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Abstract

Daniels (1988) started an investigation of the duality between selection hypotheses forX ⊆R and
selection hypotheses for the Pixley–Roy space ofX. Daniels, Kunen and Zhou (1994) introduced the
“open–open game”. We extend some results of Daniels (1988) by connecting the relevant selection
hypotheses with game theory (Theorems 2, 3, 14 and 15) and Ramsey theory (Theorem 10, Corollary
11, Theorem 23 and Corollary 24). Our results give answers to some of the questions asked by
Daniels et al. (1994). 2000 Elsevier Science B.V. All rights reserved.
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In “Combinatorics of open covers”, parts I–IV we investigated some of the combinatorial
consequences associated with the fact that certain topologically significant families of sets
satisfy certain selection hypotheses. We now develop this further.

The two selection hypotheses featured here are as follows: LetA andB be collections
of subsets of an infinite set. ThenS1(A,B) denotes the hypothesis: For every sequence
(On: n ∈N) of elements ofA there is a sequence(Tn: n ∈N) such that for eachn Tn ∈On,
and{Tn: n ∈ N} is an element ofB. The gameG1(A,B) associated with this hypothesis
is played as follows: ONE and TWO play an inning per positive integer. In thenth inning
ONE first chooses a setOn ∈A, and TWO responds with aTn ∈ On. TWO wins a play
O1, T1, . . . ,On,Tn, . . . if {Tn: n ∈N} is in B; otherwise, ONE wins.

The symbolSfin(A,B) denotes the second selection hypothesis: for every sequence
(On: n ∈ N) of elements ofA, there is a sequence(Tn: n ∈ N) such that for eachn Tn
is a finite subset ofOn and

⋃∞
n=1Tn is in B. The gameGfin(A,B) associated with this
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hypothesis is played as follows: ONE and TWO play an inning per positive integer. In the
nth inning ONE first chooses anOn ∈A, after which TWO chooses a finite setTn ⊆On.
TWO wins a playO1, T1, . . . ,On,Tn, . . . if

⋃∞
n=1Tn ∈ B; otherwise, ONE wins.

Let (X, τ) be a topological space. An open coverU of X is anω-cover ifX /∈ U and for
each finite setF ⊆ X, there is aU ∈ U such thatF ⊆ U . The examples ofA andB that
are studied in this paper are as follows:
• O: the collection of all open covers ofX;
• Ω : the collection ofω-covers ofX;
• D: the collection ofU ⊆ τ with

⋃
U dense inX;

and two more collections,L andDΩ , which we define later. The most important other item
regarding notation is that we use the symbol⊂ to mean “is apropersubset of”.

The paper is organized as follows: First we studySfin(A,B) for appropriate choices ofA
andB from the preceding list. Next we discussS1(A,B).

1. Sfin(D,D) and Sfin(DΩ,DΩ)

In [4] the authors introduce a gameG7 which is played as follows: ONE and TWO play
an inning per positive integer. In thenth inning ONE choosesOn, a maximal family of
pairwise disjoint open sets. TWO responds withTn, a finite subset ofOn. A playO1, T1,

. . . ,On,Tn, . . . of G7 is won by TWO if
⋃∞
n=1Tn ∈ D; otherwise, ONE wins. Since for

eachU ∈D there is a pairwise disjoint familyV ∈D which refinesU , one can show:

Lemma 1. ONE has a winning strategy inG7 if, and only if, ONE has a winning strategy in
Gfin(D,D). TWO has a winning strategy inG7 if, and only if, TWO has a winning strategy
in Gfin(D,D).

Thus, the study ofG7 is the same as the study ofGfin(D,D) which, according to the
following theorem, amounts to a study of the selection hypothesisSfin(D,D).

Theorem 2. A topological space satisfiesSfin(D,D) if, and only if, ONE has no winning
strategy inGfin(D,D).

Proof. The implication that if the space satisfiesSfin(D,D), then ONE has no winning
strategy in the gameGfin(D,D) requires proof. The argument in the proof of Theorem 10
of [6] can be adapted to do this. We give only a brief description.

First, Sfin(D,D) implies that each element ofD has a countable subset which is inD
(incidentally, the latter statement is equivalent to saying that the cellularity of the space is
countable). We may further restrict our attention to strategies of ONE which calls in each
inning on ONE to play an ascendingω-sequence which is inD: If ONE had a winning
strategy, ONE would have one like this. Similarly we may restrict ourselves to strategiesF

for ONE which have the property that if(V1, . . . ,Vn) is a finite sequence of finite families
of open sets, then each element ofF(V1, . . . ,Vn) contains

⋃
(
⋃n
i=1Vi ).
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Let (X, τ) be a space with propertySfin(D,D) and letF be a strategy for ONE which has
the properties in the previous paragraph. Define a family(Uτ : τ ∈ <ωN) of open subsets
of X as follows:U∅ = ∅. (Un: n ∈ N) enumeratesF(∅), ONE’s first move, in ascending
order. For eachn1, (Un1,n: n ∈ N) enumeratesF(Un1) in ascending order, and so forth.
Then this family of open sets has the following properties for eachσ :

(1) if m< n thenUσ_m ⊆Uσ_n;
(2) for all n, Uσ ⊆Uσ_n;
(3) {Uσ_n: n ∈N} is inD.
Then define for eachn andk:

Unk =
{
Uk if n= 1,
(
⋂{Uσ_k: σ ∈ n−1N})∩Un−1

k otherwise.

One then shows by induction onn that for all (i1, . . . , in) with max{i1, . . . , in} > k,
Unk ⊆ Ui1,...,in . This implies that eachUnk is an open set, so thatUn = {Unk : k ∈ N} is
an ascending chain of open sets. Next one shows by induction onn that for each nonempty
open setU there are only finitely manyσ of lengthn with U ∩Uσ = ∅. This means that
eachUn is inD.

Apply Sfin(D,D) to the sequence(Un: n ∈N). Since eachUn is an ascending chain this
gives for eachn aUnkn ∈ Un such that{Unkn: n ∈N} is inD.

Finally, observe that since for eachn Unkn ⊆ Uk1,...,kn , the sequence of moves
Uk1,Uk1,k2, . . . by TWO defeats the strategyF . 2

For topological space(X, τ) PR(X) denotes the collection of nonempty finite subsets
of X. ForS ∈ PR(X) and an open setV ⊆ X, [S,V ] denotes{T ∈ PR(X): S ⊆ T ⊆ V }.
Since the intersection of two sets of the form[S,V ] is again such a set, the collection
of all such subsets ofPR(X) is a basis for a topology, denotedPR(τ ), on PR(X). Then
(PR(X),PR(τ )) is the Pixley–Roy space of(X, τ). Most of the timeτ will be clear from
context and we shall omit bothτ andPR(τ ). If X has a countable base, thenPR(τ )\{∅}
is a union of countably many sets, each with the finite intersection property; this implies
that PR(X) has countable cellularity. Having countable cellularity is equivalent to: each
element ofD has a countable subset which is inD.

It is not in general true that if a space has propertySfin(O,D), then it has property
Sfin(D,D): If X is an uncountable discrete space then its Stone–Čech compactification
β(X) satisfiesSfin(O,O) and thusSfin(O,D), but does not satisfySfin(D,D) as is
witnessed by the element{{x}: x ∈ X} of D for β(X). In [3] Daniels identified exact
circumstances under which, forX ⊆R PR(X) would satisfySfin(O,D).

Theorem 3. If the Pixley–Roy space of a subset ofR satisfiesSfin(O,D), then it satisfies
Sfin(D,D).

Proof. Let X be a set of real numbers such thatPR(X) satisfiesSfin(O,D), and let
(Un: n ∈N) be a sequence of elements ofD for PR(X). Since when replacing each element
of Un with the basis elements contained in it we still have an element ofD, and since
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Sfin(D,D) for sequences ofsuchelements ofD impliesSfin(D,D), we may assume that
eachUn is of this form.

SincePR(X) has countable cellularity we may assume that eachUn is countable. Let
(Bn: n ∈ N) bijectively enumerate the set of unions of finitely many elements from
a countable basis ofX. If each element[S,V ] of a Um is replaced by the countably
many elements[S,Bn] whereS ⊆ Bn ⊂ SBn ⊂ V , then we obtain once again an element
of D which refinesUm. Thus, we may further assume that eachUn is countable, that
each element of eachUn is of the form[S,Bm], and that for each[S,Bm] ∈ Un the set
{Bj : S ⊆ Bj ⊂ SBj ⊂ Bm} is anω-cover ofBm. By Theorem 2A of [3] and Theorem 3.9
of [8] X has propertySfin(Ω,Ω), and thus everyFσ -subset (in particular eachBn) has
propertySfin(Ω,Ω).

Enumerate eachUn bijectively as([Snm,Unm]: m ∈N), and choose a partition(Yn: n ∈N)
of N into pairwise disjoint infinite sets. For eachn and for eachm ∈ Yn, define:

Vm =
{
Umk : Umk ⊂ SUmk ⊂ Bn

}
.

Then(Vm: m ∈ Yn) is a sequence ofω-covers ofBn. Applying Sfin(Ω,Ω), we find for
eachm a finite setWm ⊆ Vm such that for eachn

⋃
m∈YnWm is anω-cover ofBn. We may

for eachm writeWm = {Umk : k ∈ Fm} whereFm is a finite subset ofN. For eachm put
Gm = {[Smk ,Umk ]: k ∈ Fm}, a finite subset ofUm.

Then
⋃∞
m=1Gm is inD. To see this, consider any nonempty basic open subset[S,V ] of

PR(X). Then chooseBn such thatS ⊆ Bn ⊆ V . For thisn,
⋃
m∈YnWm is anω-cover of

Bn. Choose anm ∈ Yn and ak ∈ Fm such thatS ⊆ Umk ⊂ Bn. Then[Smk ,Umk ] ∈ Gm, and
[S,V ] ∩ [Smk ,Umk ] 6= ∅. 2

The symbolDΩ denotes the collection ofU ∈D such that: no element ofU is dense, but
for every finite setF of nonempty open sets, there is aU ∈ U such that for eachF ∈ F ,
U ∩ F 6= ∅. Each of the hypothesesSfin(D,D), Sfin(DΩ,D) andSfin(DΩ,DΩ) implies
thatX has countable cellularity.

Theorem 4. A topological space has propertySfin(D,D) if, and only if, it has property
Sfin(DΩ,D).

Proof. We must show that if a space has propertySfin(DΩ,D), then it has property
Sfin(D,D). Thus, letX be such a space and let(Un: n ∈N) be a sequence fromD for it.

We may assume that eachUn is countable; let(Unk : k ∈ N) enumerateUn. For eachn
define

Vn =
{⋃
j6k

Unj : k ∈N
}
.

If there is somen for which Vn contains a dense subset ofX, nothing more is required.
Thus, we may assume that eachVn is inDΩ . Applying the fact that eachVn is an ascending
chain and the propertySfin(DΩ,D), choose for eachn a kn such that the sequence
(
⋃
j6kn U

n
j : n ∈ N) is in D. Then for eachn Gn = {Unj : j 6 kn} is a finite subset ofUn

and
⋃
n∈N Gn is inD. 2
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Corollary 5. If a space has propertySfin(DΩ,DΩ), then it has propertySfin(D,D).

Through I do not know the exact relationship between the classes of spaces having
propertySfin(D,D) and of spaces having the propertySfin(DΩ,DΩ), I have the following
partial descriptions in Theorems 6 and 7.

Theorem 6. If each finite power of a space has propertySfin(D,D), then that space has
propertySfin(DΩ,DΩ).

Proof. LetX be a space as in the hypothesis and let(Un: n ∈N) be a sequence fromDΩ
for X. Let (Ym: m ∈N) be a partition ofN into pairwise disjoint infinite sets.

Fix m. For eachn in Ym, put Vn = {Um: U ∈ Un}. Then(Vn: n ∈ Ym) is a sequence
fromD for Xm. Apply Sfin(D,D) for Xm and select for eachn ∈ Ym a finite setHn ⊆ Vn
such that

⋃
n∈YmHn is inD for Xm. For eachn ∈ Ym, putGn = {U : Um ∈Hn}.

Doing this for eachm gives rise to a sequence(Gn: n ∈ N) of finite sets such that for
eachn Gn ⊆ Un. To see that

⋃
n∈N Gn is inDΩ forX, consider the finitely many nonempty

open subsetsV1, . . . , Vk of X. ThenV = V1 × · · · × Vk is an open subset ofXk . Since⋃
n∈Yk Hn is in D for Xk , we find ann ∈ Yk and aUk ∈Hn with V ∩ Uk 6= ∅. But then

U ∈ Gn and for 16 i 6 k, U ∩ Vi 6= ∅. 2
I do not know to what extent the converse of Theorem 6 is true. To formulate a partial

converse we introduce the following notion: The sequence(Bn: n ∈N) is adiscriminating
sequence forX if no finite union of elements ofB1 is dense inX and for eachn:

(1) Bn is aπ -base forX and
(2) for eachU ∈ Bn there is aV ∈ Bn+1 such that for allW ∈ Bn+2 with W ∩ V 6= ∅,

W ⊆U .

Theorem 7. If a space has a discriminating sequence and propertySfin(DΩ,DΩ), then
each finite power of the space has propertySfin(D,D).

Proof. Let X be a space as in the hypothesis and let(Bn: n ∈ N) be a discriminating
sequence. We show thatX2 has propertySfin(D,D); the proof for higher powers is
analogous.

First, we describe a procedure for associating with an elementU of DΩ for X2 and an
n ∈N an elementΣ(U, n) of DΩ for X. This specific procedure is used below.

Thus, fixU ∈ DΩ for X2 and fix n ∈ N. ForF a finite set of nonempty open subsets
of X, do the following:

For eachF ∈ F choose aBF ∈ B2n such thatBF ⊂ F , and if H ∈ B2n+1 has
nonempty intersection withBF , thenH ⊆ F . Put φn(F) = {BF : F ∈ F} and
ψn(F)= {BF ×BG: F,G ∈F}.
Fix an A ∈ U such that for eachD ∈ ψn(F) A ∩ D 6= ∅. Then choose for
R,S ∈ φn(F) setsC1(R,S,A),C2(R,S,A) ∈ B22n such thatC1(R,S,A) ⊂ R,
C2(R,S,A)⊂ S, andC1(R,S,A)×C2(R,S,A)⊆R × S ∩A.
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Then define

Γn(F ,A)=
⋃{

Ci(R,S,A): i ∈ {1,2}, R,S ∈ φn(F)
}
.

Notice that for eachF ∈ F , F ∩ Γn(F ,A) 6= ∅. ThusΣ(U, n), the collection of all
setsΓn(F ,A) generated like this, is inDΩ for X.

By Theorem 4 we may start with a sequence(Un: n ∈N) in DΩ forX2. Let (Yn: n ∈N)
be a partition ofN into pairwise disjoint infinite sets such that for eachn {1, . . . , n} ∩ Yn
= ∅.

With the procedure as described above, look for eachn at the sequence(Σ(Um,n): m ∈
Yn). Each of these sequences is a sequence fromDΩ for X. Applying the property
Sfin(DΩ,DΩ) to each, we find for eachm ∈ Yn a finite setHm ⊆ Σ(Um,n) such that⋃
m∈YnHm is inDΩ for X.
For eachn and eachm ∈ Yn,Hm is of the form{Γn(Fmi ,Ami ): i ∈ Fm}, whereFm ⊂N

is a finite set, and where

Γn(Fmi ,Ami )=
⋃{

Cj (R,S,A
m
i ): R,S ∈ φn(Fmi ), j ∈ {1,2}

}
.

Now for eachi ∈ Fm chooseCmi ∈ Um such that forj, ` ∈ {1,2} andR,S,T ,U ∈ Fmi ,
Cmi ∩ (Cj (R,S,Ami )×C`(T ,U,Ami )) 6= ∅. Put

Gm = {Cmi : i ∈ Fm}(⊂ Um), m ∈ Yn.
We show that

⋃
m∈N Gm is in D for X2. Let U × V be a nonempty open subset ofX2.

We may assumeU ∩ V = ∅ andU,V ∈ Bk for some fixedk. ChooseJU ,JV ∈ B2k so that
JU ⊆ U , JV ⊆ V , and for allW,R ∈ B2k+1 with W ∩ JU 6= ∅ andR ∩ JV 6= ∅, W ⊆ U
andR ⊆ V .

Choosen > 2k. Since
⋃
m∈Yn Gm is in DΩ for X, choosem ∈ Yn and T ∈ Gm with

T ∩ JU 6= ∅ andT ∩ JV 6= ∅. ThenT is of the formΓn(Fmj ,Amj ) for a j ∈ Fm. Thus,
on account of the definition ofΓn(Fmj ,Amj ), chooseRU,SU ,RV ,SV ∈ φn(Fmj ) and
iU , iV ∈ {1,2} such thatCiU (RU ,SU ,A

m
j )∩JU 6= ∅ andCiV (RV ,SV ,A

m
j )∩JV 6= ∅. Since

φn(Fmj )⊆ B2n andCi(R,S,Amj ) ∈ B22n and 2k < n < 2n < 22n , we have

CiU (RU ,SU ,A
m
j )⊆ U and CiV (RV ,SV ,A

m
j )⊆ V.

But we haveCmj ∈ Gm and

Cmj ∩CiU (RU ,SU ,Amj )×CiV (RV ,SV ,Amj ) 6= ∅,
so thatCmj ∩U × V 6= ∅. 2
Problem 1. Find a space that satisfiesSfin(D,D) but notSfin(DΩ,DΩ).

Souslin lines are likely candidates for this, because they satisfyS1(D,D), but (as is well
known) their squares do not have countable cellularity, and thus do not have the property
Sfin(D,D). To see that a Souslin line has propertyS1(D,D), argue as follows: Let(L,<)
be a Souslin line. Then it has countably many maximal intervals which have countable
dense subsets—these may be ignored when checkingS1(D,D) since the even-positioned
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terms from a given sequence of elements ofD may be used to satisfy the selection
hypothesis for these intervals. Thus assume that the line has no separable intervals, and thus
has no isolated points. Let a sequence(Un: n ∈ N) of elements ofD for L be given. We
may assume that eachUn consists of countably many intervals, sayUn = {(ank , bnk ): k ∈N}.
DefineF to be the set of nonempty open intervalsI with the property that for eachn there
is ak with I ⊆ (ank , bnk ). Each nonempty interval fromL contains an element ofF , since the
set{ank : k,n ∈N} ∪ {bnk : n, k ∈N} is nowhere dense inL. Thus,F is an element ofD, as
is any maximal pairwise disjoint subset ofF . LetA be a maximal infinite pairwise disjoint
subset ofF . ThenA is in D. SinceL is a Souslin line,A is countable, say(An: n ∈ N)
enumeratesA. Now recursively choose for eachn a kn such thatAn ⊆ (ankn, bnkn). But then
((ankn, b

n
kn
): n ∈N) is a selector for(Un: n ∈N), and is inD.

Problem 2.2 Is it true that if a space has propertySfin(DΩ,DΩ), then each of its finite
powers has propertySfin(D,D)?

Theorem 8. If the Pixley–Roy space for a set of real numbers has propertySfin(D,D),
then it has propertySfin(D,D) in each finite power.

Proof. LetX be a set of real numbers for whichPR(X) satisfiesSfin(D,D). According to
Theorem 2A of [3] and Theorem 3.9 of [8], every finite power ofX satisfiesSfin(Ω,Ω).
For finite powers of sets of reals open subsets inherit propertySfin(Ω,Ω). Since the
topology of finite powers ofPR(X) can be decomposed into countably many families, each
with the finite intersection property, all finite powers ofPR(X) have countable cellularity.

Let (Bn: n ∈N) enumerate the set of finite unions of elements of a countable basis forX.
When determining ifPR(X)n has propertySfin(D,D), it suffices to consider elementsU
of D whose members are of the form

[S1,Bm1] × · · · × [Sn,Bmn ]
and which have the additional property that for each[S1,Bm1] × · · · × [Sn,Bmn ] in U ,
the set{Bi1 × · · · × Bin : 16 j 6 n→ Sj ⊆ Bij ⊂ SBij ⊂ Bmj } is anω-cover forBm1 ×
· · · × Bmn . Countable cellularity allows us to further assume that thoseU ’s are countable
sets.

Let (Ut : t ∈ N) be a sequence fromD for PR(X)n. We may assume that eachUt
has the properties just described. Enumerate eachUt bijectively as([Stk,1,Btk,1] × · · · ×
[Stk,n,Btk,n]: k ∈N). Also let(Ym1,...,mn : m1, . . . ,mn ∈N) be a partition ofN into pairwise
disjoint infinite subsets.

For each(m1, . . . ,mn) and for eachk ∈ Ym1,...,mn put

Vk =
{
Bkj,1× · · · ×Bkj,n: 16 i 6 n⇒ SBkj,i ⊂ Bmi

}
.

Then (Vk: k ∈ Ym1,...,mn) is anω-cover ofBm1 × · · · × Bmn . Apply Sfin(Ω,Ω) to the
sequence(Vk: k ∈ Ym1,...,mn) of ω-covers ofBm1×· · ·×Bmn , and select for eachk a finite

2 Just showed in [7] that the answer is No: He uses♦ to construct a Souslin line which has property
Sfin(DΩ,DΩ).
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setHk ⊆ Vk such that
⋃
k∈Ym1,...,mn

Hk is anω-cover ofBm1 × · · · ×Bmn . For each suchk
write:

Hk =
{
Bkj,1× · · · ×Bkj,n: j ∈ Fk

}
whereFk is a finite set, and then set

Gk =
{[Skj,1,Bkj,1] × · · · × [Skj,n,Bkj,n: j ∈ Fk]}.

Then the sequence[Gk: k ∈N] is a sequence of finite sets such that for eachk Gk ⊆Uk ,
and

⋃
k∈N Gk is inD for PR(X)n. 2

If ONE has no winning strategy in the gameGfin(DΩ,DΩ) then the space has property
Sfin(DΩ,DΩ); it is not clear if the converse is true (see Problem 3); here is a partial result:

Theorem 9. If every finite power ofX has propertySfin(D,D), the ONE has no winning
strategy in the gameGfin(DΩ,DΩ).

Proof. We may assume thatXm ∩ V n = ∅ wheneverm 6= n. EachXm is clopen in
Y :=∑m∈NXm, so thatY has propertySfin(D,D). According to Theorem 2, ONE has
no winning strategy in the gameGfin(D,D) on Y . We now use this information to show
that ONE has no winning strategy inGfin(DΩ,DΩ) onX.

LetF be a strategy for ONE inGfin(DΩ,DΩ) onX, and define a strategyG for ONE in
Gfin(D,D) onY as follows. ONE’s first move inGfin(D,D) onY is:

G(Y)= {Un: U ∈ F(X), n ∈N};
sinceF(X) is in DΩ for X, G(Y) is in D for Y . If TWO responds with a finite set,
T1 ⊆ G(Y), then ONE responds as follows: first, setS1 = {U ∈ F(X): (∃n)(Un ∈ T1)}
and treat this as a move for TWO ofGfin(DΩ,DΩ) on X; then computeF(S1), and
respond inGfin(D,D) onY withG(T1)= {Un: U ∈ F(S1), n ∈N}. If TWO now responds
with T2 ⊆ G(T1), then first computeS2 = {U ∈ F(S1): (∃n)(Un ∈ T2)}; then compute
F(S1, S2), and playG(T1, T2)= {Un: U ∈ F(S1, S2), n ∈N}, and so on.

SinceG is not a winning strategy for ONE, fix a play

G(Y),T1,G(T1), T2,G(T1, T2), T3, . . .

which is lost by ONE; this means
⋃∞
n=1Tn ∈D for Y . For eachn putSn = {U : (∃m)(Um ∈

Tn)}. Then F(X),S1,F (S1), S2,F (S1, S2), S3, . . . is a play lost by ONE in the game
Gfin(DΩ,DΩ) onX. 2
Problem 3. Is it true that if a space satisfiesSfin(DΩ,DΩ), the ONE has no winning
strategy inGfin(DΩ,DΩ)?

For collectionsA andB1, . . . ,Bm of subsets of a setS and forn, k ∈N, the symbol

A→ (B1, . . . ,Bm)nk
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denotes that for eachA ∈ A and for eachf : [A]n → {1,2, . . . , k} there is ani ∈
{1,2, . . . , k} and a subsetB of A in Bi such that the value off everywhere on[B]n is i.
We say thatB is homogeneous of colori for f .

For example,DΩ→ (DΩ)1k , which means that if an element ofDΩ is partitioned intok
pieces, then there is a piece which is a member ofDΩ , is true for eachk ∈ N. A second
relevant partition relation is denoted by

A→dBe2k
and means that for eachA ∈ A and for each functionf : [A]2→ {1, . . . , k} there is a
subsetB of A in B, a finite-to-one functiong with domainB, and ani ∈ {1,2, . . . , k}
such thatf ({a, b}) = i whenevera, b ∈ B andg(a) 6= g(b). This partition relation was
introduced in [2].

In Theorem 10 below we use the hypothesis that every element ofDΩ has a countable
subset inDΩ . One can show that if each element ofDΩ has a countable subset inD, then
each element ofD has a countable subset which is inD. One can also show that if each
finite power of a space has countable cellularity, then the space itself has the property that
each element ofDΩ has a countable subset which is inDΩ . Thus, Martin’s Axiom implies
that countable cellularity is equivalent to each element ofDΩ having a countable subset
which is inDΩ .

Problem 4.3 If each element ofDΩ for X has a countable subset which is an element
of DΩ , does it follow that each finite power ofX has countable cellularity?

Theorem 10. Let X be a space such that each element ofDΩ has a countable subset
in DΩ . Then the following are equivalent:

(1) X satisfiesSfin(D,D).
(2) For eachk ∈N, X satisfiesDΩ→dDe2k .

Proof. (1) ⇒ (2) Let U be an element ofDΩ . We may assume thatU is countable.
Enumerate it bijectively as(Un: n ∈ N). Let k ∈ N as well as a functionf : [U]2→ {1,
. . . , k} be given. Construct a sequence(U1, i1), (U2, i2), . . . so that

(1) U1⊃ U2⊃ · · · ⊃ Un ⊃ · · · are inDΩ ;
(2) eachin is in {1,2, . . . , k};
(3) U1= {Un: n > 1 andf ({U1,Un})= i1}, and for eachn

Un+1=
{
Um ∈ Un: m> n+ 1 andf ({Un+1,Um})= in+1

}
.

The partition relationDΩ→ (DΩ)1k is used repeatedly to do this. Then, forj ∈ {1, . . . , k}
putCj = {Un: in = j }. Then partition eachUn as follows:

Un = (Un ∩ C1)∪ · · · ∪ (Un ∩ Ck).

3 In [7] Just shows that the answer is No: The counterexample he found for Problem 2 is also a counterexample
for Problem 4.
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For eachnwe find ajn such thatUn∩Cjn is inDΩ . Fix j such that for infinitely manyn we
havejn = j . Since the sequence ofUn’s is descending this means that for eachn we have
Vn := Un ∩ Cj in DΩ . Let (Unk : k ∈N) be the list, in the enumeration we chose earlier, of
Un’s with in = j .

Look at the descending sequenceVn1 ⊃ Vn2 ⊃ · · · . This is a sequence inDΩ . Define a
strategyF for ONE in the gameGfin(D,D) as follows. Withnk minimal withUnk ∈ Vn1,
playF(X)= Vnk . If TWO chooses the finite setT1⊆ F(X), computen` =max{n: Un ∈
T1}, and then playF(T1) = Vn`\T1. If TWO now chooses the finite setT2 ⊂ F(T1),
computen`2 =max{n: Un ∈ T2}, and playF(T1, T2)= Vn`2\(T1 ∪ T2), and so on.

By Theorem 2,F is not a winning strategy for ONE. Look at anF -play lost by ONE. It
is of the form

Vnk1 , T1,Vnk2 , T2,Vnk3 , T3, . . .

where nk1 < nk2 < nk3 < · · · and if k < `, then for all Um ∈ Tk and Un ∈ Vn` ,
f ({Um,Un}) = j . The functiong defined on

⋃
n∈N Tn so thatg(U) = k only if U ∈ Tk

witnesses that
⋃
n∈N Tn is eventually homogeneous forf .

(2)⇒ (1) We use a partition that has been used several times in part II and other related
papers. It suffices to show that the partition relation implies thatX hasSfin(DΩ,D). Thus,
let (Un: n ∈ N) be a sequence fromDΩ . EachUn may be assumed to be countable; let
(Unk : k ∈N) enumerateUn bijectively. Define

V := {U1
n ∩Unk : n, k ∈N}\{∅}.

ThenV is in DΩ . For each element ofV choose a representation of the formU1
n ∩ Unk .

Definef : [V]2→{1,2} by:

f
({
U1
n1
∩Un1

k1
,U1

n2
∩Un2

k2

})= {1 if n1= n2,
2 otherwise.

LetW ⊂ V be an element ofD which is eventually homogeneous forf . A case analysis
shows thatW is eventually homogeneous of color 2, and this in turn implies that{Unk :
U1
n ∩Unk ∈W} contains finitely many elements from eachUm. 2
For a Tychonoff spaceX the set of continuous functions fromX to R is a subset of

the Tychonoff product spaceRX of X copies ofR. Cp(X) denotes this set of continuous
functions, endowed with the topology it inherits from this power ofR. Being a topological
vector space,Cp(X) is homogeneous. This means that determining if a pointf ∈ Cp(X)

is in the closure of the subsetA of Cp(X) is equivalent to determining ifo, the function
which is zero everywhere onX, is in the closure of a corresponding set. Define

Ωo :=
{
A⊆ Cp(X)\{o}: o ∈A

}
.

Corollary 11. Let X be a set of real numbers. Then the following statements are
equivalent:

(1) each finite power ofX has propertySfin(O,O);
(2) X has propertySfin(Ω,Ω);
(3) ONE has no winning strategy in the gameGfin(Ω,Ω) onX;
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(4) for X and eachk ∈N,Ω→dΩe2k;
(5) Cp(X) has propertySfin(Ωo,Ωo);
(6) ONE has no winning strategy in the gameGfin(Ωo,Ωo) on Cp(X);
(7) for eachk ∈N,Ωo→dΩoe2k ;
(8) PR(X) has propertySfin(O,D);
(9) PR(X) has propertySfin(D,D);

(10) ONE has no winning strategy in the gameGfin(D,D) on PR(X);
(11) for eachk ∈N, PR(X) satisfiesDΩ→dDe2k;
(12) PR(X) satisfiesSfin(DΩ,DΩ);
(13) ONE has no winning strategy in the gameGfin(DΩ,DΩ) on PR(X);
(14) for eachk ∈N, PR(X) satisfiesDΩ→dDΩe2k .

Proof. (1)⇔ (2) is proved in Theorem 3.9 of [8]. (1)⇔ (5) is proved in Theorem 4 of [1].
(1)⇔ (8) is proved in Theorems 2A and 2B of [3].

(2)⇔ (4) is proved in Theorem 6.2 of [8] and Theorem 10 of [11]. (2)⇔ (3) is given in
Theorem 5 of [12].

The equivalence of (5), (6) and (7) were given in [12]. The equivalence of (8) and
(9) follows from Theorem 3. The equivalence of (9) and (10) follows from Theorem 2.
The equivalence of (10) and (11) follows from Theorem 10. The equivalence of (10)
and (12) follows from Theorems 5, 8 and 6. The equivalence of (12) and (13) follows
from Theorems 9 and 8. The equivalence of (14) and (12) are proved analogously to
Theorem 10. 2

2. The cardinal number d

Theorem 12. For an infinite cardinal numberκ the following statements are equivalent:
(1) κ < d;
(2) for eachT1-space of countable cellularity andπ -weightκ , ONE has no winning

strategy in the gameGfin(D,D).

Proof. (1)⇒ (2) LetF be a strategy for ONE ofGfin(D,D) on the spaceX of countable
cellularity andπ -weightκ . LetB be aπ -base of cardinalityκ for X. By selecting in each
inning from ONE’s play a countable subset which is an element ofD, build the following
array of open subsets ofX: (Fn: n ∈N) enumerates the element ofD selected fromF(∅),
ONE’s first move. For eachn1, (Fn1,n: n ∈N) enumerates the element ofD selected from
F({Fj : j 6 n1}). For eachn1 andn2, (Fn1,n2,n: n ∈ N) enumerates the element ofD
selected fromF({Fj : j 6 n1}, {Fn1,j : j 6 n2}), and so on. The family ofFσ , σ ∈ <ωN
has the property that for eachσ , {Fσ_n: n ∈N} is inD.

For eachB ∈ B definefB so thatfB(1) = min{k: B ∩ Fk 6= ∅} + 1, and for eachn,
fB(n+ 1) is the leastm> fB(n) such that for everyσ in 6fB(n){1, . . . , fB(n)} there is a
j 6m with B ∩ Fσ_j 6= ∅. Then eachfB is strictly increasing andfB(1) > 1. Next, for
eachB definegB by gB(1)= fB(1) and for alln, gB(n+ 1)= fB(gB(n)). On cardinality
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grounds{gB : B ∈ B} is not cofinal inNN. Choose a strictly increasingg such that for each
B, {n: gB(n) < g(n)} is infinite. For eachn let h(n) be thenth iterate ofg, computed at 1.
Define the sets

T1=
{
Fj : j 6 h(1)

}
, Tn+1=

{
Fh(1),...,h(n),j : j 6 h(n+ 1)

}
.

ThenF(∅), T1,F (T1), T2,F (T1, T2), . . . is a play. We claim ONE lost it.
For look atB ∈ B. Choosem minimal with gB(m) < h(m). If m = 1, thenfB(1) =

gB(1) < h(1) = g(1), and soB ∩ (⋃T1) 6= ∅. Thus, assume thatm is larger than 1, say
m= k + 1. Then we have

k < h(k)6 f kB(1)= gB(k) < gB(k + 1)= f k+1
B (1) < h(k + 1)

which means that(h(1), . . . , h(k)) was one of the sequences considered whenfB(f
k−1
B (1)

+ 1) was defined. SincefB(f
k−1
B (1)+ 1)6 fB(f kB(1)), we see thatB ∩ (⋃Tm) 6= ∅.

(2) ⇒ (1) Let X be a set of real numbers of cardinalityκ . Then PR(X) has π -
weight κ and has countable cellularity. It follows that ONE has no winning strategy in
Gfin(D,D). By Corollary 11X has propertySfin(Ω,Ω). We showed that every set of reals
of cardinalityκ has propertySfin(Ω,Ω). By Theorem 4.6 of [8] this meansκ < d. 2

3. S1(D,D) and S1(DΩ,DΩ)

In [4] the authors study a gameG1 which is played as follows: ONE and TWO play
an inning per positive integer. In thenth inning ONE chooseOn, a maximal family of
pairwise disjoint open sets. TWO responds withTn ∈ On. A playO1, T1, . . . ,On,Tn, . . .

of G1 is won by TWO if{Tn: n ∈N} ∈D; otherwise, ONE wins. One can show:

Lemma 13. ONE has a winning strategy inG1 if, and only if, ONE has a winning strategy
in G1(D,D). TWO has a winning strategy inG1 if, and only if, TWO has a winning strategy
in G1(D,D).

Theorem 14. A topological space satisfiesS1(D,D) if, and only if, ONE has no winning
strategy in the gameG1(D,D).

Proof. We must show that if a space has propertyS1(D,D), the ONE has no winning
strategy in the gameG1(D,D). The proof is a minor variation of that of Lemma 2 of [9]—
we give an outline for the reader’s convenience. LetX be a space with propertySfin(D,D).
LetF be a strategy for ONE in the gameG1(D,D). We may assume that in each inningF
calls on ONE to play a countable element ofD.

Define the arrayUσ , σ in <ωN, as follows:(Un: n ∈N) enumerates ONE’s first move,
F(∅). Forn1, (Un1,n: n ∈N) enumeratesF(Un1). Forn1, n2, (Un1,n2,n: n ∈N) enumera-
tesF(Un1,Un1,n2), and so on. This array has the property that for eachσ the set{Uσ_n:
n ∈N} is inD.
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For fixedm andj ∈N andρ a function from{1, . . . , jm} toN, define the set

Uρ(m, j) :=
⋂

σ∈m{1,...,j}

(⋃
{Uσ_ρdi : i 6 jm}

)
and then for fixedm andj define

U(m, j) := {Uρ(m, j): ρ a function from{1, . . . , jm} toN
}
.

Then eachU(m, j) is inD.
There exist increasing sequences(jn: n ∈ N) and (mn: n ∈ N) such that for each

nonempty open setU ⊆ X and for eachn there is a functionσ from {1, . . . ,mn+1−mn}
to jn+1 for which U ∩ Uσ (mn, jn) is nonempty. To see this, let ONE play the game
Gfin(D,D) using the following strategy,G. For a first move ONE putsj1 = m1 = 1, and
playsG(∅) = U(m1, j1). For a responseT1 ⊂ U(m1, j1) by TWO, ONE first does the
following computations:m2=m1+ jm1

1 , andj2> j1 is at least the maximum of all values
of σ ’s for whichUσ (m1, j1) is in T1. Then ONE playsG(T1)= U(m2, j2). For a response
T2⊆G(T1) by TWO, ONE again first computes the numbersm3 andj3 according to the
rules thatm3 = m2 + jm2

2 , andj3 > j2 is at least the maximum of all values ofσ ’s for
which Uσ (m2, j2) is in T2, and so on. SinceX has propertyS1(D,D), it has property
Sfin(D,D) and by Theorem 2G is not a winning strategy for ONE. Look at aG-play
G(∅), T1,G(T1), T2,G(T1, T2), . . . which is lost by ONE. Then

⋃
n∈N Tn is in D, and we

find increasing sequences(jn: n ∈N) and(mn: n ∈N) such that for eachn:
(1) mn+1=mn + jmnn ;
(2) G(T1, . . . , Tn)= U(mn+1, jn+1);
(3) jn+1 is at least as large as the value of anσ for whichUσ (mn, jn) is in Tn.

It follows that themn’s andjn’s have the required properties.
With the sequences(jn: n ∈N) and(mn: n ∈N) fixed, define next for eachn the fami-

ly Wn as follows: For every sequencek1< · · ·< kn fromN, and for anyσ1, . . . , σn where
eachσi is an{1, . . . , jki+1}-valued function with domainmki+1−mki , define

W(k1, . . . , kn;σ1, . . . , σn) :=
⋂
i6n

Uσi (mki , jki ).

Wn consists of all sets of the formW(k1, . . . , kn;σ1, . . . , σn).
Since eachWn is inD, the selection hypothesisS1(D,D) applied to(Wn: n ∈N) gives

for eachn a setSn :=W(kn1, . . . , knn;σn1 , . . . , σ nn ) such that{Sn: n ∈N} is inD. Recursively
choose for eachn an`n ∈ {kn1, . . . , knn}\{`i : i < n}. For eachn defineρn = σnin wherein is
such that̀ n = knin .

From the definitions we see that for eachn Sn ⊆ Uρn(m`n, j`n). If we now define
f :N→ N so that for eachn f (m`n + i) = ρn(i) wheneveri 6 m`n+1 − mln , we find
that the play

F(∅),Uf (1),F (Uf (1)),Uf (1),f (2),F (Uf (1),Uf (1),f (2)),Uf (1),f (2),f (3), . . .
is won by TWO. 2
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A minor variation of the proof of Theorem 3 gives:

Theorem 15. If the Pixley–Roy space of a set of real numbers satisfiesS1(O,D), then it
satisfiesS1(D,D).

In Theorem 21 we shall further strengthen Theorem 15. To see that this is at least
formally a strengthening, we need an analogue of Theorem 4. To prove the analogue of
Theorem 4 in the present context takes a little bit more work. To this end we introduce the
subfamilyL of D:
L consists of thoseU ∈ D with the property that for each nonempty open subsetU of

the space,{V ∈ U : U ∩ V 6= ∅} is infinite. The next theorem, an analogue of Theorem 15
of [11], shows thatS1(D,D) implies a certain “splitting property” that was introduced
in [11]:

Theorem 16. If a space satisfiesS1(D,D), then for everyU1, U2 in L there areV1 andV2

in L such thatV1⊆ U1, V2⊆ U2, andV1 ∩ V2= ∅.

Proof. The proof is just like that of Theorem 15 of [11].2
Then, using the idea of the proof of Theorem 16 of [11], one obtains from the preceding

theorem:

Corollary 17. If a space has propertyS1(D,D), then for every sequence(Un: n ∈ N)
of elements ofL, there is a sequence(Vn: n ∈ N) of elements ofL such that for eachn
Vn ⊆ Un andVm ∩ Vn = ∅ wheneverm 6= n.

Theorem 18. The following selection hypotheses are equivalent:
(1) S1(D,D);
(2) S1(L,L);
(3) S1(DΩ,L);
(4) S1(DΩ,D).

Proof. We must show that (1) implies (2), and (4) implies (1).
(1)⇒ (2) Let (Un: n ∈N) be a sequence fromL. By Corollary 17 we may assume that
Um ∩ Un = ∅ wheneverm 6= n. Let (Yn: n ∈ N) be a partition ofN into pairwise disjoint
infinite sets. For eachn apply Sfin(D,D) to the sequence(Um: m ∈ Yn). The result is a
selector for(Uj : j ∈N) which is moreover inL.

(4)⇒ (1) Let (Un: n ∈N) be sequence fromD. Let (Yn: n ∈N) be a partition ofN into
pairwise disjoint infinite sets. For eachn, letVn consist of sets of the formUi1 ∪ · · · ∪Uim
wherem ∈ N, Uij ∈ Uij , andi1 < · · · < im are inYn. If some suchVn contains a dense
subset of the space, then nothing more is to be done. Thus, we may assume that eachVn is
in DΩ . Now applyS1(DΩ,D) to the sequence(Vn: n ∈N). The selector for this sequence
can be modified to an appropriate selector for the original sequence ofUn’s. 2
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Corollary 19. Every space with propertyS1(DΩ,DΩ) has propertyS1(D,D).

Problem 5. Find a space which has propertyS1(D,D) but notS1(DΩ,DΩ).

The method of proof of Theorems 6 and 7 also work to prove

Theorem 20. If each finite power of a space has propertyS1(D,D), then the space
has propertyS1(DΩ,DΩ). Conversely, if the space has a discriminating sequence and
propertyS1(DΩ,DΩ), then it hasS1(D,D) in all finite powers.

Analogous to Theorem 8 we have:

Theorem 21. If the Pixley–Roy space for a set of real numbers has propertyS1(D,D),
then it has propertyS1(D,D) in each finite power, and thus has propertyS1(DΩ,DΩ).

The method of proof of Theorem 9 also gives:

Theorem 22. If every finite power ofX has propertyS1(D,D), then ONE has no winning
strategy in the gameG1(DΩ,DΩ).

By slightly adjusting the methods in the proof of Theorem 10, one obtains:

Theorem 23. LetX be a space such that each element ofDΩ has a countable subset in
DΩ . Then the following are equivalent:

(1) X satisfiesS1(D,D).
(2) X satisfies: For eachk ∈N,DΩ→ (D)2k .

This brings us now to our second summary of how the preceding results, when applied
to the Pixley–Roy spaces of sets of reals, fit in with the work from parts I–III.

Corollary 24. For X ⊆R the following statements are equivalent:
(1) each finite power ofX has propertyS1(O,O);
(2) X has propertyS1(Ω,Ω);
(3) ONE has no winning strategy in the gameG1(Ω,Ω) onX;
(4) for X and each,n, k ∈N,Ω→ (Ω)nk ;
(5) Cp(X) has propertyS1(Ωo,Ωo);
(6) ONE has no winning strategy in the gameG1(Ωo,Ωo) on Cp(X);
(7) for eachk,n ∈N,Ωo→ (Ωo)

n
k ;

(8) PR(X) has propertyS1(O,D);
(9) PR(X) has propertyS1(D,D);

(10) ONE has no winning strategy in the gameG1(D,D) in PR(X);
(11) for eachk ∈N, PR(X) satisfiesDΩ→ (D)2k ;
(12) PR(X) satisfiesS1(DΩ,DΩ);
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(13) ONE has no winning strategy in the gameG1(DΩ,DΩ) on PR(X);
(14) for eachk,n ∈N, PR(X) satisfiesDΩ→ (DΩ)nk .

Proof. (1)⇔ (2) is proved in the Lemma of [10]. (1)⇔ (5) is proved in Theorem 1 of [10].
(1)⇔ (8) is proved in Theorems 5A and 5B of [3].

(2)⇔ (3) is given in Theorem 2 of [12]. (2)⇔ (4) is proved by combining Theorem 6.1
of [8] and Theorems 23 and 24 of [11].

The equivalence of (5), (6) and (7) was given in [12]. The equivalence of (8) and (9)
follows from Theorem 15. The equivalence of (9) and (10) follows from Theorem 14. The
equivalence of (10) and (11) follows from Theorem 23. The equivalence of (10) and (12)
follows from Theorem 21. The equivalence of (12) and (13) follows from Theorems 22
and 21. The equivalence of (12) and (14) is proved similarly to the analogous fact for
Sfin(DΩ,DΩ). 2

4. The cardinal number cov(M)

Let cov(M) denote the minimum number of first category sets required to cover
R. Since the spaceNN, considered as a countable power of the discrete spaceN, is
homeomorphic to the set of irrational numbers,cov(M) is equal to the analogous covering
number for this space.

Theorem 25. For an infinite cardinal numberκ the following are equivalent:
(1) κ < cov(M);
(2) for eachT1-space of countable cellularity andπ -weightκ , ONE has no winning

strategy in the gameG1(D,D).

Proof. (1) ⇒ (2) Let F be a strategy for ONE inG1(D,D). In each inning, TWO
may restrict attention to a countable subset inD from ONE’s selected set. Build the
following array of sets:(Un: n ∈ N) enumerates a countable element ofD contained
in F(∅); (Un1,n: n ∈ N) enumerates a countable element ofD contained inF(Un1),
(Un1,n2,n: n ∈N) enumerates a countable elements ofD contained inF(Un1,Un1,n2), and
so on. LetB be aπ -base of cardinalityκ. For eachB ∈ B define

SB :=
{
f ∈ NN: (B ∩Uf dk+1 = ∅)

}
.

Since eachSB is closed and nowhere dense we find, by cardinality considerations, an
elementf of NN not in anySB . Then the play

F(∅),Uf (1),F (Uf (1)),Uf (1),f (2),F (Uf (1),Uf (1),f (2)), . . .
is lost by ONE.

(2)⇒ (1) LetX be a set of real numbers of cardinalityκ . ThenPR(X) hasπ -weightκ
and countable cellularity. Then ONE does not have a winning strategy inG1(D,D). Since
O ⊆ D this implies thatPR(X) has propertyS1(O,D), so that by Theorem 5A of [3]X
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has propertyS1(Ω,Ω). We see that each set of real numbers of cardinalityκ has property
S1(Ω,Ω). Theorem 4.8 of [8] implies thatκ is less thancov(M). 2

One can also show that each of the clauses of this theorem is equivalent to the statement
that for eachT1-space of countable cellularity andπ -weight κ , ONE has no winning
strategy in the gameG1(DΩ,DΩ).

We are now in a position to answer some questions from [4]:
(A) [4, p. 207] The authors ask if it is true forX a set of real numbers that if

ONE has a winning strategy in the gameG1(D,D) on PR(X), then ONE has a
winning strategy inG1(O,O) onX. The answer isNo. For ONE to have a winning
strategy inG1(D,D) on PR(X) is equivalent toX not having propertyS1(Ω,Ω)

(Corollary 24); For ONE to have a winning strategy inG1(O,O) onX is equivalent
to X not having propertyS1(O,O) [9, Lemma 2]. The Continuum Hypothesis
implies that there is a setX of reals which has propertyS1(O,O), but does not
have propertyS1(Ω,Ω) [8, Theorem 2.8].

(B) [4, p. 214, Question 2.4] On p. 213 the authors prove the implication (1)⇒ (2)
of Theorem 25. Question 2.4 (not as stated, but as intended) asks if the converse
implication is true. As shown in Theorem 25, the answer is Yes.

(C) [4, p. 220, Question 4.3] The authors ask if a player has a winning strategy in the
gameGfin(D,D) if, and only if, the same player has a winning strategy in the game
G1(D,D). The answer is No. This can be seen as follows: It is well known that
cov(M) 6 d, and that it is consistent that inequality between these two cardinal
numbers is strict (for the latter, see for example [5, Theorem 3.8]). LetX be a set of
real numbers of minimal cardinality which does not have propertyS1(Ω,Ω). Then
ONE has a winning strategy in the gameG1(D,D) on PR(X) (by Corollary 24).
However, if we havecov(M) < d, then ONE has no winning strategy in the game
Gfin(D,D) on PR(X) (Corollary 11 and [8, Theorem 4.6]).

5. Closing remarks

In parts I–III additional properties, all motivated by analogous properties that have been
studied for ultrafilters onN, were considered in connection with these selection hypotheses.
Here is a partial list of these:
• K(A,B): For every first-countable compactT2-spaceZ, for eachA ∈ A and for

every f :A→ Z such that for somea ∈ Z and for each neighborhoodU of a
{x ∈ A: f (x) ∈ U} is in A, there is aB ⊆ A such thatB ∈ B anda is the unique
limit point of {f (x): x ∈ B}.
• P(A,B): For every descending sequenceA1⊇ A2⊇ · · · ⊇ An ⊇ · · · in A, there is a
B ∈ B such that for eachn, B\A is finite.
• Q(A,B): For every countableA ∈ A, for each partition ofA into pairwise disjoint

finite sets, there is aB ∈ B which meets each element of the partition in at most one
point.
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• Blinear(A,B): For eachA ∈A, for each linear orderingR of A, there is aB ∈ B such
thatB ⊆A and the order type ofB relative toR is ω orω∗.
• Btree(A,B): For eachA ∈A and for each tree orderingR of A, there is aB ∈ B such

thatB ⊆A andB is a chain, or an antichain, in the tree onA.
• Indfin(A,B): For every descending sequenceA1⊇ A2⊇ · · · ⊇ An ⊇ · · · of countable

sets inA and for every bijective enumeration(an: n ∈ N) of A1, there is a function
H :N→[N]<ℵ0 such that:
(1) if m< n, then sup(H(m)) < sup(H(n)) and|H(m)|< |H(n)|;
(2)

⋃∞
n=1{aj : j ∈H(n)} ∈ B; and

(3) for eachn, {aj : j ∈H(n+ 1)} ⊂Asup(H(n)).
• Ind1(A,B): For every descending sequenceA1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · of countable

sets inA and for every bijective enumeration(an: n ∈ N) of A1, there is a function
g :N→N such that:
(1) if m< n, theng(m) < g(n);
(2) {ag(n): n ∈N} ∈ B; and
(3) for eachn, ag(n+1) ∈Ag(n).
• Cfin(A,B): For eachA ∈A and for eachf :A→N there is aB ∈ B such thatB ⊆A,

and onB f is finite-to-one, or constant.
• C1(A,B): For eachA ∈A and for eachf :A→N there is aB ∈ B such thatB ⊆A,

and onB f is one-to-one, or constant.
• BTfin(A,B): For eachA ∈A, for each partitionA=⋃∞n=1An of A into disjoint sets,

none inA, there is aB ∈ B such thatB ⊆ B and for eachn B ∩An is finite.
• BT1(A,B): For eachA ∈A, for each partitionA=⋃∞n=1An of A into disjoint sets,

none inA, there is aB ∈ B such thatB ⊆ B and for eachn B ∩An has at most one
element.

Theorem 26. If X is a set of real numbers, then forPR(X) the following statements are
equivalent:

(a) Sfin(DΩ,DΩ);
(b) ONE has no winning strategy inGfin(DΩ,DΩ);
(c) Indfin(DΩ,DΩ);
(d) K(DΩ,DΩ);
(e) P(DΩ,DΩ);
(f) for eachk,DΩ→dDe2k ;
(g) Blinear(DΩ,DΩ);
(h) Cfin(DΩ,DΩ);
(i) BTfin(DΩ,DΩ).

For arbitrary spaces of countable cellularity each of the statements in Theorem 26
implies the next. Using the combinatorial structure of Pixley–Roy spaces one can prove
that i impliesa, as follows: First, we may assume thatX is uncountable. Let(Un: n ∈N)
be a sequence fromDΩ . We may assume that each element of eachUn is a finite union
of sets of the form[S,U ], and that eachUn is countable. EnumerateUn bijectively as
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([Snm,1,Unm,1]∪ · · ·∪ [Snm,knm,Unm,knm]: m ∈N), and pickxn ∈X\⋃∞m=1(S
n
m,1∪ · · ·∪Snm,knm).

Then letU∗n consist of the sets[Snm,1,Unm,1\{xn}] ∪ · · · ∪ [Snm,knm,Unm,knm\{xn}],m ∈N.

No U∗n is in D, but V =⋃∞n=1U∗n is in DΩ . Apply BTfin(DΩ,DΩ) to find for eachn
a finite setFn ⊆ U∗n such that

⋃∞
n=1Fn is in DΩ . By restoring elements ofFn to being

elements ofUn we then find for eachn a finite setGn ⊆ Un such that
⋃∞
n=1Gn is inDΩ .

Similar remarks apply to the next theorem, and a similar argument shows thath

impliesa.

Theorem 27. If X is a set of real numbers, then forPR(X) the following statements are
equivalent:

(a) S1(DΩ,DΩ);
(b) ONE has no winning strategy inG1(DΩ,DΩ);
(c) Ind1(DΩ,DΩ);
(d) P(DΩ,DΩ) andQ(DΩ,DΩ);
(e) for all n andk,DΩ→ (DΩ)nk ;
(f) Btree(DΩ,DΩ);
(g) C1(DΩ,DΩ);
(h) BT1(DΩ,DΩ).
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