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Abstract

We introduce the notion of amenability for affine algebras. We characterize amenability by Falner-
sequences, paradoxicality and the existence of finitely invariant dimension-measures. Then we extend
the results of Rowen on ranks, from affine algebras of subexponential growth to amenable affine
algebras.
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1. Introduction

First, let us recall the classical notion of amenability. Cebe a discrete group. We call
I' paradoxical, if it can be written as a disjoint unidh= A1 U A> U --- U A,, such that
for some elementgs, h1, g2, h2, ..., gm, hm € I, the setsA1g1, A1h1, A2ga, Adho, ...,
Angm, Amhy, are disjoint as well. The group is called amenable if it is not paradoxical.
The theorem below is one the fundamental results on amenability.

Theorem 1. The following conditions are equivalent:

(1) I' isamenable.
(2) There exists a finitely additive measure on the subsets of I" such that u(I") =1 and
w(Ag)=n(A)foranyACI"andger.
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(3) There exists a sequence of finite subsets (Felner-exhaustion) 71 € F» C -+,
U2, Fn =T, suchthatfor any g € I',

i Ul
n—00 | Fal

1

The goal of this paper is to define and study the appropriate version of amenability for affine
algebras. Throughout this article denotes a unital affine algebra over a commutative
field K.

Definition 1.1. The affine algebra is (left) amenable if there exists a sequence of finite
dimensional linear subspactg € W»> < - -+, [ J72; W,, = R, such that for any € R,

lim dlmK(Wnr+Wn) _
n—oo dimg (W)

1)

We call such an exhaustion by subspaces a Fglner-exhaustion. Now we define the
analogues of paradoxicality and the invariant finitely additive measure for algebras without
zero-divisors.

Definition 1.2. Let R be an affine algebra without zero divisors. We say tRats
paradoxical, if any basis oR over K, {f;}72; can be written as the disjoint union

A1UA2U---U A, such that for some non-zero elemepishi, g2, h2, ..., gm, hm € R,
the setsA1g1, A1h1, Azgo, Aoho, ..., Apgm, Amhy, are mutually independent.

Now let {e;}7°, be a basis oR, where againk has no zero-divisors. An independent
subsetL C R is called regular with respect t@;}:°, if there exists subsets @&;}°;:
A1, A2, Az, ..., Ayand{ry, r2,...,r,} C R suchthatl can be written as the disjoint union
of Airy, Aoro, ..., Apry.

Definition 1.3. An invariant finitely additive dimension-measure with respedet¢f®; is
a non-negative function on the set of regular subsets satisfying the following conditions:

(D u({ei}72) =1 andu(A) < 1for any independent regular subget
(2) If A andB are independent regular subsets thgA U B) = u(A) + u(B).
(3) Forany non-zere € R and regular sef, u(A) = w(Ar).

The main result of the paper is that the following theorem.

Theorem 2. The following conditions are equivalent for affine algebras R without zero-
divisors.

(1) Risamenable.

(2) R isnot paradoxical.

(3) Thereexistsa finitely additiveinvariant dimension-measureon R with respect to some
basis {e;}2;.
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We shall also study the algebraic properties of amenable algebras, extending Rowen'’s work
on algebras of subexponential growth, e.g., we prove that amenable affine algebras has the
unique rank property.

2. Theproof of Theorem 2
2.1. The Doubling Lemma

Lemma2.1. Let R bea non-amenableaffine algebra with no zero-divisor. Then there exists
afinite dimensional linear subspace Z C R containing the unit and ¢ > 0 such that for any
finite dimensional linear subspace V C R,

dimg (VZ2)

1+e.
dime(v) T E

Proof. Let Zy C Z> C -+, ;=1 Z» = R be a sequence of finite dimensional subspaces
containing the unit. Suppose that the statement of the lemma is not true, then there exist
finite dimensional linear subspaceg Vo, ..., V,, ... such that

dimg (V,Z,) 1
dimg VaZn) 4, 1
dme (V) T

Obviously, dink (V,) — co. Now we construct a Fglner-exhaustion inductively. Let
W1 = V1. If we have already constructéély ¢ Wo C --- C W,_1 then choosé& such a
way that

dimy (Vi) > (dimg (W,,—1) +dimg (Z,)) - 2".
Let W, = Vi + Wy—1 + Z,. Then{W,}7° ; will satisfy (1), leading to a contradiction.0
As a corollary we have the following Doubling Lemma.

Lemma 2.2. Let R be a non-amenable affine algebra with no zero-divisor. Then there
exists a finite dimensional linear subspace Z C R containing the unit such that for any
finite dimensional linear subspace V C R,

dimg (VZ)
dimK(V)

2.2. Amenability implies the existence of finitely additive invariant dimension-measure

Lemma 2.3. Let R be an amenable affine algebra with no zero divisor. Then one can
construct a sequence of finite dimensional vector spaces, Vi c Vi C VoC Vo C---CR
with the following properties.
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o {Vi}52, satisfy (1).

dimK(Vn) — 1
dimg (V) — =

e Forany0+#s € R thereexistsk > 0, such that if n > k, then V,,s C V.

o lim,

Proof. First choose an exhaustioiy C Wz C ---, ;21 Wa = R satisfying (1). Let
V1= Wi, V1 = Wj. Suppose that we have already chosen

VlC V1CV2C V2C---Cvn_1C Vi_1.
Let us pickk so large thav,,_1 C Wi. Then we choosé> k so that

dim 1
k Wi Wi + Wi) <14+
dimg (W) 2n

ThenletV, = W, andV, = W,W; + W;. O

Proposition 2.1. Let R be an amenableaffine algebra with no zero divisor. Then there exists
afinitely additive invariant dimension-measure on R with respect to some basis {¢;}7°;.

Proof. Let us choose a basif;}°, of R inductively, such a way that if; is
a k;-dimensional space, thefey, eo, ..., e} form a basis ofV;, similarly if V; is a
l;i-dimensional space, themy, e, ..., ¢;} form a basis o;. O

Lemma 2.4. For 0+# s € R, using the notation of Lemma 2.3 et

Fi(s) = {ej € Vk: ejs & Vi),
Bi(s) = {ej ¢ Vii ejs € Vi)

Then
()
M Gme v 2)
| B (s)] 3)

k—oo dimg (Vi) -

Proof. Firstnote that ik is large, therV/ s C Vi, consequently (2) holds. Then (3) follows
from the fact that the right multiplication byis an injective map. O

Now we define the finitely additive invariant dimension-measure. For any regular
independent subsét,

(L) = lim L Vel
K= dimg (Vi)
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Then, of coursep (L) <1, u({e;}2;) =1 andu(A) +u(B) = u(AUB) if A andB are
independent. In order to finish the proof of Proposition 2.1 it is enough to see that for any
0+#r € R and regular independent subget

im |dimg (Lr N Vi) —dimg (LN V)|
k00 dimg (Vi) -

0. (4)

However, by additivity, we may suppose thais constructed by using only one translation,
that is for anya; € L there existg,, such that; =e,;s. Let N, C {e;};°, be the set of all
suchey,’s. ThenL = Nrs. By Lemma 2.4 (N) = w(Nrs) andu (N ) = w(Ngsr) that
implies the invariance gk. O

2.3. Non-amenability implies paradoxicality
The goal of this subsection is to prove the following proposition.

Proposition 2.2. If the affine algebra R with no zero divisor is not amenable then it is
paradoxical.

We apply the “algebraization” of the tools used in [2]. Our first lemma is just the linear
algebraic analog of the classical Hall lemma of graph theory.

Lemma 2.5. Let e1,e2,...,e, be a bass for the m-dimensional vector space K™
and let Ty, T, ..., T; be a finite collection of linear transformations from K™ to K.
Suppose that for any I-tuple {e;,, e, ..., €;}, the linear vector space spanned by the
vectors {(J!_; U’;zl Tj(e;)} is at least [-dimensional. Then, there exists a function
¢ {1, 2,..., m} — {1, 2,..., k} such that thevectors{T¢(1)(e1), T¢(2)(€2), ey T¢(m)(em)},
are independent.

Proof. We proceed by induction. The lemma obviously holdsifios 1. Suppose that the
lemma holds for any ¥ k < m.

If for any I-tuple! < m, {e;,, ei,, . .., €;,}, the linear vector space spanned by the vectors
{Ui—1US—1 Tj(ei,)} s at least? + 1)-dimensional, then first defing(1) such a way that
T4 1) (e1) is non-zero. Then for the remaining basis vectegses, ..., e, } let us consider
the quotient map@jf ) G K" /{Ty(1)(en)}. This new system of vector spaces and
maps must satisfy the conditions of our lemma. Hence we can egtéadhe whole set
{1,2,...,m}.

Now, if for somel-tuple {i1, i2, ..., i;}, [ < m, the linear vector space spanned by the
vectors{{J;_; US_y 7 (e;,)} is exactlyl-dimensional, then first definefor {i1. iz, ....i}.
Then for the remaining vectors, we can again consider the quotient Wjapié"“l —

K" {Tyip)(eir), Tp(in)(€in), - - -, Tpip (€i))}. Again, the new system of vector spaces and
maps must satisfy the conditions of our lemma, hence we can egtentb the whole set
{1,2,....m}. O

Now we have the following corollary.
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Lemma 2.6. Let eq, ez, ..., e, be a bass for the m-dimensional vector space K and
let Ty, T, ..., T be a finite collection of linear transformations from K™ to K". Sup-
pose that for any /-tuple {e;,,e;,, ..., e;}, the linear vector space spanned by the vec-
tors {{i_; U5_1 Tj(e;,)} is at least 2/-dimensional. Then, there exist two functions
¢o:{1,2,....m}—>{1,2,...,k}and ¥ :{1,2,...,m} — {1,2,...,k} such that the vec-
tors {Ty(1y(en), Tp2)(e2), ..., Tpum)(em), Tyy(en), Ty2)(e2), ..., Tym)(em)} are inde-
pendent.

Proof. First definep by our previous lemma then apply the same lemma for the quotient
map 77 : K™ — K"/[{Ty(iy)(e1), Tgp(ip) (€2), - - .. Tgi,) (en)}]. The next proposition is a
simple corollary of the previous lemma and the classical Kdnig-lemma (or compactness)
argument (see also [2]).O

Proposition 2.3. Let {e;}7°, be a basis for the infinite dimensional affine algebra R.
Let S = {r1,r2,...,75} be a set of elements in R. Suppose that for any [-tuple
{eiy, ey, - ., €} the linear vector space spanned by the vectors {|J!_, Uj=zei -7} isat
least 2/-dimensional. Then one has a partition of {¢;}7°; = A1 U A2 U---U A, and
eements g1, h1, g2, ho2, ..., gm, hy € S such that the sets A1g1, A1h1, Asg1, Asha, ...,
Amgm, Amhy, are mutually independent.

Now we prove Proposition 2.2. R is non-amenable, then by Lemma 2.2, for any basis
{ei}72,, there existasubsety, r2, ..., 75} C R satisfying the conditions of Proposition 2.3.
ConsequentlyR is paradoxical.

2.4. Paradoxicality implies the non-existence of finitely additive invariant
dimension-measure

Proposition 2.4. If R is a paradoxical amenable algebra with no zero-divisor, then there
is no finitely additive dimension-measure on R.

Proof. Suppose thaj is a finitely additive invariant dimension-measure with respect
to the basige;}72,. Then consider the paradoxical decompositien°; = A1 U A2 U
---U A, as in the definition of paradoxicality. Theh= A1g1 U A1h1 U ---U A8 U
Anhy is aregularindependent subset of dimension-measure 2. This is a contradiction.

Now Theorem 2 follows from Propositions 2.1, 2.2, and 2.4.

3. Thealgebraic properties of amenable algebras
3.1. Thebasic properties
In this section we prove some of the basic algebraic properties of the amenable algebras.

Proposition 3.1. Any affine algebra of subexponential growth is amenable.
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Proof. Suppose that = {rq1,r2,...,7} € R is a generator system fak that isR =
K(r1,r2,...,rr). We denote byR,, them-ball with respect tc§ that isR,, = Z’};l KS/.
Letd,, = dimg (R,,). SinceR has subexponential growth, for any- 0 there exist€, > 0
such thatd,, < C(1+ &)™ for all m > 1. Therefore there exists a subsequefatg }72 |
such that

1
dm,,+n < dm,, <1 + 5)

Consequently, iW, = R, then

dImK.(Wnr + W,) <1 1
dimg (W)

provided thar € >5_; KS/. O

On the other hand, there are amenable algebras of exponential growth. It is easy to check
that if I" is a finitely generated amenable group, then the group algébras amenable.
Indeed,W,, can be chosen as the linear subspace spanned by the eleméptsvdiere
F1 C Fp C---is a Fglner-exhaustion. F=k1g1 + kogo + - -+ + kygs € KI' ande > 0,
then for sufficiently large:,

dimg (W,r + W,,) < dimg (W, + W,g1+ Wpgo +-- - + Wy gs)

< - <l+e.
dimK(W,,) d|mK(Wn) e

As it is well-known, there are amenable groups of exponential growth. In thisicAseas
exponential growth.

Proposition 3.2. If R is an amenable affine algebra and R has no zero-divisors, then R
has Goldie dimension 1, that is R does not contain two independent left ideals.

Proof. Letl,J < R be leftideals, G,a € I,0# b € J. If nis large enough, then
_ 1.
dimg (W,a N'W,) > EdlmK(W,,)
and
. 1.
dimg (W,bN'W,) > §d|mK(Wn),
hence
dimg(W,aNW,b) >0. O

The previous proposition shows that the group algebra of the free group of two
generators isot amenable.
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3.2. Theranks of finitely generated modules

Slightly modifying the arguments of Rowen [4] we define a real-valued rank function
on finitely generated (left) modules over amenable affine algebrag, betan ultrafilter
and lim, :/*°(N) — R be the corresponding ultralimit that is a linear functional on the
space of bounded sequences such that

liminf{a,} <lim{a,} <limsup{a,}
n—0o0 w

n—oo

and lim,{a,} = lim,_ {a,} if {a,};>, is a convergent sequence of real numbers. Note
that for any finite dimensional linear subsp&t& R containing the unit,

o dimg (W,2) _
n—oo dimg(W,)

Let R be an amenable affine algebra with a given sequence of subspéiggs |
satisfying (1). Suppose tha! is a finitely generate®-module such thatf =}, _; Rx;,
where{x1, x2, ..., x,} € M. Then the rank oMM is defined as follows:

d|mK(an1 + Wyxo+---+ anr)

rank M) = I|m dlmK(Wn)

We shall see that the rank function might depend on the choice of the exhaugfiph ;.

Proposition 3.3. The rank defined above does not depend on the particular choice of the
generator system {x1, x2, ..., x,}. Also, the rank is bounded above by the minimal number
of elements spanning M.

Proof. Itis enoughto provethatif C R is afinite dimensional linear subspace containing
the unit then,

lim dimg (Z;=l WoZx;) — dimK(Zle Waxi)

- =0.
n—00 dimg (W)

We have the following inequalities:

dlmK(Z 1W,1Z.x[) —dlmK(Z lW x[)

0 <
d|mK(Wn)

Z dimg (W,, Zx;) — dimg (W,,x;)
\ d|mK(Wn)

d|mK(WnZ) —dimg (W,)
' dimg (W)




G. Elek/ Journal of Algebra 264 (2003) 469-478 477

However, by amenability,

d. nZ _d n
im img (W, Z) — dimg (W)

- =0.
n—00 dimg (W)

Coroallary 3.1. If R isan amenable affine algebra, then

(1) rank(R™) = n, that is an amenable affine algebra always satisfies the unique rank
property [1,4].

(2) If M and N are finitely generated R-modules and M is either a submodule or a
homomorphicimage of N, then rank M) < rank(N).

(3) If N and M are finitely generated R-modules, then rankM & N) = rankM) +
rank(N).

3.3. Exact sequences

Definition 3.1. Let0—- M — N — N/M — 0 be an exact sequence of finitely generated
R-modules and letX = {x1, x2, ..., x,} be a system of generators fof, containing a
system of generators faf. Then the relative rank is defined as follows:

dimg (M N Y73 Wixi)
dimKW,,

ranky (M) = Iiar)n

Obviously, ranlg (M) > rankM).
Proposition 3.4. rank N) = rank M /N) + ranky (M).
Proof. Denote by{x;] the image of the quotient map — N/M. Then
dimg (Xr: an,-> =dimg (2’: W,,[xi]) +dimg (M N 2’: ani).
j=1 j=1 i=1
Hence the statement follows O
Corollary 3.2. rankN) > rank M /N) + rank(M).

Example. Let R be the algebra generated byxly, wherex? =0, xy = 0. Let W,, be the
linear subspace with basis, v, y2, ..., y", x, yx, y2x, ..., y"°x} and letM = Rx + Ry,

N = R.Thenitis easy to see thatramk) = 1, rank M) = 0, rankK N/ M) = 0. Note, how-
ever, that if the linear subspac# are defined agl, y, y2,..., ", x, yx, y2x, ..., y"x},
then rankM) = 1, rankK N/M) = 0, that is the additivity holds. In [4] the author claims
that for his rank function

ranks(N) < ranks(M) + ranks(N/M). (5)
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It seems to me that there might be a gap in his argument. The previous example suggests
that the space of the exhaustion must play a greater role, and if (5) is true then an ultralimit
construction would result in an actual additive real valued rank function on the set of
finitely generated modules over affine algebras of subexponential growth. That is

rank N) =rankM/N) + rankM).

It would immediately imply thaf{R"] = [R™] in the Grothendieck grougo(R). This
would be much stronger than the unique rank property (see [3] for a discussion).
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