Majorization problem for certain class of p-valently analytic function defined by generalized fractional differintegral operator

J.K. Prajapat ${ }^{\text {a,* }}$, M.K. Aouf ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Central University of Rajasthan, Kishangarh, Distt.-Ajmer, Rajasthan, India
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

A R T I C L E I N F O

Article history:

Received 13 June 2011
Received in revised form 24 October 2011
Accepted 24 October 2011

Keywords:

Analytic function
Differential subordination
Majorization
Fractional differintegral operator

Abstract

In this paper we investigate a majorization problem for a subclass of p-valently analytic function involving a generalized fractional differintegral operator. Some useful consequences of the main result are mentioned and relevance with some of the earlier results are also pointed out.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let functions f and g are analytic in the open unit disk

$$
\begin{equation*}
\mathbb{U}=\{z: z \in \mathbb{C},|z|<1\} . \tag{1.1}
\end{equation*}
$$

We say that f is majorized by g in \mathbb{U} and write

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in \mathbb{U}), \tag{1.2}
\end{equation*}
$$

if there exist a function $\varphi(z)$, analytic in \mathbb{U} such that

$$
\begin{equation*}
|\varphi(z)| \leq 1 \quad \text { and } \quad f(z)=\varphi(z) g(z) \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

Note that majorization is closely related to quasi-subordination [1].
Further, we say that the function f is subordinated to g, and write $f(z) \prec g(z), z \in \mathbb{U}$, if there exists a function w analytic in \mathbb{U}, with

$$
\begin{equation*}
|w(z)|<1 \quad \text { and } \quad w(0)=0 \quad(z \in \mathbb{U}), \tag{1.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{U}) . \tag{1.5}
\end{equation*}
$$

In particular, if $f(z)$ is univalent in \mathbb{U}, we have the following equivalence:

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

We recall here the following generalized fractional integral and generalized fractional derivative operators due to Srivastava et al. [2] (see also [3]).

[^0]Definition 1. For real numbers $\lambda>0, \mu$ and η, Saigo hypergeometrc fractional integral operator $I_{0, z}^{\lambda, \mu, \eta}$ is defined by

$$
\begin{equation*}
I_{0, z}^{\lambda, \mu, \eta} f(z)=\frac{z^{-\lambda-\mu}}{\Gamma(\lambda)} \int_{0}^{z}(z-t)^{\lambda-1}{ }_{2} F_{1}\left(\lambda+\mu,-\eta ; \lambda ; 1-\frac{t}{z}\right) f(t) d t \tag{1.6}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply-connected region of the complex z-plane containing the origin, with the order

$$
f(z)=O\left(|z|^{\varepsilon}\right) \quad(z \rightarrow 0 ; \varepsilon>\max \{0, \mu-\eta\}-1),
$$

and the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$.
Definition 2. Under the hypotheses of Definition 1, Saigo hypergeometric fractional derivative operator $J_{0, z}^{\lambda, \mu, \eta}$ is defined by

$$
J_{0, z}^{\lambda, \mu, \eta} f(z)=\left\{\begin{array}{l}
\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z}\left\{z^{\lambda-\mu} \int_{0}^{z}(z-t)^{-\lambda}{ }_{2} F_{1}\left(\mu-\lambda, 1-\eta ; 1-\lambda ; 1-\frac{t}{z}\right) f(t) d t\right\} \quad(0 \leq \lambda<1) ; \tag{1.7}\\
\frac{d^{n}}{d z^{n}} J_{0, z}^{\lambda-n, \mu, \eta} f(z) \quad(n \leq \lambda<n+1 ; n \in \mathbb{N}),
\end{array}\right.
$$

where the multiplicity of $(z-t)^{-\lambda}$ is removed as in Definition 1.
It may be remarked that

$$
I_{0, z}^{\lambda,-\lambda, \eta} f(z)=D_{z}^{-\lambda} f(z) \quad(\lambda>0)
$$

and

$$
J_{0, z}^{\lambda, \lambda, \eta} f(z)=D_{z}^{\lambda} f(z) \quad(0 \leq \lambda<1),
$$

where $D_{z}^{-\lambda}$ denotes fractional integral operator and D_{z}^{λ} denotes fractional derivative operator considered by Owa [4].
Let \mathcal{A}_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}), \tag{1.8}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk \mathbb{U}. Recently Goyal and Prajapat [5], introduced generalized fractional differintegral operator $\delta_{0, z}^{\lambda, \mu, \eta}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$, by

$$
f_{0, z}^{\lambda, \mu, \eta} f(z)= \begin{cases}\frac{\Gamma(1+p-\mu) \Gamma(1+p+\eta-\lambda)}{\Gamma(1+p) \Gamma(1+p+\eta-\mu)} z^{\mu} J_{0, z}^{\lambda, \mu, \eta} f(z) & (0 \leq \lambda<\eta+p+1, z \in \mathbb{U}) \tag{1.9}\\ \frac{\Gamma(1+p-\mu) \Gamma(1+p+\eta-\lambda)}{\Gamma(1+p) \Gamma(1+p+\eta-\mu)} z^{\mu} I_{0, z}^{-\lambda, \mu, \eta} f(z) & (-\infty<\lambda<0, z \in \mathbb{U})\end{cases}
$$

It is easily seen from (1.9) that for a function f of the form (1.8), we have

$$
\begin{align*}
f_{0, z}^{\lambda, \mu, \eta} f(z)= & z^{p}+\sum_{n=1}^{\infty} \frac{(1+p)_{n}(1+p+\eta-\mu)_{n}}{(1+p-\mu)_{n}(1+p+\eta-\lambda)_{n}} a_{p+n} z^{p+n} \\
= & z^{p}{ }_{3} F_{2}(1,1+p, 1+p+\eta-\mu ; 1+p-\mu, 1+p+\eta-\lambda ; z) * f(z) \\
& (z \in \mathbb{U} ; p \in \mathbb{N} ; \mu, \eta \in \mathbb{R} ; \mu<p+1 ;-\infty<\lambda<\eta+p+1) \tag{1.10}
\end{align*}
$$

where $*$ denotes usual Hadamard product of analytic functions and ${ }_{p} F_{q}$ is well known generalized hypergeometric function.
The operator $\delta_{0, z}^{\lambda, \mu, \eta}$ satisfies the following three-term recurrence relation:

$$
\begin{equation*}
z\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j+1)}=(p+\eta-\lambda)\left(f_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}-(\eta+j-\lambda)\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)} \tag{1.11}
\end{equation*}
$$

Note that

$$
s_{0, z}^{0,0,0} f(z)=f(z), \quad s_{0, z}^{1,1,1} f(z)=s_{0, z}^{1,0,0} f(z)=\frac{z f^{\prime}(z)}{p}
$$

and

$$
f_{0, z}^{2,1,1} f(z)=\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{p^{2}}
$$

We also note that

$$
f_{0, z}^{\lambda, \lambda, \eta} f(z)=s_{0, z}^{\lambda, \mu, 0} f(z)=\Omega_{z}^{\lambda, p} f(z),
$$

where $\Omega_{z}^{\lambda, p}$ is an extended fractional differintegral operator studied very recently by [6] (see also [7]). On the other hand, if we set

$$
\lambda=-\alpha, \quad \mu=0 \quad \text { and } \quad \eta=\beta-1,
$$

in (1.10) and using

$$
I_{0, z}^{\alpha, 0, \beta-1} f(z)=\frac{1}{z^{\beta} \Gamma(\alpha)} \int_{0}^{z} t^{\beta-1}\left(1-\frac{t}{z}\right)^{\alpha-1} f(t) d t
$$

we obtain following p-valent generalization of multiplier transformation operator [8,9]:

$$
\begin{align*}
\mathcal{Q}_{\beta, p}^{\alpha} f(z) & =\binom{p+\alpha+\beta-1}{p+\beta-1} \frac{\alpha}{z^{\beta}} \int_{0}^{z} t^{\beta-1}\left(1-\frac{t}{z}\right)^{\alpha-1} f(t) d t \\
& =z^{p}+\sum_{n=1}^{\infty} \frac{\Gamma(p+\beta+n) \Gamma(p+\alpha+\beta)}{\Gamma(p+\alpha+\beta+n) \Gamma(p+\beta)} a_{n+p} z^{n+p} \quad(\beta>-p ; \alpha+\beta>-p) . \tag{1.12}
\end{align*}
$$

On the other hand, if we set

$$
\lambda=-1, \quad \mu=0 \quad \text { and } \quad \eta=\beta-1
$$

in (1.10), we obtain the generalized Bernardi-Libera integral operator $\mathcal{F}_{\beta, p}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}(\beta>-p)$ defined by

$$
\begin{align*}
\delta_{0, z}^{-1,0, \beta-1} f(z) & =\mathcal{F}_{\beta, p} f(z)=\frac{p+\beta}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) d t \\
& =z^{p}+\sum_{n=1}^{\infty} \frac{p+\beta}{p+\beta+n} a_{p+n} z^{p+n} \quad(\beta>-p) \tag{1.13}
\end{align*}
$$

For the choice $p=1$, where $\beta \in \mathbb{N}$, the operator defined by (1.13) reduces to the well-known Bernardi integral operator [10].

Using the generalized fractional differintegral operator $\delta_{0, z}^{\lambda, \mu, \eta}$, we now introduce the following subclass of \mathcal{A}_{p} :
Definition 3. A function $f(z) \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{M}_{\lambda, \mu, \eta}^{p, j}(A, B ; \gamma)$, if and only if

$$
\begin{align*}
& \frac{z\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j+1)}}{\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)}}-p+j \prec \frac{\gamma(A-B) z}{1+B z} \\
& \quad\left(z \in \mathbb{U} ;-1 \leq B<A \leq 1 ; j \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; \gamma \in \mathbb{C}-\{0\} ; \mu, \eta \in \mathbb{R} ; \mu<p+1 ;-\infty<\lambda<\eta+p+1\right) \tag{1.14}
\end{align*}
$$

For simplicity, we put

$$
\mathcal{N}_{\lambda, \mu, \eta}^{p, j}(\gamma)=\mathcal{M}_{\lambda, \mu, \eta}^{p, j}(1,-1 ; \gamma),
$$

where $\mathcal{N}_{\lambda, \mu, \eta}^{p, j}(\gamma)$ denote the class of functions $f \in \mathcal{A}_{p}$ satisfying the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{1}{\gamma}\left(\frac{z\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j+1)}}{\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)}}-p+j\right)\right\}>-1 \tag{1.15}
\end{equation*}
$$

Clearly, we have the following relationships:
(i) $\mathcal{N}_{\lambda, \mu, 0}^{p, j}(\gamma) \equiv S_{p}^{\lambda ; j}(\gamma)$;
(ii) $\mathcal{N}_{0,0,0}^{p, j}(\gamma) \equiv \varsigma_{p, j}(\gamma)$;
(iii) $\mathcal{N}_{0,0,0}^{1,0}(\gamma) \equiv s(\gamma)$;
(iv) $\mathcal{N}_{1,0,0}^{1,0}(\gamma) \equiv \mathcal{K}(\gamma)$;
(v) $\mathcal{N}_{0,0,0}^{1,0}(1-\alpha) \equiv \delta^{*}(\alpha), 0 \leq \alpha<1$.

The class $S_{p}^{\lambda ; j}(\gamma)$ was studied recently by Goyal and Goswami [11], and the class $\ell_{p, j}(\gamma)$; was studied by Altintas and Srivastava [12]. Further, the class $\delta(\gamma)$, is the class of starlike function of complex order γ in \mathbb{U} and the class $\mathcal{K}(\gamma)$, is the class of convex functions of complex order γ in \mathbb{U}, which were considered by Nasr and Aouf [13] and Waitrowski [14], respectively. Moreover $\delta^{*}(\alpha)$ denotes the class of starlike functions of order α in \mathbb{U}.

A majorization problem for the class $\delta(\gamma)$, has been investigated by Altintas et al. [15] and a majorization problem for the class $\ell_{p, j}(\gamma)$, has recently been investigated by Altintas et al. [12]. Very recently, Goswami and Wang [16], Goyal and Goswami [11] and Goyal et al. [17] generalized these results for different function classes. In this present paper we investigate a majorization problem for the class $\mathcal{M}_{\lambda, \mu, \eta}^{p, j}(A, B ; \gamma)$, and give some special cases of our main result.
2. Majorization problem for the class $\mathcal{M}_{\lambda, \mu, \eta}^{p, j}(A, B ; \gamma)$

We begin by proving
Theorem 1. Let the function $f(z) \in \mathcal{A}_{p}$ and suppose that $g(z) \in \mathcal{M}_{\lambda, \mu, \eta}^{p, j}(A, B ; \gamma)$. If

$$
\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)} \ll\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)} \quad(z \in \mathbb{U})
$$

then

$$
\begin{equation*}
\left|\left(f_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}\right| \leq\left|\left(f_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)}\right| \quad \text { for }|z| \leq r_{0} \tag{2.1}
\end{equation*}
$$

where $r_{0}=r_{0}(A, B, j, \gamma, \lambda, \mu, \eta)$ is the smallest positive root of the equation

$$
\begin{align*}
& r^{3}|\gamma(A-B)+\xi B|-(\xi+2|B|) r^{2}-(|\gamma(A-B)+\xi B|+2) r+\xi=0 \\
& \quad(\xi=p+\eta-\lambda)\left(-1 \leq B<A \leq 1 ; j \in \mathbb{N}_{0} ; \mu, \eta \in \mathbb{R} ;\right. \\
& \quad \mu<p+1 ;-\infty<\lambda<\eta+p+1 ; p \in \mathbb{N} ; \gamma \in \mathbb{C}-\{0\}) \tag{2.2}
\end{align*}
$$

Proof. Since $g \in \mathcal{M}_{\lambda, \mu, \eta}^{p, j}(A, B ; \gamma)$, we find from (1.13) that

$$
\begin{equation*}
\frac{z\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j+1)}}{\left(s_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)}}-p+j=\frac{\gamma(A-B) w(z)}{1+B w(z)} \tag{2.3}
\end{equation*}
$$

where $w(z)=c_{1} z+c_{2} z^{2}+\cdots, w \in \mathscr{P}, \mathcal{P}$ denotes the well known class of bounded analytic functions in \mathbb{U} (see [18]), which satisfies the conditions

$$
w(0)=0 \quad \text { and } \quad|w(z)| \leq|z| \quad(z \in \mathbb{U})
$$

On using (1.11) in (2.3), we get

$$
\begin{equation*}
\left|\left(s_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)}\right| \leq \frac{\xi(1+|B||z|)}{\xi-|\gamma(A-B)+\xi B||z|}\left|\left(f_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)}\right| \tag{2.4}
\end{equation*}
$$

where $\xi=p+\eta-\lambda$. Next, since $\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)}$ is majorized by $\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)}$ in the unit disk \mathbb{U}, from (1.3), we have

$$
\begin{equation*}
\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)}=\varphi(z)\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)} \tag{2.5}
\end{equation*}
$$

where $|\phi(z)| \leq 1$. Differentiating (2.5) w. r. to z and multiplying by z, we get

$$
z\left(f_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j+1)}=z \varphi^{\prime}(z)\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)}+\varphi(z) z\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j+1)}
$$

which on using (1.11) once again, gives

$$
\begin{equation*}
\left(f_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}=\frac{z \varphi^{\prime}(z)}{\xi}\left(f_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)}+\varphi(z)\left(f_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)} \tag{2.6}
\end{equation*}
$$

Noting that $\varphi \in \mathscr{P}$ satisfying the inequality (see, e. g., [19])

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}, \quad(z \in \mathbb{U}) \tag{2.7}
\end{equation*}
$$

and making use of (2.5) and (2.7) in (2.6), we have

$$
\left|\left(s_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}\right| \leq\left(|\varphi(z)|+\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \frac{(1+|B||z|)|z|}{\xi-|\gamma(A-B)+\xi B||z|}\right)\left|\left(s_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)}\right|
$$

which upon setting

$$
|z|=r \quad \text { and } \quad|\varphi(z)|=\rho \quad(0 \leq \rho \leq 1)
$$

leads us to the inequality

$$
\left|\left(s_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}\right| \leq \frac{\vartheta(\rho)}{\left(1-r^{2}\right)(\xi-|\gamma(A-B)+\xi B| r)}\left|\left(s_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)}\right|
$$

where

$$
\begin{equation*}
\vartheta(\rho)=-r(1+|B| r) \rho^{2}+\left(1-r^{2}\right)(\xi-|\gamma(A-B)+\xi B| r) \rho+r(1+|B| r) \tag{2.8}
\end{equation*}
$$

takes its maximum value at $\rho=1$, with $r_{0}=r_{0}(A, B, j, \gamma, \lambda, \mu, \eta)$, where r_{0} is the smallest positive root of Eq. (2.2). Furthermore, if $0 \leq \sigma \leq r_{0}$, then the function $\Psi(\rho)$ defined by

$$
\begin{equation*}
\Psi(\rho)=-\sigma(1+|B| \sigma) \rho^{2}+\left(1-\sigma^{2}\right)(\xi-|\gamma(A-B)+\xi B| \sigma) \rho+\sigma(1+|B| \sigma) \tag{2.9}
\end{equation*}
$$

is an increasing function on the interval $0 \leq \rho \leq 1$, so that

$$
\begin{equation*}
\Psi(\rho) \leq \Psi(1)=\left(1-\sigma^{2}\right)(\xi-|\gamma(A-B)+\xi B| \sigma) \quad\left(0 \leq \rho \leq 1 ; 0 \leq \sigma \leq r_{0}\right) . \tag{2.10}
\end{equation*}
$$

Hence upon setting $\rho=1$, in (2.9), we conclude that (2.1) of Theorem 1 holds true for

$$
|z| \leq r_{0}=r_{0}(A, B, j, \gamma, \lambda, \mu, \eta)
$$

where $r_{0}(A, B, j, \gamma, \lambda, \mu, \eta)$ is the smallest positive root of Eq. (2.2). This complete the proof of Theorem 1.
Remark 1. Setting $\eta=0$ in Theorem 1, we get a result due to Goswami and Wang [16, Theorem 1; pp. 100].
Putting $\lambda=-\alpha, \mu=0$ and $\eta=\beta-1$ in Theorem 1 , we get
Corollary 1. Let the function $f(z) \in \mathcal{A}_{p}$ and suppose that $g(z)$ satisfy

$$
\frac{z\left(Q_{\beta, p}^{\alpha} g(z)\right)^{(j+1)}}{\left(Q_{\beta, p}^{\alpha} g(z)\right)^{(j)}} \prec \frac{p-j+[\gamma A+(p-j-\gamma) B] z}{1+B z} .
$$

If

$$
\left(Q_{\beta, p}^{\alpha} f(z)\right)^{(j)} \ll\left(Q_{\beta, p}^{\alpha} g(z)\right)^{(j)} \quad(z \in \mathbb{U}),
$$

then

$$
\left|\left(Q_{\beta, p}^{\alpha+1} f(z)\right)^{(j)}\right| \leq\left|\left(Q_{\beta, p}^{\alpha+1} g(z)\right)^{(j)}\right| \quad \text { for }|z| \leq r_{1},
$$

where $r_{1}=r_{1}(j, \gamma, \alpha, \beta, p)$ is the smallest positive root of the equation

$$
\begin{aligned}
& r^{3}|\gamma(A-B)+\chi B|-(\chi+2|B|) r^{2}-(|\gamma(A-B)+\chi B|+2) r+\chi=0 . \\
& \quad(\chi=p+\beta+\alpha-1 ; \beta>-p ; \alpha+\beta>-p ; p, j \in \mathbb{N} ; \gamma \in \mathbb{C}-\{0\}) .
\end{aligned}
$$

Setting $A=1$ and $B=-1$ in Theorem 1, we have
Corollary 2. Let the function $f(z) \in \mathcal{A}_{p}$ and suppose that $g(z) \in \mathcal{N}_{\lambda, \mu, \eta}^{p, j}(\gamma)$. If

$$
\left(s_{0, z}^{\lambda, \mu, \eta} f(z)\right)^{(j)} \ll\left(s_{0, z}^{\lambda, \mu, \eta} g(z)\right)^{(j)} \quad(z \in \mathbb{U}),
$$

then

$$
\left|\left(\delta_{0, z}^{\lambda+1, \mu, \eta} f(z)\right)^{(j)}\right| \leq\left|\left(\delta_{0, z}^{\lambda+1, \mu, \eta} g(z)\right)^{(j)}\right| \quad \text { for }|z| \leq r_{1},
$$

where

$$
\begin{aligned}
r_{2}= & r_{2}(j, \gamma, \lambda, \mu, \eta)=\frac{\tau-\sqrt{\tau-4 \xi|2 \gamma-\xi|}}{2|2 \gamma-\xi|} \\
& (\tau=2+\xi+|2 \gamma-\xi| ; \xi=p+\eta-\lambda ; \lambda<\eta+p+1 ; \mu<p+1 ; \mu, \eta \in \mathbb{R} ; p, j \in \mathbb{N} ; \gamma \in \mathbb{C}-\{0\}) .
\end{aligned}
$$

Remark 2. (i) Setting $\eta=0$ in Corollary 2, we get a result due to Goyal and Goswami [11, Theorem 2.1; pp. 1856].
(ii) Putting $j=\lambda=\mu=\eta=0$ and $p=1$ in Corollary 2, we get the result obtained by [15].
(iii) For $j=\lambda=\mu=\eta=0$ and $\gamma=p=1$ Corollary 2 , gives the result obtained by MacGregor [18].

Acknowledgments

The author is grateful to the referees for the valuable comments.

References

[1] G. Schober, Univalent Functions: Selected Topics, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
[2] H.M. Srivastava, M. Saigo, S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988) 412-420.
[3] J.K. Prajapat, R.K. Raina, H.M. Srivastava, Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators, Integral Transforms Spec. Funct. 18 (9) (2007) 639-651.
[4] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978) 53-59.
[5] S.P. Goyal, J.K. Prajapat, A new class of analytic p-valent functions with negative coefficients and fractional calculus operators, Tamsui Oxf. J. Math. Sci. 20 (2) (2004) 175-186.
[6] J. Patel, A.K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332 (2007) 109-122.
[7] J.K. Prajapat, R.K. Raina, New sufficient conditions for starlikeness of analytic functions involving a fractional differintegral operator, Demonstratio Math. XLIII (4) (2010) 805-813.
[8] I.B. Jung, Y.C. Kim, H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993) 138-147.
[9] J.-L. Liu, S. Owa, Properties of certain integral operator, Int. J. Math. Math. Sci. 3 (1) (2004) 69-75.
[10] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
[11] S.P. Goyal, P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett. 22 (2009) $1855-1858$.
[12] O. Altintas, H.M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J. 17 (2) (2001) 175-183.
[13] M.A. Nasr, M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985) 1-12.
[14] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod 39 (1970) $75-85$.
[15] O. Altintas, O. Ozkan, H.M. Srivastava, Majorization by starlike functions of complex order, Complex Var. Theory Appl. 46 (2001) $207-218$.
[16] P. Goswami, Z.-G. Wang, Majorization for certain classes of analytic functions, Acta Univ. Apulensis 21 (2010) 97-104.
[17] S.P. Goyal, S.K. Bansal, P. Goswami, Majorization for the subclass of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Inform. 6 (2) (2010) 45-50.
[18] T.H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967) 95-102.
[19] Z. Nihari, Conformal Mapping, McGraw-Hill Book Company, New York, Toronto, London, 1952.

[^0]: * Corresponding author.

 E-mail addresses: jkp_0007@rediffmail.com (J.K. Prajapat), mkaouf127@yahoo.com (M.K. Aouf).

