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Abstract

Daniels (1988) started an investigation of the duality between selection hypothees farand
selection hypotheses for the Pixley—Roy spac¥ dbaniels, Kunen and Zhou (1994) introduced the
“open—open game”. We extend some results of Daniels (1988) by connecting the relevant selection
hypotheses with game theory (Theorems 2, 3, 14 and 15) and Ramsey theory (Theorem 10, Corollary
11, Theorem 23 and Corollary 24). Our results give answers to some of the questions asked by
Daniels et al. (1994)1 2000 Elsevier Science B.V. All rights reserved.
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In “Combinatorics of open covers”, parts -1V we investigated some of the combinatorial
consequences associated with the fact that certain topologically significant families of sets
satisfy certain selection hypotheses. We now develop this further.

The two selection hypotheses featured here are as follows4laetd 5 be collections
of subsets of an infinite set. Then (A, B) denotes the hypothesis: For every sequence
(0, n € N) of elements of4 there is a sequenc#,: n € N) such that foreach 7, € O,
and{T,: n € N} is an element o5. The games1(A, B) associated with this hypothesis
is played as follows: ONE and TWO play an inning per positive integer. Imthénning
ONE first chooses a s@, € .4, and TWO responds with &, € O,,. TWO wins a play
O1,Th,...,0,,T,,...if{T,: n € N} isin B; otherwise, ONE wins.

The symbolSsin(A, B) denotes the second selection hypothesis: for every sequence
(0,: n € N) of elements of4, there is a sequendd},: n € N) such that for each T,
is a finite subset oD, and| ;2 T, is in B. The gameGsin(A, B) associated with this
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hypothesis is played as follows: ONE and TWO play an inning per positive integer. In the
nth inning ONE first chooses afl,, € A, after which TWO chooses a finite sEt C O,,.
TWO wins aplayO1, Tx, ..., Oy, Ty, ... if Uy—1 T, € B; otherwise, ONE wins.

Let (X, ) be a topological space. An open coveof X is anw-cover if X ¢ U4 and for
each finite sef” C X, there is al/ € U such thatF C U. The examples ofd and B that
are studied in this paper are as follows:

e O: the collection of all open covers of;

e £2:the collection ofw-covers ofX;

e D: the collection ot/ < r with | JU/ dense inX;
and two more collectiong; andDy;, which we define later. The most important other item
regarding notation is that we use the symiadio mean “is gpropersubset of”.

The paper is organized as follows: First we st@gy(.A, ) for appropriate choices o4
andB from the preceding list. Next we discuSg(A, B).

1. Sin(D, D) and Ssin(Dy, Dg)

In [4] the authors introduce a gan® which is played as follows: ONE and TWO play
an inning per positive integer. In theh inning ONE choose®),,, a maximal family of
pairwise disjoint open sets. TWO responds with a finite subset 0D,,. A play 01, T1,
ety O, Ty, ... Of G7 is won by TWO if |2, T, € D; otherwise, ONE wins. Since for
eachl/ € D there is a pairwise disjoint family € D which refined/, one can show:

Lemma 1. ONE has a winning strategy &7 if, and only if, ONE has a winning strategy in
Giin(D, D). TWO has a winning strategy iy if, and only if, TWO has a winning strategy
in Gfin(D, D).

Thus, the study o7 is the same as the study Gfin(D, D) which, according to the
following theorem, amounts to a study of the selection hypott&giD, D).

Theorem 2. A topological space satisfiegin(D, D) if, and only if, ONE has no winning
strategy inGsin(D, D).

Proof. The implication that if the space satisfi8s,(D, D), then ONE has no winning
strategy in the gameésin(D, D) requires proof. The argument in the proof of Theorem 10
of [6] can be adapted to do this. We give only a brief description.

First, Siin(D, D) implies that each element @& has a countable subset which isZn
(incidentally, the latter statement is equivalent to saying that the cellularity of the space is
countable). We may further restrict our attention to strategies of ONE which calls in each
inning on ONE to play an ascendirgsequence which is i®: If ONE had a winning
strategy, ONE would have one like this. Similarly we may restrict ourselves to strafégies
for ONE which have the property that(¥1, ..., V,) is a finite sequence of finite families
of open sets, then each elementtdy, ..., V,) containd J(U;_; V).
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Let (X, r) be a space with propers¢in(D, D) and letF be a strategy for ONE which has
the properties in the previous paragraph. Define a fagiily. © € <“N) of open subsets
of X as follows:Uy = 0. (U,: n € N) enumerates' (4), ONE's first move, in ascending
order. For eacluy, (Uy,,,»: n € N) enumerates'(U,,) in ascending order, and so forth.
Then this family of open sets has the following properties for each

(1) if m <nthenUy ~y C Uy ~y;

(2) foralln, Uy C Uy—~p;

3) {Us~n: neN}isinD.

Then define for each andk:

" Uy, ifn=1,
Up = { (MWUs~x: 0 €™ INHN U,’j_l otherwise.

One then shows by induction amn that for all (i1, ...,i,) with maxii,...,i,} > k,
,,,,, i,» This implies that eaclt/;! is an open set, so thét, = {U}': k € N} is
an ascending chain of open sets. Next one shows by inductientaat for each nonempty
open setU there are only finitely many of lengthn with U N U, = @. This means that
eachlt, isinD.

Apply Ssin(D, D) to the sequencé/,: n € N). Since eacly/, is an ascending chain this
gives for eactn aU; €Uy, suchthafU;': n € N}isinD.

Finally, observe that since for each U,’jn C Ux,,..k,» the sequence of moves
Uiy Uiy ky» - - - by TWO defeats the strategy. O

For topological spacéX, r) PR(X) denotes the collection of nonempty finite subsets
of X. ForS € PR(X) and an open sétf C X, [S, V] denote§T s PR(X): SCT C V}.
Since the intersection of two sets of the fofh V] is again such a set, the collection
of all such subsets ?#R(X) is a basis for a topology, denot@®R(z), on PR(X). Then
(PR(X), PR(7)) is the Pixley—Roy space @, t). Most of the timer will be clear from
context and we shall omit bothandPR(z). If X has a countable base, theR(z)\{?}
is a union of countably many sets, each with the finite intersection property; this implies
that PR(X) has countable cellularity. Having countable cellularity is equivalent to: each
element ofD has a countable subset which isIin

It is not in general true that if a space has prop&#y(O, D), then it has property
Siin(D, D): If X is an uncountable discrete space then its StGeeh compactification
B(X) satisfiesSiin(O, O) and thusS;in(O, D), but does not satisfGsin(D, D) as is
witnessed by the elemefifx}: x € X} of D for §(X). In [3] Daniels identified exact
circumstances under which, f&r C R PR(X) would satisfyS;in (O, D).

Theorem 3. If the Pixley—Roy space of a subseffosatisfiesSsin(O, D), then it satisfies
Sfin(D, D)

Proof. Let X be a set of real numbers such tHRR(X) satisfiesSsin(O, D), and let
(U, n € N) be asequence of elementddfor PR(X). Since when replacing each element
of U, with the basis elements contained in it we still have an elemeM®,adnd since
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Siin(D, D) for sequences aduchelements ofD implies Siin(D, D), we may assume that
eachl4, is of this form.

SincePR(X) has countable cellularity we may assume that déclis countable. Let
(Bn: n € N) bijectively enumerate the set of unions of finitely many elements from
a countable basis oX. If each elements, V] of a U, is replaced by the countably
many element$S, B,] whereS C B, C B, C V, then we obtain once again an element
of D which refineslt,,. Thus, we may further assume that ed¢his countable, that
each element of eadl, is of the form[S, B,,], and that for eachsS, B,,] € U, the set
{Bj: SC B; C Bj C By} is anw-cover of B,,. By Theorem 2A of [3] and Theorem 3.9
of [8] X has property&iin(£2, £2), and thus ever¥,-subset (in particular each,) has
propertySsin($2, £2).

Enumerate eadli, bijectively as([S),, U).]: m € N), and choose a partitiaiY,,: n € N)
of N into pairwise disjoint infinite sets. For eagland for eachn € Y, define:

Vi ={U{": U CU" C By}
Then(V,,: m €Y,) is a sequence ab-covers of B,. Applying Ssin(£2, £2), we find for
eachm afinite sedV,, € V,, such that for each Umeyn W,, is anw-cover of B,,. We may
for eachm write W,, = {U}": k € F,,} whereF,, is a finite subset oN. For eachn put
Gm =[S, U] k € Fy}, afinite subset aft,,.

Thenl;,_; Gn is in D. To see this, consider any nonempty basic open suiSs&t] of
PR(X). Then choose, such thatS € B, C V. For thisn, {J,,cy, Wn is anw-cover of
By,. Choose am: € Y, and ak € F,, such thatS C U}" C B,. Then[S]", U}"] € G, and
(S, VIN[SI, US1#9. O

The symbolDg, denotes the collection &f € D such that: no element &f is dense, but
for every finite setF of nonempty open sets, there idJac U such that for eaclt € F,
U N F # §. Each of the hypothese&in(D, D), Siin(Dg, D) and Siin(Dg, D) implies
that X has countable cellularity.

Theorem 4. A topological space has proper8in(D, D) if, and only if, it has property
Stin(Dg2, D).

Proof. We must show that if a space has propesty(Dy, D), then it has property
Siin(D, D). Thus, letX be such a space and Ig1,: n € N) be a sequence frof for it.

We may assume that eath) is countable; le{U}': k € N) enumeratés,. For eachn
define

vnz{ Jus: keN}.
J<k
If there is some: for which V), contains a dense subset Xf nothing more is required.
Thus, we may assume that eaghis in Dy, . Applying the fact that each, is an ascending
chain and the propert$:in(Dg, D), choose for eacth a k, such that the sequence
(U<, Uj: neN)isinD. Then for eachn G, = {U7: j < k,} is a finite subset off,
andJ,cnyGnisinD. O
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Corollary 5. If a space has propert$sin(Dg2, Dy2), then it has propertgsin(D, D).

Through | do not know the exact relationship between the classes of spaces having
propertySiin(D, D) and of spaces having the propesiyn (D2, Dy2), | have the following
partial descriptions in Theorems 6 and 7.

Theorem 6. If each finite power of a space has propesiy, (D, D), then that space has
propertySiin(Dg, Ds2)-

Proof. Let X be a space as in the hypothesis andlgt n € N) be a sequence froRg;
for X. Let (Y,,: m € N) be a partition ofN into pairwise disjoint infinite sets.

Fix m. For eachw in Y,,, putV, = {U™: U € U,}. Then(V,: n € Yy,) is a sequence
from D for X™. Apply Siin(D, D) for X™ and select for each € Y,, a finite setH,, C V),
such thaUnerH,, isin D for X™. For eachm € Y,,,, putG,, ={U: U™ € H,}.

Doing this for eachn gives rise to a sequenc§,: n € N) of finite sets such that for
eachn G, CU,. To seethat ),y G, is in Dy, for X, consider the finitely many nonempty
open subset¥y, ..., Vi of X. ThenV = V1 x --- x V; is an open subset of*. Since
Uney, Hn is in D for Xk, we find ann € Y, and aU* € ‘H,, with V N U* # ¢. But then
UegG,andforl<i <k, UNV;#40. O

| do not know to what extent the converse of Theorem 6 is true. To formulate a partial
converse we introduce the following notion: The sequaif,e n € N) is adiscriminating
sequence foK if no finite union of elements df; is dense inX and for each:
(1) B, is arx-base forX and
(2) for eachU € B, there is aV € B,41 such that for allW € B,,2 with W NV #£ @,
WCUu.

Theorem 7. If a space has a discriminating sequence and prop&ft(Dg, Dg), then
each finite power of the space has propeiy(D, D).

Proof. Let X be a space as in the hypothesis and(l&f: » € N) be a discriminating
sequence. We show thai? has propertySsin(D, D); the proof for higher powers is
analogous.

First, we describe a procedure for associating with an eletdeaitDg, for X2 and an
n € N an element’ (U, n) of D, for X. This specific procedure is used below.

Thus, fix € Dg for X? and fixn € N. For F a finite set of nonempty open subsets
of X, do the following:

For eachF € F choose aBr € B such thatBr C F, and if H € Bory1 has
nonempty intersection wittBr, then H C F. Put ¢,(F) = {Br: F € F} and
Yn(F) ={Br x Bg: F,G € F}.

Fix an A € U such that for eachD € y,,(F) AN D # (. Then choose for
R,S € ¢o(F) setsC1(R, S, A),Co(R, S, A) € Bom such thatCi(R, S, A) C R,
C2(R, S, A) C S,andC1(R, S, A) x Co(R,S,A) SR x SN A.
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Then define
L(F, A= J{Ci(R, S, A): i €{1,2}, R, S € pu(F)}.

Notice that for eaclF € 7, FN T, (F, A) #@. ThusX (U, n), the collection of all
setsl,(F, A) generated like this, is i, for X.

By Theorem 4 we may start with a sequerig: n € N) in Dy, for X2, Let (Y,: n € N)
be a partition ofN into pairwise disjoint infinite sets such that for eachl, ...,n}NY,
=0.

With the procedure as described above, look for eaahthe sequence” (U, n): m €
Y,). Each of these sequences is a sequence figmfor X. Applying the property
Siin(Dg, Dg) to each, we find for eac € Y, a finite setH,, € X U,,,n) such that
Umey, Hm is in Dg for X.

For eactm and eachn € Y,,, H,, is of the form{I},(F", AT"). i € F,,}, whereF,, CN
is a finite set, and where

Ly (F" A = U {Ci(R,S,AT"): R, S €¢u(F"), je{l 2}}.

Now for eachi € F,, chooseC!" € U,, such that forj, £ € {1,2} andR,S,T,U € F/",
CM"N(C;(R, S, A™) x Co(T, U, A™)) # @. Put

Gn ={C": i € Fy}(CUp), meY,.

We show that J,, .y Gm is in D for X2. Let U x V be a nonempty open subset ¥f.
We may assum& NV =@ andU, V € By for some fixedk. Choose/y, Jy € By so that
JuCU,JycV,andforallW,R e By, With WNJy B andRNJy #0, WU
andRC V.

Choosen > 2. Since|J,,,cy, Gn is in Dg for X, choosem € ¥, and T € G, with
TNJy#WandT NJy #@. ThenT is of the formrI, (}"" A’”) fora j € F,,. Thus,
on account of the definition of“,,(}"" A’”) chooseRU,SU,RV,SV € ¢n(5’-'m) and
iy,iv € {1, 2} suchthaC;, (Ry, Su, A’")OJU # @ andC;, (Ry, Sy, A’")OJV #* IZJ Since
$n(F'") € Bze andCi(R, S, A) € By and F<n<2"<2? we have

Ciy (Ry, Su, A7) cU and Ci,(Ry,Sy,AT)CV.
But we haveC’/?1 € G, and

C7' N Ciy Ry, Sy, A7) x Ciy Ry, Sy, A7) # 0,
sothatC’j" NUxV @Y. O

Problem 1. Find a space that satisfi8g,(D, D) but notSsn(Dg, Dg).

Souslin lines are likely candidates for this, because they s&ig®, D), but (as is well
known) their squares do not have countable cellularity, and thus do not have the property
Siin(D, D). To see that a Souslin line has propesiyD, D), argue as follows: LetL, <)
be a Souslin line. Then it has countably many maximal intervals which have countable
dense subsets—these may be ignored when che&kif1g, D) since the even-positioned
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terms from a given sequence of elementsZofmay be used to satisfy the selection
hypothesis for these intervals. Thus assume that the line has no separable intervals, and thus
has no isolated points. Let a sequeliig: n € N) of elements ofD for L be given. We
may assume that eatf) consists of countably many intervals, $ay= {(a;, b}): k € N}.
DefineF to be the set of nonempty open intervalwith the property that for eachthere
isak with I € (a}/, b). Each nonempty interval froth contains an element d¢f, since the
set{a): k,n e N}U {b}: n, k € N} is nowhere dense if. Thus,F is an element oD, as

is any maximal pairwise disjoint subset®f Let.A be a maximal infinite pairwise disjoint
subset ofF. ThenA is in D. SincelL is a Souslin line,A is countable, sayA,: n € N)
enumerates!. Now recursively choose for eaeha k, such thatd,, C (a,. by,). But then
(<a£,,,b;';>i n € N) is a selector fotlf,,: n € N), and is inD.

Problem 2.2 Is it true that if a space has propesyn(Dg, D), then each of its finite
powers has propertisin(D, D)?

Theorem 8. If the Pixley—Roy space for a set of real numbers has prop&iityD, D),
then it has propertysin(D, D) in each finite power.

Proof. Let X be a set of real numbers for whiefR(X) satisfiesSsin(D, D). According to

Theorem 2A of [3] and Theorem 3.9 of [8], every finite powerb&atisfiesSsn(£2, 2).

For finite powers of sets of reals open subsets inherit prog&itys2, £2). Since the

topology of finite powers oPR(X) can be decomposed into countably many families, each

with the finite intersection property, all finite powersrRR(X) have countable cellularity.
Let (B,: n € N) enumerate the set of finite unions of elements of a countable basis for

When determining iPR(X)" has propertyssin(D, D), it suffices to consider elemeniis

of D whose members are of the form

[S1, Bml] X oo X [Sp, Bm,,]

and which have the additional property that for e@sfy B,] x -+ x [Sn, B, ] In U,
the set{B;, x --- x B;,: 1< j<n— §; C B;, C Bi; C By,} is anw-cover for B,,, x
.-+ X By, . Countable cellularity allows us to further assume that tli¢/seare countable
sets.

Let U4;: t € N) be a sequence fro®® for PR(X)". We may assume that eaé¢h
has the properties just described. Enumerate éadbijectively as([S,i’l, B,i’l] X -e X
[S}{’n, B,’(’n]: k eN). Also let(Yo,,...m,: m1,...,m, € N) be a partition ofN into pairwise
disjoint infinite subsets.

For each(my, ..., m,) and for eaclk € Y,,,,, .. m, put

k k. . Tk
Vi={Bjix---xBj, 1<i<n= B}, CBu]}.

Then Vi: k € Yuy,...m,) IS @anw-cover of By, X --- X By, . Apply Siin(£2, £2) to the

sequencéVy: k € Yy, .. .m,) Of w-covers ofB,,, x --- x By, , and select for eacha finite

2 Just showed in [7] that the answer is No: He ugedo construct a Souslin line which has property
Siin(Pg2, D).
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setHy € Vi such thaUkEym1 .. Hk is anw-cover of B, x --- x By, . For each such
write: -

Hi={B}yx---x B}, j€F}
whereF; is afinite set, and then set
Ge= {851 B ) x - x (8K BE 0 j e R}

Then the sequendé€y: k € N] is a sequence of finite sets such that for each < Uy,
andJyen Gk is in D for PR(X)". O

If ONE has no winning strategy in the gamgn(Dy,, Dy;) then the space has property
Siin(Dg, Dg); itis not clear if the converse is true (see Problem 3); here is a partial result:

Theorem 9. If every finite power o has propertySiin(D, D), the ONE has no winning
strategy in the gamé&iin(Dg, Dy).

Proof. We may assume that” N V" = () wheneverm # n. Each X is clopen in
Y:=) X", sothaty has propertyssin(D, D). According to Theorem 2, ONE has
no winning strategy in the gam@sin(D, D) on Y. We now use this information to show
that ONE has no winning strategy Giin(Dyg2, Dg2) on X.

Let F be a strategy for ONE iGin(Dg,, Dg;) on X, and define a strategy for ONE in
Giin(D, D) onY as follows. ONE'’s first move iiGsin (D, D) onY is:

G(Y)={U": UeF(X), neN}

since F(X) is in Dg for X, G(Y) is in D for Y. If TWO responds with a finite set,
T1 C G(Y), then ONE responds as follows: first, sat= {U € F(X): (An)(U" € T1)}
and treat this as a move for TWO in(Dg, D) on X; then computeF'(S1), and
respond irGsin (D, D) onY with G(T1) = {U": U € F(S1), n € N}. If TWO now responds
with T> € G(T1), then first computeS, = {U € F(S1): (3n)(U" € T»)}; then compute
F(S1, S2), and playG (T1, T2) = {U": U € F(81, S2), n € N}, and so on.

SinceG is not a winning strategy for ONE, fix a play

G(Y),T1,G(T1), T2, G(T1, T2), T3, . ..

which is lost by ONE; this means);c ; 7, € D for Y. For each: putS, = {U: (3m)(U™ €
T,)}. Then F(X), S1, F(S1), Sz, F(S1, S2), S, ... is a play lost by ONE in the game
Gfin(Da,De)onX. O

Problem 3. Is it true that if a space satisfi&®in(Dg, D), the ONE has no winning
strategy inGfin(Dgo, Dgo)?

For collections4 andBs, . .., BB, of subsets of a set and forn, k € N, the symbol

A— (Bl,...,Bm)Z
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denotes that for eacld € A and for eachf:[A]" — {1,2,...,k} there is ani €
{1,2,...,k} and a subseB of A in B; such that the value of everywhere oB]" isi.
We say thatB is homogeneous of colarfor f.

For exampleDg, — (DQ)%, which means that if an elementDf; is partitioned intck
pieces, then there is a piece which is a membePgf is true for eachk € N. A second
relevant partition relation is denoted by

A— [B?

and means that for each € A and for each functiory :[A]2 — {1,...,k} there is a
subsetB of A in B, a finite-to-one functiory with domain B, and ani € {1,2,...,k}
such thatf ({a, b}) =i whenevera, b € B andg(a) # g(b). This partition relation was
introduced in [2].

In Theorem 10 below we use the hypothesis that every elemegdfias a countable
subset inDg. One can show that if each element®$ has a countable subsetih then
each element oD has a countable subset which isTh One can also show that if each
finite power of a space has countable cellularity, then the space itself has the property that
each element dPg, has a countable subset which i, . Thus, Martin’s Axiom implies
that countable cellularity is equivalent to each elemeribgf having a countable subset
which is inDg,.

Problem 4.3 If each element oDy, for X has a countable subset which is an element
of Dy, does it follow that each finite power &f has countable cellularity?

Theorem 10. Let X be a space such that each elementpf has a countable subset
in Dg;. Then the following are equivalent

(1) X satisfiesSsin(D, D).

(2) For eachk e N, X satisfiesDg — [D12.

Proof. (1) = (2) Let/ be an element oD,. We may assume thadf is countable.
Enumerate it bijectively agU,: n € N). Let k € N as well as a functiory : U? - {1,
..., k} be given. Construct a sequenéf, i1), (U, i2), ... SO that

Q) Ur1DU2D---DU, D---areinDg;

(2) eachi,isin{1,2,...,k};

3) Uy ={U,: n>21andf({U1, U,}) = i1}, and for eachn

Un1={Un €Uy: m>n+1andf({Ups1, Un}) = ins1}-

The partition relatiorDg, — (DQ)% is used repeatedly to do this. Then, joe {1, ..., k}
putC; ={U,: i, = j}. Then partition eacly, as follows:

Uy = U, NCHU---U U, NCp).

3In [7] Just shows that the answer is No: The counterexample he found for Problem 2 is also a counterexample
for Problem 4.
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For eactn we find aj,, such thats, NC;, isinDg,. Fix j such that for infinitely many we
havej, = j. Since the sequence &f;’s is descending this means that for eaclve have
Vi :=U,NC;inDg.Let(U,: k € N) be the list, in the enumeration we chose earlier, of
U,’swithi, = j.

Look at the descending sequenégg > V,, D ---. This is a sequence iR . Define a
strategyF for ONE in the gamessin(D, D) as follows. Withn, minimal with U, € V,,,
play F(X) =V,,. If TWO chooses the finite séy C F(X), computen, = maxn: U, €
T1}, and then playF(T1) = V,,\T1. If TWO now chooses the finite sd, C F(Ty),
computen,, = max{n: U, € Tz}, and playF (T1, T2) = Vniz\(Tl U T»), and so on.

By Theorem 2 F is not a winning strategy for ONE. Look at dfiplay lost by ONE. It
is of the form

Vnkl , 1, Vnkz , 12, V”k3 I3, ...

where ny, < ng, < kg, < --- and if k < ¢, then for all U, € Ty and U, € V,,,
f{Un, U,}) = j. The functiong defined on J, .y 7 so thatg(U) =k only if U € Tj
witnesses thdtJ,, . 7, is eventually homogeneous fgr.

(2) = (1) We use a partition that has been used several times in part Il and other related
papers. It suffices to show that the partition relation implies ¥hbasSsin(Dye, D). Thus,
let (U,: n € N) be a sequence frorf,;. Eachi{f, may be assumed to be countable; let
(U}: k e N) enumeraté/, bijectively. Define

V:={UINU n ke N\{#}.
ThenV is in Dy,. For each element df choose a representation of the foti N U}
Define f : [V]2 — {1, 2} by:
1 ifny=ny,
2 otherwise.
Let W C V be an element oD which is eventually homogeneous fgr A case analysis

shows thaV is eventually homogeneous of color 2, and this in turn implies bt
utn U} € W} contains finitely many elements from edah. O

F{ud nug vt nupz)) =1

For a Tychonoff spacé& the set of continuous functions froxi to R is a subset of
the Tychonoff product spade® of X copies ofR. C,(X) denotes this set of continuous
functions, endowed with the topology it inherits from this poweRoBeing a topological
vector spaceC,(X) is homogeneous. This means that determining if a pgiatC, (X)
is in the closure of the subsdt of C,(X) is equivalent to determining #, the function
which is zero everywhere oK, is in the closure of a corresponding set. Define

2,:={ACC,(X)\{o}: 0 € A}.

Corollary 11. Let X be a set of real humbers. Then the following statements are
equivalent

(1) each finite power oK has propertySsin(O, O);

(2) X has propertySin(£2, £2);

(3) ONE has no winning strategy in the gam@gn(£2, £2) on X;
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(4) for X and eachk € N, 2 — [21%;
(5) Cp(X) has propertySiin(£2,, £2);
(6) ONE has no winning strategy in the gam®gn(£2,, £2,) onC,(X);
(7) for eachk € N, 2, — [£2,1%;
(8) PR(X) has propertyssin(O, D);
(9) PR(X) has propertySsin(D, D);
(10) ONE has no winning strategy in the ga@g,(D, D) on PR(X);
(11) for eachk € N, PR(X) satisfiesDg — [D1%;
(12) PR(X) satisfiesSinp, Dgo)s
(13) ONE has no winning strategy in the ga@gh(Dy, D) OnPR(X);
(14) for eachk € N, PR(X) satisfiesDp — [Dg12.

Proof. (1) < (2) is proved in Theorem 3.9 of [8]. (> (5) is proved in Theorem 4 of [1].
(1) < (8) is proved in Theorems 2A and 2B of [3].

(2) & (4) is proved in Theorem 6.2 of [8] and Theorem 10 of [11].42)3) is given in
Theorem 5 of [12].

The equivalence of (5), (6) and (7) were given in [12]. The equivalence of (8) and
(9) follows from Theorem 3. The equivalence of (9) and (10) follows from Theorem 2.
The equivalence of (10) and (11) follows from Theorem 10. The equivalence of (10)
and (12) follows from Theorems 5, 8 and 6. The equivalence of (12) and (13) follows
from Theorems 9 and 8. The equivalence of (14) and (12) are proved analogously to
Theorem 10. O

2. The cardinal number?

Theorem 12. For an infinite cardinal numbet the following statements are equivalent
(1) « <0;
(2) for eachT1-space of countable cellularity and-weightx, ONE has no winning
strategy in the gamé&sin(D, D).

Proof. (1) = (2) Let F be a strategy for ONE d&in(D, D) on the spac& of countable
cellularity andr -weightk. Let B be ax-base of cardinality for X. By selecting in each
inning from ONE'’s play a countable subset which is an elemef?,dfuild the following
array of open subsets &f: (F,: n € N) enumerates the elementBfselected fron¥ (9),
ONE's first move. For eachy, (Fy,, »: n € N) enumerates the elementDfselected from
F{F;j: j <ni}). For eachny andnp, (Fyyn,.: n € N) enumerates the element of
selected fromF({F;: j < ni}, {Fu,,j: j < n2}), and so on. The family of;, o € =N
has the property that for eaeh { F, ~,: n € N} isinD.

For eachB € B define fp so thatfp(1) = min{k: B N F; # ¢} + 1, and for each,
fe(n+ 1) is the leasin > fz(n) such that for every in S/80W(1 | fp(n)} thereis a
j <m with BN F,~; # @. Then eachf; is strictly increasing angz (1) > 1. Next, for
eachB definegp by g5(1) = f5(1) and for alln, gg(n + 1) = fp(gp(n)). On cardinality
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grounds(gp: B € B} is not cofinal in"N. Choose a strictly increasingsuch that for each
B, {n: gg(n) < g(n)} isinfinite. For each let h(n) be thenth iterate ofg, computed at 1.
Define the sets

n={F;: j<hD} Tot1={Fa)...hm.j: J <h(n+1)}.

ThenF (9), T1, F(Ty), T2, F(T1, T), ... is a play. We claim ONE lost it.

For look atB € B. Choosem minimal with gg(m) < h(m). If m = 1, then fp(1) =
g1 < h(D) = g(1), and soB N (| JT1) # @. Thus, assume thai is larger than 1, say
m =k + 1. Then we have

k<h(k) < fEQ)=gptk) <gpk+1) = fEQ) <h(k+1)

which means thai: (1), ..., h(k)) was one of the sequences considered V\fya(rfgfl(l)
+ 1) was defined. Sincgg (f5 (1) + 1) < fa(fE(1)), we see thaB N (U T) # 9.

(2) = (1) Let X be a set of real numbers of cardinality Then PR(X) hasz-
weight « and has countable cellularity. It follows that ONE has no winning strategy in
Giin(D, D). By Corollary 11X has propertyiin($2, £2). We showed that every set of reals
of cardinalityx has propertysin(£2, £2). By Theorem 4.6 of [8] this means< 0. O

3. S1(D, D) and S1(Dg, Do)

In [4] the authors study a gam@&; which is played as follows: ONE and TWO play
an inning per positive integer. In theth inning ONE choos®),,, a maximal family of
pairwise disjoint open sets. TWO responds withe O,,. A play 01, T1, ..., 0y, Ty, ...
of G1 is won by TWO if{T,,: n € N} € D; otherwise, ONE wins. One can show:

Lemma 13. ONE has a winning strategy i®; if, and only if, ONE has a winning strategy
in G1(D, D). TWO has awinning strategy @y if, and only if, TWO has a winning strategy
in G1(D, D).

Theorem 14. A topological space satisfiex (D, D) if, and only if, ONE has no winning
strategy in the game1(D, D).

Proof. We must show that if a space has propesiyD, D), the ONE has no winning
strategy in the gam@1 (D, D). The proof is a minor variation of that of Lemma 2 of [9]—
we give an outline for the reader’s convenience.Xdie a space with propersfin(D, D).
Let F be a strategy for ONE in the gan® (D, D). We may assume that in each inniAg
calls on ONE to play a countable element/af

Define the array/,, o in =®N, as follows:(U,: n € N) enumerates ONE’s first move,
F@). Forny, (Uyy,n: n € N) enumerates’(U,,). Forny, na, (Uyy n,.n: 1 € N) €numera-
tes F(Uy,, Uny,n,), and so on. This array has the property that for eathe sef{Us —,:
neN}isinD.
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For fixedm andj € N andp a function from{1, ..., j”} to N, define the set

Upm jyi= () (UWomprii i <J™)

oe™{l,...,j}

and then for fixedn andj define
U(m, j) :={U,(m, j): p afunction from{1,..., j"} toN}.

Then eacld (m, j) isinD.

There exist increasing sequenags: n € N) and (m,: n € N) such that for each
nonempty open sdf C X and for each: there is a functiomw from {1, ..., m,+1 — m,}
to j,+1 for which U N U, (m,, j,) is nonempty. To see this, let ONE play the game
Giin(D, D) using the following strategy; . For a first move ONE putg = my =1, and
plays G(9) = U(m1, j1). For a responsé&y C U(m1, j1) by TWO, ONE first does the
following computationsiny = m1 + j;'*, andj» > j1 is at least the maximum of all values
of o’s for which U, (m1, j1) is in T1. Then ONE playss; (T1) = U (m2, j2). For a response
T> C G(T1) by TWO, ONE again first computes the numbersand j3 according to the
rules thatms = mo + j, 2, and js > jo is at least the maximum of all values ofs for
which U, (m2, j2) is in T2, and so on. Sinc& has propertys1(D, D), it has property
Siin(D, D) and by Theorem Z is not a winning strategy for ONE. Look at@-play
G(®), T1, G(T1), T2, G(T1, T2), ... which is lost by ONE. Thet J, . 7, is in D, and we
find increasing sequenceég,: n € N) and(m,: n € N) such that for each:

(1) mprr=mn+ jp";

(2) G(T1,...,T)) =U(mp41, jut1);

(3) ju+1is atleast as large as the value ofafor which U, (m,,, j,) isin T,,.

It follows that them,,’s and j,’s have the required properties.

With the sequenceg,: n € N) and(m,: n € N) fixed, define next for each the fami-
ly W, as follows: For every sequengg< - -- < k, fromN, and for anyrn, ..., o, where
eacho; isan{1, ..., ji,+1}-valued function with domainm, +1 — my,, define

Wk, ...k o1, ....00) = (| Uo; (mis. jky)-
i<n
W, consists of all sets of the ford (k1, ..., k,; 01,...,00).

Since each, isin D, the selection hypothesss (D, D) applied toOV,: n € N) gives
foreachn asetS, := W(kY, ..., k: 07, ...,0,) suchtha{S,: n € N} isinD. Recursively
choose for each an¢, € {k7, ...,k }\{¢;: i <n}. For each: definep, = cr,.'; wherei, is
such that,, = k{‘n.

From the definitions we see that for eaghS, < U,, (my,, j,,). If we now define
/N — N so that for eactn f(m¢, + i) = pn(i) whenever < myg,+1 —my,, we find
that the play

F@),Ur), FWUrw) Ur, @, FUrw, Ur, @) Ur,r@,r@:---

iswon by TWO. O
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A minor variation of the proof of Theorem 3 gives:

Theorem 15. If the Pixley—Roy space of a set of real numbers satisfi¢®, D), then it
satisfiess1 (D, D).

In Theorem 21 we shall further strengthen Theorem 15. To see that this is at least
formally a strengthening, we need an analogue of Theorem 4. To prove the analogue of
Theorem 4 in the present context takes a little bit more work. To this end we introduce the
subfamily £ of D:

L consists of thosé/ € D with the property that for each nonempty open sulbsetf
the space{V e U: U NV # @} is infinite. The next theorem, an analogue of Theorem 15
of [11], shows thatS1(D, D) implies a certain “splitting property” that was introduced
in[11]:

Theorem 16. If a space satisfieS1 (D, D), then for every{s, Uz in L there are}; and ),
in £ such thatV, C U1, Vo C Uz, andV1 N Vo = (.

Proof. The proofis just like that of Theorem 15 of [11].0

Then, using the idea of the proof of Theorem 16 of [11], one obtains from the preceding
theorem:

Corollary 17. If a space has propertg1(D, D), then for every sequendg,: n € N)
of elements of’, there is a sequenc®’,: n € N) of elements of such that for eact
V, CU, andV,, NV, = @ whenevem # n.

Theorem 18. The following selection hypotheses are equivalent
(1) s1(D, D),
(2) si(L, L),
(3) S1(Dg, L);
(4) S1(Dg, D).

Proof. We must show that (1) implies (2), and (4) implies (1).

(1) = (2) Let (U,: n € N) be a sequence frod. By Corollary 17 we may assume that
Uy NU, = P whenevem # n. Let (Y,: n € N) be a partition ofN into pairwise disjoint
infinite sets. For each apply Siin(D, D) to the sequenc@/,,: m € Y,,). The resultis a
selector for/;: j € N) which is moreover irC.

(4)= (1) LetU,: n € N) be sequence fror®. Let (¥,,: n € N) be a partition ofN into
pairwise disjoint infinite sets. For eaehletV), consist of sets of the for#y;, U---U U,
wherem € N, Ui; € Ui, andi; < --- < i, are inY,. If some suchV, contains a dense
subset of the space, then nothing more is to be done. Thus, we may assume th&tisach
in Dg. Now applyS1(Dg, D) to the sequenc@’,: n € N). The selector for this sequence
can be modified to an appropriate selector for the original sequené¢gsnf O
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Corollary 19. Every space with propert$1(Dg,, D) has propertysi1(D, D).
Problem 5. Find a space which has prope8y(D, D) but notS1(Dg, Dg).
The method of proof of Theorems 6 and 7 also work to prove

Theorem 20. If each finite power of a space has propegy(D, D), then the space
has propertyS:1(Dg,, D). Conversely, if the space has a discriminating sequence and
propertyS1(Dg,, Dg), then it hasS1 (D, D) in all finite powers.

Analogous to Theorem 8 we have:

Theorem 21. If the Pixley—Roy space for a set of real numbers has proprtP, D),
then it has propertys1(D, D) in each finite power, and thus has propesi(Dy;, D).

The method of proof of Theorem 9 also gives:

Theorem 22. If every finite power oK has propertys1(D, D), then ONE has no winning
strategy in the gameé1(Dg, Dg).

By slightly adjusting the methods in the proof of Theorem 10, one obtains:

Theorem 23. Let X be a space such that each elemenDgf has a countable subset in
Dg,. Then the following are equivalent

(1) X satisfiess1(D, D).

(2) X satisfiesFor eachk € N, Do — (D)2,

This brings us now to our second summary of how the preceding results, when applied
to the Pixley—Roy spaces of sets of reals, fit in with the work from parts I-IlI.

Corollary 24. For X C R the following statements are equivalent
(1) each finite power oK has propertys1(O, O);
(2) X has propertys1(£2, £2);
(3) ONE has no winning strategy in the ga@g($2, £2) on X;
(4) for X and eachp, k €N, 2 — (2);
(5) Cp(X) has propertyS1(£2, £2,);
(6) ONE has no winning strategy in the ga@e(£2,, §2,) onC,(X);
(7) foreachk,n e N, 2, — (£2,)}:
(8) PR(X) has propertys1(O, D);
(9) PR(X) has propertys1(D, D);
(10) ONE has no winning strategy in the ga@g(D, D) in PR(X);
(11) for eachk € N, PR(X) satisfiesDg — (D)?;
(12) PR(X) satisfiesS1(Dg, De);
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(13) ONE has no winning strategy in the ga@¢&(Dy,;, D) ONPR(X);
(14) for eachk, n € N, PR(X) satisfiesDo — (Dg)j .

Proof. (1) < (2) is proved in the Lemma of [10]. (> (5) is proved in Theorem 1 of [10].
(1) < (8) is proved in Theorems 5A and 5B of [3].

(2) & (3)is givenin Theorem 2 of [12]. (2 (4) is proved by combining Theorem 6.1
of [8] and Theorems 23 and 24 of [11].

The equivalence of (5), (6) and (7) was given in [12]. The equivalence of (8) and (9)
follows from Theorem 15. The equivalence of (9) and (10) follows from Theorem 14. The
equivalence of (10) and (11) follows from Theorem 23. The equivalence of (10) and (12)
follows from Theorem 21. The equivalence of (12) and (13) follows from Theorems 22
and 21. The equivalence of (12) and (14) is proved similarly to the analogous fact for
Sin(Pe,De). O

4. The cardinal number cov(M)

Let cov(M) denote the minimum number of first category sets required to cover
R. Since the spac€N, considered as a countable power of the discrete spads
homeomorphic to the set of irrational numbexs;(M) is equal to the analogous covering
number for this space.

Theorem 25. For an infinite cardinal number the following are equivalent
(1) « < cov(M);
(2) for eachT1-space of countable cellularity and-weightx, ONE has no winning
strategy in the game1(D, D).

Proof. (1) = (2) Let F be a strategy for ONE irG1(D, D). In each inning, TWO
may restrict attention to a countable subsetZinfrom ONE’s selected set. Build the
following array of sets:(U,: n € N) enumerates a countable element®fcontained
in F(¥); (Un,,n: n € N) enumerates a countable elementfcontained inF(U,,),
(Unynpn: n € N) enumerates a countable element®ofontained inF (U, , Uy, n,), and
S0 on. LetB be arr-base of cardinality. For eachB € 5 define

Spi={fe"N: BNUy,, =0}

Since eachSp is closed and nowhere dense we find, by cardinality considerations, an
elementf of NN not in anySp. Then the play

F@),Ury, FWUr) Ur,r2: FWUr, Urw,r@)s---

is lost by ONE.

(2) = (1) Let X be a set of real numbers of cardinality ThenPR(X) hasm-weight«
and countable cellularity. Then ONE does not have a winning strategy(iR, D). Since
O C D this implies thatPR(X) has propertys1(O, D), so that by Theorem 5A of [3X
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has propertys1(£2, £2). We see that each set of real numbers of cardinalitas property
S1(£2, £2). Theorem 4.8 of [8] implies that is less thartov(M). O

One can also show that each of the clauses of this theorem is equivalent to the statement
that for eachTi-space of countable cellularity and-weight «x, ONE has no winning
strategy in the gamé1(Dg, Dg).

We are now in a position to answer some questions from [4]:

(A) [4, p. 207] The authors ask if it is true fok a set of real numbers that if
ONE has a winning strategy in the gar@e(D, D) on PR(X), then ONE has a
winning strategy irc1 (O, O) on X. The answer idlo. For ONE to have a winning
strategy inG1(D, D) on PR(X) is equivalent toX not having propertys1(£2, £2)
(Corollary 24); For ONE to have a winning strategy@n(O, O) on X is equivalent
to X not having propertys1(O, O) [9, Lemma 2]. The Continuum Hypothesis
implies that there is a seX of reals which has propertg1(O, O), but does not
have propertys;(£2, £2) [8, Theorem 2.8].

(B) [4, p. 214, Question 2.4] On p. 213 the authors prove the implicatioa={1(R)
of Theorem 25. Question 2.4 (not as stated, but as intended) asks if the converse
implication is true. As shown in Theorem 25, the answer is Yes.

(C) [4, p. 220, Question 4.3] The authors ask if a player has a winning strategy in the
gameGiin(D, D) if, and only if, the same player has a winning strategy in the game
G1(D, D). The answer is No. This can be seen as follows: It is well known that
cov(M) < 0, and that it is consistent that inequality between these two cardinal
numbers is strict (for the latter, see for example [5, Theorem 3.8])XLlet a set of
real numbers of minimal cardinality which does not have propgsty2, £2). Then
ONE has a winning strategy in the gam@e(D, D) on PR(X) (by Corollary 24).
However, if we haveov(M) < 0, then ONE has no winning strategy in the game
Gfin(D, D) onPR(X) (Corollary 11 and [8, Theorem 4.6]).

5. Closing remarks

In parts I-11l additional properties, all motivated by analogous properties that have been
studied for ultrafilters oiN, were considered in connection with these selection hypotheses.
Here is a partial list of these:
e K(A, B): For every first-countable compatk-spaceZ, for eachA € A and for
every f:A — Z such that for some: € Z and for each neighborhood of a
{x e A: f(x) eU}isin A, there is aB C A such thatB € B anda is the unique
limit point of { f (x): x € B}.
e P(A, B): For every descending sequerte2 A2 2 --- D A, D ---in A, thereis a
B € B such that for each, B\ A is finite.

e Q(A, B): For every countablel € A, for each partition ofA into pairwise disjoint
finite sets, there is & € B which meets each element of the patrtition in at most one
point.
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e Bijinear(A, B): For eachA € A, for each linear ordering of A, there is aB € B such
that B C A and the order type aB relative toR is w or w™.

e Biee(A, B): For eachA € A and for each tree ordering of A, there is aB € B such
thatB C A andB is a chain, or an antichain, in the tree an

o Indsin(A, B): For every descending sequente2> A2 D --- D A, D --- of countable
sets inA and for every bijective enumeratidgn,,: n € N) of A1, there is a function
H :N — [N]<%o sych that:

(1) if m < n, then supH (m)) < sup(H (n)) and|H (m)| < |H (n);
(2) Up2qfaj: je Hn)} € B; and
(3) foreachn, {a;: j € Hin+ 1)} C Asuprm))-

e Ind1(A, B): For every descending sequenée> A2 D --- D A, D --- of countable
sets inA and for every bijective enumeratign,: n € N) of A1, there is a function
g:N— N such that:

(1) if m <n, theng(m) < g(n);
(2) {agm): n e N} € B; and
(3) foreachn, aguy1) € Ag(n)-

e Ciin(A, B): For eachA € A4 and foreachf: A — Nthereis aB € B such thatB C A,
and onB f is finite-to-one, or constant.

e Ci1(A, B): ForeachA € A and for eachf: A — N thereis aB € B such thatB C A,
and onB f is one-to-one, or constant.

e BTiin(A, B): For eachA € A, for each partitiord = ( J;2 ; A, of A into disjoint sets,
none inA, there is aB € B such thatB C B and for eacln B N A,, is finite.

e BT1(A, B): For eachA € A, for each partitiom = [ J7 ; A, of A into disjoint sets,
none inA, there is aB € B such thatB < B and for eaclh B N A,, has at most one
element.

Theorem 26. If X is a set of real numbers, then feR(X) the following statements are
equivalent

(@) Siin(Dg,De);

(b) ONE has no winning strategy @sin(Dg2, Dg2);

(¢) Indfin(Dg2, Do),

(d) K(Dg, Dg);

(e) P(Dg, Do),

(f) for eachk, D — [D1%;

(9) Biinear(Pg2, Dg);

(h) Ciin(De, Dg);

() BTfin(Pg, D).

For arbitrary spaces of countable cellularity each of the statements in Theorem 26
implies the next. Using the combinatorial structure of Pixley—Roy spaces one can prove
thati impliesa, as follows: First, we may assume th¥étis uncountable. Letit,: n € N)
be a sequence froP,. We may assume that each element of ddglis a finite union
of sets of the forn{S, U], and that eacly, is countable. Enumeraid, bijectively as
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LSy 1: Up 11U+ VLS, 4. Uy, 12 m € N), and picky, € X\ Un=1(Spy 1 Y-+ US, )
Then letl/; consist of the setsS), 1. Uy 1 \{xn}1U--- U [SZ,k,',’,’ Urﬁ,kyn\{xn}]’ m € N.

No U} isin D, butV = |2, U is in Dg. Apply BTfin(Dyg, Dy) to find for eactn
a finite set#, C U such that J;2; 7, is in Dg. By restoring elements af,, to being
elements ot4, we then find for each a finite setG,, < U, such that_J,2; G, is in Dg,.

Similar remarks apply to the next theorem, and a similar argument shows: that
impliesa.

Theorem 27. If X is a set of real numbers, then feR(X) the following statements are
equivalent

(@) S1(Dg, Dg);

(b) ONE has no winning strategy B1(Dg, Dg);

(¢) Ind1(Dg, Dg);

(d) P(Dg, De) andQ(Dg, Dg);

(e) forall n andk, Do — (De)y;

(f) Bree(Pg2, Dg);

(9) C1(Dg,De);

(h) BT1(De, Dg).
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