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Abstract

We introduce the notion of amenability for affine algebras. We characterize amenability by F
sequences, paradoxicality and the existence of finitely invariant dimension-measures. Then w
the results of Rowen on ranks, from affine algebras of subexponential growth to amenable
algebras.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

First, let us recall the classical notion of amenability. LetΓ be a discrete group. We ca
Γ paradoxical, if it can be written as a disjoint unionΓ = A1 ∪ A2 ∪ · · · ∪Am such that
for some elementsg1, h1, g2, h2, . . . , gm,hm ∈ Γ , the setsA1g1,A1h1,A2g2,A2h2, . . . ,

Amgm,Amhm are disjoint as well. The groupΓ is called amenable if it is not paradoxica
The theorem below is one the fundamental results on amenability.

Theorem 1. The following conditions are equivalent:

(1) Γ is amenable.
(2) There exists a finitely additive measure on the subsets of Γ such that µ(Γ ) = 1 and

µ(Ag)= µ(A) for any A⊆ Γ and g ∈ Γ .
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(3) There exists a sequence of finite subsets (Følner-exhaustion) F1 ⊆ F2 ⊆ · · ·,⋃∞
n=1Fn = Γ , such that for any g ∈ Γ ,

lim
n→∞

|Fn ∪Fng|
|Fn| = 1.

The goal of this paper is to define and study the appropriate version of amenability for
algebras. Throughout this articleR denotes a unital affine algebra over a commuta
fieldK.

Definition 1.1. The affine algebraR is (left) amenable if there exists a sequence of fin
dimensional linear subspacesW1 ⊆W2 ⊆ · · ·,⋃∞

n=1Wn =R, such that for anyr ∈R,

lim
n→∞

dimK(Wnr +Wn)

dimK(Wn)
= 1. (1)

We call such an exhaustion by subspaces a Følner-exhaustion. Now we defi
analogues of paradoxicality and the invariant finitely additive measure for algebras w
zero-divisors.

Definition 1.2. Let R be an affine algebra without zero divisors. We say thatR is
paradoxical, if any basis ofR over K, {fi}∞i=1 can be written as the disjoint unio
A1 ∪A2 ∪ · · · ∪Am such that for some non-zero elementsg1, h1, g2, h2, . . . , gm,hm ∈ R,
the setsA1g1,A1h1,A2g2,A2h2, . . . ,Amgm,Amhm are mutually independent.

Now let {ei}∞i=1 be a basis ofR, where againR has no zero-divisors. An independe
subsetL ⊂ R is called regular with respect to{ei}∞i=1 if there exists subsets of{ei}∞i=1:
A1,A2,A3, . . . ,An and{r1, r2, . . . , rn} ⊂R such thatL can be written as the disjoint unio
of A1r1,A2r2, . . . ,Anrn.

Definition 1.3. An invariant finitely additive dimension-measure with respect to{ei}∞i=1 is
a non-negative functionµ on the set of regular subsets satisfying the following conditio

(1) µ({ei}∞i=1)= 1 andµ(A)� 1 for any independent regular subsetA.
(2) If A andB are independent regular subsets thenµ(A∪B)= µ(A)+µ(B).
(3) For any non-zeror ∈R and regular setA,µ(A)= µ(Ar).

The main result of the paper is that the following theorem.

Theorem 2. The following conditions are equivalent for affine algebras R without zero-
divisors.

(1) R is amenable.
(2) R is not paradoxical.
(3) There exists a finitely additive invariant dimension-measure on R with respect to some

basis {ei}∞ .
i=1
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We shall also study the algebraic properties of amenable algebras, extending Rowen
on algebras of subexponential growth, e.g., we prove that amenable affine algebras
unique rank property.

2. The proof of Theorem 2

2.1. The Doubling Lemma

Lemma 2.1. Let R be a non-amenable affine algebra with no zero-divisor. Then there exists
a finite dimensional linear subspace Z ⊂R containing the unit and ε > 0 such that for any
finite dimensional linear subspace V ⊂R,

dimK(VZ)

dimK(V )
> 1+ ε.

Proof. Let Z1 ⊂ Z2 ⊂ · · ·, ⋃∞
n=1Zn = R be a sequence of finite dimensional subspa

containing the unit. Suppose that the statement of the lemma is not true, then ther
finite dimensional linear subspacesV1,V2, . . . , Vn, . . . such that

dimK(VnZn)

dimK(Vn)
< 1+ 1

2n
.

Obviously, dimK(Vn)→ ∞. Now we construct a Følner-exhaustion forR inductively. Let
W1 = V1. If we have already constructedW1 ⊂ W2 ⊂ · · · ⊂ Wn−1 then choosek such a
way that

dimk(Vk)�
(
dimK(Wn−1)+ dimK(Zn)

) · 2n.

LetWn = Vk +Wn−1 +Zn. Then{Wn}∞n=1 will satisfy (1), leading to a contradiction.✷
As a corollary we have the following Doubling Lemma.

Lemma 2.2. Let R be a non-amenable affine algebra with no zero-divisor. Then there
exists a finite dimensional linear subspace Z ⊂ R containing the unit such that for any
finite dimensional linear subspace V ⊂R,

dimK(VZ)

dimK(V )
> 2.

2.2. Amenability implies the existence of finitely additive invariant dimension-measure

Lemma 2.3. Let R be an amenable affine algebra with no zero divisor. Then one can
construct a sequence of finite dimensional vector spaces, V 1 ⊂ V1 ⊂ V 2 ⊂ V2 ⊂ · · · ⊂ R

with the following properties.
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• {Vn}∞n=1 satisfy (1).

• limn→∞ dimK(V n)
dimK(Vn)

= 1.

• For any 0 �= s ∈R there exists k > 0, such that if n > k, then V ns ⊂ Vn.

Proof. First choose an exhaustionW1 ⊂ W2 ⊂ · · ·, ⋃∞
n=1Wn = R satisfying (1). Let

V 1 =W1, V1 =W1. Suppose that we have already chosen

V 1 ⊂ V1 ⊂ V 2 ⊂ V2 ⊂ · · · ⊂ V n−1 ⊂ Vn−1.

Let us pickk so large thatVn−1 ⊂Wk . Then we choosel > k so that

dimK(WlWk +Wl)

dimK(Wl)
� 1+ 1

2n
.

Then letV n =Wl andVn =WlWk +Wl . ✷
Proposition 2.1. LetR be an amenable affine algebra with no zero divisor. Then there exists
a finitely additive invariant dimension-measure on R with respect to some basis {ei}∞i=1.

Proof. Let us choose a basis{ei}∞i=1 of R inductively, such a way that ifV i is
a ki -dimensional space, then{e1, e2, . . . , eki } form a basis ofV i , similarly if Vi is a
li -dimensional space, then{e1, e2, . . . , eli } form a basis ofVi . ✷
Lemma 2.4. For 0 �= s ∈R, using the notation of Lemma 2.3 let

Fk(s) = {ej ∈ Vk: ej s /∈ Vk},
Bk(s) = {ej /∈ Vk: ej s ∈ Vk}.

Then

lim
k→∞

|Fk(s)|
dimK(Vk)

= 0, (2)

lim
k→∞

|Bk(s)|
dimK(Vk)

= 0. (3)

Proof. First note that ifk is large, thenV ks ⊂ Vk , consequently (2) holds. Then (3) follow
from the fact that the right multiplication bys is an injective map. ✷

Now we define the finitely additive invariant dimension-measure. For any re
independent subsetL,

µ(L)= lim
|L ∩ Vk|

.

ω dimK(Vk)
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Then, of course,µ(L)� 1,µ({ei}∞i=1)= 1 andµ(A)+ µ(B)= µ(A∪B) if A andB are
independent. In order to finish the proof of Proposition 2.1 it is enough to see that fo
0 �= r ∈ R and regular independent subsetL,

lim
k→∞

|dimK(Lr ∩ Vk)− dimK(L∩ Vk)|
dimK(Vk)

= 0. (4)

However, by additivity, we may suppose thatL is constructed by using only one translatio
that is for anyai ∈ L there existseni such thatai = eni s. LetNL ⊂ {ei}∞i=1 be the set of al
sucheni ’s. ThenL=NLs. By Lemma 2.4,µ(NL)= µ(NLs) andµ(NL)= µ(NLsr) that
implies the invariance ofµ. ✷
2.3. Non-amenability implies paradoxicality

The goal of this subsection is to prove the following proposition.

Proposition 2.2. If the affine algebra R with no zero divisor is not amenable then it is
paradoxical.

We apply the “algebraization” of the tools used in [2]. Our first lemma is just the li
algebraic analog of the classical Hall lemma of graph theory.

Lemma 2.5. Let e1, e2, . . . , em be a basis for the m-dimensional vector space Km

and let T1, T2, . . . , Tk be a finite collection of linear transformations from Km to Kn.
Suppose that for any l-tuple {ei1, ei2, . . . , eil }, the linear vector space spanned by the
vectors {⋃l

t=1
⋃k
j=1Tj (eit )} is at least l-dimensional. Then, there exists a function

φ : {1,2, . . . ,m} → {1,2, . . . , k} such that the vectors {Tφ(1)(e1), Tφ(2)(e2), . . . , Tφ(m)(em)},
are independent.

Proof. We proceed by induction. The lemma obviously holds form= 1. Suppose that th
lemma holds for any 1� k <m.

If for any l-tuplel < m, {ei1, ei2, . . . , eil }, the linear vector space spanned by the vec
{⋃l

t=1
⋃k
j=1Tj (eit )} is at least(l + 1)-dimensional, then first defineφ(1) such a way tha

Tφ(1)(e1) is non-zero. Then for the remaining basis vectors{e2, e3, . . . , em} let us consider
the quotient mapsT ′

j :Km−1 → Kn/{Tφ(1)(e1)}. This new system of vector spaces a
maps must satisfy the conditions of our lemma. Hence we can extendφ to the whole se
{1,2, . . . ,m}.

Now, if for somel-tuple {i1, i2, . . . , il}, l < m, the linear vector space spanned by
vectors{⋃l

t=1
⋃k
j=1Tj (eit )} is exactlyl-dimensional, then first defineφ for {i1, i2, . . . , il}.

Then for the remaining vectors, we can again consider the quotient mapsT ′
j :Km−1 →

Kn/{Tφ(i1)(ei1), Tφ(i2)(ei2), . . . , Tφ(il )(eil )}. Again, the new system of vector spaces a
maps must satisfy the conditions of our lemma, hence we can extendφ onto the whole se
{1,2, . . . ,m}. ✷

Now we have the following corollary.
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Lemma 2.6. Let e1, e2, . . . , em be a basis for the m-dimensional vector space Km and
let T1, T2, . . . , Tk be a finite collection of linear transformations from Km to Kn. Sup-
pose that for any l-tuple {ei1, ei2, . . . , eil }, the linear vector space spanned by the vec-
tors {⋃l

t=1
⋃k
j=1Tj (eit )} is at least 2l-dimensional. Then, there exist two functions

φ : {1,2, . . . ,m} → {1,2, . . . , k} and ψ : {1,2, . . . ,m} → {1,2, . . . , k} such that the vec-
tors {Tφ(1)(e1), Tφ(2)(e2), . . . , Tφ(m)(em), Tψ(1)(e1), Tψ(2)(e2), . . . , Tψ(m)(em)} are inde-
pendent.

Proof. First defineφ by our previous lemma then apply the same lemma for the quo
map T ′

j :Km → Kn/[{Tφ(i1)(e1), Tφ(i2)(e2), . . . , Tφ(in)(en)}]. The next proposition is
simple corollary of the previous lemma and the classical König-lemma (or compac
argument (see also [2]).✷
Proposition 2.3. Let {ei}∞i=1 be a basis for the infinite dimensional affine algebra R.
Let S = {r1, r2, . . . , rs} be a set of elements in R. Suppose that for any l-tuple
{ei1, ei2, . . . , eil } the linear vector space spanned by the vectors {⋃l

t=1
⋃s
j=1 eit · rj } is at

least 2l-dimensional. Then one has a partition of {ei}∞i=1 = A1 ∪ A2 ∪ · · · ∪ Am and
elements g1, h1, g2, h2, . . . , gm,hm ∈ S such that the sets A1g1,A1h1,A2g1,A2h1, . . . ,

Amgm,Amhm are mutually independent.

Now we prove Proposition 2.2. IfR is non-amenable, then by Lemma 2.2, for any ba
{ei}∞i=1, there exist a subset{r1, r2, . . . , rs} ⊂R satisfying the conditions of Proposition 2.
Consequently,R is paradoxical.

2.4. Paradoxicality implies the non-existence of finitely additive invariant
dimension-measure

Proposition 2.4. If R is a paradoxical amenable algebra with no zero-divisor, then there
is no finitely additive dimension-measure on R.

Proof. Suppose thatµ is a finitely additive invariant dimension-measure with resp
to the basis{ei}∞i=1. Then consider the paradoxical decomposition{ei}∞i=1 = A1 ∪ A2 ∪
· · · ∪ Am as in the definition of paradoxicality. ThenB = A1g1 ∪ A1h1 ∪ · · · ∪ Amgm ∪
Amhm is a regular independent subset of dimension-measure 2. This is a contradictio✷

Now Theorem 2 follows from Propositions 2.1, 2.2, and 2.4.

3. The algebraic properties of amenable algebras

3.1. The basic properties

In this section we prove some of the basic algebraic properties of the amenable al

Proposition 3.1. Any affine algebra of subexponential growth is amenable.
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Proof. Suppose thatS = {r1, r2, . . . , rk} ⊆ R is a generator system forR that isR =
K(r1, r2, . . . , rk). We denote byRm them-ball with respect toS that isRm =∑m

j=1KS
j .

Letdm = dimK(Rm). SinceR has subexponential growth, for anyε > 0 there existsCε > 0
such thatdm � Cε(1 + ε)m for all m� 1. Therefore there exists a subsequence{dmn}∞n=1
such that

dmn+n � dmn

(
1+ 1

2n

)
.

Consequently, ifWn =Rmn , then

dimK(Wnr +Wn)

dimK(Wn)
� 1+ 1

2n
,

provided thatr ∈∑n
j=1KS

j . ✷
On the other hand, there are amenable algebras of exponential growth. It is easy t

that if Γ is a finitely generated amenable group, then the group algebraKΓ is amenable
Indeed,Wn can be chosen as the linear subspace spanned by the elements ofFn, where
F1 ⊆ F2 ⊆ · · · is a Følner-exhaustion. Ifr = k1g1 + k2g2 + · · · + ksgs ∈KΓ andε > 0,
then for sufficiently largen,

dimK(Wnr +Wn)

dimK(Wn)
� dimK(Wn +Wng1 +Wng2 + · · · +Wngs)

dimK(Wn)
� 1+ ε.

As it is well-known, there are amenable groups of exponential growth. In this caseKΓ has
exponential growth.

Proposition 3.2. If R is an amenable affine algebra and R has no zero-divisors, then R
has Goldie dimension 1, that is R does not contain two independent left ideals.

Proof. Let I, J �R be left ideals, 0�= a ∈ I , 0 �= b ∈ J . If n is large enough, then

dimK(Wna ∩Wn) >
1

2
dimK(Wn)

and

dimK(Wnb ∩Wn) >
1

2
dimK(Wn),

hence

dimK(Wna ∩Wnb) > 0. ✷
The previous proposition shows that the group algebra of the free group o

generators isnot amenable.
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3.2. The ranks of finitely generated modules

Slightly modifying the arguments of Rowen [4] we define a real-valued rank fun
on finitely generated (left) modules over amenable affine algebras. Letω be an ultrafilter
and limω : l∞(N) → R be the corresponding ultralimit that is a linear functional on
space of bounded sequences such that

lim inf
n→∞ {an} � lim

ω
{an} � lim sup

n→∞
{an}

and limω{an} = limn→∞{an} if {an}∞n=1 is a convergent sequence of real numbers. N
that for any finite dimensional linear subspaceZ ⊆R containing the unit,

lim
n→∞

dimK(WnZ)

dimK(Wn)
= 1.

Let R be an amenable affine algebra with a given sequence of subspaces{Wn}∞n=1
satisfying (1). Suppose thatM is a finitely generatedR-module such thatM =∑r

j=1Rxi ,
where{x1, x2, . . . , xr} ⊆M. Then the rank ofM is defined as follows:

rank(M)= lim
ω

dimK(Wnx1 +Wnx2 + · · · +Wnxr)

dimK(Wn)
.

We shall see that the rank function might depend on the choice of the exhaustion{Wn}∞n=1.

Proposition 3.3. The rank defined above does not depend on the particular choice of the
generator system {x1, x2, . . . , xr }. Also, the rank is bounded above by the minimal number
of elements spanning M .

Proof. It is enough to prove that ifZ ⊆R is a finite dimensional linear subspace contain
the unit then,

lim
n→∞

dimK(
∑r

i=1WnZxi)− dimK(
∑r

i=1Wnxi)

dimK(Wn)
= 0.

We have the following inequalities:

0 � dimK(
∑r

i=1WnZxi)− dimK(
∑r

i=1Wnxi)

dimK(Wn)

�
r∑
i=1

dimK(WnZxi)− dimK(Wnxi)

dimK(Wn)

� r · dimK(WnZ)− dimK(Wn)
.

dimK(Wn)
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However, by amenability,

lim
n→∞

dimK(WnZ)− dimK(Wn)

dimK(Wn)
= 0. ✷

Corollary 3.1. If R is an amenable affine algebra, then

(1) rank(Rn) = n, that is an amenable affine algebra always satisfies the unique rank
property [1,4].

(2) If M and N are finitely generated R-modules and M is either a submodule or a
homomorphic image of N , then rank(M)� rank(N).

(3) If N and M are finitely generated R-modules, then rank(M ⊕ N) = rank(M) +
rank(N).

3.3. Exact sequences

Definition 3.1. Let 0→M →N →N/M → 0 be an exact sequence of finitely genera
R-modules and letX = {x1, x2, . . . , xn} be a system of generators forN , containing a
system of generators forM. Then the relative rank is defined as follows:

rankX(M)= lim
ω

dimK(M ∩∑r
i=1Wnxi)

dimKWn

.

Obviously, rankX(M)� rank(M).

Proposition 3.4. rank(N)= rank(M/N)+ rankX(M).

Proof. Denote by[xi] the image of the quotient mapN →N/M. Then

dimK

(
r∑

j=1

Wnxi

)
= dimK

(
r∑

j=1

Wn[xi]
)

+ dimK

(
M ∩

r∑
i=1

Wnxi

)
.

Hence the statement follows.✷
Corollary 3.2. rank(N)� rank(M/N)+ rank(M).

Example. LetR be the algebra generated by 1, x, y, wherex2 = 0, xy = 0. LetWn be the
linear subspace with basis{1, y, y2, . . . , yn, x, yx, y2x, . . . , yn

2
x} and letM = Rx +Ry,

N =R. Then it is easy to see that rank(N)= 1, rank(M)= 0, rank(N/M)= 0. Note, how-
ever, that if the linear subspacesWn are defined as{1, y, y2, . . . , yn, x, yx, y2x, . . . , ynx},
then rank(M) = 1, rank(N/M) = 0, that is the additivity holds. In [4] the author claim
that for his rank function

rankS(N)� rankS(M)+ rankS(N/M). (5)
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It seems to me that there might be a gap in his argument. The previous example s
that the space of the exhaustion must play a greater role, and if (5) is true then an ult
construction would result in an actual additive real valued rank function on the s
finitely generated modules over affine algebras of subexponential growth. That is

rank(N)= rank(M/N)+ rank(M).

It would immediately imply that[Rn] = [Rm] in the Grothendieck groupG0(R). This
would be much stronger than the unique rank property (see [3] for a discussion).
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