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a b s t r a c t

In this work, we introduce the concept of cone ball-metric spaces and we prove fixed
point results on such spaces for mappings satisfying a contraction involving a stronger
Meir–Keeler cone-type function.
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1. Introduction and preliminaries

In 1997, Zabrejko [1] introduced the K -metric and K -normed linear spaces and showed the existence and uniqueness
of fixed points for operators which act in K -metric or K -normed linear spaces. Later, Huang and Zhang [2] introduced the
concept of a cone metric space by replacing the set of real numbers by an ordered Banach space, and they showed some
fixed point theorems of contractive-type mappings on cone metric spaces. The category of cone metric spaces is larger than
that of metric spaces. Subsequently, many authors like Abbas and Jungck [3], and Ilić and Radenović [4] generalized the
results of Huang and Zhang [2] and studied the existence of common fixed points of a pair of self-mappings satisfying a
contractive-type condition in the framework of normal cone metric spaces. However, authors such as Janković et al. [5],
Rezapour and Hamlbarani [6] studied the existence of common fixed points of pairs self-mappings and non-self-mappings
satisfying a contractive-type condition in the situation in which the cone does not need be normal. Many authors studied
this subject and many results on fixed point theory are proved [7–11].

We recall some definitions of the cone metric spaces and some of the properties [2], as follows:

Definition 1 ([2]). Let E be a real Banach space endowed with a norm ∥ · ∥ and P a subset of E. P is called a cone if and
only if:

(i) P is nonempty, closed, and p ≠ {0E}, where 0E is the zero vector of E,
(ii) a, b ∈ ℜ, a, b ≥ 0E, x, y ∈ P ⇒ ax + by ∈ P ,
(iii) x ∈ P and −x ∈ P ⇒ x = 0E .

Given a cone P ⊂ E, a partial ordering ≤ with respect to P is defined by x ≤ y if and only if y− x ∈ P for all x, y ∈ E. We
shall write x < y to indicate that x ≤ y but x ≠ y, while x ≪ y will stand for y − x ∈ int P , where int P denotes the interior
of P .
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The cone P is called normal if there exists a real number κ > 0 such that for all x, y ∈ E,

0E ≤ x ≤ y ⇒ ∥x∥ ≤ κ∥y∥.

The least positive number κ satisfying the above is called the normal constant of P . The cone P is called regular if every
increasing sequence which is bounded from above is convergent, that is, if {xn} is a sequence such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y,

for some y ∈ E, then there is x ∈ E such that ∥xn − x∥ → 0 as n → ∞. Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone.

Definition 2 ([2]). Let X be a nonempty set, and let E be a real Banach space endowed with a cone P in E with int P ≠ φ and
≤ be a partial ordering with respect to P . Suppose the mapping d : X × X → E satisfies:

(i) 0E < d(x, y) for all x, y ∈ X, x ≠ y;
(ii) d(x, y) = 0E if and only if x = y;
(iii) d(x, y) = d(y, x);
(iv) d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X .

Then d is called a cone metric on X , and (X, d) is called a cone metric space.

Metric spaces play an important role inmathematics and the applied sciences. In 2003,Mustafa and Sims [12] introduced
a more appropriate and robust notion of a generalized metric space as follows.

Definition 3 ([12]). Let X be a nonempty set, and let G : X ×X ×X → [0,∞) be a function satisfying the following axioms:

(G1) G(x, y, z) = 0 if and only if x = y = z;
(G2) G(x, x, y) > 0 for all x ≠ y;
(G3) G(x, y, z) ≥ G(x, x, y) for all x, y, z ∈ X;
(G4) G(x, y, z) = G(x, z, y) = G(z, y, x) = · · · (symmetric in all three variables);
(G5) G(x, y, z) ≤ G(x, w,w)+ G(w, y, z) for all x, y, z, w ∈ X .

Then the function G is called a generalized metric, or, more specifically, a G-metric on X , and the pair (X,G) is called a
G-metric space.

This research subject is interesting and broad. But is so abstract that people find it hard to understand. So we introduce the
concept of cone ball-metric spaces and we prove fixed point results on such spaces for mappings satisfying a contraction
involving a stronger Meir–Keeler cone-type function.

In the following we always suppose that E is a real Banach space endowed with a cone P with apex at the origin
0E, int P ≠ φ and a linear ordering ≤ with respect to P . We now introduce the concept of the cone ball-metric B. Let
(X, d) be a cone metric space, and x, y, z ∈ X . We define

Bγ (x) = B(x, γ ) = {y ∈ X : d(x, y) < γ } for x ∈ X;

this is a ball in X with the center x and the radius γ ≫ 0E , and we define the function B : X × X × X → E by

B(x, y, z) = inf{2γ : Bγ is a ball in X , and {x, y, z} ⊂ Bγ },

where γ is the radius of the ball Bγ . Then we call B a cone ball-metric with respect to the cone metric d, and (X,B) a cone
ball-metric space. Moreover, we also define B(x, x, y) = d(x, y).

Further, the cone ball-metric B has the following properties:

(B1) B(x, y, z) = 0E if and only if x = y = z;
(B2) B(x, x, y) > 0E for all x ≠ y;
(B3) B(x, y, z) ≥ B(x, x, y) for all x, y, z ∈ X;
(B4) B(x, y, z) = B(x, z, y) = B(z, y, x) = · · · (symmetric in all three variables);
(B5) B(x, y, z) ≤ B(x, w,w)+ B(w, y, z) for all x, y, z, w ∈ X;
(B6) B(x, x, y) = B(x, y, y) for all x, y ∈ X .

Definition 4. Let (X,B) be a cone ball-metric space and {xn} be a sequence in X . We say that {xn} is:

(a) A Cauchy sequence if for every ε ∈ E with 0E ≪ ε, there exists n0 ∈ N such that for all n,m, l > n0,B(xn, xm, xl) ≪ ε.
(b) A convergent sequence if for every ε ∈ E with 0E ≪ ε, there exists n0 ∈ N such that for all n,m > n0,B(xn, xm, x) ≪ ε

for some x ∈ X . Here x is called the limit of the sequence {xn} and is denoted by limn→∞ xn = x or xn → x as n → ∞.



694 C.M. Chen et al. / Applied Mathematics Letters 25 (2012) 692–697

Definition 5. Let (X,B) be a cone ball-metric space. Then X is said to be complete if every Cauchy sequence is convergent
in X .

Proposition 1. Let (X,B) be a cone ball-metric space and {xn} be a sequence in X. Then the following are equivalent:

(i) {xn} converges to x;
(ii) B(xn, xn, x) → 0E as n → ∞;
(iii) B(xn, x, x) → 0E as n → ∞;
(iv) B(xn, xm, x) → 0E as n,m → ∞.

Proposition 2. Let (X,B) be a cone ball-metric space and {xn} be a sequence in X, x, y ∈ X. If xn → x and xn → y as n → ∞,
then x = y.

Proof. Let ε ∈ E with 0E ≪ ε be given. Since xn → x and xn → y as n → ∞, there exists n0 ∈ N such that for allm, n > n0,

B(xn, xm, x) ≪
ε

3
and B(xn, xm, y) ≪

ε

3
.

Therefore,

B(x, x, y) ≤ B(x, xn, xn)+ B(xn, x, y)
= B(x, xn, xn)+ B(y, xn, x)
≤ B(x, xn, xn)+ B(y, xm, xm)+ B(xm, xn, x)

≪
ε

3
+
ε

3
+
ε

3
= ε.

Hence, B(x, x, y) ≪
ε
α
for all α ≥ 1, and so ε

α
− B(x, x, y) ∈ P for all α ≥ 1. Since ε

α
→ 0E as α → ∞ and P is closed, we

have that −B(x, x, y) ∈ P . This implies that B(x, x, y) = 0E , since B(x, x, y) ∈ P . So x = y. �

Proposition 3. Let (X,B) be a cone ball-metric space and {xn}, {ym}, {zl} be three sequences in X. If xn → x, ym → y, zl → z
as n → ∞, then B(xn, ym, zl) → B(x, y, z) as n → ∞.

Proof. Let ε ∈ E with 0E ≪ ε be given. Since xn → x, ym → y, zl → z as n → ∞, there exists n0 ∈ N such that for all
n,m, l > n0,

B(xn, x, x) ≪
ε

3
, B(ym, y, y) ≪

ε

3
, B(zl, z, z) ≪

ε

3
.

Therefore,

B(xn, ym, zl) ≤ B(xn, x, x)+ B(x, ym, zl)
≤ B(xn, x, x)+ B(ym, y, y)+ B(y, x, zl)
≤ B(xn, x, x)+ B(ym, y, y)+ B(zl, z, z)+ B(z, x, y)

≪
ε

3
+
ε

3
+
ε

3
+ B(x, y, z),

that is,

B(xn, ym, zl)− B(x, y, z) ≪ ε.

Similarly,

B(x, y, z)− B(xn, ym, zl) ≪ ε.

Therefore, for all α ≥ 1, we have

B(xn, ym, zl)− B(x, y, z) ≪
ε

α
,

and

B(x, y, z)− B(xn, ym, zl) ≪
ε

α
.

These imply that
ε

α
− B(xn, ym, zl)+ B(x, y, z) ∈ P,

ε

α
+ B(xn, ym, zl)− B(x, y, z) ∈ P.
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Since P is closed and ε
α

→ 0E as α → ∞, we have that

lim
n,m,l→∞

[−B(xn, ym, zl)+ B(x, y, z)] ∈ P,

lim
n,m,l→∞

[B(xn, ym, zl)− B(x, y, z)] ∈ P.

These results show that

lim
n,m,l→∞

B(xn, ym, zl) = B(x, y, z).

So we complete the proof. �

2. The main results

In this section, we introduce the stronger Meir–Keeler cone-type function ψ : int P ∪ {0} → [0, 1) in cone ball-
metric spaces, and prove the fixed point results on such spaces for mappings satisfying a contraction involving a stronger
Meir–Keeler cone-type function.

Definition 6. Let (X,B) be a cone ball-metric space with a regular cone P , and let

ψ : int P ∪ {0E} → [0, 1).

Then the function ψ is called a stronger Meir–Keeler-type function if for each η ∈ P with η ≫ 0E , there exists δ ≫ 0E such
that for x, y, z ∈ X with η ≤ B(x, y, z) ≪ δ + η, there exists γη ∈ [0, 1) such that ψ(B(x, y, z)) < γη .

Let (X,B) be a cone ball-metric space and T , F : X → X be two single-valued mappings. The point ν is called a
coincidence point of T and F if ν = Tµ = Fµ for some µ ∈ X . Maps T and F are said to be weakly compatible if they
commute at coincidence points. That is, Fν = FTµ = TFµ = Tν.

Theorem 1. Let (X,B) be a cone ball-metric space with a regular cone P and T , F , S, f : X → X be four single-valuedmappings.
Suppose that there exists a stronger Meir–Keeler-type function ψ : int P ∪ {0E} → [0, 1) such that:

(1) B(Tx, Fy, Sz) ≤ ψ(B(fx, fy, fz)) · B(fx, fy, fz) for all x, y, z ∈ X.

If

TX ∪ FX ∪ SX ⊂ fX,

and fX is a complete subspace of X, then S, T , F and f have a unique point of coincidence.
Moreover, if (T , f ), (F , f ) and (S, f ) are weakly compatible, then T , F , S and f have a unique common fixed point ν in X.

Proof. Given x0 ∈ X , define the sequence {fxn} recursively as follows:

fx3n+1 = Tx3n, fx3n+2 = Fx3n+1, fx3n+3 = Sx3n+2.

Then for each n ∈ N , we have

B(fx3n+1, fx3n+2, fx3n+3) = B(Tx3n, Fx3n+1, Sx3n+2)

≤ ψ(B(fx3n, fx3n+1, fx3n+2)) · B(fx3n, fx3n+1, fx3n+2)

≪ B(fx3n, fx3n+1, fx3n+2).

Hence the sequence {B(fxn, fxn+1, fxn+2)} is decreasing and bounded below. Let limn→∞ B(fxn, fxn+1, fxn+2) = η ≥ 0E .
Then there exists κ0 ∈ N and δ ≫ 0E such that for all n > κ0,

η ≤ B(fxn, fxn+1, fxn+2) ≪ η + δ.

For each n ∈ N , sinceψ : int P ∪ {0E} → [0, 1) is a stronger Meir–Keeler-type mapping, for these η ≫ 0 and δ ≫ 0 we
have that for fxκ0+n, fxκ0+n+1, fxκ0+n+2 ∈ X with

η ≤ B(fxκ0+n, fxκ0+n+1, fxκ0+n+2) ≪ δ + η,

there exists γη ∈ [0, 1) such that

ψ(B(fxκ0+n, fxκ0+n+1, fxκ0+n+2)) ≪ γη.

Thus, by (1), we can deduce

B(fxκ0+n, fxκ0+n+1, fxκ0+n+2) ≪ γη · B(fxκ0+n−1, fxκ0+n, fxκ0+n+1),
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and it follows that for each n ∈ N ,

B(fxκ0+n, fxκ0+n+1, fxκ0+n+1) ≤ B(fxκ0+n, fxκ0+n+1, fxκ0+n+2)

≪ γη · B(fxκ0+n−1, fxκ0+n, fxκ0+n+1)

≪ · · ·

≪ γ n
η · B(fxκ0 , fxκ0+1, fxκ0+2).

So,

lim
n→∞

B(fxκ0+n, fxκ0+n+1, fxκ0+n+1) = 0E, since γη < 1.

We next claim that limm,n→∞ B(fxκ0+n, fxκ0+m, fxκ0+m) = 0E . For m, n ∈ N with m > n, we have

B(fxκ0+n, fxκ0+m, fxκ0+m) ≤

m−1
i=n

B(fxκ0+i, fxκ0+i+1, fxκ0+i+1)

≪
γ m−1
η

1 − γη
B(fxκ0+1, fxκ0+2, fxκ0+2),

and hence B(fxκ0+n, fxκ0+m, fxκ0+m) → 0E as m, n → ∞, since 0 < γη < 1.
By the property (B5) of the cone ball-metric, we obtain

B(fxκ0+n, fxκ0+m, fxκ0+l) ≤ B(fxκ0+n, fxκ0+m, fxκ0+m)+ B(fxκ0+m, fxκ0+m, fxκ0+l),

and taking the limit as m, n, l → ∞, we get B(fxκ0+n, fxκ0+m, fxκ0+l) → 0E . So {fxn} is a Cauchy sequence. Since fX is a
complete subspace of X , there exists µ ∈ X such that limn→∞ fxn = µ, that is, B(fxn, fxn, µ) → 0E as n → ∞.

Since fX is a complete subspace of X , there exists ν, µ ∈ X such that limn→∞ fxn = ν and fµ = ν. So,

B(fx3n, fx3n, ν) → 0E, B(Tx3n, Tx3n, ν) → 0E,

B(Fx3n+1, Fx3n+1, ν) → 0E, B(Sx3n+2, Sx3n+2, ν) → 0E .

Thus we can choose ϵ ≫ 0 and n ∈ N such that

B(fx3n, fx3n, ν) ≪
ϵ

6
;

B(Tx3n, Tx3n, ν) ≪
ϵ

6
;

B(Fx3n+1, Fx3n+1, ν) ≪
ϵ

6
;

B(Sx3n+2, Sx3n+2, ν) ≪
ϵ

6
,

and hence

B(fµ, fµ, Tµ) ≤ B(fµ, fµ, fx3n)+ B(fx3n, fx3n, Tµ)
= B(fµ, fµ, fx3n)+ B(fx3n, Tµ, fx3n−1)+ B(fx3n−1, fx3n−1, fx3n)
= B(fµ, fµ, fx3n)+ B(Sx3n−1, Tµ, Fx3n−2)+ B(fx3n−1, fx3n−1, ν)+ B(ν, ν, fx3n)
≤ B(fµ, fµ, fx3n)+ ψ(B(fµ, fx3n−2, fx3n−1)) · B(fµ, fx3n−2, fx3n−1)

+ B(fx3n−1, fx3n−1, ν)+ B(ν, ν, fx3n)
≤ B(fµ, fµ, fx3n)+ γη · [B(fx3n−2, fµ, fµ)+ B(fµ, fµ, fx3n−1)]

+ B(fx3n−1, fx3n−1, ν)+ B(ν, ν, fx3n)

≤
ϵ

6
+ γη ·

ϵ
6

+
ϵ

6


+
ϵ

6
+
ϵ

6
≪ ϵ.

Therefore, B(fµ, fµ, Tµ) = 0E , that is, fµ = ν = Tµ. Similarly, by the same process, we can deduce that fµ = ν = Fµ
and fµ = ν = Sµ. So ν is a point of coincidence of T , F , F and f , that is,

ν = fµ = Tµ = Fµ = Sµ.

Now we show that T , F , S and f have a unique point of coincidence. Let ν∗ be another coincidence point of S, T and f ,
that is,

ν∗
= fµ∗

= Tµ∗
= Fµ∗

= Sµ∗ for some µ∗
∈ X .



C.M. Chen et al. / Applied Mathematics Letters 25 (2012) 692–697 697

Then

B(ν, ν, ν∗) = B(Tµ, Fµ, Sµ∗)

≤ ψ(B(fµ, fµ, fµ∗)) · B(fµ, fµ, fµ∗)

= ψ(B(ν, ν, ν∗)) · B(ν, ν, ν∗)

≪ γηB(ν, ν, ν
∗),

which implies ν = ν∗. Hence ν is the unique coincidence point of S, T and f .
By the weak compatibility of (T , f ), (F , f ), and (S, f ), we have

Tν = Tfµ = fTµ = f ν;
Fν = Ffµ = fFµ = f ν;
Sν = Sfµ = fSµ = f ν.

Hence there existsw ∈ X such thatw = Tν = Fν = Sν = f ν andw is a point of coincidence of f , S, F and T . Therefore,
by the uniqueness of the point of coincidence, we have ν = w. Thus, ν is a unique common fixed point of f , S, F and T . �

Bari andVetro [13] defined a pair ofφ-maps and studied common fixedpoints in conemetric spaces,while Shatanawi [14]
studied several fixed point theorems for contractive mappings satisfying φ-maps in G-metric spaces. Applying Theorem 1,
we immediate get the following corollary.

Corollary 1. Let (X, d) be a cone rectangular metric space with regular cone P such that d(x, y) ∈ int P for all x, y ∈ X with
x ≠ y. Let φ : int P ∪ {0E} → int P ∪ {0E} be a φ-mapping and let ξ : int P ∪ {0E} → [0, 1) be a stronger Meir–Keeler-type
function. Suppose that S, T , f : X → X are three single-valued functions such that for all x, y ∈ X,

φ(d(Sx, Ty)) ≤ ξ(φ(d(fx, fy))) · φ(d(fx, fy)).

If

SX ∪ TX ⊂ fX,

and fX is a complete subspace of X, then S, T and f have a unique point of coincidence.
Moreover, if (S, f ) and (T , f ) are weakly compatible, then S, T and f have a unique common fixed point z in X.
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