A sufficient condition for a polynomial to be stable

Olga M. Katkova, Anna M. Vishnyakova*
Department of Mathematics, Kharkov National University, Svobody sq. 4, 61077 Kharkov, Ukraine

ARTICLE INFO

Article history:

Received 20 September 2006
Available online 12 June 2008
Submitted by M.G. Gunzburger

Keywords:

Hurwitz polynomial
Stable polynomial
Location of zeros of real polynomial

Abstract

A real polynomial is called Hurwitz (stable) if all its zeros have negative real parts. For a given $n \in \mathbb{N}$ we find the smallest possible constant $d_{n}>0$ such that if the coefficients of $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ are positive and satisfy the inequalities $a_{k} a_{k+1}>d_{n} a_{k-1} a_{k+2}$ for $k=1,2, \ldots, n-2$, then $F(z)$ is Hurwitz.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

A real polynomial F is called Hurwitz (stable) if all its zeros have negative real parts, i.e. $F\left(z_{0}\right)=0 \Rightarrow \operatorname{Re} z_{0}<0$. Polynomial stability problems of various types arise in a number of problems in mathematics and engineering. We refer to [5, Chapter 15] or [11, Chapter 9] for deep surveys on the stability theory.

The following statement (usually attributed to A. Stodola, see, for example, [12]) is the well-known necessary condition for a real polynomial to be stable.

Statement A. $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in \mathbb{R}[z], a_{n}>0$, is stable $\Rightarrow a_{j}>0,0 \leqslant j \leqslant n-1$.

The following famous theorem gives the necessary and sufficient conditions for a polynomial to be stable.

The Routh-Hurwitz Criterion. (See, for example, [5, pp. 225-230].) The polynomial $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}, a_{n}>0$, is stable if and only if the first n principal minors of the corresponding Hurwitz matrix

$$
H(F):=\left\|\begin{array}{ccccc}
a_{n-1} & a_{n-3} & a_{n-5} & \ldots & 0 \\
a_{n} & a_{n-2} & a_{n-4} & \ldots & 0 \\
0 & a_{n-1} & a_{n-3} & \ldots & 0 \\
0 & a_{n} & a_{n-2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right\|
$$

are positive.
Note that the verification of positivity of principal minors is, in general, a very difficult problem. In [3] T. Craven and G. Csordas obtained the following useful and easily verified condition of positivity of all minors of a matrix.

[^0]Theorem A. Denote by \tilde{c} the unique real root of $x^{3}-5 x^{2}+4 x-1=0(\tilde{c} \approx 4.0796)$. Let $M=\left(a_{i j}\right)$ be an $n \times n$ matrix with the properties
(a) $a_{i j}>0(1 \leqslant i, j \leqslant n)$; and
(b) $a_{i j} a_{i+1, j+1} \geqslant \tilde{c} a_{i, j+1} a_{i+1, j}(1 \leqslant i, j \leqslant n-1)$.

Then all minors of M are positive.
Using Theorem A and continuity reasonings D.K. Dimitrov and J.M. Peña proved the following theorem.
Theorem B. (See [4].) Let \tilde{c} be defined as in Theorem A. If the coefficients of $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ are positive and satisfy the inequalities

$$
a_{k} a_{k+1} \geqslant \tilde{c} a_{k-1} a_{k+2} \quad \text { for } k=1,2, \ldots, n-2
$$

then $F(z)$ is Hurwitz. In particular, the conclusion is true if

$$
a_{k}^{2} \geqslant \sqrt{\tilde{c}} a_{k-1} a_{k+1} \quad \text { for } k=1,2, \ldots, n-1
$$

In [8] the authors of this note have proved that Theorem A remains valid if one replace the constant \tilde{c} by the constant $c_{n}:=4 \cos ^{2} \frac{\pi}{n+1}$. In [8] it is also shown that in the statement of Theorem A the constant c_{n} is the smallest possible not only in the class of matrices with positive entries but in the classes of Toeplitz matrices and of Hankel matrices. We recall that a matrix M is Toeplitz matrix if it is of the form $M=\left(a_{j-i}\right)$ and a matrix M is Hankel matrix if it is of the form $M=\left(a_{j+i}\right)$. In this paper we will show that the constant c_{n} is not the smallest possible in the class of Hurwitz matrices.

The natural problem is: for a given $n \in \mathbb{N}$ what is the smallest possible constant d_{n} such that if the coefficients of $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ are positive and satisfy the inequalities $a_{k} a_{k+1}>d_{n} a_{k-1} a_{k+2}$ for $k=1,2, \ldots, n-2$, then $F(z)$ is Hurwitz? Our main result is the following theorem which solves this problem.

Theorem 1. Let x_{0} be the (unique) positive root of the polynomial $x^{3}-x^{2}-2 x-1\left(x_{0} \approx 2.1479\right)$.

1. If the coefficients of $F(z)=\sum_{k=0}^{4} a_{k} z^{k}$ are positive and satisfy the inequalities $a_{k} a_{k+1}>2 a_{k-1} a_{k+2}$ for $k=1,2$, then $F(z)$ is Hurwitz. In particular, the conclusion is true if $a_{k}^{2}>\sqrt{2} a_{k-1} a_{k+1}$ for $k=1,2,3$.
2. If the coefficients of $F(z)=\sum_{k=0}^{5} a_{k} z^{k}$ are positive and satisfy the inequalities $a_{k} a_{k+1}>x_{0} a_{k-1} a_{k+2}$ for $k=1,2,3$, then $F(z)$ is Hurwitz. In particular, the conclusion is true if $a_{k}^{2}>\sqrt{x_{0}} a_{k-1} a_{k+1}$ for $k=1,2,3,4$.
3. If the coefficients of $F(z)=\sum_{k=0}^{n} a_{k} z^{k}, n>5$, are positive and satisfy the inequalities $a_{k} a_{k+1} \geqslant x_{0} a_{k-1} a_{k+2}$ for $k=1,2, \ldots$, $n-2$, then $F(z)$ is Hurwitz. In particular, the conclusion is true if $a_{k}^{2} \geqslant \sqrt{x_{0}} a_{k-1} a_{k+1}$ for $k=1,2, \ldots, n-1$.

Note that

$$
\frac{a_{k} a_{k+1}}{a_{k-1} a_{k+2}}=\frac{a_{k}^{2}}{a_{k-1} a_{k+1}} \frac{a_{k+1}^{2}}{a_{k} a_{k+2}}
$$

and thus the following theorem demonstrates that the constants in Theorem 1 are the smallest possible for every n.

Theorem 2.

1. For every $d \leqslant \sqrt{2}$ there exists a polynomial $F(z)=\sum_{k=0}^{4} a_{k} z^{k}$ with positive coefficients under condition $a_{k}^{2}=d a_{k-1} a_{k+1}$ for $k=1,2,3$, such that $F(z)$ is not Hurwitz.
2. For every $d \leqslant \sqrt{x_{0}}$ there exists a polynomial $F(z)=\sum_{k=0}^{5} a_{k} z^{k}$ with positive coefficients under condition $a_{k}^{2}=d a_{k-1} a_{k+1}$ for $k=1,2,3,4$, such that $F(z)$ is not Hurwitz.
3. For every $n>5$ and every $\varepsilon>0$ there exists a polynomial $F(z)=\sum_{k=0}^{n} a_{k} z^{k}$ with positive coefficients under condition $a_{k}^{2}>$ $\left(\sqrt{x_{0}}-\varepsilon\right) a_{k-1} a_{k+1}$ for $k=1,2, \ldots, n-1$, such that $F(z)$ is not Hurwitz.

Theorem 1 may be generalized for entire functions as follows.
Theorem 3. If the coefficients of $G(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ are positive and satisfy the inequalities $a_{k} a_{k+1} \geqslant x_{0} a_{k-1} a_{k+2}$ for $k \in \mathbb{N}$, then all zeros of $G(z)$ have negative real parts. In particular, the conclusion is true if $a_{k}^{2} \geqslant \sqrt{x_{0}} a_{k-1} a_{k+1}$ for $k \in \mathbb{N}$.

As we will show in the proof of Theorem 2 the constant in Theorem 3 is the smallest possible.
To prove Theorem 1 we use the famous Hermite-Biehler Criterion. The following statement is a version of the HermiteBiehler theorem.

The Hermite-Biehler Criterion of stability. (See [2] and [6], or [10, Chapter VII].) Let $F(z)=\sum_{k=0}^{n} a_{k} z^{k}$ be a polynomial with positive coefficients. The polynomial F is stable if and only if the following two polynomials $f(z)=\sum_{m=0}^{\lfloor n / 2\rfloor}(-1)^{m} a_{2 m} z^{m}$ and $g(z)=$ $z \sum_{m=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{m} a_{2 m+1} z^{m}$ have simple real interlacing zeros.

We will use also the following result by Hutchinson [7, p. 327].

Theorem C. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{k}>0, \forall k$. Inequality $a_{n}^{2} \geqslant 4 a_{n-1} a_{n+1}, \forall n \geqslant 1$, holds if and only if the following two properties hold:
(i) the zeros of $f(z)$ are all real, simple and negative, and
(ii) the zeros of any polynomial $\sum_{k=m}^{n} a_{k} z^{k}$, formed by taking any number of consecutive terms of $f(z)$, are all real and non-positive.

Theorem C is closely connected with the above mention sufficient condition for a matrix to have positive minors. About the connection between the property of a polynomial to have only real non-positive zeros and the positivity of minors of certain matrix see, for example, [1].

2. Proof of Theorems $\mathbf{1}$ and 3

It is well known (and easy verified) that polynomials of degree 1 and 2 with positive leading coefficient are stable if and only if all their coefficients are positive.

Let $F(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ be a polynomial with positive coefficients. Denote by

$$
\begin{equation*}
s_{j}=\frac{a_{j} a_{j+1}}{a_{j-1} a_{j+2}}, \quad 1 \leqslant j \leqslant n-2 \tag{1}
\end{equation*}
$$

Let $F(z)=\sum_{j=0}^{3} a_{j} z^{j}$ be a polynomial with positive coefficients. Polynomial F is stable if and only if $s_{1}>1$ (see, for example, [12, p. 34]). Really, for $F(z)=\sum_{j=0}^{3} a_{j} z^{j}$ we have $f(z)=a_{0}-a_{2} z$ and $g(z)=z\left(a_{1}-a_{3} z\right)$. Both polynomials have simple real zeros, and these zeros interlace if and only if $0<\frac{a_{0}}{a_{2}}<\frac{a_{1}}{a_{3}} \Leftrightarrow s_{1}>1$.

Proof of Theorem 1. To prove Theorem 1 we will use the Hermite-Biehler Criterion of stability. Let us prove the statement 1 of Theorem 1.

For $F(z)=\sum_{j=0}^{4} a_{j} z^{j}$ we have $f(z)=a_{0}-a_{2} z+a_{4} z^{2}$ and $g(z)=z\left(a_{1}-a_{3} z\right)$. Using our notations we can express two zeros of the polynomial $f(z)$ in such a way:

$$
t_{1,2}=\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1 \mp \sqrt{1-\frac{4}{s_{1} s_{2}}}\right) .
$$

These zeros are real and distinct since $\min \left(s_{1}, s_{2}\right)>2$. Two zeros of the polynomial $g(z)$ are $t_{0}^{*}=0, t_{1}^{*}=\frac{a_{0}}{a_{2}} s_{1}$, they are real and distinct. The polynomial $F(z)$ is stable if and only if

$$
\begin{equation*}
0<\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1-\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)<\frac{a_{0}}{a_{2}} s_{1}<\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1+\sqrt{1-\frac{4}{s_{1} s_{2}}}\right) . \tag{2}
\end{equation*}
$$

The first inequality in (2) obviously holds.
The second inequality in (2) is equivalent to $s_{2}\left(1-\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)<2$. The left-hand side of this inequality is strictly decreasing in s_{1}, so this inequality follows from $s_{2}\left(1-\sqrt{1-\frac{2}{s_{2}}}\right) \leqslant 2$ (we paste $s_{1}=2$). The left-hand side of the last inequality is strictly decreasing in s_{2}, and for $s_{2}=2$ the left-hand side is equal to the right-hand side. By these reasons the second inequality in (2) holds.

The third inequality in (2) is equivalent to $s_{2}\left(1+\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)>2$. Since $\min \left(s_{1}, s_{2}\right)>2$ the last inequality is true.
Thus, polynomial $F(z)=\sum_{j=0}^{4} a_{j} z^{j}$ with positive coefficients is stable provided $\min \left(s_{1}, s_{2}\right)>2$.
Let us prove the statement 2 of Theorem 1. For $F(z)=\sum_{j=0}^{5} a_{j} z^{j}$ we have $f(z)=a_{0}-a_{2} z+a_{4} z^{2}$ and $g(z)=z\left(a_{1}-a_{3} z+\right.$ $a_{5} z^{2}$). Using our notations we can express two zeros of the polynomial $f(z)$ in such a way:

$$
t_{1,2}=\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1 \mp \sqrt{1-\frac{4}{s_{1} s_{2}}}\right) .
$$

These zeros are real and distinct since $\min \left(s_{1}, s_{2}\right)>x_{0}>2$. The polynomial $g(z)$ has three distinct real zeros which can be written in such a way:

$$
t_{0}^{*}=0, \quad t_{1}^{*}=\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2} s_{3}}{2}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right), \quad t_{2}^{*}=\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2} s_{3}}{2}\left(1+\sqrt{1-\frac{4}{s_{2} s_{3}}}\right) .
$$

The polynomial $F(z)$ is stable if and only if

$$
\begin{align*}
0 & <\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1-\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)<\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2} s_{3}}{2}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)<\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2}}{2}\left(1+\sqrt{1-\frac{4}{s_{1} s_{2}}}\right) \\
& <\frac{a_{0}}{a_{2}} \frac{s_{1} s_{2} s_{3}}{2}\left(1+\sqrt{1-\frac{4}{s_{2} s_{3}}}\right) . \tag{3}
\end{align*}
$$

The first inequality in (3) obviously holds.
The second inequality in (3) is equivalent to $\left(1-\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)<s_{3}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)$. The left-hand side of this inequality is strictly decreasing in s_{1}, and $s_{1}>x_{0}>2$ so this inequality follows from $\left(1-\sqrt{1-\frac{2}{s_{2}}}\right) \leqslant s_{3}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)$ (we paste $s_{1}=2$). The right-hand side of the last inequality is strictly decreasing in s_{3} and $\lim _{s_{3} \rightarrow \infty} s_{3}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)=\frac{2}{s_{2}}$, so the second inequality in (3) follows from the obvious one $\left(1-\sqrt{1-\frac{2}{s_{2}}}\right) \leqslant \frac{2}{s_{2}}$. Thus, the second inequality in (3) is true.

Let us check that under our assumptions the third inequality in (3) holds, or, equivalently $s_{3}\left(1-\sqrt{1-\frac{4}{s_{2} s_{3}}}\right.$) < $\left(1+\sqrt{1-\frac{4}{s_{1} s_{2}}}\right)$. The left-hand side of this inequality is strictly decreasing in s_{3}, the right-hand side is strictly increasing in s_{1}, so this inequality follows from $x_{0}\left(1-\sqrt{1-\frac{4}{s_{2} x_{0}}}\right) \leqslant\left(1+\sqrt{1-\frac{4}{x_{0} s_{2}}}\right)$, or, equivalently, $\left(1+x_{0}\right) \sqrt{1-\frac{4}{s_{2} x_{0}}} \geqslant x_{0}-1$. The left-hand side of the last inequality is strictly increasing in s_{2}, and the last inequality follows from $\left(1+x_{0}\right) \sqrt{1-\frac{4}{x_{0}^{2}}} \geqslant x_{0}-1$ or, equivalently, $x_{0}^{3}-x_{0}^{2}-2 x_{0}-1 \geqslant 0$. By the definition of x_{0} this is true. Thus, the third inequality in (3) holds.

Let us check that under our assumptions the fourth inequality in (3) holds, or, equivalently $1+\sqrt{1-\frac{4}{s_{1} s_{2}}}<$ $s_{3}\left(1+\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)$. The left-hand side is strictly increasing in s_{1} and $\lim _{s_{1} \rightarrow \infty} 1+\sqrt{1-\frac{4}{s_{1} s_{2}}}=2$, so the last inequality follows from $2 \leqslant s_{3}\left(1+\sqrt{1-\frac{4}{s_{2} s_{3}}}\right)$. The right-hand side is strictly increasing in $s_{2}>x_{0}>2$, so the last inequality follows from the obvious inequality $2 \leqslant s_{3}\left(1+\sqrt{1-\frac{2}{s_{3}}}\right.$). So, the fourth inequality in (3) holds.

Thus, polynomial $F(z)=\sum_{j=0}^{5} a_{j} z^{j}$ with positive coefficients is stable provided $\min \left(s_{1}, s_{2}, s_{3}\right)>x_{0}$.
Remark. It follows from the proof of the statement 2 of Theorem 1 that if $\min \left(s_{1}, s_{2}, s_{3}\right) \geqslant x_{0}$ then $t_{0}^{*}<t_{1}<t_{1}^{*} \leqslant t_{2}<t_{2}^{*}$ (the notation is the same as in the proof of statement 2 of Theorem 1).

Let $F(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k}>0$, be a polynomial satisfying the condition $s_{j} \geqslant x_{0}$ for $j=1,2, \ldots, n-2$. Without loss of generality we can assume that $a_{0}=1$. Denote by

$$
\begin{equation*}
p_{j}=\frac{a_{j-1}}{a_{j}}, \quad j=1,2, \ldots, n \tag{4}
\end{equation*}
$$

Using this notation we can write

$$
F(z)=1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=1+\frac{z}{p_{1}}+\frac{z^{2}}{p_{1} p_{2}}+\cdots+\frac{z^{n}}{p_{1} p_{2} \cdots p_{n}}
$$

To prove the statement 3 of Theorem 1 we need some lemmas. The statement below is the direct consequence of the statements 1 and 2 of Theorem 1 and Remark.

Lemma 1. Let $\tilde{f}(z)=1-\frac{z}{p_{1} p_{2}}+\frac{z^{2}}{p_{1} p_{2} p_{3} p_{4}}, \tilde{g}(z)=1-\frac{z}{p_{2} p_{3}}+\frac{z^{2}}{p_{2} p_{3} p_{4} p_{5}}$, where $p_{j}>0,1 \leqslant j \leqslant 5$. Suppose that $p_{j+2} / p_{j} \geqslant x_{0}$, where x_{0} is equal to the unique positive root of the polynomial $x^{3}-x^{2}-2 x-1$. Denote by $0<x_{1}<x_{2}$ the zeros of $\tilde{f}, 0<x_{1}^{*}<x_{2}^{*}$ the zeros of \tilde{g}. Then

$$
\begin{equation*}
\tilde{g}\left(x_{2}\right) \leqslant 0, \quad \tilde{f}\left(x_{1}^{*}\right) \leqslant 0 \tag{5}
\end{equation*}
$$

If $\hat{f}=-1+\frac{z}{p_{3} p_{4}}, \hat{g}=1-\frac{z}{p_{2} p_{3}}$, then

$$
\begin{equation*}
\hat{g}\left(x_{2}\right)<0, \quad \hat{f}\left(x_{1}^{*}\right)<0 \tag{6}
\end{equation*}
$$

We need the following lemma.
Lemma 2. Let

$$
\begin{equation*}
F(z)=1-\frac{z}{\rho_{1}}+\frac{z^{2}}{\rho_{1} \rho_{2}}-\cdots+(-1)^{n} \frac{z^{n}}{\rho_{1} \rho_{2} \cdots \rho_{n}}, \quad n \geqslant 3 \tag{7}
\end{equation*}
$$

be a polynomial with $\rho_{j}>0$ and $\min \left\{\frac{\rho_{j+1}}{\rho_{j}}, 1 \leqslant j \leqslant n-1\right\}>1$. Denote by

$$
R_{j}(z, F)= \begin{cases}1-\frac{z}{\rho_{j}}+\frac{z^{2}}{\rho_{j} \rho_{j+1}}, & \text { if } j=1,2, \ldots, n-1 ; \tag{8}\\ -1+\frac{z}{\rho_{1}}, & \text { if } j=0 \\ 1-\frac{z}{\rho_{n}}, & \text { if } j=n .\end{cases}
$$

Then

$$
\begin{equation*}
(-1)^{j} F(x)>-K_{j}(x) R_{j}(x, F), \quad \rho_{j-2}<x<\rho_{j+3}, j=0,1, \ldots, n, \tag{9}
\end{equation*}
$$

where $K_{j}(x)>0, \rho_{j}=0$ for $j<1$, and $\rho_{j}=\infty$ for $j>n$.
Proof of Lemma 2. Let us fix $j \in\{1,2, \ldots, n-1\}$. We have

$$
\begin{align*}
(-1)^{j} F(x)= & \left((-1)^{j}+\sum_{k=1}^{j-2}(-1)^{k+j} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}\right)+\left[-\frac{x^{j-1}}{\rho_{1} \rho_{2} \cdots \rho_{j-1}}+\frac{x^{j}}{\rho_{1} \rho_{2} \cdots \rho_{j}}-\frac{x^{j+1}}{\rho_{1} \rho_{2} \cdots \rho_{j+1}}\right] \\
& +\sum_{k=j+2}^{n}(-1)^{j+k} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}} \\
= & \Sigma_{1}(x)+\left[-\frac{x^{j-1}}{\rho_{1} \rho_{2} \cdots \rho_{j-1}}+\frac{x^{j}}{\rho_{1} \rho_{2} \cdots \rho_{j}}-\frac{x^{j+1}}{\rho_{1} \rho_{2} \cdots \rho_{j+1}}\right]+\Sigma_{2}(x) . \tag{10}
\end{align*}
$$

For every $x \in\left(\rho_{j-2}, \rho_{j+3}\right), \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}<\frac{x^{k+1}}{\rho_{1} \rho_{2} \cdots \rho_{k+1}}$ holds for $0 \leqslant k \leqslant j-3$. So for all $x \in\left(\rho_{j-2}, \rho_{j+3}\right)$ summands in $\Sigma_{1}(x)$ are alternating in sign and their moduli are increasing. Analogously for all $x \in\left(\rho_{j-2}, \rho_{j+3}\right)$ summands in $\Sigma_{2}(x)$ are alternating in sign and their moduli are decreasing. So $\Sigma_{1}(x) \geqslant 0, \Sigma_{2}(x) \geqslant 0$ for all $x \in\left(\rho_{j-2}, \rho_{j+3}\right)$, so for $j=1,2, \ldots, n-1$

$$
\begin{equation*}
(-1)^{j} F(x) \geqslant-\frac{x^{j-1}}{\rho_{1} \rho_{2} \cdots \rho_{j-1}}+\frac{x^{j}}{\rho_{1} \rho_{2} \cdots \rho_{j}}-\frac{x^{j+1}}{\rho_{1} \rho_{2} \cdots \rho_{j+1}}, \quad x \in\left(\rho_{j-2}, \rho_{j+3}\right) \tag{11}
\end{equation*}
$$

Thus (9) is proved for $j=1,2, \ldots, n-1$.
For $j=0$ (9) follows from the inequality

$$
F(x)=-\left(-1+\frac{x}{\rho_{1}}\right)+\sum_{k=2}^{n}(-1)^{k} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}>-R_{0}(x, F), \quad 0<x<\rho_{3} .
$$

We use the fact that for $0<x<\rho_{3}$ the summands in $\sum_{k=2}^{n}(-1)^{k} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}$ are alternating in sign and their moduli are decreasing. So the sign of this sum coincides with the sign of the first summand (for $k=2$) and this sign is positive.

For $j=n$ (9) follows from the inequality

$$
\begin{aligned}
& (-1)^{n} F(x)=-\frac{x^{n-1}}{\rho_{1} \rho_{2} \cdots \rho_{n-1}}\left(1-\frac{x}{\rho_{n}}\right)+(-1)^{n}+\sum_{k=1}^{n-2}(-1)^{k+n} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}>-\frac{x^{n-1}}{\rho_{1} \rho_{2} \cdots \rho_{n-1}} R_{n}(x, F), \\
& \rho_{n-2}<x<\infty
\end{aligned}
$$

We use the fact that for $\rho_{n-2}<x<\infty$ the summands in the expression $\left((-1)^{n}+\sum_{k=1}^{n-2}(-1)^{k+n} \frac{x^{k}}{\rho_{1} \rho_{2} \cdots \rho_{k}}\right)$ are alternating in sign and their moduli are increasing. So the sign of this expression coincides with the sign of the last summand (for $k=n-2)$ and this sign is positive.

Lemma 3. Let $F(z)=1-\frac{z}{\rho_{1}}+\frac{z^{2}}{\rho_{1} \rho_{2}}-\cdots+(-1)^{n} \frac{z^{n}}{\rho_{1} \rho_{2} \ldots \rho_{n}}, n \geqslant 3$, be a polynomial with $\rho_{j}>0$ and $\min \left\{\frac{\rho_{j+1}}{\rho_{j}}, 1 \leqslant j \leqslant n-1\right\}>4$. Let polynomials $R_{j}(z, F), j=0,1, \ldots, n$, be defined by (8).

1. Polynomial $R_{j}(z), j=1,2, \ldots, n-1$, has simple real zeros, which we denote by $0<\omega_{1}(j)<\omega_{2}(j)$.
2. Polynomial $F(z)$ has simple real zeros $0<x_{1}<x_{2}<\cdots<x_{n}$.
3. $\omega_{1}(j)>\rho_{j}, \omega_{2}(j)<\rho_{j+1}$.
4. $\sqrt{\rho_{j-1} \rho_{j}}<x_{j}<\sqrt{\rho_{j} \rho_{j+1}}, j=1,2, \ldots, n$ (where we put $\rho_{0}=1, \rho_{n+1}=+\infty$).
5. $x_{j}<\omega_{1}(j), x_{j+1}>\omega_{2}(j), j=1,2, \ldots, n-1$.

Proof of Lemma 3. Since $\min \left\{\frac{\rho_{j+1}}{\rho_{j}}, 1 \leqslant j \leqslant n-1\right\}>4$ then

$$
R_{j}\left(\sqrt{\rho_{j} \rho_{j+1}}, F\right)=2-\sqrt{\frac{\rho_{j+1}}{\rho_{j}}}<0, \quad 1 \leqslant j \leqslant n-1 .
$$

The statements 1 and 3 of lemma immediately follow from this. The fact that $\min \left\{\frac{\rho_{j+1}}{\rho_{j}}, 1 \leqslant j \leqslant n-1\right\}>4$ implies that polynomial $F(z)$ has simple real zeros is the well-known (see, for example, [9]). This fact and statement 4 of lemma follow from the statements:

$$
\begin{align*}
& F\left(\sqrt{\rho_{0} \rho_{1}}\right)>0, \quad-F\left(\sqrt{\rho_{1} \rho_{2}}\right)>0, \quad F\left(\sqrt{\rho_{2} \rho_{3}}\right)>0, \\
& (-1)^{n-1} F\left(\sqrt{\rho_{n-1} \rho_{n}}\right)>0, \quad \lim _{x \rightarrow \infty}\left[(-1)^{n} F(x)\right]=+\infty . \tag{12}
\end{align*}
$$

The last statement is obvious, the rest of inequalities is the direct consequence of (9). Since for all $z \in\left(\omega_{1}(j), \omega_{2}(j)\right)$ we have $R_{j}(z, F)<0, j=1,2, \ldots, n-1$, than the statement 5 is the direct consequence of (9).

Let us prove now the statement 3 of Theorem 1.
By the Hermite-Biehler Criterion the polynomial F is stable if and only if the following two polynomials

$$
f(z)=\sum_{m=0}^{\lfloor n / 2\rfloor}(-1)^{m} a_{2 m} z^{m}
$$

and

$$
g(z)=z \sum_{m=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{m} a_{2 m+1} z^{m}
$$

have simple real interlacing zeros.
Since

$$
\frac{a_{2 m}^{2}}{a_{2 m-2} a_{2 m+2}}=\frac{a_{2 m-1} a_{2 m}}{a_{2 m-2} a_{2 m+1}} \frac{a_{2 m} a_{2 m+1}}{a_{2 m-1} a_{2 m+2}} \geqslant x_{0}^{2}>4, \quad m=1,2, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor,
$$

and

$$
\frac{a_{2 m+1}^{2}}{a_{2 m-1} a_{2 m+3}}=\frac{a_{2 m} a_{2 m+1}}{a_{2 m-1} a_{2 m+2}} \frac{a_{2 m+1} a_{2 m+2}}{a_{2 m} a_{2 m+3}} \geqslant x_{0}^{2}>4, \quad m=1,2, \ldots,\left\lfloor\frac{n-3}{2}\right\rfloor,
$$

polynomials $f(z)$ and $g(z)$ have simple real zeros. It remains to prove that under our assumptions zeros of polynomials $f(z)$ and $g(z)$ are interlacing.

We need the following notations. Let P be a real polynomial. Denote by $N_{(a, b)}(P)$ the number of zeros of P in the interval (a, b). Denote by $0<t_{1}<t_{2}<\cdots<t_{\left\lfloor\frac{n}{2}\right\rfloor}$ zeros of $f(z)$ and by $0=t_{0}^{*}<t_{1}^{*}<t_{2}^{*}<\cdots<t_{\left\lfloor\frac{n-1}{2}\right\rfloor}^{*}$ zeros of $g(z)$. We obtain the fact that zeros of polynomials $f(z)$ and $g(z)$ are interlacing as a consequence of the following lemma.

Lemma 4.

$$
\begin{align*}
& N_{\left(t_{j}, t_{j+1}\right)}(g) \geqslant 1, \quad j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1, \tag{13}\\
& N_{\left(t_{j}^{*}, t_{j+1}^{*}\right)}(f) \geqslant 1, \quad j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor-1 . \tag{14}
\end{align*}
$$

Proof of Lemma 4. For $F(z)=1+\frac{z}{p_{1}}+\frac{z^{2}}{p_{1} p_{2}}+\cdots+\frac{z^{n}}{p_{1} p_{2} \cdots p_{n}}$ we have $f(z)=1-\frac{z}{p_{1} p_{2}}+\frac{z^{2}}{p_{1} p_{2} p_{3} p_{4}}+\cdots$ and $g(z)=\frac{z}{p_{1}}\left(1-\frac{z}{p_{2} p_{3}}+\right.$ $\left.\frac{z^{2}}{p_{2} p_{3} p_{4} p_{5}}+\cdots\right)$. Put $g_{1}(z)=g(z) p_{1} / z$. Note that the polynomial f has the form (7) with $\rho_{j}=p_{2 j-1} p_{2 j}$ and the polynomial g_{1} has the form (7) with $\rho_{j}=p_{2 j} p_{2 j+1}$. We will consider the polynomials $R_{j}(z, f)$ for $j=0,1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$ and $R_{j}\left(z, g_{1}\right)$ for $j=0,1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$, these polynomials are defined by (8).

At first we will prove (13) with $n \geqslant 7$. By Lemma 3 we have $t_{j}<\omega_{1}(j), t_{j+1}>\omega_{2}(j)$, where $\omega_{1}(j), \omega_{2}(j)$ are zeros of $R_{j}(z, f)$. To prove (13) it is sufficient to prove that

$$
\begin{align*}
& (-1)^{j-1} g_{1}\left(\omega_{1}(j)\right)>0, \quad j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1 \tag{15}\\
& (-1)^{j-1} g_{1}\left(\omega_{2}(j)\right)<0, \quad j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1 \tag{16}
\end{align*}
$$

By (9) we have

$$
\begin{equation*}
(-1)^{j-1} g_{1}(t)>-K_{j-1}(t) R_{j-1}\left(t, g_{1}\right) \tag{17}
\end{equation*}
$$

where $p_{2 j-6} p_{2 j-5}<t<p_{2 j+4} p_{2 j+5}, j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$;

$$
\begin{equation*}
(-1)^{j} g_{1}(t)>-K_{j}(t) R_{j}\left(t, g_{1}\right), \tag{18}
\end{equation*}
$$

where $p_{2 j-4} p_{2 j-3}<t<p_{2 j+6} p_{2 j+7}, j=0,1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1$. In (17) and (18) the functions $K_{j}(t)$ are positive. By the statement 3 of Lemma 3 we have $p_{2 j-1} p_{2 j}<\omega_{1}(j)<\omega_{2}(j)<p_{2 j+1} p_{2 j+2}$, so inequalities (17) and (18) are valid for $t \in$ $\left(\omega_{1}(j), \omega_{2}(j)\right), j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1$. In (17) we apply Lemma 1 with $\tilde{f}(t)=R_{j-1}\left(t, g_{1}\right), j=2,3, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1, \hat{f}(t)=R_{0}\left(t, g_{1}\right)$ and $\tilde{g}(t)=R_{j}(t, f), j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1$. We have

$$
\begin{equation*}
R_{j}\left(\omega_{1}(j), g_{1}\right)<0, \quad j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1 \tag{19}
\end{equation*}
$$

From (17), (19) we obtain (15).
In (18) we apply Lemma 1 with $\tilde{f}(t)=R_{j}(t, f)$ and $\tilde{g}(t)=R_{j}\left(t, g_{1}\right), j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$. If n is an odd number, then $\left\lfloor\frac{n-1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$. If n is an even number we also apply Lemma 1 with $\hat{g}(t)=R_{\left\lfloor\frac{n}{2}\right\rfloor-1}\left(t, g_{1}\right)$ and $\tilde{f}(t)=R_{\left\lfloor\frac{n}{2}\right\rfloor-1}(t, f)$. We have

$$
\begin{equation*}
R_{j}\left(\omega_{2}(j), g_{1}\right)<0, \quad j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1 \tag{20}
\end{equation*}
$$

From (18), (20) we obtain (16).
The statement (14) with $n \geqslant 6$ can be proved analogously. By Lemma 3 we have $t_{j}^{*}<\omega_{1}^{*}(j), t_{j+1}^{*}>\omega_{2}^{*}(j)$, where $\omega_{1}^{*}(j)$, $\omega_{2}^{*}(j)$ are zeros of $R_{j}\left(z, g_{1}\right)$. To prove (14) it is sufficient to prove that

$$
\begin{align*}
& (-1)^{j-1} f\left(\omega_{1}^{*}(j)\right)<0, \quad j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor-1 \tag{21}\\
& (-1)^{j-1} f\left(\omega_{2}^{*}(j)\right)>0, \quad j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor-1 \tag{22}
\end{align*}
$$

By (9) we have

$$
\begin{equation*}
(-1)^{j} f(t)>-K_{j}(t) R_{j}(t, f), \tag{23}
\end{equation*}
$$

where $p_{2 j-5} p_{2 j-4}<t<p_{2 j+5} p_{2 j+6}, j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1$ and

$$
\begin{equation*}
(-1)^{j+1} f(t)>-K_{j+1}(t) R_{j+1}(t, f) \tag{24}
\end{equation*}
$$

where $p_{2 j-3} p_{2 j-2}<t<p_{2 j+7} p_{2 j+8}, j=0,1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor-1$. In (23) and (24) the functions $K_{j}(t)$ are positive. By statement 3 of Lemma 3 we have $p_{2 j} p_{2 j+1}<\omega_{1}^{*}(j)<\omega_{2}^{*}(j)<p_{2 j+2} p_{2 j+3}$, so inequalities (23) and (24) are valid for $t \in\left(\omega_{1}^{*}(j), \omega_{2}^{*}(j)\right), j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor-1$. Using (23), (24) and Lemma 1 (analogously to the proof of (15) and (16)) we can obtain (21) and (22). Thus, (14) is proved.

Applying (21) and (22) for $n=6$ we have

$$
f\left(\omega_{1}^{*}\right)<0, \quad f\left(\omega_{2}^{*}\right)>0
$$

where $\omega_{1}^{*}, \omega_{2}^{*}$ are zeros of the polynomial $R_{1}\left(z, g_{1}\right)=g_{1}(z)$. Besides this

$$
f(0)=1>0, \quad \lim _{t \rightarrow \infty} f(t)=-\infty
$$

Thus, (13) is proved for $n=6$.
So, zeros of polynomials $f(z)$ and $g(z)$ are interlacing. Applying (13) for $j=1$ we have

$$
g_{1}\left(\omega_{1}(1)\right)>0,
$$

where $\omega_{1}(1)$ is the smallest zero of the polynomial $R_{1}(z, f)$. Besides this $g_{1}(0)=1>0$. Thus, $t_{1}<\omega_{1}(1)<t_{1}^{*}$.
Theorem 1 is proved.
Proof of Theorem 3. To prove Theorem 3 we use just the same reasonings as in the proof of Theorem 1. Instead of the Hermite-Biehler Criterion of stability for polynomials we will apply the following generalization of the Hermite-Biehler theorem on entire functions of order not greater then 1 and minimal type of growth.

Theorem HB. (See [10, Chapter 7].) Let $G(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{k}>0$, be an entire function of order not greater then 1 and minimal type of growth. All zeros of G have negative real parts if and only if the following two entire functions $f(z)=\sum_{0}^{\infty}(-1)^{m} a_{2 m} z^{m}$ and $g(z)=z \sum_{0}^{\infty}(-1)^{m} a_{2 m+1} z^{m}$ have simple real interlacing zeros.

Let us consider a function $G(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ with positive coefficients under condition $a_{k} a_{k+1} \geqslant x_{0} a_{k-1} a_{k+2}$ for $k \in \mathbb{N}$. Note that

$$
\frac{a_{2 k+1}}{a_{2 k+2}} \cdot \frac{a_{2}}{a_{1}}=\frac{a_{2 k+1} a_{2 k}}{a_{2 k+2} a_{2 k-1}} \cdot \frac{a_{2 k-1} a_{2 k-2}}{a_{2 k} a_{2 k-3}} \cdots \frac{a_{3} a_{2}}{a_{4} a_{1}} \geqslant x_{0}^{k}, \quad k \geqslant 1,
$$

and

$$
\frac{a_{2 k}}{a_{2 k+1}} \cdot \frac{a_{1}}{a_{0}}=\frac{a_{2 k} a_{2 k-1}}{a_{2 k+1} a_{2 k-2}} \cdot \frac{a_{2 k-2} a_{2 k-3}}{a_{2 k-1} a_{2 k-4}} \cdots \frac{a_{2} a_{1}}{a_{3} a_{0}} \geqslant x_{0}^{k}, \quad k \geqslant 1 .
$$

So we have

$$
a_{2 k+2} \leqslant \frac{1}{x_{0}^{k}} \cdot \frac{a_{2}}{a_{1}} \cdot a_{2 k+1}, \quad a_{2 k+1} \leqslant \frac{1}{x_{0}^{k}} \cdot \frac{a_{1}}{a_{0}} \cdot a_{2 k}, \quad k \geqslant 1 .
$$

Whence

$$
a_{2 k+2} \leqslant \frac{1}{x_{0}^{k}} \cdot \frac{a_{2}}{a_{1}} \cdot a_{2 k+1} \leqslant \frac{1}{x_{0}^{2 k}} \cdot \frac{a_{2}}{a_{1}} \cdot \frac{a_{1}}{a_{0}} \cdot a_{2 k} \leqslant \frac{1}{x_{0}^{2 k+2(k-1)}} \cdot\left(\frac{a_{2}}{a_{0}}\right)^{2} a_{2 k-2} \leqslant \cdots \leqslant \frac{1}{x_{0}^{k(k+1)}} \cdot\left(\frac{a_{2}}{a_{0}}\right)^{k} a_{2}, \quad k \geqslant 1
$$

Analogously

$$
a_{2 k+1} \leqslant \frac{1}{x_{0}^{k}} \cdot \frac{a_{1}}{a_{0}} \cdot a_{2 k} \leqslant \frac{1}{x_{0}^{2 k-1}} \cdot \frac{a_{1}}{a_{0}} \cdot \frac{a_{2}}{a_{1}} \cdot a_{2 k-1} \leqslant \frac{1}{x_{0}^{2 k-1+2 k-3}} \cdot\left(\frac{a_{2}}{a_{0}}\right)^{2} a_{2 k-3} \leqslant \cdots \leqslant \frac{1}{x_{0}^{k^{2}}} \cdot\left(\frac{a_{2}}{a_{0}}\right)^{k} a_{1}, \quad k \geqslant 1
$$

It is well known that the order of an entire function with coefficients a_{k} is given by the expression $\lim \sup _{n \rightarrow \infty} \frac{n \log n}{\log \left|a_{n}\right|^{-1}}$ (see, for example [10, Chapter 1]). So, G is an entire function of order 0.

It is easy to prove that statements of Lemmas $2,3,4$ remain true for the entire function G. It follows from this that Theorem 3 is true.

Theorem 3 is proved.

3. Proof of Theorem 2

Let us prove the statement 1 of Theorem 2. We consider a polynomial $T_{\beta}(z)=\sum_{j=1}^{4} a_{j}(\beta) z^{j}=1+\beta^{3} z+\beta^{4} z^{2}+$ $\beta^{3} z^{3}+z^{4}, \beta>0$, and note that for this polynomial $s_{j}(\beta)=\frac{a_{j}(\beta) a_{j+1}(\beta)}{a_{j-1}(\beta) a_{j+2}(\beta)}=\beta^{4}, j=1,2$. We have $T_{\beta}(z)=z^{2}\left(\left(z^{2}+z^{-2}\right)+\right.$ $\left.\beta^{3}\left(z+z^{-1}\right)+\beta^{4}\right)$. Denote by $w=z+z^{-1}$ and note that $\operatorname{Re} z<0 \Leftrightarrow \operatorname{Re} w<0$. We have $T_{\beta}(z)=z^{2}\left(w^{2}+\beta^{3} w+\beta^{4}-2\right)$. It is obvious that quadratic real polynomial is stable if and only if all its coefficients have the same sign. So $T_{\beta}(z)$ is stable if and only if $\beta^{4}-2>0$. In other words, if $s_{1}(\beta)=s_{2}(\beta)=\beta^{4} \leqslant 2$ then polynomial $T_{\beta}(z)$ is not stable.

To prove the statement 2 of Theorem 2 we consider a polynomial $M_{\beta}(z)=\sum_{j=1}^{5} b_{j}(\beta) z^{j}=1+\beta^{4} z+\beta^{6} z^{2}+\beta^{6} z^{3}+$ $\beta^{4} z^{4}+z^{5}, \beta>0$, and note that for this polynomial $s_{j}(\beta)=\frac{b_{j}(\beta) b_{j+1}(\beta)}{b_{j-1}(\beta) b_{j+2}(\beta)}=\beta^{4}, j=1,2,3$. We have

$$
\begin{aligned}
M_{\beta}(z) & =(z+1)\left(z^{4}+\left(\beta^{4}-1\right) z^{3}+\left(\beta^{6}-\beta^{4}+1\right) z^{2}+\left(\beta^{4}-1\right) z+1\right) \\
& =(z+1) z^{2}\left(\left(z^{2}+z^{-2}\right)+\left(\beta^{4}-1\right)\left(z+z^{-1}\right)+\left(\beta^{6}-\beta^{4}+1\right)\right) .
\end{aligned}
$$

Using the notation $w=z+z^{-1}$ we can write

$$
M_{\beta}(z)=(z+1) z^{2}\left(w^{2}+\left(\beta^{4}-1\right) w+\left(\beta^{6}-\beta^{4}-1\right)\right) .
$$

Since $\operatorname{sign}(\operatorname{Re} z)=\operatorname{sign}(\operatorname{Re} w), M_{\beta}(z)$ is stable if and only if $\beta^{6}-\beta^{4}-1>0$. Note that $\left(\beta^{6}-\beta^{4}-1\right)\left(\beta^{6}+\beta^{4}+1\right)=$ $\beta^{12}-\beta^{8}-2 \beta^{4}-1$ and polynomial $\beta^{6}+\beta^{4}+1$ has no positive zeros. Thus $M_{\beta}(z)$ is stable if and only if $\beta^{4}>x_{0}$, where x_{0} is the unique positive root of the polynomial $x^{3}-x^{2}-2 x-1$, and for $\beta^{4}<x_{0}$ the polynomial $M_{\beta}(z)$ has zeros with positive real parts. So if $s_{1}(\beta)=s_{2}(\beta)=s_{3}(\beta)=\beta^{4}<x_{0}$, then polynomial $M_{\beta}(z)$ has zeros with positive real parts thus it is not stable.

Let us prove the statement 3 of Theorem 2. Obviously, for every $\varepsilon>0$ we can choose β in such a way that $x_{0}-\varepsilon<\beta^{4}<$ x_{0}. So, the polynomial $M_{\beta}(z)$ has zeros with positive real parts. For every $\varepsilon \in\left(0, x_{0}\right)$ we denote by $\delta=\left(x_{0}-\varepsilon / 2\right)^{\frac{1}{4}}$, so $\delta>0$, $\delta^{4}>x_{0}-\varepsilon$. For $n=6$ we put $Q_{\gamma_{1}, 6}(z)=M_{\delta}(z)+\gamma_{1} z^{6}, \gamma_{1}>0$. Since $M_{\delta}(z)$ has zeros with positive real parts, $Q_{\gamma_{1}, 6}(z)$ has zeros with positive real parts for γ_{1} being small enough. For the polynomial $Q_{\gamma_{1}, 6}(z)$ we have $s_{1}=s_{2}=s_{3}=\delta^{4}>x_{0}-\varepsilon$, and $s_{4}=\frac{1}{\delta^{2} \gamma_{1}}>x_{0}-\varepsilon$ for γ_{1} being small enough. For γ_{1} chosen below and $n=7$ we put $Q_{\gamma_{2}, 7}(z)=Q_{\gamma_{1}, 6}(z)+\gamma_{2} z^{7}, \gamma_{2}>0$.

Since $Q_{\gamma_{1}, 6}(z)$ has zeros with positive real parts, $Q_{\gamma_{2}, 7}(z)$ has zeros with positive real parts for γ_{2} being small enough. For the polynomial $Q_{\gamma_{2}, 7}(z)$ we have $s_{1}=s_{2}=s_{3}=\delta^{4}>x_{0}-\varepsilon, s_{4}=\frac{1}{\delta^{2} \gamma_{1}}>x_{0}-\varepsilon$ and $s_{5}=\frac{\gamma_{1}}{\delta^{4} \gamma_{2}}>x_{0}-\varepsilon$ for γ_{2} being small enough. Reasoning analogously we can construct the example needed for every $n \geqslant 5$ and example of an entire function.

Theorem 2 is proved.

Acknowledgment

The authors are deeply grateful to the referee for valuable remarks and suggestions.

References

[1] M. Aissen, A. Edrei, I.J. Schoenberg, A. Whitney, On the generating functions of totally positive sequences, J. Anal. Math. 2 (1952) 93-109.
[2] M. Biehler, Sur une classe d'équations algébriques dont toutes les racines sont réelles, J. Reine Angew. Math. 87 (1879) 350-352.
[3] T. Craven, G. Csordas, A sufficient condition for strict total positivity of a matrix, Linear Multilinear Algebra 45 (1998) 19-34.
[4] D.K. Dimitrov, J.M. Peña, Almost strict total positivity and a class of Hurwitz polynomials, J. Approx. Theory 132 (2005) 212-223.
[5] F.R. Gantmacher, The Theory of Matrices, vol. II, Chelsea Publ., New York, 1959.
[6] C. Hermite, Sur les nombre des racines d'une équation algébrique comprise entre des limites données, J. Reine Angew. Math. 52 (1856) 39-51.
[7] J.I. Hutchinson, On a remarkable class of entire functions, Trans. Amer. Math. Soc. 25 (1923) 325-332.
[8] O.M. Katkova, A.M. Vishnyakova, On sufficient conditions for the total positivity and for the multiple positivity of matrices, Linear Algebra Appl. 416 (2006) 1083-1097.
[9] D.C. Kurtz, A sufficient condition for all the roots of a polynomial to be real, Amer. Math. Monthly 99 (1992) 259-263.
[10] B.J. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monogr., vol. 5, Amer. Math. Soc., Providence, RI, 1964; revised ed., 1980.
[11] M. Marden, Geometry of Polynomials, Math. Surveys Monogr., vol. 3, Amer. Math. Soc., Providence, RI, 1966.
[12] M.M. Postnikov, Stable Polynomials, Nauka, Moscow, 1981 (in Russian).

[^0]: * Corresponding author.

 E-mail addresses: olga.m.katkova@univer.kharkov.ua (O.M. Katkova), anna.m.vishnyakova@univer.kharkov.ua (A.M. Vishnyakova).

