes. The mass of the rod is reduced 
gradually during cutting process. The transformation matrix based on global assumed mode method is proposed to 
derive the equation of motion for this system under boundary geometric constraints. Varying manufacture velocity 
will change the deflections of the shaft, but deflections are not absolute proportional directly or inversely to velocity 
when the manufacture is under the double cutting force. The deflections of the shaft subject to the single cutting 
force are increased when the time-varying mass effects are considered, but they are decreased as this shaft is 
manufactured under the double cutting force. It means that the deflections of the shaft can be decreased effectively 
by considering the double cutting force, especially when the time-varying mass effects are considered. 
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