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1. Introduction and statement of results

A real polynomial F is called Hurwitz (stable) if all its zeros have negative real parts, i.e. F(zg) =0 = Rezp < 0.
Polynomial stability problems of various types arise in a number of problems in mathematics and engineering. We refer to
[5, Chapter 15] or [11, Chapter 9] for deep surveys on the stability theory.

The following statement (usually attributed to A. Stodola, see, for example, [12]) is the well-known necessary condition
for a real polynomial to be stable.

Statement A. F(z) =ag +a1z+ - - +ayz" € R[z], ap > 0, is stable = a;>0,0<j<n—1.
The following famous theorem gives the necessary and sufficient conditions for a polynomial to be stable.

The Routh-Hurwitz Criterion. (See, for example, [5, pp. 225-230].) The polynomial F(z) = ag + a1z + - -- + an 2", a, > 0, is stable
if and only if the first n principal minors of the corresponding Hurwitz matrix

ap—1 ap—3 Qn—s ... O

an  an—2 0n—4 0

H(F):=| O @-1 an3 0
0 an, Qp_2 0

are positive.

Note that the verification of positivity of principal minors is, in general, a very difficult problem. In [3] T. Craven and
G. Csordas obtained the following useful and easily verified condition of positivity of all minors of a matrix.
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Theorem A. Denote by ¢ the unique real root of x> — 5x% + 4x — 1 = 0 (¢ ~ 4.0796). Let M = (ajj) be an n x n matrix with the
properties

(@) a;;>0(1<i,j<n); and
(b) aijaiz1,j41 = Caj jy1ai41,; (1 <i, j<n—1).

Then all minors of M are positive.

Using Theorem A and continuity reasonings D.K. Dimitrov and ].M. Pefia proved the following theorem.

Theorem B. (See [4].) Let ¢ be defined as in Theorem A. If the coefficients of F(z) =ag + a1z + - -- + a,z" are positive and satisfy the
inequalities

Akapy1 > Cag_1aky2 fork=1,2,....,n -2,
then F(z) is Hurwitz. In particular, the conclusion is true if

@ >Vea a1 fork=1,2,....n—1.

In [8] the authors of this note have proved that Theorem A remains valid if one replace the constant ¢ by the constant
Cn ;=4 cos? % In [8] it is also shown that in the statement of Theorem A the constant ¢, is the smallest possible not only
in the class of matrices with positive entries but in the classes of Toeplitz matrices and of Hankel matrices. We recall that a
matrix M is Toeplitz matrix if it is of the form M = (a;_;) and a matrix M is Hankel matrix if it is of the form M = (a;1,).
In this paper we will show that the constant ¢, is not the smallest possible in the class of Hurwitz matrices.

The natural problem is: for a given n € N what is the smallest possible constant d, such that if the coefficients of
F(z) =ap+aiz+---+ayz" are positive and satisfy the inequalities apayy1 > dpar_10ax42 for k=1,2,...,n—2, then F(z) is
Hurwitz? Our main result is the following theorem which solves this problem.

Theorem 1. Let xy be the (unique) positive root of the polynomial x> — x? — 2x — 1 (xg ~ 2.1479).

1. If the coefficients of F(z) = Zﬁzo axZ¥ are positive and satisfy the inequalities AkAg41 > 2ax_10x42 for k =1, 2, then F(z) is
Hurwitz. In particular, the conclusion is true ifaf > ﬁak_lak+1 fork=1,2,3.

2. If the coefficients of F (z) = 22:0 axZ¥ are positive and satisfy the inequalities AQyg+1 > XoQx—10k42 fork =1,2,3, then F(z) is
Hurwitz. In particular, the conclusion is true ifaﬁ > /X0k—10k+1 fork=1,2,3, 4.

3. If the coefficients of F(z) = Zﬁ:o axZ®, n > 5, are positive and satisfy the inequalities ArAg+1 = XoAg—10ak42 fork=1,2, ...,

n — 2, then F(z) is Hurwitz. In particular, the conclusion is true ifaf > J/X0ak—10k+q fork=1,2,...,n—1.
Note that
2 2
agag+1 9 et

Qg—10k12  Qk—10k+1 Okl
and thus the following theorem demonstrates that the constants in Theorem 1 are the smallest possible for every n.

Theorem 2.

1. For every d < /2 there exists a polynomial F(z) = Zf::o agz® with positive coefficients under condition aﬁ = day_1ay+1 for
k=1, 2,3, such that F(z) is not Hurwitz.

2. For every d < /xo there exists a polynomial F(z) = Zi:o axZ* with positive coefficients under condition a,% =day_10y1 for
k=1, 2, 3,4, such that F(z) is not Hurwitz.

3. For every n > 5 and every & > 0 there exists a polynomial F(z) = ZZZO axZ* with positive coefficients under condition a,% >
(VX0 — €)ak—10x41 fork=1,2,...,n — 1, such that F(z) is not Hurwitz.

Theorem 1 may be generalized for entire functions as follows.

Theorem 3. If the coefficients of G(z) = Y 12, axZ* are positive and satisfy the inequalities AxAk4+1 = XoUk—10k+2 for k € N, then all
zeros of G(z) have negative real parts. In particular, the conclusion is true ifaf > /Xoax_1ay1 fork € N.

As we will show in the proof of Theorem 2 the constant in Theorem 3 is the smallest possible.
To prove Theorem 1 we use the famous Hermite-Biehler Criterion. The following statement is a version of the Hermite-
Biehler theorem.
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The Hermite-Biehler Criterion of stability. (See [2] and [6], or [10, Chapter VII].) Let F(z) = Y j_ Oakz be a polynomial with
positive coefficients. The polynomial F is stable if and only if the following two polynomials f(z) = ZWZJ( DMay,z™ and g(z) =
ZL(" 1)/ZJ( 1)™aym+12™ have simple real interlacing zeros.

We will use also the following result by Hutchinson [7, p. 327].

Theorem C. Let f(z) =) /2, axZ¥, ai > 0, Vk. Inequality a2 > 4ap_1an41, Vn > 1, holds if and only if the following two properties
hold:

(i) the zeros of f(z) are all real, simple and negative, and
(i) the zeros of any polynomial Y j_,. agz¥, formed by taking any number of consecutive terms of f (z), are all real and non-positive.

Theorem C is closely connected with the above mention sufficient condition for a matrix to have positive minors. About
the connection between the property of a polynomial to have only real non-positive zeros and the positivity of minors of
certain matrix see, for example, [1].

2. Proof of Theorems 1 and 3

It is well known (and easy verified) that polynomials of degree 1 and 2 with positive leading coefficient are stable if and
only if all their coefficients are positive.
Let F(z) =ap +ayz+ ---+ayz" be a polynomial with positive coefficients. Denote by
ajaj
sj:¢7 1<j<n—2. (1)
aj—10j+2

Let F(z) = Z?:O ajzj be a polynomial with positive coefficients. Polynomial F is stable if and only if s; > 1 (see, for

example, [12, p. 34]). Really, for F(z) = Z? Oa]zj we have f(z2) —ao —az and g(z) = z(a; — asz). Both polynomials have
simple real zeros, and these zeros interlace if and only if 0 < “g <L @ s> 1.

Proof of Theorem 1. To prove Theorem 1 we will use the Hermite-Biehler Criterion of stability. Let us prove the statement
1 of Theorem 1.

For F(z) = Z?:o ajzf we have f(z) =ag —ayz +a47* and g(z) = z(ay — a3zz). Using our notations we can express two
zeros of the polynomial f(z) in such a way:

ap S152 4
to=—22(15 [1- =
1.2 a 2 ( + S]Sz)

These zeros are real and distinct since min(sy, s2) > 2. Two zeros of the polynomial g(z) are tj =0, t] = 2—231, they are real
and distinct. The polynomial F(z) is stable if and only if

4 4
P (P R I Ll (I D R )
ap 2 5182 a az 2 5182
The first inequality in (2) obviously holds.
The second inequality in (2) is equivalent to sp(1 —,/1 — s]T) < 2. The left-hand side of this inequality is strictly de-
creasing in s1, so this inequality follows from sy(1—,/1 — —) 2 (we paste s; = 2). The left-hand side of the last inequality

is strictly decreasing in sy, and for s; =2 the left-hand 51de is equal to the right-hand side. By these reasons the second
inequality in (2) holds.

The third inequality in (2) is equivalent to sp(1+,/1 — E) > 2. Since min(sy, s2) > 2 the last inequality is true.

Thus, polynomial F(z) = Z?:o a jzf with positive coefficients is §table provided min(sy, s2) > 2.

Let us prove the statement 2 of Theorem 1. For F(z) = Z?:o a;jz’ we have f(z) =ag —ayz+a47z? and g(2) = z(ay —azz+
asz%). Using our notations we can express two zeros of the polynomial f(z) in such a way:

ap S152 4
to=—22(1¢ J1- —
1.2 ar 2 ( + S]Sz)
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These zeros are real and distinct since min(s, s2) > xo > 2. The polynomial g(z) has three distinct real zeros which can be
written in such a way:

dp S1528 4 ap S1528 4
th=0, tr=—U23(q_ 1 =23 1 ).
a 2 5283 a 2 $253

The polynomial F(z) is stable if and only if

ap $1S 4 ap 1528 4 ap $1S 4
0< 222 [ 2 )08y Jp T ) o022 1o 2
ap 2 5182 az 2 5283 ap 2 5182

4
< S0 1925 (1+ 1——> 3)
ap 2 5283

The first inequality in (3) obviously holds.

The second inequality in (3) is equivalent to (1 —,/1 — 5152 ) <s3(1—,/1— E) The left-hand side of this inequality
is strictly decreasing in sq, and s > xo > 2 so this inequality follows from (1 —,/1 — 5) <s3(1 — /1 — E) (we paste
s1 = 2). The right-hand side of the last inequality is strictly decreasing in s3 and limg, o0 s3(1 —,/1 — E) = %, so the
second inequality in (3) follows from the obvious one (1 — ) . Thus, the second inequality in (3) is true.

Let us check that under our assumptions the third 1nequa11ty in ( ) holds, or, equivalently s3(1 — ,/1— E)

a+,/1- % ). The left-hand side of this inequality is strictly decreasing in s3, the right-hand side is strictly increasing

in s1, so this inequality follows from xo(1 —,/1 — %) <A+ ), or, equivalently, (1 + xp) >xg9 — 1. The

XOSZ SZXO

left-hand side of the last inequality is strictly increasing in sy, and the last inequality follows from (1 +xg) /1 — Xiz >x0—1
0

or, equivalently, Xo — Xo 2xo — 1> 0. By the definition of xq this is true. Thus, the third inequality in (3) holds.

Let us check that under our assumptions the fourth inequality in (3) holds, or, equivalently 1+ 1—% <

s3(1 4+ /1 — —) The left-hand side is strictly increasing in s; and lims, 001+ ,/1 — —= =2, so the last inequality

515‘2
follows from 2 <s3(1+4,/1— E ). The right-hand side is strictly increasing in s > xo > 2, so the last inequality follows
from the obvious inequality 2 <s3(1+,/1 — % ). So, the fourth inequality in (3) holds.
Thus, polynomial F(z) = Z?:O a jzf with positive coefficients is stable provided min(s1, 52, 53) > Xo.

Remark. It follows from the proof of the statement 2 of Theorem 1 that if min(s1, s2,3) > o then tj <t <t <tz <3
(the notation is the same as in the proof of statement 2 of Theorem 1).

Let F(2) =Y 1o axZ¥,ax > 0, be a polynomial satisfying the condition sj=xp for j=1,2,...,n — 2. Without loss of
generality we can assume that ap = 1. Denote by

aj—

pj=—1, j=12,...,n (4)
aj
Using this notation we can write
) n z z? P
FO=1+az4+az"+---+apz =14+ —+ —+-- -+ —.
P1 DPi1DP2 bi1P2---Dn

To prove the statement 3 of Theorem 1 we need some lemmas. The statement below is the direct consequence of the
statements 1 and 2 of Theorem 1 and Remark.

2 () —=1— —2_ z )
Lemma 1. Let f(z) =1- p1p2 + 5ipapapa g(2)=1 525 T p2p3p4p5,where pj>0,1<j<5. Supposethatpj,,/pj > Xo, where
Xo is equal to the unique positive root of the polynomial x> — x2 — 2x — 1. Denote by 0 < x1 < x, the zeros of f, 0 < x] < X3 the zeros
of g. Then
) <0, f(x))<o. (5)

- ;oA
ff=-1 P3D4’g_1 P2P3

8(x2) <0, f(x’f) <0. (6)
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We need the following lemma.

Lemma 2. Let

z z2 . 2"
Foy=1-—4+— -+ (-D)'"——, n=3, @
P11 P1P2 L102 " Pn

be a polynomial with p; > 0 and min{ p;)“ 1< j<n-—1}> 1. Denote by

1242 ifji=1,2,....,n—1;

pj PjPj+1°
Rjz.F)=1 -1+ %, ifj=0; (8)
z i
-z, ifj=n.
Then
(—1)jF(x)>—Kj(x)R-(x, F), Pj—2 <X < Pj43, j=0,1,...,n, (9)

where Kj(x) >0, pj =0 for j <1, and pj = oo for j >n.

Proof of Lemma 2. Let us fix j€{1,2,...,n—1}. We have

. k k in] Xj Xj+]
—DIFE = (- 1)1+Z( e +[— + - ]
P P12+ Pk P1P2-+-Pj—1  P1P2---Pj  P1P2 " Pj+1

+ Z( ])]+k

k=i 12 P1P2 " Pk
xi-1 xJ xit1
= X1(x)+ [— + - ] + 2o (x). (10)
P1P2--Pj—1  P1P2--Pj  P1P2 - Pj4+1

For every x € (0j—2, 0j+3), mp’;k,,,pk < plp’;’fflpkﬂ holds for 0 <k < j—3. So for all x € (pj_2, pj+3) summands in X (x) are

alternating in sign and their moduli are increasing. Analogously for all x € (0j_3, pj43) summands in X, (x) are alternating
in sign and their moduli are decreasing. So X1 (x) >0, X»(x) >0 for all x € (pj_2, pj+3), so for j=1,2,...,n—1

xi—1 xJ xit+1

(—1F®) > - + - . X€(pj2.pjs3). (11)
P1P2--Pj—1  P1P2--Pj  P1P2- - Pj+1 ! "
Thus (9) is proved for j=1,2,...,n—1.
For j =0 (9) follows from the inequality

k
F(x>=—( )+Z( Df— S Ry, F), 0<x<ps.
=2 P102 -+ Pk
We use the fact that for 0 < x < p3 the summands in ZZ:Z(—l)k o p’;’f" o, are alternating in sign and their moduli are

decreasing. So the sign of this sum coincides with the sign of the first summand (for k = 2) and this sign is positive.
For j =n (9) follows from the inequality

x1—1 n-2 Xk x1—1

(—1)"F(x)=—7<1——>+( " +Z( 1)ktn > — Ra(x, F),
L1P2 - Pn-1 1% = L102 -+ Pk P1P2 "+ Pn-1

P2 <X < 00.

We use the fact that for p;,_» < x < co the summands in the expression ((—1)" + ZZ;%(—])’H‘” ,01p2 ) are alternating

in sign and their moduli are increasing. So the sign of this expression coincides with the sign of the last summand (for
k=n —2) and this sign is positive. O

n
Lemma 3. LetF(z)—l———i—p]p2 = (D)
Let polynomials Rj(z, F), j=0,1,...,n, be defined by (8).

,n > 3, be a polynomial with p;j > 0 and min{%, 1<j<n-1}>4.

1. Polynomial R;(z), j =1,2,...,n — 1, has simple real zeros, which we denote by 0 < w1 (j) < w2(j).
2. Polynomial F (z) has simple real zeros 0 < xq <X < -+ < Xp.
3. w1(j) > pj, w2(J) < pj11.
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4. /Pj1Pj <Xj <. /PjPj+1, j=1,2,...,n(where we put pg =1, pp11 = +00).
5. xj <w1(j), Xjy1 > w2(j), j=1,2,...,n—1.

Proof of Lemma 3. Since min{pj)—j_l, 1<j<n—1}>4 then

Pj+1 .
Ri(V/PjPj+1. F)=2— /;—f<0, 1<j<n—1.
J

The statements 1 and 3 of lemma immediately follow from this. The fact that min{%,l < j<n-—1}> 4 implies that

polynomial F(z) has simple real zeros is the well-known (see, for example, [9]). This fact and statement 4 of lemma follow
from the statements:

F(Vpop1) >0, —F(/p1p2) >0, F(J/p2p3) >0,
(1" 'F(/Pn1pn) > 0, Xl_i)n(r)lo[(—l)”F(x)] = +00. (12)

The last statement is obvious, the rest of inequalities is the direct consequence of (9). Since for all z € (w1(j), w2(j)) we
have Rj(z, F) <0, j=1,2,...,n—1, than the statement 5 is the direct consequence of (9). O

Let us prove now the statement 3 of Theorem 1.
By the Hermite-Biehler Criterion the polynomial F is stable if and only if the following two polynomials
n/2]
f@=) (=1)"aymz"
m=0

and
L(n—1)/2]
g@=z Y (-D"aymp12"

m=0

have simple real interlacing zeros.

Since
aﬁm om—102m  (2m02m+1 2 n—2
= Zxp>4, m=1,2,..., ,
(om—202m+2  d2m—202m+1 2m—102m+2 2
and
a%erl Aoma2m+1  A2m+102m42 2 n-3
= >Zx5>4, m=12,..., ,
A2m-102m+3  2m-102m+2 A2m02m+3 2

polynomials f(z) and g(z) have simple real zeros. It remains to prove that under our assumptions zeros of polynomials
f(z) and g(z) are interlacing.

We need the following notations. Let P be a real polynomial. Denote by N (P) the number of zeros of P in the
interval (a,b). Denote by 0 <t] <ty <--- < t|n) zeros of f(z) and by 0=t <t] <t; <--- <t*,, zeros of g(z). We

2
obtain the fact that zeros of polynomials f(z) and g(z) are interlacing as a consequence of the following lemma.

Lemma 4.
, n
Nejepn(@® =1, j=1,2,..., 3 -1, (13)
. n—1
N(t;,[;+1)(f)>1’ ,]=152a-~-a 2 -1 (14)
_ z 2 z _ z 2 _z z
Proof of Lemma4. For F(z) = 1+E+ 5ips T T oy We have f(z)=1— oo T opapps T and g(z) = E(l_ 527 T
pzpin +---). Put g1(2) = g(2)p1/z. Note that the polynomial f has the form (7) with pj = p>j_1p>j and the polynomial

g1 has the form (7) with pj = p2jp2j4+1. We will consider the polynomials Rj(z, f) for j=0,1,2,..., L%J and Rj(z, g1) for
j=0,1,2,..., L%J, these polynomials are defined by (8).

At first we will prove (13) with n > 7. By Lemma 3 we have tj < w1(j), tjy1 > wz(j), where w1(j), w2(j) are zeros of
Rj(z, f). To prove (13) it is sufficient to prove that
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(—1)i g (1)) > 0, 1:1,2,...,EJ—1, (15)

(—1)I gy (@2())) <O, j=1,2,._.,EJ—1. (16)
By (9) we have

=17 'g1®) > —Kj_1(ORj -1 (t, 1), (17)
where pyj_ep2j-5 <t < pa2jrabP2jis, Jj=1,2,...,[5];

(=1 g1(®) > —K;(OR; (¢, g1), (18)

where pyj_ap2j—3 <t < paj+eP2j+7, J=0,1,2,..., L%J — 1. In (17) and (18) the functions K;(t) are positive. By the
statement 3 of Lemma 3 we have pyj_1p2j < w1(j) < w2(j) < p2j41P2j+2, SO inequalities (17) and (18) are valid for ¢ €
(w1(j), @2(j)), j=1,2,..., 5] —1. In (17) we apply Lemma 1 with f(t) =R;_1(t,g1), j=2,3,..., [5]—1, f(t) = Ro(t, g1)
and g(t) =Rj(t, f), j=1,2,..., 5] — 1. We have

n

Rj(w1(j), g1) <0, j=1,2,...,bJ—1. (19)

From (17), (19) we obtain (15). _
In (18) we apply Lemma 1 with f(t) = R;(t, f) and g(t) = Rj(t,g1), j=1,2,..., L%J. If n is an odd number, then
L%J = L%J. If n is an even number we also apply Lemma 1 with g(t) = RL%J,1(t,g1) and f(t) = RL%J,l(t, f). We have

n

Rj(w2()), 1) <0, j:l,z,...,bJ—L (20)

From (18), (20) we obtain (16).
The statement (14) with n > 6 can be proved analogously. By Lemma 3 we have t’; < wi(j), t7+1 > w3 (j), where wj (j),
w3 (j) are zeros of Rj(z, g1). To prove (14) it is sufficient to prove that

. 1

DI f(0}()) <0, j=1,2,...,v2 J—l, (21)

j—1 % e . n—1

DI f(ws(d) >0, j=1,2,..., — |-t (22)
By (9) we have

~DIfE) > —Kj(®R;(t, f), (23)
where pj spaj_a <t < pajispajre, j=1,2,..., 5] —1 and

(DI f(0) > —Kjs1 (ORj1 (¢, ), (24)

where pj_3pzj_2 <t < p2jy7P2j+8, J=0,1,2,..., L%J — 1. In (23) and (24) the functions K;(t) are positive. By
statement 3 of Lemma 3 we have pyjp2ji1 < @](j) < @5(j) < p2j+2P2j+3, SO inequalities (23) and (24) are valid for
te(wi(j),w5(G), j=1,2,..., L%J — 1. Using (23), (24) and Lemma 1 (analogously to the proof of (15) and (16)) we
can obtain (21) and (22). Thus, (14) is proved.
Applying (21) and (22) for n =6 we have

f(w}) <0, f(w3) >0,
where w}, @; are zeros of the polynomial R1(z, g1) = £1(2). Besides this

f(0)=1>0, lim f(t) = —o0.

t—o00

Thus, (13) is proved forn=6. O

So, zeros of polynomials f(z) and g(z) are interlacing. Applying (13) for j =1 we have

g1(w1(1)) >0,

where w1(1) is the smallest zero of the polynomial R1(z, f). Besides this g1(0) =1 > 0. Thus, t; < w1 (1) <t7.
Theorem 1 is proved. O

Proof of Theorem 3. To prove Theorem 3 we use just the same reasonings as in the proof of Theorem 1. Instead of the
Hermite-Biehler Criterion of stability for polynomials we will apply the following generalization of the Hermite-Biehler
theorem on entire functions of order not greater then 1 and minimal type of growth.
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Theorem HB. (See [10, Chapter 7].) Let G(2) = ) jo axZ¥, ai > 0, be an entire function of order not greater then 1 and minimal
type of growth. All zeros of G have negative real parts if and only if the following two entire functions f(z) = Y ¢°(—1)™azmz™ and
g2(2) =23 5’ (=1)™aym412™ have simple real interlacing zeros.

Let us consider a function G(z) = Y 32, axz with positive coefficients under condition Akg+1 = X0ak—10k+2 for k € N.
Note that

@k+1 G2 Gok4+102k  Gok—102k—2  d302

= > Xos k>1,
Qok+2 a1 Q4202k—1  A2k02k—3 asaq
and
azi ai AokAk—1  A2k—202k—3 axa;
L= . X k>
a2k+1 QAo A2k4+102k—2 A2k—102k—4 asaop
So we have
1 a 1 @
Opkt2 € = == 0241, Ookp1 S - — Gk, k2>1
X M Xy do
Whence
. 1o . 1l moa o < 1 (az)za o1 <a2>ka .
42 S T MUl S T %S 5o | =) k2SS 7| — ) a2, 2 1.
X’é a X%k a; a x2k+2(k 1) ao xk(k-H) ao
0 0
Analogously

1 o 1 a; a 1 ap 2 1 ap k
) N i ) N il k1S Zoges () Q-3 <SS o5 | ) ars k>1.
Xp do Xy Go 1 Xy o
nlogn
log |a |1

It is well known that the order of an entire function with coefficients aj is given by the expression limsup,_,
(see, for example [10, Chapter 1]). So, G is an entire function of order 0.

It is easy to prove that statements of Lemmas 2, 3, 4 remain true for the entire function G. It follows from this that
Theorem 3 is true.

Theorem 3 is proved. O

3. Proof of Theorem 2

Let us prove the statement 1 of Theorem 2. We consider a polynomial Tg(z) = Z?:] aj(ﬁ)zj =14 B3z+ 822 +

p32% + 2%, B > 0, and note that for this polynomial s;(8) = % =p4 j=1,2. We have Tg(2) = 22((2> +z7H) +

B3(z+2z1) + *). Denote by w =z +2z~! and note that Rez < 0 & Rew < 0. We have Tg(z) = z2(w? + 3w + g% - 2). It
is obvious that quadratic real polynomial is stable if and only if all its coefficients have the same sign. So Tg(z) is stable if
and only if % — 2 > 0. In other words, if s1(8) = s2(8) = * < 2 then polynomial Tg(2) is not stable.

To prove the statement 2 of Theorem 2 we consider a polynomial M (z) = Zj:] bj(B)z) =1+ 4z + 2% + p52% +

pz* +2°, B >0, and note that for this polynomial s;(8) = % =p% j=1,2,3. We have

Mg(2) = z+ 1) (*+ (B* —1)2 + (B° = B* +1)22 + (B* — 1)z +1)
=@+ 02((Z+27%) + (B = 1)(z+27") + (B° - B +1)).
Using the notation w =z +z~! we can write
Mg(2) = (z+ D2 (W + (B = 1)w + (8% — p* - 1)).

Since sign(Rez) = sign(Rew), Mg(z) is stable if and only if 8% — g4 — 1 > 0. Note that (8% — 84 — 1)(B® + g4+ 1) =
p12 — p& —2p* —1 and polynomial g%+ B4 + 1 has no positive zeros. Thus Mg(z) is stable if and only if 8% > xo, where
Xo is the unique positive root of the polynomial x> — x2 — 2x — 1, and for 8% < xp the polynomial Mg (z) has zeros with
positive real parts. So if s1(8) = s2(8) = s3(8) = B* < xo, then polynomial Mg (2) has zeros with positive real parts thus it
is not stable.

Let us prove the statement 3 of Theorem 2. Obviously, for every & > 0 we can choose 8 in such a way that xg —& < % <
Xo. So, the polynomial Mg(z) has zeros with positive real parts. For every € € (0, xo) we denote by § = (xo —8/2)‘11, so § >0,
8% > x9—e¢. For n=6 we put Qy, 6(2) = Ms(2) + ylzﬁ, y1 > 0. Since M;(z) has zeros with positive real parts, Q,, () has
zeros with positive real parts for ; being small enough. For the polynomial Q,, s(z) we have s1 =s; =53 = 84 >x)—¢,

and s4 = ﬁ > Xo — ¢ for y1 being small enough. For y1 chosen below and n =7 we put Q, 7(2) = Qy,,6(2) +yzz7, Y2 > 0.
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Since Qy, 6(z) has zeros with positive real parts, Q,, 7(z) has zeros with positive real parts for y, being small enough. For
the polynomial Q, 7(z) we have s; =s; =s3 = 84 >xp—¢€, Sa= ﬁ >Xxo— & and s5 = 321% > Xo — € for y, being small
enough. Reasoning analogously we can construct the example needed for every n > 5 and example of an entire function.

Theorem 2 is proved. 0O
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