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1. Introduction and statement of results

A real polynomial F is called Hurwitz (stable) if all its zeros have negative real parts, i.e. F (z0) = 0 ⇒ Re z0 < 0.

Polynomial stability problems of various types arise in a number of problems in mathematics and engineering. We refer to
[5, Chapter 15] or [11, Chapter 9] for deep surveys on the stability theory.

The following statement (usually attributed to A. Stodola, see, for example, [12]) is the well-known necessary condition
for a real polynomial to be stable.

Statement A. F (z) = a0 + a1z + · · · + anzn ∈ R[z], an > 0, is stable ⇒ a j > 0, 0 � j � n − 1.

The following famous theorem gives the necessary and sufficient conditions for a polynomial to be stable.

The Routh–Hurwitz Criterion. (See, for example, [5, pp. 225–230].) The polynomial F (z) = a0 + a1z + · · · + anzn, an > 0, is stable
if and only if the first n principal minors of the corresponding Hurwitz matrix

H(F ) :=

∥∥∥∥∥∥∥∥∥∥

an−1 an−3 an−5 . . . 0
an an−2 an−4 . . . 0
0 an−1 an−3 . . . 0
0 an an−2 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

∥∥∥∥∥∥∥∥∥∥
are positive.

Note that the verification of positivity of principal minors is, in general, a very difficult problem. In [3] T. Craven and
G. Csordas obtained the following useful and easily verified condition of positivity of all minors of a matrix.

* Corresponding author.
E-mail addresses: olga.m.katkova@univer.kharkov.ua (O.M. Katkova), anna.m.vishnyakova@univer.kharkov.ua (A.M. Vishnyakova).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.05.079

https://core.ac.uk/display/82407173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:olga.m.katkova@univer.kharkov.ua
mailto:anna.m.vishnyakova@univer.kharkov.ua
http://dx.doi.org/10.1016/j.jmaa.2008.05.079


82 O.M. Katkova, A.M. Vishnyakova / J. Math. Anal. Appl. 347 (2008) 81–89
Theorem A. Denote by c̃ the unique real root of x3 − 5x2 + 4x − 1 = 0 (c̃ ≈ 4.0796). Let M = (aij) be an n × n matrix with the
properties

(a) aij > 0 (1 � i, j � n); and
(b) aijai+1, j+1 � c̃ai, j+1ai+1, j (1 � i, j � n − 1).

Then all minors of M are positive.

Using Theorem A and continuity reasonings D.K. Dimitrov and J.M. Peña proved the following theorem.

Theorem B. (See [4].) Let c̃ be defined as in Theorem A. If the coefficients of F (z) = a0 + a1z + · · · + anzn are positive and satisfy the
inequalities

akak+1 � c̃ak−1ak+2 for k = 1,2, . . . ,n − 2,

then F (z) is Hurwitz. In particular, the conclusion is true if

a2
k �

√
c̃ak−1ak+1 for k = 1,2, . . . ,n − 1.

In [8] the authors of this note have proved that Theorem A remains valid if one replace the constant c̃ by the constant
cn := 4 cos2 π

n+1 . In [8] it is also shown that in the statement of Theorem A the constant cn is the smallest possible not only
in the class of matrices with positive entries but in the classes of Toeplitz matrices and of Hankel matrices. We recall that a
matrix M is Toeplitz matrix if it is of the form M = (a j−i) and a matrix M is Hankel matrix if it is of the form M = (a j+i).

In this paper we will show that the constant cn is not the smallest possible in the class of Hurwitz matrices.
The natural problem is: for a given n ∈ N what is the smallest possible constant dn such that if the coefficients of

F (z) = a0 + a1z + · · · + anzn are positive and satisfy the inequalities akak+1 > dnak−1ak+2 for k = 1,2, . . . ,n − 2, then F (z) is
Hurwitz? Our main result is the following theorem which solves this problem.

Theorem 1. Let x0 be the (unique) positive root of the polynomial x3 − x2 − 2x − 1 (x0 ≈ 2.1479).

1. If the coefficients of F (z) = ∑4
k=0 ak zk are positive and satisfy the inequalities akak+1 > 2ak−1ak+2 for k = 1,2, then F (z) is

Hurwitz. In particular, the conclusion is true if a2
k >

√
2ak−1ak+1 for k = 1,2,3.

2. If the coefficients of F (z) = ∑5
k=0 ak zk are positive and satisfy the inequalities akak+1 > x0ak−1ak+2 for k = 1,2,3, then F (z) is

Hurwitz. In particular, the conclusion is true if a2
k >

√
x0ak−1ak+1 for k = 1,2,3,4.

3. If the coefficients of F (z) = ∑n
k=0 ak zk, n > 5, are positive and satisfy the inequalities akak+1 � x0ak−1ak+2 for k = 1,2, . . . ,

n − 2, then F (z) is Hurwitz. In particular, the conclusion is true if a2
k � √

x0ak−1ak+1 for k = 1,2, . . . ,n − 1.

Note that

akak+1

ak−1ak+2
= a2

k

ak−1ak+1

a2
k+1

akak+2
,

and thus the following theorem demonstrates that the constants in Theorem 1 are the smallest possible for every n.

Theorem 2.

1. For every d �
√

2 there exists a polynomial F (z) = ∑4
k=0 akzk with positive coefficients under condition a2

k = dak−1ak+1 for
k = 1,2,3, such that F (z) is not Hurwitz.

2. For every d � √
x0 there exists a polynomial F (z) = ∑5

k=0 ak zk with positive coefficients under condition a2
k = dak−1ak+1 for

k = 1,2,3,4, such that F (z) is not Hurwitz.
3. For every n > 5 and every ε > 0 there exists a polynomial F (z) = ∑n

k=0 akzk with positive coefficients under condition a2
k >

(
√

x0 − ε)ak−1ak+1 for k = 1,2, . . . ,n − 1, such that F (z) is not Hurwitz.

Theorem 1 may be generalized for entire functions as follows.

Theorem 3. If the coefficients of G(z) = ∑∞
k=0 ak zk are positive and satisfy the inequalities akak+1 � x0ak−1ak+2 for k ∈ N, then all

zeros of G(z) have negative real parts. In particular, the conclusion is true if a2
k � √

x0ak−1ak+1 for k ∈ N.

As we will show in the proof of Theorem 2 the constant in Theorem 3 is the smallest possible.
To prove Theorem 1 we use the famous Hermite–Biehler Criterion. The following statement is a version of the Hermite–

Biehler theorem.
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The Hermite–Biehler Criterion of stability. (See [2] and [6], or [10, Chapter VII].) Let F (z) = ∑n
k=0 ak zk be a polynomial with

positive coefficients. The polynomial F is stable if and only if the following two polynomials f (z) = ∑�n/2	
m=0 (−1)ma2mzm and g(z) =

z
∑�(n−1)/2	

m=0 (−1)ma2m+1zm have simple real interlacing zeros.

We will use also the following result by Hutchinson [7, p. 327].

Theorem C. Let f (z) = ∑∞
k=0 ak zk, ak > 0, ∀k. Inequality a2

n � 4an−1an+1 , ∀n � 1, holds if and only if the following two properties
hold:

(i) the zeros of f (z) are all real, simple and negative, and
(ii) the zeros of any polynomial

∑n
k=m ak zk, formed by taking any number of consecutive terms of f (z), are all real and non-positive.

Theorem C is closely connected with the above mention sufficient condition for a matrix to have positive minors. About
the connection between the property of a polynomial to have only real non-positive zeros and the positivity of minors of
certain matrix see, for example, [1].

2. Proof of Theorems 1 and 3

It is well known (and easy verified) that polynomials of degree 1 and 2 with positive leading coefficient are stable if and
only if all their coefficients are positive.

Let F (z) = a0 + a1z + · · · + anzn be a polynomial with positive coefficients. Denote by

s j = a ja j+1

a j−1a j+2
, 1 � j � n − 2. (1)

Let F (z) = ∑3
j=0 a j z j be a polynomial with positive coefficients. Polynomial F is stable if and only if s1 > 1 (see, for

example, [12, p. 34]). Really, for F (z) = ∑3
j=0 a j z j we have f (z) = a0 − a2z and g(z) = z(a1 − a3z). Both polynomials have

simple real zeros, and these zeros interlace if and only if 0 <
a0
a2

< a1
a3

⇔ s1 > 1.

Proof of Theorem 1. To prove Theorem 1 we will use the Hermite–Biehler Criterion of stability. Let us prove the statement
1 of Theorem 1.

For F (z) = ∑4
j=0 a j z j we have f (z) = a0 − a2z + a4z2 and g(z) = z(a1 − a3z). Using our notations we can express two

zeros of the polynomial f (z) in such a way:

t1,2 = a0

a2

s1s2

2

(
1 ∓

√
1 − 4

s1s2

)
.

These zeros are real and distinct since min(s1, s2) > 2. Two zeros of the polynomial g(z) are t∗
0 = 0, t∗

1 = a0
a2

s1, they are real
and distinct. The polynomial F (z) is stable if and only if

0 <
a0

a2

s1s2

2

(
1 −

√
1 − 4

s1s2

)
<

a0

a2
s1 <

a0

a2

s1s2

2

(
1 +

√
1 − 4

s1s2

)
. (2)

The first inequality in (2) obviously holds.

The second inequality in (2) is equivalent to s2(1 −
√

1 − 4
s1s2

) < 2. The left-hand side of this inequality is strictly de-

creasing in s1, so this inequality follows from s2(1−
√

1 − 2
s2

) � 2 (we paste s1 = 2). The left-hand side of the last inequality

is strictly decreasing in s2, and for s2 = 2 the left-hand side is equal to the right-hand side. By these reasons the second
inequality in (2) holds.

The third inequality in (2) is equivalent to s2(1 +
√

1 − 4
s1s2

) > 2. Since min(s1, s2) > 2 the last inequality is true.

Thus, polynomial F (z) = ∑4
j=0 a j z j with positive coefficients is stable provided min(s1, s2) > 2.

Let us prove the statement 2 of Theorem 1. For F (z) = ∑5
j=0 a j z j we have f (z) = a0 −a2z +a4z2 and g(z) = z(a1 −a3z +

a5z2). Using our notations we can express two zeros of the polynomial f (z) in such a way:

t1,2 = a0

a

s1s2

2

(
1 ∓

√
1 − 4

s s

)
.

2 1 2
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These zeros are real and distinct since min(s1, s2) > x0 > 2. The polynomial g(z) has three distinct real zeros which can be
written in such a way:

t∗
0 = 0, t∗

1 = a0

a2

s1s2s3

2

(
1 −

√
1 − 4

s2s3

)
, t∗

2 = a0

a2

s1s2s3

2

(
1 +

√
1 − 4

s2s3

)
.

The polynomial F (z) is stable if and only if

0 <
a0

a2

s1s2

2

(
1 −

√
1 − 4

s1s2

)
<

a0

a2

s1s2s3

2

(
1 −

√
1 − 4

s2s3

)
<

a0

a2

s1s2

2

(
1 +

√
1 − 4

s1s2

)

<
a0

a2

s1s2s3

2

(
1 +

√
1 − 4

s2s3

)
. (3)

The first inequality in (3) obviously holds.

The second inequality in (3) is equivalent to (1 −
√

1 − 4
s1s2

) < s3(1 −
√

1 − 4
s2s3

). The left-hand side of this inequality

is strictly decreasing in s1, and s1 > x0 > 2 so this inequality follows from (1 −
√

1 − 2
s2

) � s3(1 −
√

1 − 4
s2s3

) (we paste

s1 = 2). The right-hand side of the last inequality is strictly decreasing in s3 and lims3→∞ s3(1 −
√

1 − 4
s2s3

) = 2
s2

, so the

second inequality in (3) follows from the obvious one (1 −
√

1 − 2
s2

) � 2
s2

. Thus, the second inequality in (3) is true.

Let us check that under our assumptions the third inequality in (3) holds, or, equivalently s3(1 −
√

1 − 4
s2s3

) <

(1 +
√

1 − 4
s1s2

). The left-hand side of this inequality is strictly decreasing in s3, the right-hand side is strictly increasing

in s1, so this inequality follows from x0(1 −
√

1 − 4
s2x0

) � (1 +
√

1 − 4
x0s2

), or, equivalently, (1 + x0)

√
1 − 4

s2x0
� x0 − 1. The

left-hand side of the last inequality is strictly increasing in s2, and the last inequality follows from (1 + x0)

√
1 − 4

x2
0

� x0 − 1

or, equivalently, x3
0 − x2

0 − 2x0 − 1 � 0. By the definition of x0 this is true. Thus, the third inequality in (3) holds.

Let us check that under our assumptions the fourth inequality in (3) holds, or, equivalently 1 +
√

1 − 4
s1s2

<

s3(1 +
√

1 − 4
s2s3

). The left-hand side is strictly increasing in s1 and lims1→∞ 1 +
√

1 − 4
s1s2

= 2, so the last inequality

follows from 2 � s3(1 +
√

1 − 4
s2s3

). The right-hand side is strictly increasing in s2 > x0 > 2, so the last inequality follows

from the obvious inequality 2 � s3(1 +
√

1 − 2
s3

). So, the fourth inequality in (3) holds.

Thus, polynomial F (z) = ∑5
j=0 a j z j with positive coefficients is stable provided min(s1, s2, s3) > x0.

Remark. It follows from the proof of the statement 2 of Theorem 1 that if min(s1, s2, s3) � x0 then t∗
0 < t1 < t∗

1 � t2 < t∗
2

(the notation is the same as in the proof of statement 2 of Theorem 1).

Let F (z) = ∑n
k=0 ak zk,ak > 0, be a polynomial satisfying the condition s j � x0 for j = 1,2, . . . ,n − 2. Without loss of

generality we can assume that a0 = 1. Denote by

p j = a j−1

a j
, j = 1,2, . . . ,n. (4)

Using this notation we can write

F (z) = 1 + a1z + a2z2 + · · · + anzn = 1 + z

p1
+ z2

p1 p2
+ · · · + zn

p1 p2 · · · pn
.

To prove the statement 3 of Theorem 1 we need some lemmas. The statement below is the direct consequence of the
statements 1 and 2 of Theorem 1 and Remark.

Lemma 1. Let f̃ (z) = 1− z
p1 p2

+ z2

p1 p2 p3 p4
, g̃(z) = 1− z

p2 p3
+ z2

p2 p3 p4 p5
, where p j > 0,1 � j � 5. Suppose that p j+2/p j � x0 , where

x0 is equal to the unique positive root of the polynomial x3 − x2 − 2x − 1. Denote by 0 < x1 < x2 the zeros of f̃ , 0 < x∗
1 < x∗

2 the zeros
of g̃. Then

g̃(x2) � 0, f̃
(
x∗

1

)
� 0. (5)

If f̂ = −1 + z
p3 p4

, ĝ = 1 − z
p2 p3

, then

ĝ(x2) < 0, f̂
(
x∗

1

)
< 0. (6)
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We need the following lemma.

Lemma 2. Let

F (z) = 1 − z

ρ1
+ z2

ρ1ρ2
− · · · + (−1)n zn

ρ1ρ2 · · ·ρn
, n � 3, (7)

be a polynomial with ρ j > 0 and min{ρ j+1
ρ j

,1 � j � n − 1} > 1. Denote by

R j(z, F ) =

⎧⎪⎨
⎪⎩

1 − z
ρ j

+ z2

ρ jρ j+1
, if j = 1,2, . . . ,n − 1;

−1 + z
ρ1

, if j = 0;
1 − z

ρn
, if j = n.

(8)

Then

(−1) j F (x) > −K j(x)R j(x, F ), ρ j−2 < x < ρ j+3, j = 0,1, . . . ,n, (9)

where K j(x) > 0, ρ j = 0 for j < 1, and ρ j = ∞ for j > n.

Proof of Lemma 2. Let us fix j ∈ {1,2, . . . ,n − 1}. We have

(−1) j F (x) =
(

(−1) j +
j−2∑
k=1

(−1)k+ j xk

ρ1ρ2 · · ·ρk

)
+

[
− x j−1

ρ1ρ2 · · ·ρ j−1
+ x j

ρ1ρ2 · · ·ρ j
− x j+1

ρ1ρ2 · · ·ρ j+1

]

+
n∑

k= j+2

(−1) j+k xk

ρ1ρ2 · · ·ρk

=: Σ1(x) +
[
− x j−1

ρ1ρ2 · · ·ρ j−1
+ x j

ρ1ρ2 · · ·ρ j
− x j+1

ρ1ρ2 · · ·ρ j+1

]
+ Σ2(x). (10)

For every x ∈ (ρ j−2,ρ j+3), xk

ρ1ρ2···ρk
< xk+1

ρ1ρ2···ρk+1
holds for 0 � k � j − 3. So for all x ∈ (ρ j−2,ρ j+3) summands in Σ1(x) are

alternating in sign and their moduli are increasing. Analogously for all x ∈ (ρ j−2,ρ j+3) summands in Σ2(x) are alternating
in sign and their moduli are decreasing. So Σ1(x) � 0, Σ2(x) � 0 for all x ∈ (ρ j−2,ρ j+3), so for j = 1,2, . . . ,n − 1

(−1) j F (x) � − x j−1

ρ1ρ2 · · ·ρ j−1
+ x j

ρ1ρ2 · · ·ρ j
− x j+1

ρ1ρ2 · · ·ρ j+1
, x ∈ (ρ j−2,ρ j+3). (11)

Thus (9) is proved for j = 1,2, . . . ,n − 1.
For j = 0 (9) follows from the inequality

F (x) = −
(

−1 + x

ρ1

)
+

n∑
k=2

(−1)k xk

ρ1ρ2 · · ·ρk
> −R0(x, F ), 0 < x < ρ3.

We use the fact that for 0 < x < ρ3 the summands in
∑n

k=2(−1)k xk

ρ1ρ2···ρk
are alternating in sign and their moduli are

decreasing. So the sign of this sum coincides with the sign of the first summand (for k = 2) and this sign is positive.
For j = n (9) follows from the inequality

(−1)n F (x) = − xn−1

ρ1ρ2 · · ·ρn−1

(
1 − x

ρn

)
+ (−1)n +

n−2∑
k=1

(−1)k+n xk

ρ1ρ2 · · ·ρk
> − xn−1

ρ1ρ2 · · ·ρn−1
Rn(x, F ),

ρn−2 < x < ∞.

We use the fact that for ρn−2 < x < ∞ the summands in the expression ((−1)n + ∑n−2
k=1(−1)k+n xk

ρ1ρ2···ρk
) are alternating

in sign and their moduli are increasing. So the sign of this expression coincides with the sign of the last summand (for
k = n − 2) and this sign is positive. �
Lemma 3. Let F (z) = 1 − z

ρ1
+ z2

ρ1ρ2
− · · · + (−1)n zn

ρ1ρ2...ρn
, n � 3, be a polynomial with ρ j > 0 and min{ρ j+1

ρ j
, 1 � j � n − 1} > 4.

Let polynomials R j(z, F ), j = 0,1, . . . ,n, be defined by (8).

1. Polynomial R j(z), j = 1,2, . . . ,n − 1, has simple real zeros, which we denote by 0 < ω1( j) < ω2( j).
2. Polynomial F (z) has simple real zeros 0 < x1 < x2 < · · · < xn.

3. ω1( j) > ρ j , ω2( j) < ρ j+1.
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4.
√

ρ j−1ρ j < x j <
√

ρ jρ j+1 , j = 1,2, . . . ,n (where we put ρ0 = 1, ρn+1 = +∞).
5. x j < ω1( j), x j+1 > ω2( j), j = 1,2, . . . ,n − 1.

Proof of Lemma 3. Since min{ρ j+1
ρ j

, 1 � j � n − 1} > 4 then

R j(
√

ρ jρ j+1, F ) = 2 −
√

ρ j+1

ρ j
< 0, 1 � j � n − 1.

The statements 1 and 3 of lemma immediately follow from this. The fact that min{ρ j+1
ρ j

,1 � j � n − 1} > 4 implies that

polynomial F (z) has simple real zeros is the well-known (see, for example, [9]). This fact and statement 4 of lemma follow
from the statements:

F (
√

ρ0ρ1 ) > 0, −F (
√

ρ1ρ2 ) > 0, F (
√

ρ2ρ3 ) > 0, . . . ,

(−1)n−1 F (
√

ρn−1ρn ) > 0, lim
x→∞

[
(−1)n F (x)

] = +∞. (12)

The last statement is obvious, the rest of inequalities is the direct consequence of (9). Since for all z ∈ (ω1( j),ω2( j)) we
have R j(z, F ) < 0, j = 1,2, . . . ,n − 1, than the statement 5 is the direct consequence of (9). �

Let us prove now the statement 3 of Theorem 1.
By the Hermite–Biehler Criterion the polynomial F is stable if and only if the following two polynomials

f (z) =
�n/2	∑
m=0

(−1)ma2mzm

and

g(z) = z
�(n−1)/2	∑

m=0

(−1)ma2m+1zm

have simple real interlacing zeros.
Since

a2
2m

a2m−2a2m+2
= a2m−1a2m

a2m−2a2m+1

a2ma2m+1

a2m−1a2m+2
� x2

0 > 4, m = 1,2, . . . ,

⌊
n − 2

2

⌋
,

and

a2
2m+1

a2m−1a2m+3
= a2ma2m+1

a2m−1a2m+2

a2m+1a2m+2

a2ma2m+3
� x2

0 > 4, m = 1,2, . . . ,

⌊
n − 3

2

⌋
,

polynomials f (z) and g(z) have simple real zeros. It remains to prove that under our assumptions zeros of polynomials
f (z) and g(z) are interlacing.

We need the following notations. Let P be a real polynomial. Denote by N(a,b)(P ) the number of zeros of P in the
interval (a,b). Denote by 0 < t1 < t2 < · · · < t� n

2 	 zeros of f (z) and by 0 = t∗
0 < t∗

1 < t∗
2 < · · · < t∗

� n−1
2 	 zeros of g(z). We

obtain the fact that zeros of polynomials f (z) and g(z) are interlacing as a consequence of the following lemma.

Lemma 4.

N(t j ,t j+1)(g) � 1, j = 1,2, . . . ,

⌊
n

2

⌋
− 1, (13)

N(
t∗j ,t∗j+1

)( f ) � 1, j = 1,2, . . . ,

⌊
n − 1

2

⌋
− 1. (14)

Proof of Lemma 4. For F (z) = 1+ z
p1

+ z2

p1 p2
+· · ·+ zn

p1 p2···pn
we have f (z) = 1− z

p1 p2
+ z2

p1 p2 p3 p4
+· · · and g(z) = z

p1
(1− z

p2 p3
+

z2

p2 p3 p4 p5
+ · · ·). Put g1(z) = g(z)p1/z. Note that the polynomial f has the form (7) with ρ j = p2 j−1 p2 j and the polynomial

g1 has the form (7) with ρ j = p2 j p2 j+1. We will consider the polynomials R j(z, f ) for j = 0,1,2, . . . , � n
2 	 and R j(z, g1) for

j = 0,1,2, . . . , �n−1
2 	, these polynomials are defined by (8).

At first we will prove (13) with n � 7. By Lemma 3 we have t j < ω1( j), t j+1 > ω2( j), where ω1( j), ω2( j) are zeros of
R j(z, f ). To prove (13) it is sufficient to prove that
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(−1) j−1 g1
(
ω1( j)

)
> 0, j = 1,2, . . . ,

⌊
n

2

⌋
− 1, (15)

(−1) j−1 g1
(
ω2( j)

)
< 0, j = 1,2, . . . ,

⌊
n

2

⌋
− 1. (16)

By (9) we have

(−1) j−1 g1(t) > −K j−1(t)R j−1(t, g1), (17)

where p2 j−6 p2 j−5 < t < p2 j+4 p2 j+5, j = 1,2, . . . , � n
2 	;

(−1) j g1(t) > −K j(t)R j(t, g1), (18)

where p2 j−4 p2 j−3 < t < p2 j+6 p2 j+7, j = 0,1,2, . . . , � n
2 	 − 1. In (17) and (18) the functions K j(t) are positive. By the

statement 3 of Lemma 3 we have p2 j−1 p2 j < ω1( j) < ω2( j) < p2 j+1 p2 j+2, so inequalities (17) and (18) are valid for t ∈
(ω1( j),ω2( j)), j = 1,2, . . . , � n

2 	−1. In (17) we apply Lemma 1 with f̃ (t) = R j−1(t, g1), j = 2,3, . . . , � n
2 	−1, f̂ (t) = R0(t, g1)

and g̃(t) = R j(t, f ), j = 1,2, . . . , � n
2 	 − 1. We have

R j
(
ω1( j), g1

)
< 0, j = 1,2, . . . ,

⌊
n

2

⌋
− 1. (19)

From (17), (19) we obtain (15).
In (18) we apply Lemma 1 with f̃ (t) = R j(t, f ) and g̃(t) = R j(t, g1), j = 1,2, . . . , �n−1

2 	. If n is an odd number, then

�n−1
2 	 = � n

2 	. If n is an even number we also apply Lemma 1 with ĝ(t) = R� n
2 	−1(t, g1) and f̃ (t) = R� n

2 	−1(t, f ). We have

R j
(
ω2( j), g1

)
< 0, j = 1,2, . . . ,

⌊
n

2

⌋
− 1. (20)

From (18), (20) we obtain (16).
The statement (14) with n � 6 can be proved analogously. By Lemma 3 we have t∗

j < ω∗
1( j), t∗

j+1 > ω∗
2( j), where ω∗

1( j),
ω∗

2( j) are zeros of R j(z, g1). To prove (14) it is sufficient to prove that

(−1) j−1 f
(
ω∗

1( j)
)
< 0, j = 1,2, . . . ,

⌊
n − 1

2

⌋
− 1, (21)

(−1) j−1 f
(
ω∗

2( j)
)
> 0, j = 1,2, . . . ,

⌊
n − 1

2

⌋
− 1. (22)

By (9) we have

(−1) j f (t) > −K j(t)R j(t, f ), (23)

where p2 j−5 p2 j−4 < t < p2 j+5 p2 j+6, j = 1,2, . . . , � n
2 	 − 1 and

(−1) j+1 f (t) > −K j+1(t)R j+1(t, f ), (24)

where p2 j−3 p2 j−2 < t < p2 j+7 p2 j+8, j = 0,1,2, . . . , �n−1
2 	 − 1. In (23) and (24) the functions K j(t) are positive. By

statement 3 of Lemma 3 we have p2 j p2 j+1 < ω∗
1( j) < ω∗

2( j) < p2 j+2 p2 j+3, so inequalities (23) and (24) are valid for
t ∈ (ω∗

1( j),ω∗
2( j)), j = 1,2, . . . , �n−1

2 	 − 1. Using (23), (24) and Lemma 1 (analogously to the proof of (15) and (16)) we
can obtain (21) and (22). Thus, (14) is proved.

Applying (21) and (22) for n = 6 we have

f
(
ω∗

1

)
< 0, f

(
ω∗

2

)
> 0,

where ω∗
1,ω∗

2 are zeros of the polynomial R1(z, g1) = g1(z). Besides this

f (0) = 1 > 0, lim
t→∞ f (t) = −∞.

Thus, (13) is proved for n = 6. �
So, zeros of polynomials f (z) and g(z) are interlacing. Applying (13) for j = 1 we have

g1
(
ω1(1)

)
> 0,

where ω1(1) is the smallest zero of the polynomial R1(z, f ). Besides this g1(0) = 1 > 0. Thus, t1 < ω1(1) < t∗
1.

Theorem 1 is proved. �
Proof of Theorem 3. To prove Theorem 3 we use just the same reasonings as in the proof of Theorem 1. Instead of the
Hermite–Biehler Criterion of stability for polynomials we will apply the following generalization of the Hermite–Biehler
theorem on entire functions of order not greater then 1 and minimal type of growth.
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Theorem HB. (See [10, Chapter 7].) Let G(z) = ∑∞
k=0 ak zk, ak > 0, be an entire function of order not greater then 1 and minimal

type of growth. All zeros of G have negative real parts if and only if the following two entire functions f (z) = ∑∞
0 (−1)ma2mzm and

g(z) = z
∑∞

0 (−1)ma2m+1zm have simple real interlacing zeros.

Let us consider a function G(z) = ∑∞
k=0 ak zk with positive coefficients under condition akak+1 � x0ak−1ak+2 for k ∈ N.

Note that
a2k+1

a2k+2
· a2

a1
= a2k+1a2k

a2k+2a2k−1
· a2k−1a2k−2

a2ka2k−3
· · · a3a2

a4a1
� xk

0, k � 1,

and
a2k

a2k+1
· a1

a0
= a2ka2k−1

a2k+1a2k−2
· a2k−2a2k−3

a2k−1a2k−4
· · · a2a1

a3a0
� xk

0, k � 1.

So we have

a2k+2 � 1

xk
0

· a2

a1
· a2k+1, a2k+1 � 1

xk
0

· a1

a0
· a2k, k � 1.

Whence

a2k+2 � 1

xk
0

· a2

a1
· a2k+1 � 1

x2k
0

· a2

a1
· a1

a0
· a2k � 1

x2k+2(k−1)
0

·
(

a2

a0

)2

a2k−2 � · · · � 1

xk(k+1)
0

·
(

a2

a0

)k

a2, k � 1.

Analogously

a2k+1 � 1

xk
0

· a1

a0
· a2k � 1

x2k−1
0

· a1

a0
· a2

a1
· a2k−1 � 1

x2k−1+2k−3
0

·
(

a2

a0

)2

a2k−3 � · · · � 1

xk2

0

·
(

a2

a0

)k

a1, k � 1.

It is well known that the order of an entire function with coefficients ak is given by the expression lim supn→∞ n logn
log |an |−1

(see, for example [10, Chapter 1]). So, G is an entire function of order 0.
It is easy to prove that statements of Lemmas 2, 3, 4 remain true for the entire function G. It follows from this that

Theorem 3 is true.
Theorem 3 is proved. �

3. Proof of Theorem 2

Let us prove the statement 1 of Theorem 2. We consider a polynomial Tβ(z) = ∑4
j=1 a j(β)z j = 1 + β3z + β4z2 +

β3z3 + z4, β > 0, and note that for this polynomial s j(β) = a j(β)a j+1(β)

a j−1(β)a j+2(β)
= β4, j = 1,2. We have Tβ(z) = z2((z2 + z−2) +

β3(z + z−1) + β4). Denote by w = z + z−1 and note that Re z < 0 ⇔ Re w < 0. We have Tβ(z) = z2(w2 + β3 w + β4 − 2). It
is obvious that quadratic real polynomial is stable if and only if all its coefficients have the same sign. So Tβ(z) is stable if
and only if β4 − 2 > 0. In other words, if s1(β) = s2(β) = β4 � 2 then polynomial Tβ(z) is not stable.

To prove the statement 2 of Theorem 2 we consider a polynomial Mβ(z) = ∑5
j=1 b j(β)z j = 1 + β4z + β6z2 + β6z3 +

β4z4 + z5, β > 0, and note that for this polynomial s j(β) = b j(β)b j+1(β)

b j−1(β)b j+2(β)
= β4, j = 1,2,3. We have

Mβ(z) = (z + 1)
(
z4 + (

β4 − 1
)
z3 + (

β6 − β4 + 1
)
z2 + (

β4 − 1
)
z + 1

)
= (z + 1)z2((z2 + z−2) + (

β4 − 1
)(

z + z−1) + (
β6 − β4 + 1

))
.

Using the notation w = z + z−1 we can write

Mβ(z) = (z + 1)z2(w2 + (
β4 − 1

)
w + (

β6 − β4 − 1
))

.

Since sign(Re z) = sign(Re w), Mβ(z) is stable if and only if β6 − β4 − 1 > 0. Note that (β6 − β4 − 1)(β6 + β4 + 1) =
β12 − β8 − 2β4 − 1 and polynomial β6 + β4 + 1 has no positive zeros. Thus Mβ(z) is stable if and only if β4 > x0, where
x0 is the unique positive root of the polynomial x3 − x2 − 2x − 1, and for β4 < x0 the polynomial Mβ(z) has zeros with
positive real parts. So if s1(β) = s2(β) = s3(β) = β4 < x0, then polynomial Mβ(z) has zeros with positive real parts thus it
is not stable.

Let us prove the statement 3 of Theorem 2. Obviously, for every ε > 0 we can choose β in such a way that x0 −ε < β4 <

x0. So, the polynomial Mβ(z) has zeros with positive real parts. For every ε ∈ (0, x0) we denote by δ = (x0 −ε/2)
1
4 , so δ > 0,

δ4 > x0 − ε. For n = 6 we put Q γ1,6(z) = Mδ(z) + γ1z6, γ1 > 0. Since Mδ(z) has zeros with positive real parts, Q γ1,6(z) has
zeros with positive real parts for γ1 being small enough. For the polynomial Q γ1,6(z) we have s1 = s2 = s3 = δ4 > x0 − ε,
and s4 = 1

2 > x0 −ε for γ1 being small enough. For γ1 chosen below and n = 7 we put Q γ2,7(z) = Q γ1,6(z)+γ2z7, γ2 > 0.

δ γ1
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Since Q γ1,6(z) has zeros with positive real parts, Q γ2,7(z) has zeros with positive real parts for γ2 being small enough. For
the polynomial Q γ2,7(z) we have s1 = s2 = s3 = δ4 > x0 − ε, s4 = 1

δ2γ1
> x0 − ε and s5 = γ1

δ4γ2
> x0 − ε for γ2 being small

enough. Reasoning analogously we can construct the example needed for every n � 5 and example of an entire function.
Theorem 2 is proved. �
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