
w.sciencedirect.com

j o u r n a l o f s u s t a i n a b l e m i n i n g 1 5 ( 2 0 1 6 ) 3 6e4 7
HOSTED BY Available online at ww
ScienceDirect

journal homepage: ht tp: / /www.elsevier .com/locate/ jsm
Study of influence of tremors on combined
hazards. Longwall mining operations in
co-occurrence of natural hazards. A case study
Stanisław Trenczek

Institute of Innovative Technologies EMAG, Katowice, Poland
a r t i c l e i n f o

Article history:

Received 9 February 2016

Accepted 1 June 2016

Available online 7 June 2016

Keywords:

Underground mining

Combined hazards

Methane combustion
E-mail address: s.trenczek@ibemag.pl.

Peer review under responsibility of Central
http://dx.doi.org/10.1016/j.jsm.2016.06.001
2300-3960/Copyright © 2016 Central Mining I
under the CC BY-NC-ND license (http://crea
a b s t r a c t

Combined hazards occurring in areas of hard coal mines were characterised. A possible

course of processes leading to a mining catastrophe, associated with occurrence of com-

bined hazards, was discussed. An example of a cause and effect chain is presented, where

rockburst hazard initiates e with co-occurring climatic hazard e an increase in the level of

spontaneous fire hazard, methane explosion hazard and coal dust explosion hazard. Pos-

sibility of improving detection of spontaneous fire hazard in presence of co-occurring

combined hazards was analysed.

Copyright © 2016 Central Mining Institute in Katowice. Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Underground hard coal mining is associated with recognising

and fighting hazards, including those which are natural,

which may result in a direct threat to health and safety. The

following natural hazards may occur: rock bursts e which

result in tremors of rockmass; methane hazardsewhichmay

cause ignitions and explosions; fire hazards e which lead to

the emission of toxic, suffocating and explosive gases; cli-

matic hazards e which may cause miners' fainting; coal dust
explosions and outbursts of gases and rocks; water hazards e

which may cause water to suddenly pass into mine workings;

radiological risks e which lead to workers being exposed to

radiation.

The current legal framework for underground mining

contains a number of regulations concerning situationswhere

longwall mining operations are conducted in conditions

requiring special treatment. For example, longwalls in seams

with category II, III or IV of methane hazard, with a co-
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occurring rock burst hazard or spontaneous fire hazard in

the goaf, require documentation concerning the intended

mining operations and that specifies measures to prevent

these hazards, considering their mutual interactions. If the

forecasted absolute methane-bearing capacity of a longwall

area exceeds 40 m3/min, a plan of exploitation has to be

approved by a special commission appointed by the President

of the State Mining Authority following Article 166 x1 point 2

Geological and Mining Law. In turn, a longwall in a seamwith:

III degree rockburst hazard, category IV methane hazard, III

degree water hazard and susceptibility to gas and rocks out-

bursts, is treated as a longwall exploited in special conditions,

i.e. beginning work on such a longwall requires permission

from the proper mining authority.

The examples and the current regulations issued,

following Geological and Mining Law, define such a term as

combined hazards. Yet, for at least twenty years it has been

known that such hazards, if they occur in a mining area and

especially in hard coal mines, increase hazard levels. That is
ice.
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why it is necessary to treat co-occurring hazards with special

attention.

The aim of this article is to show, by studying a longwall

with the co-occurrence of hazards forming combined hazards,

the influence of the most unpredictable of the hazards i.e.

rockburst hazard, on other hazards. Additionally, this article

aims to clearly demonstrate that a special approach tomining

operations conducted in such conditions is required.
2. Characteristics of combined hazards

Combined hazards may result in rockburst hazard, methane

hazard, spontaneous fire hazard, climatic hazard or coal dust

explosion hazard. It is a rare situation when all these dangers

co-occur in one mining area. There may be a few variants of

combined hazards where the correlation of their conse-

quences evidently forms a cause and effect chain (Trenczek,

2002) which may lead to a catastrophe.

Depending on the number of co-occurring hazards, several

variants of combined hazards can be distinguished.

Simple variants of combined hazards consist of two

components:

� rockburst hazard and spontaneous fire hazard;

� climatic hazard and spontaneous fire hazard.

In the first, either rock mass tremors or rockburst hazard

prevention measures (shock blasting, mining blasting, etc.)

cause coal seam cracking, whichmay initiate a process of coal

self-heating and self-ignition. In the second, if there is coal in

a goaf (e.g. in areas of geological disturbances, the overlying

seam, from a coal “shelf” remaining between an upper e roof

slice and lower e floor slice coal layer of a thick seam, etc.),

climatic hazard, with characteristic high primary rock mass

temperature, shortens the initial period in the process of coal

self-heating, which accelerates self-ignition. The scale of

danger of these variants is relatively low, as the resulting

spontaneous fire is usually slow, which enables the with-

drawal of personnel from the area.

Complex combined hazards, when three or even four

hazards co-occur simultaneously, have much more serious

consequences.

Combined hazards of three elements, consist of a sponta-

neous fire hazard, methane hazard (methane explosion) and

coal dust explosion hazard. Spontaneous fire may cause

methane ignition and explosion, which may lead to coal dust

explosion.

Four-element combined hazards may occur in two

variants:

� rockburst hazard, spontaneous fire hazard, methane haz-

ard (methane explosion) and coal dust explosion hazard;

� climatic hazard, spontaneous fire hazard, methane hazard

and coal dust explosion hazard.

In the first there may be two different patterns:

� tremors crack a coal seam, leading to coal self-ignition in a

goaf, which leads to methane explosion (resulting in
flames from a goaf to flow-through the air and a blast

wave), which causes coal dust explosion,

or

� tremore a rock burst causes amethane explosion in a goaf

(causing flames from a goaf to flow-through the air and a

blast wave), leading to a coal dust explosion and the igni-

tion of coal in a goaf, initiated by burning methane.

In the latter, the climatic hazard accompanying the spon-

taneous fire hazard contributes to the fire, which ignites and

explodes methane in the goaf, and this in turn leads to coal

dust explosion.

Five-element combined hazards involve all of the afore-

mentioned hazards simultaneously. The cause and effect

chain starts with the cracking of coal located in rock mass

with a high primary temperature, which accelerates the self-

heating processes leading to a spontaneous fire, which, in

turn, initiates methane combustion and explosion, which

eventually causes coal dust explosion.

In the division of the combined hazards presented above, it

can be observed that co-occurring coal dust explosion hazard

is the very last link of the cause and effect chain and causes

the state of highest hazard. Methane hazard is the second

most significant hazard, being either initial, middle or ulti-

mate link of the chain.

Fighting each of the hazards separately has a range of

efficient preventive methods, yet it is difficult to synchronize

these methods to fight all the combined hazards simulta-

neously. Hence, the cause and effect chain may take a

developed form or a limited one. It ought to be emphasised

that rockburst hazard, as the least predictable of hazards, and

a hazard of more serious consequences than fire hazard,

ought to be the primary object of preventative actions. More-

over such hazards are going to be, unfortunately, more and

more common.
3. Methane combustion in the area of the
Longwall 560

The event discussed in this paper occurred in the “Mysłowice-

Wesoła” e ruch “Wesoła” coal mine. The coal seam's mining

operations were carried out in the OG “Wesoła II” area located

in the middle of the Upper Silesian Coal Basin (G�orno�sląskie

Zagłębie Węglowe). Seam 510 was one of several mined

seams. On 6 October 2014 in the area of Longwall 560 seam 510

Dw, where there were 37 employees, methane combustion

occurred (Documentation, 2014).

Immediately after this event occurred, the dispatcher

began a rescue operation. During the operation, immediately

after the incident, some of the injured left the area without

assistance and others were helped by their co-workers. Alto-

gether 36 employees were evacuated, and one employee was

presumed missing. He was found after 12 days of the rescue

operation in a flooded section of a return-air roadway of the

longwall. Altogether 36 people were evacuated from the area

and transported to the surface. As a result 30 people were
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Fig. 1 e Fragment of the map of seam 510 part D East eLongwall 560 located close to the goaf.

Table 2 e Natural and induced tremors in relation to the
place they occurred in the area of Longwall 560 seam 510
Dw.

Location
of tremors

Number of tremors: Natural
(N) and induced (P)
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injured: 5 of the injured died in hospital, 15 were seriously

wounded, and 10 suffered minor injuries.

The area of Longwall 560, seam 510 Dw is located close to

the goaf (Fig. 1) at a depth of between approximately 807 and

approximately 840 m.

The hazards which were of particular significance and the

co-occurrence of which increased the general hazard level,

were:

� rockburst hazard in seam 510 Dw, III degree;

� methane hazard in seam 510 Dw, IV category;
Table 1 e Tremors in area of Longwall 560 seam 510 Dw.

Number of tremors e N Energy

E2
[J]

E3
[J]

E4
[J]

E5
[J]

E6
[J]

P P
of tremors
As$10

6 [J]
Average energy

of tremor As/N$103 [J]

162 364 37 2 0 565 3.47 6.14
� coal dust explosion hazard, B class;

� spontaneous fire hazard in seam 510 Dw, III class of sus-

ceptibility to self-ignition;

� climatic hazard in longwall area, II Critical Level.
E2
[J]

E3
[J]

E4
[J]

E5
[J]

S

N P N P N P N P

Coal panel of

Longwall 560

88 3 168 21 17 1 1 e 299

Goaf and solid

coal E of

Cut-through 560

71 e 171 4 19 e 1 e 266

Total 159 3 339 25 36 1 2 e 565
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Fig. 2 e Location of tremors of 103 J and higher in the area of Longwall 560 seam 510 Dw (tremors 104 J and higher labelled

with the date of occurrence).
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4. Expected and actual level of rockburst
hazard in the area of Longwall 560

During mining operations in Longwall 560 in the roof slice of

seam 510 part D East (Dw) tremors of various sizes were

forecast (Zorychta, 2013):

� mainly low-energy tremors with energy of 102 J (E2), 103 J

(E3) and 104 J (E4);

� occasional high-energy tremors with energy of up to

5e105 J (E5);

� occasional high-energy tremors with energy over 106 J (E6).

An increase in rockburst hazard was also expected while

Longwall 560 was mined in strain concentration zones, espe-

cially in areas influenced by faults and in areas where the

deposition of the seam and its roof layers was disturbed.

Detailed analyses of the area of Longwall 560 showed

(Zorychta, 2014) that 565 tremors occurred there, between 16

July 2014 and 6 October 2014, and most of them were tremors

with energy of 103 J (E3) (Table 1).

From start-up until 14 August 2014, therewere 101 tremors,

on average over 3 tremors per day; during normal mining

operations in the longwall. By 6 October 2014, there had been

464more tremors, on average almost 9 tremors per day. Out of

these, 534 were of natural origin, 31 were tremors caused by

inducer shooting with the use of explosives. The tremors had
different locations in relation to the mining face (Table 2);

Fig. 2 shows epicentres with tremors of about 105 J (the biggest

circles) and 104 J e described with dates and tremors (without

descriptions) of about 103 J.

The high seismic activity in the area of the Longwall 560

resulted from: the presence of a sandstone layer directly in the

roof of seam 510 with a thickness of about 10e11 m and

compression strength of up to 57.6 MPa, as well as from its

location with regard to:

� goaf (Fig. 1) of the roof slice of seam 510 Dwe it was the last

longwall in this part (the so called “closing longwall”);

� large dislocations: on the East e Ławecki throw of

80e180 m, on the South e Luiza throw of about 70 m.
5. Results and discussion

The levels of hazards occurring in the area of longwall 560 pre-

sented above are a classic example of the most developed

versionofcombinedhazards.Theseismicactivity resultingfrom

rockburst hazard is a clear initiator of a cause and effect chain.

5.1. Influence of tremors on methane hazard

After each recorded rock mass tremor, whether natural or

induced, changes in the concentration of methane in the air

http://dx.doi.org/10.1016/j.jsm.2016.06.001
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Table 3 e Tremors causing inflow of methane in area of Longwall 560 seam 510 Dw and volume of methane inflow.

No. Date Time
[hr:min]

Tremor
energy
(W) [J]

Longwall sight
560 [m]

Methane hazard in the area of Longwall 560 based on sensor read-outs e Roadway XIa East 10 m westward of Longwall 560

Values of CH4 concentrations in Roadway XIa East Max. increase
in CH4

concentration
[%]

Additional
inflow of CH4

associated with
tremor

Before W Maximum after W When concentrations stabilise

Time
[hr:min]

Concentration
[%]

Time
[hr:min]

Concentration
[%]

Time
[hr:min]

Concentration
[%]

Time
[min]

Volume
[m3]

1. 20.08.14 20:39 9E3 607.75 20:38 1.4 21:35 1.9 22:39 1.5 0.5 120 435.0

2. 31.08.14 09:24 7E3 567.75 09:23 0.8 13:02 0.9 13:13 0.8 0.1 249 180.5

3. 10.09.14 03:01 9E3 536.5 03:00 1.0 03:07 1.2 03:33 1.0 0.2 32 46.4

4. 15.09.14 14:02 1E3 521.0 14:01 0.9 14:25 1.1 15:26 0.9 0.2 84 121.8

5. 15.09.14 16:29 3E3 521.0 16:28 0.9 16:35 1.1 18:08 1.0 0.2 99 143.5

6. 19.09.14 07:09 2E3 SW 505.5 07:08 1.2 07:12 1.4 07:29 1.2 0.2 20 29.0

7. 20.09.14 07:40 2E3 SW 501 07:39 1.0 07:73 1.1 07:45 1.0 0.1 5 3.6

8. 23.09.14 03:28 7E3 492.5 03:27 1.1 04:36 1.3 04:45 1.0 0.2 77 111.6

9. 26.09.14 18:34 6E3 481 18:33 1.0 18:34 1.1 18:35 1.0 0.1 1 0.7

10. 27.09.14 05:50 9E3 478.25 05:49 1.1 05:50 1.2 06:02 1.1 0.1 12 8.7

11. 27.09.14 07:09 2E3 478.25 07:08 1.2 07:12 1.3 07:20 1.2 0.1 11 7.9

12. 27.09.14 07:48 2E4 478.25 07:47 1.1 07:55 1.3 08:29 1.2 0.1 41 29.7

13. 04.10.14 12:49 8E2 465 12:48 1.2 12:51 2.4 12:56 1.2 1.2 7 60.9

14. 04.10.14 04:03 9E2 463 04:02 0.9 06:58 1.5 10:37 1.1 0.5 394 1428.2

15. 04.10.14 22:25 8E4 463 22:24 1.2 23:47 1.4 01:44 0.8 0.2 139 201.5

jo
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Table 4 e Locations of tremors in the area of Longwall 560 seam 510 Dw causing methane inflow.

No. Date Time
[h:min]

Energy
[J]

Longwall
sight 560

[m]

Location of tremor (W) e distance in straight line:
e From junction of Longwall 560 and Roadway XII East (XII) [m],
e from junction of Longwall 560 and Roadway XIa East (XIa) [m]

In front of
Longwall 560

Behind of Longwall Vertical distance “z”
to seam 510: Above (þ),

below (�), [m]Mined
area

Northward Southward Mined goaf of
Longwall. 560

XII XIa XII XIa XII XIa XII XIa

1. 20.08.14 20:39 9E3 607.75 185 60 þ16

2. 31.08.14 09:24 7E3 567.75 125 120 �30

3. 10.09.14 03:01 9E3 536.5 195 50 þ24

4. 15.09.14 14:02 1E3 521.0 75 170 þ25

5. 15.09.14 16:29 3E3 521.0 215 30 þ42

6. 19.09.14 07:09 2E3 SW 505.5 155 90 �5

7. 20.09.14 07:40 2E3 SW 501 75 170 þ26

8. 23.09.14 03:28 7E3 492.5 145 100 þ82

9. 26.09.14 18:34 6E3 481 120 125 þ31

10. 27.09.14 05:50 9E3 478.25 250 5 þ85

11. 27.09.14 07:09 2E3 478.25 210 35 þ155

12. 27.09.14 07:48 2E4 478.25 190 55 þ71

13. 03.10.14 12:49 8E2 465 40 205 þ108

14. 04.10.14 04:03 9E2 463 220 25 þ25

15. 04.10.14 22:25 8E4 463 240 5 þ29
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flowing from Longwall 560 were checked. In several cases

methane concentration increased (Table 3).

The table shows that tremors of between 8e102 J and

8e104 J led to an increase in methane concentrations. They

were: 2 tremors of 102 J, 11 tremors of 103 J (including 2 tremors

induced with shock blasting) and 2 tremors of 104 J.

Increases in methane concentrations were differentiated:

� by 0.1% and 0.2%e6 cases each;

� by 0.5%e2 cases;

� by 1.2%e1 case.

Values of the extra methane emitted were further

differentiated:

� marginal e 6 cases of below 10 m3 CH4 inflow,

� low e 4 cases of up to 100 m3 CH4 inflow,

� mediume 2 cases each of up to approx. 100 and 200m3 CH4

inflow,

� high e 1 case of approx. 1428 m3 CH4 inflow.

Further analyses of the data concerning the energy of the

tremors and the concentrations of methane emitted after their

occurrence (Table 4) aswell as their location (Fig. 3aeo) showed

that it is impossible tofindanyspecific correlationsbetween the

energyand the locationofa tremor inLongwall 560and increase

in methane concentration. The increase in methane concen-

tration was caused by tremors of various amounts of energy

located at various distances from the front of Longwall 560.

5.2. Influence of rock mass tremors on changes in the
level of spontaneous fire hazard

The adverse influence of seismic activity resulted from the

location of the epicentres of some of the tremors (Fig. 4):
� in a belt up to 20 m north and south of Roadway XIa East

there were 52 tremors e 9.2% of the total;

� in a belt up to 20 m north and south of Roadway XII East

there were 22 tremors e 3.9% of the total, which altogether

equals 13.1%.

As a consequence of the tremors, coal pillars were signifi-

cantly cracked, resulting in the increased migration of goaf

gases and initiation of complicated processes of self-heating

and self-ignition of coal (Adamus, 2007; Anez, Torrent, Pejic,

& Olmedo, 2015; Clemens, & Matheson, 1996; Kostjenko, &

Zawjałowa, 2007; Maciejasz, & Kruk, 1974).

In a typical coal pillar a few metres thick, a fire can start in

cracks filled with coal dust, which is most prone to oxidation.

The lower temperature for the ignition of coal grains of

diameter below 1 mm, which ranges between 190 and 220 �C,
also favours such a process, which was confirmed by
�Swiętochowski and Grochowski's research in the late 1940s

(Urban, 1951) (Fig. 5).

When the oxidation process transforms into the self-

heating process, its development inside a crack advances

against the air flow, i.e. towards its entrance, until it leads to

self-ignition and fire. Fires in solid coal usually occur at a

depth of between 0.5 and 3 m, but occasionally up to 5 m from

the surface of a sidewall (Maciejasz, & Kruk, 1974). The actual

fire is small in size and is surrounded by the following zones

(shown in Fig. 6): oxidation 2 (coal oxidation and emission of

carbon dioxide), reduction 3 (part of carbon dioxide gets

reduced to carbonmonoxide, and hydrogen can be emitted as

well), dry distillation of coal 4 (methane, ethane and other

hydrocarbons are formed and emitted). Then, gas products of

the combustion, emitted from the crack, flow with the air 1

through the crack towards the crack's exit.

Taking into account the conditions occurring in the area of

Longwall 560 (Fig. 4) and the processes above mentioned, one

http://dx.doi.org/10.1016/j.jsm.2016.06.001
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Fig. 3 e Location of tremors resulting in methane inflow in relation to the longwall face according to Numbers 1e15 of

Table 4.



Fig. 3 e continued.
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Fig. 3 e continued.
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may assume that suchmigration of the air through coal pillars

and the goaf of this Longwall was possible from the goaf of

Longwall 561 northward (due to the southward inclination of

seam 510 Dw) towards the goafs of nearby longwalls. More-

over, by ventilating Longwall 560 with a U-type system, there

was further deep eastward migration of intake air (oxygen)

fromRoadway XII East and Longwall 560 to its goaf. Hence, the

conditions for the self-heating process were reached. This

process was additionally accelerated by the relatively high

temperature of goaf gases, resulting from the high primary

rock mass temperature of approximately 35 �C.
It means that products of self-heating processes, and

possibly of the initial stage of a fire, flowed to the goafs of the

longwall located northward. Thus, in practice, they could not

be detected with the chemical analyses of gas samples

collected in the returnair and in thegoaf in theareaofRoadway

XIa East. Only a more developed fire produced enough
combustion productsemainly carbonmonoxideewhich had

not enough place in goaf and migrated therefore to workings

with flow-through air e it could be seen in a return-air

roadway. Early detection of a spontaneous fire is still ach-

ieved through the sampling of air frombehind seals separating

goafs, yet their frequency, of at least every 30 days, and the

inertia of goafs, as far as migration of gases is concerned,

means that such products reach seals after a long time. The

chances of detecting these processes at an early stage are very

low in practice. Thus, despite use of correct methods of early

detection of spontaneous fires, the fire took place.

5.3. Discussion conclusions

In cases similar to the onedescribed above, i.e.mining activities

conducted inconditionsof theoccurrenceofcombinedhazards,

rockburst hazard with significant seismic activity, explicitly

http://dx.doi.org/10.1016/j.jsm.2016.06.001
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Fig. 4 e Location of tremors in goaf belts in relation to Longwall 560 w seam 510 Dw.
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contributes to initiatingprocesses,whichoccur in thecauseand

effect chainof events of spontaneousfireandmethanehazards.

A standard method for the early detection of spontaneous

fire, which follows all the required regulations (Act 2011;

Regulation 2002), may fail. In such situations it seems sensible

to apply additional measures.
Fig. 5 e Coal dust ignition temperature depending on

particle size.
Expanding the early detection of spontaneous fire may

mean, for example, taking additional samples of goaf gases

with a probe placed as deep as possible within the goaf. Sam-

pling pipes periodically left in goafs to collect samples could be

another alternative. It would also be necessary to increase the

frequency of taking samples from behind the seals separating

the goaf in the direct vicinity of a given active longwall, e.g. to

take samples once a week instead of the present requirement

of once a month. The chance of detecting products from self-

heating processes would then be four times higher.

Inconclusion, it is reasonableto introducechanges inmining

regulations inorder to dealwith the issuesof the early detection

of spontaneous fire in the conditions of combined hazards.
6. Summary

Rockburst hazard, methane hazard, spontaneous fire hazard,

climatic hazard and coal dust explosion hazard can form

different variants of combined hazards. The co-occurrence of

all of these hazards poses the greatest threat.

Rockburst hazard in the area of Longwall 560, with high

seismic activity, had a clear unfavourable influence on spon-

taneous fire, which, with the co-occurring high level of cli-

matic hazard, contributed to the acceleration of coal oxidation

and self-heating processes, and after entering the self-ignition

http://dx.doi.org/10.1016/j.jsm.2016.06.001
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Fig. 6 e Fire in solid coal.
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stage, to an increase in methane hazard, i.e. to methane

ignition and combustion.

Due to the relatively small volume of methane-air mixture

of explosive limits, there was no methane explosion

(Documentation, 2015), thus, the cause and effect chain did not

develop into a methane and coal dust explosion, which would

have takenplace in absence of the proper preventivemeasures.

Self-heating processes and pillar fires, at their initial stage,

are hard to identify with the current methods of the early

detection of spontaneous fires.

The accidents taking place in areas of combined hazards

show that it is necessary to change regulations concerning the

early detection of spontaneous fires within the scope of the

control of longwall areas with mining operations in the vi-

cinity of goaf with “coal pillars” left there.
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Wesoła” Ruch “Wesoła” w Mysłowicach. Gliwice, 2015.
Dokumentacja niepublikowana.

Kostjenko, W. K., & Zawjałowa, E. A. (2007). Mjechanizm
samonagrjewanija uglja wo wskrytych gornymi wyrabotkami
gjeologiczeskich naruszjenijach plastow. In Materiały
Mezin�arodni Konference akciov�e spole�cnosti VVUÚ. Bezpe�cnost w
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