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This Perspective reviews recent findings in placebo hypoalgesia and provides a conceptual account of how
expectations and experience can lead to placebo hypoalgesia. In particular, we put forward the idea that the
ascending and the descending pain system resembles a recurrent system that allows for the implementation
of predictive coding—meaning that the brain is not passively waiting for nociceptive stimuli to impinge on it
but is actively making inferences based on prior experience and expectations. The Bayesian formulation
within the predictive coding framework can directly account for differences in the magnitude but also the
precision of expectations that are known to influence the strength of placebo hypoalgesia. We discuss
how modulatory neurotransmitters such as opioids might be related to the characterization of expectations
with an emphasis on the precision of these expectations. Finally, we develop experimental strategies that are
suited to test this framework at the behavioral and neuronal level.
Introduction
Placebo effects are a powerful illustration of the strong influence

that expectations can have on treatment outcome and have

therefore received enormous attention over the last decade,

resulting in many comprehensive reviews on placebo effects in

general (Benedetti, 2013; Colloca and Benedetti, 2005; Enck

et al., 2013; Oken, 2008; Price et al., 2008), placebo hypoalgesia

in particular (Carlino et al., 2011; Colloca and Benedetti, 2005;

Kong et al., 2007), and the possible neurobiological mechanisms

underlying placebo hypoalgesia (Tracey, 2010; Wager and

Fields, 2013). Importantly, expectancy effects are not limited to

inert (placebo) treatments but can significantly affect the behav-

ioral and neural outcome of real treatments (Bingel et al., 2011;

Schenk et al., 2014; but see Atlas et al., 2012). Although most

authors speak of placebo analgesia, the term seems technically

incorrect as most placebo effects in the domain of pain lead to a

decreased pain sensation (i.e., hypoalgesia) and not to the

absence of pain (i.e., analgesia). We will thus use the term

placebo hypoalgesia throughout this article.

This Perspective reviews the neurobiology of placebo hypoal-

gesia, as this is the field of placebo mechanisms in which most

neurobiological data is available. Placebo effects in the context

of pain have been intensively studied using functional neuroi-

maging (for a recent meta-analysis, see Amanzio et al., 2013).

fMRI studies in healthy volunteers have revealed contributions

of spinal (Eippert et al., 2009a; Geuter and Büchel, 2013) and

supraspinal (Bingel et al., 2006; Eippert et al., 2009b; Ellingsen

et al., 2013; Kong et al., 2006; Lu et al., 2010; Lui et al., 2010;

Petrovic et al., 2002; Wager et al., 2004; Watson et al., 2009)

areas to placebo-induced pain modulation in healthy volunteers.

Furthermore, combining these imaging approaches with phar-

macological challenges (Eippert et al., 2009b), as well as using

molecular imaging techniques based on positron emission

tomography (PET) (Peciña et al., 2013; Scott et al., 2007, 2008;

Wager et al., 2007; Zubieta et al., 2005), revealed information

about the involvement of different neurotransmitter systems.
Information on the temporal aspects of these effects has been

gained by studies using electroencephalogram (Colloca et al.,

2008; Watson et al., 2007). Taken together, these studies have

provided evidence for a very early hypothesis (Levine et al.,

1978), namely that placebo hypoalgesia recruits an opioidergic

system of descending pain control (Bee and Dickenson, 2009;

Ren and Dubner, 2009), the activation of which leads to inhibition

of nociceptive processing at the level of the spinal cord and thus

reduces neural responses in pain-responsive brain regions as

well as the experience of pain.

A Conceptual Framework for Placebo Hypoalgesia

In the following, we will take this idea further and propose that a

hierarchical Bayesian framework of brain function based on the

idea of predictive coding (Jehee and Ballard, 2009; Rao and

Ballard, 1999; Srinivasan et al., 1982) can account for many

facets of placebo hypoalgesia. In essence, we suggest that

placebo hypoalgesia is the result of combining top-down prior

expectations or predictions of pain (relief) with bottom-up

sensory signals at multiple levels of the neural hierarchy.

An important aspect of this framework is that not only the

mean of the predictions and sensory signals but also their preci-

sion (i.e., inverse variance) is important. We will show that recent

findings in placebo hypoalgesia are in agreement with such a

framework and furthermore suggest a possible neuronal imple-

mentation. Although the precise nature and implementation of

the model in neurobiological terms must remain speculative at

this time, the model as outlined below generates testable

hypotheses for future studies on placebo hypoalgesia.

While the proposed framework will be applicable to placebo

effects in other domains than pain, we focus on placebo hypoal-

gesia, because of the extensive literature on effect sizes (Vase

et al., 2002, 2009) and neurobiological mechanisms (Colloca

and Benedetti, 2005; Tracey, 2010; Wager and Fields, 2013). It

is important to note at the outset that we are only considering

acute pain in the healthy state and for now leave aside the impli-

cations of this framework for chronic pain states.
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Figure 1. The Effect of Precision of Prior
Expectations for Placebo Hypoalgesia
Based on Pollo et al. (2001). The blue distribution
characterizes the incoming sensory data
(observation/likelihood); the red distribution char-
acterizes the expectation (prior). Integrating this
information in a Bayesian fashion leads to the
posterior distribution (green) that resembles the
effect of the placebo manipulation (for simplicity,
we plot estimated perceived pain intensity,
whereas in the original study the placebo effect
size was estimated by required medication). In the
control condition (A), no expectation is generated,
and a (flat) prior is centered on the mean of the
stimulus. Consequently, the perceived pain
(green) is identical to the stimulus (blue, hidden).
Telling volunteers that they either perceive drug or
placebo creates a more variable prediction (red
distribution in B) as compared to an instruction in
which volunteers are told that they will definitely
get the drug (red distribution in C), which conse-
quently leads to a stronger placebo effect (green
distribution shifted further toward less painful VAS
ratings). Note that in (B), a second prior (red)
centered on VAS 60 could have been modeled to
account for the fact that 50% of the patients
received no treatment. Note that this figure is only
an illustrative example and does not represent
the actual placebo effect size from Pollo and
colleagues (2001).

Neuron

Perspective
The Bayesian Framework
In information processing, it is useful to integrate new incoming

information with already existing knowledge or expectations.

For example, if a volunteer expects pain on a visual analog scale

(VAS) around 40 (Figure 1), Bayes theorem can be used to esti-

mate the level of perceived pain, taking prior knowledge into

account (see O’Reilly et al., 2012 for an intuitive introduction).

A Bayesian system estimates the posterior probability of the

perceived pain, given an observation and a prior (expectation):

pðpainjsensory inputÞfpðpainÞpðsensory inputjpainÞ
(Equation 1)

In other words, the posterior probability p(painjsensory input)

is proportional to the product of the prior probability p(pain)

and the likelihood of p(sensory inputjpain).
Contemporary theories of brain function employ this

Bayesian idea and suggest that neuronal assemblies imple-

ment perception and learning by constantly matching incoming

sensory data with the top-down predictions of an internal or

generative model (Clark, 2013; Huang and Rao, 2011; Knill

and Pouget, 2004). This is known as predictive coding and

the model is called generative because top-down predictions

are generated by a hierarchical model whose variables and

parameters are optimized on different timescales. In other

words, the brain has a model of the world that it continuously

tries to optimize using sensory inputs (Friston, 2010). Initially,

this model is defined by various genetic and epigenetic factors

(Clark, 2013; Friston et al., 1994), which are then continuously

refined over the lifespan through associative plasticity and

neurodevelopmental learning. This enables more efficient pre-
1224 Neuron 81, March 19, 2014 ª2014 Elsevier Inc.
diction as the brain learns the causal structure and regularities

underlying sensations.

A key element of this framework is the mismatch between

descending predictions and ascending sensory signals, which

can be seen as a prediction error reporting the ‘‘surprising’’

(because it was not predicted) aspect of the sensory information.

This part of the signal is forwarded to higher areas to adjust the

predictions (for perceptual inference) and parameters (for

perceptual learning), which in turn minimizes prediction errors.

Another important aspect of predictive coding is its Bayesian

formulation that allows incoming data to be considered in the

context of prior knowledge. These prior beliefs are entailed by

the descending predictions. Importantly, both prior beliefs and

sensory evidence are represented in terms of probability density

functions. This is important because it means the brain has to

encode the uncertainty about sensory signals (and prior predic-

tions) in terms of their precision. Precision is the confidence or

inverse variance of a probability distribution. The problem of

how priors are specified de novo is circumvented by the hierar-

chical nature of the generative model, in which the posterior

beliefs at any level of the hierarchy constitute (empirical) prior

beliefs for the level below. This is formally identical to the empir-

ical Bayes framework in statistics in which priors are estimated

from the data (Efron, 2009). An important aspect of predictive

coding—from the current perspective—is that both the content

of sensory input and its context have to be predicted. This man-

dates descending predictions of both the incoming sensory sig-

nals and their precision. The balance of sensory evidence,

against descending empirical prior beliefs, is controlled by the

precision at the respective levels of the hierarchy. In biological

implementations of predictive coding, precision is thought to
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correspond to the neuromodulatory gain of populations encod-

ing prediction errors.

Predictive coding can be considered as a consequence of the

free-energy principle (Friston, 2010). The free-energy principle

states that self-organizing systems that are in a homeostatic

state must minimize their free energy (i.e., resist the natural

tendency to increase their disorder or entropy). In this formula-

tion, minimizing prediction errors lead to better models that allow

the system to resist their tendency to disorder by being good

predictors of the sensory environment. This theory goes beyond

predictive coding, as it explicitly incorporates actions as a mean

of minimizing prediction errors.

Although experimental data supporting such a framework

have mostly been observed in the visual system (Egner et al.,

2010; Hesselmann et al., 2010; Knill and Pouget, 2004; Rao

and Ballard, 1999; Sterzer et al., 2008; Summerfield et al.,

2006), there is growing support for the role of such a framework

in explaining, for example, auditory (Moran et al., 2013; Todor-

ovic et al., 2011) and interoceptive (Seth et al., 2011) responses.

Furthermore, predictive coding and active inference has been

employed to account for various neuropsychiatric disorders

and symptoms such as functional motor and sensory symptoms

(FMSSs) (Edwards et al., 2012), delusions (Schmack et al., 2013),

hallucinations in psychosis (Adams et al., 2013; Corlett et al.,

2009), and disorders of agency (Seth et al., 2011). With respect

to FMSS, Edwards and colleagues (2012) suggested that abnor-

mally ‘‘precise’’ expectations can be the basis of pain in these

patients, in analogy to the notion that abnormal assignment of

salience to nociceptive input (Borsook et al., 2013) might

contribute to the formation of chronic pain. Crucially, all of these

accounts focus on the optimization of the precision or confi-

dence afforded to prediction errors at sensory and higher hierar-

chical levels. Last but not least, even processes in the social

domain have been framed in terms of predictive coding (Brown

and Brüne, 2012; Koster-Hale and Saxe, 2013; see also Krahé

et al., 2013 for a perspective on the interplay of social factors

and pain). As predictive coding accounts have been successful

in explaining neuronal responses at retinal (Srinivasan et al.,

1982), thalamic (Jehee and Ballard, 2009), and cortical levels

(Rao and Ballard, 1999), one could expect that predictive coding

is a general strategy employed by the CNS and thus applicable

to pain as well (Seymour and Dolan, 2013).

The nociceptive system originates in the body periphery, from

where primary afferent nociceptors transmit signals to the dorsal

horn of the spinal cord, where they activate second-order

neurons that project to supraspinal structures. These ‘‘bottom-

up’’ pathways are numerous (with the spinothalamic tract being

the most prominent one), and axons terminate, for example, in

brainstem, midbrain, and diencephalic regions such as the

rostral ventromedial medulla (RVM), the noradrenergic cell

groups, the parabrachial area, the periaqueductal gray (PAG),

the amygdala (AMY), the hypothalamus (HT), and the thalamus

(THA) (Dostrovsky and Craig, 2013; Lima, 2009). From here,

higher-order neurons project to various medial and lateral

cortical regions that are thought to mediate different aspects of

pain (Tracey and Mantyh, 2007).

This ascending (‘‘bottom-up’’) system is complemented by a

descending (‘‘top-down’’) system that can exert both inhibitory
and facilitatory influences (Bee and Dickenson, 2009; Heinricher

and Fields, 2013; Ren and Dubner, 2009; for the sake of brevity

we are simplifying anatomical matters here, as there are other

routes of descending control, for example, via noradrenergic

cell groups). It originates in cortical areas, including the rostral

anterior cingulate cortex (rACC) and anterior insula (AI), and

projects—via subcortical regions such as the AMY and HT—to

the PAG. The PAG in turn sends massive projections to the

RVM (Basbaum and Fields, 1984), which modulates signal trans-

mission at the dorsal horn of the spinal cord.

We propose that it is possible to reframe the dichotomy of

ascending versus descending systems in terms of a recurrent

system as it is required for a predictive coding framework (Fris-

ton, 2010; Mumford, 1992). First, in line with the principle of reci-

procity of corticocortical connections (Felleman and Van Essen,

1991), the above-mentioned areas are not connected in a unidi-

rectional fashion, as for example the term ‘‘descending system’’

suggests: for example, the rACC to PAG to RVM pathway also

contains reciprocal connections (i.e., RVM to PAG to rACC;

Beitz, 1982a; Herrero et al., 1991). Second, the involvement of

the primary neuromodulators for pain—endogenous opioids—

is not only evident in the classic PAG to RVM to spinal cord

pathway but in nearly all regions of both the descending and

ascending systems (with the notable exception of primary

somatosensory cortex; Baumgärtner et al., 2006; Zubieta

et al., 2001). Third, cortical regions such as the AI and dorsal

ACC that often show placebo-induced decreases in response

to pain (Amanzio et al., 2013; Wager and Fields, 2013) are also

involved in modulatory functions (Eippert and Buchel, 2013).

Finally, even the most central element of descending control—

the PAG—is strongly responsive to nociceptive stimulation and

involved in ascending relay of nociceptive information, as evi-

denced by both fMRI (Ritter et al., 2013) and electrophysiological

data (Johansen et al., 2010). Taken together, this suggests that a

classification of brain areas into ‘‘pain responsive’’ (as part of

the ascending system) and ‘‘pain modulatory’’ (as part of the

descending system) might be too simplistic and obscures the

‘‘reciprocal nature of many interconnecting pathways’’ (Millan,

2002).

Precision Matters

Many neuroimaging studies have modulated the magnitude of

expected pain in nonplacebo contexts (Atlas et al., 2010; Keltner

et al., 2006; Koyama et al., 2005; Lorenz et al., 2005; Yoshida

et al., 2013) and can show that perceived pain intensity and

concomitant neural responses are influenced by cue informa-

tion. Lorenz and colleagues (2005) used two different pain inten-

sities and cued them by different tones. They observed that the

cue influenced pain perception such that high-intensity stimuli

were perceived as less painful and low-intensity stimuli as

more painful following invalid compared to valid cues. However,

an expectation is not only characterized by its magnitude but

also by its precision or certainty. This was studied by Brown

and colleagues (2008), who employed different pain intensities

with either certain or uncertain expectations. In agreement with

Bayesian integration, they observed that high-intensity painful

stimuli were perceived as more painful with a ‘‘certain’’ expecta-

tion, whereas low-intensity painful stimuli were perceived as less

painful in the context of the ‘‘certain’’ expectation. A recent study
Neuron 81, March 19, 2014 ª2014 Elsevier Inc. 1225
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investigating the role of judgments from other volunteers on

perceived pain intensities (Yoshida et al., 2013) also reported

that a Bayesian model outperformed a mean model; however,

in contrast to Brown and colleagues (2008), they observed that

uncertainty increased perceived pain for the high-intensity pain

stimulus, which might be related to the vicariously observed

mean and uncertainty of the pain stimulus.

Apart from cue-based pain studies, Bayesian integration can

also be observed in placebo hypoalgesia. Pollo and colleagues

(2001) demonstrated that different levels of precision of verbal

instructions about the analgesic effect of a treatment can pro-

duce different placebo effect sizes (Figure 1). The more precise

instruction telling patients that the infusion contains a potent

painkiller led to a more pronounced placebo effect as the less

precise instruction in which volunteers were told that the infusion

was either a powerful painkiller or a placebo.

A similar effect of variability of the instructions was observed in

irritable bowel syndrome (IBS) patients who were exposed to

clinically relevant abdominal pain by means of rectal balloon

distension under different expectation conditions. In one study,

patients were told, ‘‘this may be an active agent or an inactive

placebo agent’’ (Verne et al., 2003). In another one they were

told that ‘‘the agent you have just received is known to sig-

nificantly reduce pain in some patients’’ (Vase et al., 2003). As

the second suggestion created a more precise expectation,

the observed placebo analgesic effect was larger in this study.

These examples illustrate that the effect size of placebo

responses can be maximized by the magnitude and the preci-

sion of the prior expectation.

The Site of Modulation

Pain is a psychologically constructed experience that includes

extensive processing at the cortical level (Apkarian et al., 2005;

Tracey and Mantyh, 2007). A mechanism subserving placebo

hypoalgesia could therefore theoretically be implemented at

the cortical or subcortical level. In agreement with this idea, initial

studies on placebo hypoalgesia firmly established the involve-

ment of the rACC and prefrontal cortex (PFC) with projections

to the PAG in placebo hypoalgesia (Bingel et al., 2006; Petrovic

et al., 2002; Wager et al., 2004). These early studies supported

the view that ‘‘a major portion of the placebo effect may bemedi-

ated centrally by changes in specific pain regions’’ (Wager et al.,

2004). However, several years later, a series of placebo hypoal-

gesia experiments demonstrated effects in relation to placebo

hypoalgesia in the medulla (Eippert et al., 2009b; note that

Petrovic and colleagues, 2002 already observed placebo-

related signal changes in an area close to the RVM) and even

at the spinal cord level (Eippert et al., 2009a; Matre et al.,

2006). These observations speak against a model in which

placebo hypoalgesia is an exclusively supraspinal phenomenon,

but rather suggest that placebo hypoalgesia is implemented

through a hierarchical recurrent system including cortical

(rACC and AI), subcortical (AMY, HT, and THA), midbrain

(PAG), medulla (RVM), and spinal sites. This is reminiscent of

the visual system, in which a recurrent hierarchical system

including the retina, the lateral geniculate nucleus, primary visual

cortex, and higher-order visual areas are likely to implement a

predictive coding framework for visual perception (Jehee and

Ballard, 2009; Rao and Ballard, 1999; Srinivasan et al., 1982).
1226 Neuron 81, March 19, 2014 ª2014 Elsevier Inc.
The Generation of Expectations: Learning and

Experience

The placebo effect is based on expectation and experience,

where the latter is a form of learning and often implemented by

conditioning in experimental placebo studies. After a debate

about the importance of each factor (Stewart-Williams and

Podd, 2004), there seems to be agreement that both can be

important contributors to the placebo effect.

The proposed framework suggests that expectations (i.e.,

predictions) are the consequence of experience (i.e., parameters

of the internal model). This is best exemplified in the context of

conditioning in placebo hypoalgesia (Colloca and Benedetti,

2006; Stewart-Williams and Podd, 2004). Through the pairing

of an analgesic treatment (e.g., analgesic drug or simply reduc-

tion of the afferent painful stimulus) with a sensory cue (e.g., the

visual and tactile information that a ‘‘treated’’ skin patch is stim-

ulated), an expectation of hypoalgesia is formed (Meissner et al.,

2011) and consequently the parameters of the internal model are

updated to account for this effect.

In a series of studies, the role of conditioning (Colloca and

Benedetti, 2006; Colloca et al., 2010) has been investigated.

During the conditioning phase of the first study, Colloca and

Benedetti (2006) observed pain ratings for the cued treatment

at a level of about 1 (due to a reduction of stimulus intensity),

whereas the cued pain trials scored 6 on their scale (i.e., a

‘‘treatment’’-related difference of 5 between both cues). In the

following test block with equal stimulus intensities, they

observed a significant placebo hypoalgesic effect indicated by

a difference between both cues of 3.5. In the presented frame-

work, the perceived level of pain during the test phase (around

3.5) represents the combination of prior expectation (about 1)

and the incoming sensory information (around 6). What is

observed is the posterior, i.e., the statistically optimal combina-

tion of the prior information and the incoming sensory data.

Although the authors observed no within block extinction, after

4–7 days the placebo hypoalgesic effect was reduced (i.e., a

difference of 2 between both cues), which according to our

model resembles either the loss of precision or a decrease in

magnitude of the prior information, both of which result in a

percept that is closer to the incoming data. This might be related

to the observation of Harrison and colleagues (2006) showing

uncertainty encoding in the hippocampus, a memory-related

structure involved in placebo hypoalgesia (Peciña et al., 2013).

In a later study, Colloca and colleagues (2010) were able to

show that four conditioning trials lead to stronger placebo effect

as compared to a single conditioning trial. In addition, volunteers

who received a single conditioning trial showed more rapid

extinction compared to the group receiving four conditioning

trials. Importantly, the reduction of stimulus intensity during the

conditioning phase was identical in both groups. Therefore, the

only difference between groups was the amount of precision

that volunteers assign to the conditioning phase. Thus, in agree-

ment with our model, the group receiving four conditioning trials

forms a more precise prior expectation and thus shows the

stronger placebo hypoalgesic effect.

Finally, the role of experience for placebo effects has also

been established in a more clinically oriented context (Kessner

et al., 2013a). In this study, the effect of previous treatment
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success or failure on current treatment was investigated. In

agreement with the view that positive experience with previous

treatment generates predictions on treatment success in the

current setting, the authors observed a strong positive effect of

prior experience, i.e., previous successful treatment predicted

current treatment success. This observation illustrates that the

important concept of a hierarchical model in which data are

used to generate priors is also present in the time domain, or

in simpler words, a past posterior can be used as a current prior.

The Limits of Placebo Hypoalgesia and Individual

Differences

In agreement with the predictive coding framework Crombez

and Wiech (2011) argued that expectations can bias perception

but sensory evidence can also update expectations. According

to our model, the placebo hypoalgesic effect is caused by

matching a predictive model with incoming data by explaining

away the discrepancy (i.e., prediction error). It is now interesting

to speculate what would happen if the incoming sensory data is

‘‘too far away’’ from the current model. This would be the case

when during conditioning an expectation of placebo hypoalgesia

was generated with a very low-intensity stimulus and subse-

quently during the test phase a very high-intensity stimulus

was used. In these cases, volunteers might question the efficacy

of the treatment and as a consequence generate a disbelief in the

placebo treatment. In our suggested model, this phenomenon

resembles a dramatic revisiting of the model to explain the

incoming data, i.e., the initial model of ‘‘a real treatment reducing

pain’’ might be replaced by a model that entails a deception and

that no treatment has been applied. This model would thus

dramatically reduce the prediction error. This can be seen in

analogy to shifts in explanatory models that are thought to

underlie the perceptual dynamics in binocular rivalry (Clark,

2013; Hohwy et al., 2008) or viewing of ambiguous figures

such as the face-vase illusion (Kleinschmidt et al., 1998), in which

competing percepts can partially satisfy two different models

(one for each stimulus). However, as the system has not been

exposed to this rather artificial situation, each model leaves a

considerable prediction error, resulting in switches between

percepts.

A breakdown of placebo hypoalgesia can also be anticipated

from a different perspective in the predictive coding scheme:

simulations in the visual system have shown that elimination of

prediction signals from higher areas leads to a breakdown of

the ‘‘explaining-away’’ component of prediction errors in lower

areas (Rao and Ballard, 1999). It is thus tempting to explain

recent finding in placebo hypoalgesia in this light: a diminished

function of the PFC (as found under repetitive transcranial

magnetic stimulation (Krummenacher et al., 2010) or in

Alzheimer’s disease (Benedetti et al., 2006a) has been shown

to lead to a loss of placebo hypoalgesic effects. Along these

lines, the structural integrity of white matter pathways from

PFC to lower areas has been shown to be related to placebo hy-

poalgesia (Stein et al., 2012). Together, these data suggest that a

failure of downward message passing of predictions from a

higher area will lead to exacerbated prediction errors and thus

a higher influence of sensory signals, i.e., a higher level of pain.

In some studies, the authors have demonstrated placebo

effects when telling participants explicitly that they will receive
a placebo (Kaptchuk et al., 2010). The authors told volunteers

explicitly about the effectiveness of placebo and thus created

a treatment expectation. However, as this study took place in

a clinical environment, it is highly likely that volunteers also

created an expectation based on experience with this environ-

ment, which would interact with the placebo treatment. Most

people associate hospitals with effective medical treatment

and symptom reduction and thus a covert expectation of pain

relief might have been generated. In agreement with the sugges-

tion that unconscious expectations can drive placebo hypoalge-

sia, a recent study from this group showed that nonconscious

cues are indeed sufficient to trigger pain modulation (Jensen

et al., 2012). A similar, implicit expectation is seen in studies

investigating classical conditioning in which volunteers generate

predictions and prediction errors but are not aware of the expec-

tation (i.e., pairing of sensory stimulus with shock) (Morris et al.,

2001).

Placebo effects in general vary across and within individuals

(Atlas andWager, 2012). Early studies (Levine et al., 1978) report

that around one-third of all volunteers showed a placebo hypo-

algesia effect. This rate is similar in recent studies (Benedetti,

1996; Bingel et al., 2006; Price et al., 2008). Interestingly, it has

been observed that although volunteers differ in their individual

placebo effects for different contexts (Liberman, 1964), they

show stable responses when repeatedly tested in these contexts

(Atlas and Wager, 2012; Whalley et al., 2008). This is easily inte-

grated in the predictive coding model: volunteers will have

formed a specific model for different contexts. If repeated treat-

ments provided by Doctor X were beneficial, the generated

model will predict a successful treatment by Doctor X in the

future. However, this does not necessarily involve the same

model in other patients in which the experience with Doctor X

was either less positive or variable (Kessner et al., 2013a). How-

ever, it is important to note that the model is not necessarily sta-

ble, as over time the organism will receive additional information

either directly linked to this context (e.g., newspaper report that

Doctor X is involved in a malpractice suit) or indirectly (e.g.,

newspaper reports on bad performance by doctors in general).

It is therefore not surprising that the test-retest correlation for

placebo is not higher than R2 = 0.55 (Morton et al., 2009).

The Role of the PAG-RVM-Spinal Pathway and Opioids

The common assumption about the role of opioids is that

placebo hypoalgesia is paralleled by a release of endogenous

opioids and that these are responsible for the perceived pain

reduction by acting as endogenous analgesics. This hypothesis

is supported by data showing that opioid antagonists can at least

partially block placebo hypoalgesia (Benedetti et al., 1999;

Eippert et al., 2009b).

However, another mechanism is suggested by studies inves-

tigating conditioned analgesia (Bolles and Fanselow, 1982; Fan-

selow, 1986). In classical conditioning, the conditioned stimulus

(CS, usually a neutral sensory cue) that is repeatedly paired with

a unconditioned stimulus (US, usually a painful shock) comes to

predict the shock and also elicits the release of endogenous

opioids. Initially, it was thought that the release of endogenous

opiods decreases the discrepancy (i.e., prediction error)

between the expectation generated by the CS and the painful

US by reducing the impact of the pain of the US through
Neuron 81, March 19, 2014 ª2014 Elsevier Inc. 1227
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analgesia (Fanselow, 1986). Consistent with the notion that

prediction errors drive learning in a delta rule learning model

(Rescorla and Wagner, 1972), the application of the opiate

antagonist naloxone can block this effect and facilitate learning

(Eippert et al., 2008; McNally et al., 2004a, 2011). However, for

this mechanism to be universally correct, naloxone should

have no effect on procedures in which there is no US present

and thus its impact cannot be modulated (neither by endoge-

nous opioids nor by naloxone). Yet this is not the case, as exper-

imental data clearly show that endogenous opioids interfere with

second-order fear conditioning (Cicala et al., 1990) and that

naloxone reduces extinction (McNally et al., 2004b), i.e., showing

exactly the opposite effect as in conditioning. To reconcile these

data with a delta rule learning model (Rescorla and Wagner,

1972), a viable alternative explanation is that opioidergic neuro-

transmission is involved in modulating the prediction (i.e., the

CS) rather than affecting the outcome alone (i.e., the US)

(McNally et al., 2004b).

In agreement with these observations from classical condi-

tioning, we propose that in addition to a direct analgesic effect

(as for example exerted on synaptic terminals of nociceptive

afferents in the dorsal horn), opioids play an additional role in

signaling top-down predictions in a generative model, namely

representing the precision of the top-down prediction (or the pre-

cision-weighted prediction errors) in the PAG-RVM-spinal cord

system. This is also in agreement with an earlier notion that the

role of opioids is to ‘‘gate’’ sensory information (Bolles and Fan-

selow, 1982; Lewis et al., 1981).

The final segments of the descending pain modulatory system

comprise the PAG, RVM, and the spinal cord dorsal horn. The

RVM (as well as the PAG) is characterized by distinctive cells

(Fields et al., 1983; Heinricher et al., 1987) that show a pause

of firing (Off cells) or a burst of firing (On cells) just before a noci-

ceptive withdrawal reflex occurs in the anesthetized animal

(Fields, 2004; but see Mason, 2012). Other cells show a neutral

behavior, but it has been shown that this allocation is dynamic

as neutral cells can become On cells in certain circumstances

(Bee and Dickenson, 2009). Both On and Off cells can be modu-

lated by opioids, but it is the activation of Off cells that is critical

for opioid-mediated analgesia (Heinricher et al., 1994). In case of

Off cells, a presynaptic opioidergic inhibition of GABAergic pro-

jections explains the activation of Off cells by opioids. In

contrast, On cells are directly inhibited by morphine through a

postsynaptic opioidergic effect. Consequently, opioid agonists

activate Off cells (and silence On cells) and this effect leads to

analgesia as indicated by reducedwithdrawal responses. Impor-

tantly, the effect of morphine on Off cells can be blocked by an

NMDA antagonist (Heinricher et al., 2001). The projections

from the RVM to the dorsal horn are mainly GABAergic, glyciner-

gic, and serotonergic (Aicher et al., 2012; Kato et al., 2006;

Ossipov et al., 2010), but a clear assignment of these neurotrans-

mitters to the On or Off system is lacking and possibly nonexis-

tent (Gao andMason, 2000; Morgan et al., 2008; Pedersen et al.,

2011). Similarly, the effects on spinal processing do not follow an

all-or-none regime but are very specific in terms of inhibition of

noxious versus innocuous responses, deep versus superficial

laminae, and type of afferent fiber (for review, see Heinricher

et al., 2009). It is also interesting to note that cholecystokinin
1228 Neuron 81, March 19, 2014 ª2014 Elsevier Inc.
(CCK), which is often portrayed as an antiopioid and whose

actions underlie nocebo hyperalgesia (Benedetti et al., 2006b),

acts in this RVM-spinal circuit, also in combinationwith serotonin

(Dogrul et al., 2009; Marshall et al., 2012). Most placebo hypoal-

gesia studies have investigated brain activity changes with

respect to pain modulation shortly before (i.e., anticipation) or

during the application of the painful stimuli. This seems to be

at odds with the initial observations of tonic activations of the

On-Off cell system. However, recent studies in awake animals

(Mason, 2012) have revised this picture and indicate a more

phasic response profile of this system, which might explain

why fMRI studies investigating evoked responses are able to

observe activations related to pain modulation.

Bayesian models including predictive coding and the free-

energy principle not only rely on a representation of the magni-

tude of the prediction but also on its precision or variance. It

has been suggested that feedback signaling in the hierarchy

through NMDA is responsible for the specification of the priors

(or predictions) (Corlett et al., 2009; Friston, 2010) and that the

precision of these predictions is implemented through modula-

tory neurotransmitters (Corlett et al., 2009; Edwards et al.,

2012; Friston, 2010). Extending these ideas to placebo hypoal-

gesia, we suggest that the NMDA part of the Off cell system

could represent the prior or prediction signal and that the opioi-

dergic component of this system represents the precision of this

prediction. Currently, this notion is obviously speculative, but

future studies investigating opioidergic effects (either using

PET or pharmacological challenges) in combination with an inde-

pendent manipulation of the magnitude and the precision of the

top-down prediction (i.e., experimental manipulation of placebo

hypoalgesia) could test this hypothesis.

A possible mechanism by which placebo hypoalgesia could

be implementedwas already introduced 50 years ago inMelzack

andWall’s gate control theory (1965). As this mechanism posited

a crucial modulatory stage at the spinal cord, its involvement in

placebo hypoalgesia was questioned for a long time, as no spinal

involvement in placebo hypoalgesia had been observed until a

few years ago (Eippert et al., 2009a; Matre et al., 2006). While

it is important to note that originally this model was intended to

explain local control through large- and small-diameter fibers

at the spinal cord (Melzack and Wall, 1965), the authors also

postulated a ‘‘central control trigger’’ i.e., a fast afferent system,

which would precede the ordinary signal processing route and

could thus ‘‘set the receptivity of cortical neurons for subsequent

afferent volleys’’ and ‘‘by way of central-control efferent fibers,

also act on the gate control system’’ (Melzack and Wall, 1965).

Through this putative mechanism ‘‘it is possible for central

nervous system activities subserving attention, emotion, and

memories of prior experience to exert control over the sensory

input.’’ Although this model has shown great explanatory power,

it seems important to add a few details that make this theory

compatible with a full hierarchical predictive coding model. The

main point of a predictive coding model is the hierarchical orga-

nization in which prior information can be estimated from the

data at each level. Taking the original authors’ suggestion that

interactions take place at many levels (Melzack and Wall,

1965), we propose that instead of a single modulatory effect at

the spinal cord, the intimate connections of the top-down and
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bottom-up pain system form a hierarchical recurrent model in

which the modulation related to placebo hypoalgesia is imple-

mented not at a single stage but throughout the system. Conse-

quently, our framework suggests a single system rather than

separate top-down and bottom-up systems. This is in agree-

ment with functional neuroimaging studies that have observed

pain modulatory signal changes at all levels of this system

(Amanzio et al., 2013; Wager et al., 2013), such as the spinal

cord (Eippert et al., 2009a), the PAG-RVM system (Bingel

et al., 2006; Eippert et al., 2009b; Petrovic et al., 2002; Tracey

et al., 2002; Wager et al., 2004; Yelle et al., 2009), the nucleus

cuneiformis (Keltner et al., 2006), the AMY (Bingel et al., 2006),

the rACC (Bantick et al., 2002; Bingel et al., 2006; Eippert

et al., 2009b; Geuter et al., 2013), THA (Lorenz et al., 2003; Valet

et al., 2004), and the PFC (Eippert et al., 2009b; Wager et al.,

2004).

The Mesolimbic System: Linking Value to Placebo

Hypoalgesia

Apart from the opioidergic system, several studies have linked

the dopaminergic (DA) system to placebo hypoalgesia using

MRI (Schweinhardt et al., 2009) or PET (Scott et al., 2007,

2008). DA is the main modulatory neurotransmitter in the meso-

limbic system including the substantia nigra, the ventral

tegmental area (VTA), the ventral striatum (VS), and frontal areas

such as the ventromedial prefrontal cortex (vmPFC). In the

context of a predictive coding framework, it has been proposed

that DA can signal the precision of predictions (Adams et al.,

2013; Edwards et al., 2012; Friston, 2010) in a similar manner

as we suggested for opioids in the PAG-RVM-spinal cord

system. Such a role of DA could also be involved in placebo hy-

poalgesia, as a study showed that individual expectations of

analgesia prior to placebo administration were correlated with

placebo-related DA activation in the VS (Scott et al., 2007). It is

conceivable that these expectation ratings also indicated the

volunteers’ confidence in the treatment, which can be seen in

analogy to the precision of the prediction (Brown et al., 2008).

In a study investigating opioidergic and dopaminergic effects

of placebo hypoalgesia (Scott et al., 2008), opioidergic and

dopaminergic effects were demonstrated in many subcortical

and cortical areas. In particular, in the VS both DA and opioider-

gic effects were observed. Based on this observation, the

authors suggest that VS dopaminergic responses represent a

‘‘trigger’’ that can then entail downstream adaptive responses.

These responses are most likely opioidergic, but dopaminergic

modulation of the dorsal horn has also been observed (Tamae

et al., 2005). Our model would offer a similar, yet simpler, expla-

nation: both opioids and DA as modulatory neurotransmitters

are ideally suited to signal the precision of predictions (Corlett

et al., 2009; Edwards et al., 2012; Friston, 2010). It is thus likely

that in some areas (e.g., the VS) they both signal the precision

of predictions, whereas in other areas (RVM-PAG system) opi-

oids more exclusively take this role, possibly together with

other neurotransmitters such as cannabinoids (Benedetti

et al., 2011). This is also in accord with recent experimental

data that suggest that at different levels of the hierarchy sepa-

rate neuromodulatory systems are related to precision-

weighted prediction errors (Iglesias et al., 2013). Importantly,

PET studies (Scott et al., 2008; Wager et al., 2007; Zubieta
et al., 2005) suggest that opioids not only play a role in signaling

the precision of predictions in areas lower in the hierarchy as

compared to the VS but also in areas higher in the hierarchy

such as the rACC and the AI.

In the context of dopaminergic effects on placebo hypoalge-

sia, it has been discussed that projections between the vmPFC

and the VS play an important role in updating the effectiveness

of the treatment over time (Wager and Fields, 2013), which the

authors relate to subjective value of the treatment. Value in gen-

eral can be seen as an attribute for states and maximizing value

(or being in a valuable state) is the goal of the optimization

scheme underlying the free-energy principle (Friston, 2010), an

extension of the predictive coding framework. Minimizing free

energy in this framework is to ensure that organisms spend

most of their time in valuable states such as being satiated and

pain-free to maintain their homeostasis. This is conceptually

linked to reinforcement learning (Friston, 2010) and temporal

difference models and DA signaling (Schultz et al., 1997). In

essence, the idea is that neuronal value systems enable the brain

to label a sensory state as valuable, if it leads to another valuable

state. This ensures that agents move through a succession of

states (e.g., specific path in a maze) that have acquired value

to access states with an innate value (e.g., food). This notion

can be related to the desire-belief model of placebo hypoalgesia,

where it is argued that the overall desire of volunteers is to avoid

painful experience as much as possible (Price et al., 2008). It

should be noted that avoiding a painful experience ‘‘as much

as possible’’ is a relative rather than absolute concept of value,

as for example illustrated in a recent study showing that if a

painful stimulus is less painful than the maximally possible

painful stimulus, it can even be perceived as pleasant (Leknes

et al., 2013).

Furthermore, value can be an attribute of the treatment in

placebo hypoalgesia (Wager and Fields, 2013), rendering the

placebo effect more or less effective. This is best illustrated

through a behavioral study in which two different inert treatments

were tested (Waber et al., 2008). One treatment was described

as having a high monetary value (i.e., ‘‘regular price’’); the other

one was described as ‘‘low price.’’ This study convincingly

showed that the magnitude of placebo hypoalgesia was

increased for the ‘‘regular price’’ treatment. This behavioral

finding was followed up in an fMRI study (Geuter et al., 2013).

Here again one treatment was declared as low in value and

another one was described as high in value. Similar to a previous

study (Price et al., 1999), a congruent experience to these verbal

instructions was introduced in a conditioning phase, allowing

volunteers to experience the superior effect of the high-value

treatment. To directly assess the perceived individual value of

both treatments, volunteers participated in a typical auction

setup as used in behavioral economics to identify their willing-

ness-to-pay (WTP). Both experimental treatment creams (i.e.,

placebos) were presented alongside other useful medical prod-

ucts such as Band-Aids, sunscreen, or insect repellant. Impor-

tantly, it was observed that the estimated WTP predicted the

perceived pain reduction on an individual level. In addition, a

choice task analogous to the one used by Chib and colleagues

(2009) was performed to obtain a neuronal value signal

(Figure 2A). On a neuronal level, the rACC, during the placebo
Neuron 81, March 19, 2014 ª2014 Elsevier Inc. 1229



Figure 2. Placebo-Induced BOLD Responses and Value Signal
Based on data reported in Geuter and colleagues (2013).
(A) Overlay of the placebo > control contrast (red; rACC p < 0.005; all p values small-volume corrected as reported in Geuter and colleagues (2013) and the WTP
correlate (blue; vmPFC p < 0.011; rACC p < 0.003; VS p < 0.003). WTP and placebo activation overlapped in the rACC (yellow; rACC p < 0.046).
(B) Correlation of placebo-induced activation (placebo > control) with the individual neural value estimates from vmPFC. Here, activity in the rACC correlated with
the value signal (p < 0.01). Statistical t-maps are overlaid on an average structural image at p < 0.005 (uncorrected).
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manipulation, showed a graded response, which was larger for

the expensive placebo treatment. In addition, the value-related

activation level of the vmPFC (ROI based on Chib et al., 2009)

during the valuation task was extracted. It was then tested

whether this neuronal value signal (from the valuation scan) pre-

dicted the placebo-related signals in the frontal cortex during the

placebo scan. Importantly, the placebo and the valuation scans

were performed in separate sessions. The data show that indeed

a neuronal value signal in the vmPFC was predictive of the pla-

cebo-related activation in the rACC (Figure 2B) or, in other

words, a neural signature of value-predicted activation related

to placebo hypoalgesia.

In some studies, naloxone had no effect on placebo hypoalge-

sia (Benedetti et al., 2011; Vase et al., 2005), suggesting that

other neurotransmitter systems also play a role. Even in studies

that report effects of high doses of naloxone, the opioid antago-

nist was only able to attenuate placebo hypoalgesia (Eippert

et al., 2009b), but not to completely block it. These observations

can be accounted for by our model. Given the hypothesis that

modulatory neurotransmitters signal the precision of the top-

down predictions in the proposed Bayesian framework, blocking

those neurotransmitters would not erase the prediction but

would attenuate its precision and thus lead to a decrease in

placebo hypoalgesia. However, as described above for the VS

in which both opioids and DA might play a role in signaling the

precision of a prediction, the precision signals in other areas

might be mediated by other modulatory neurotransmitters

such as oxytocin (Kessner et al., 2013b), cannabinoids (Bene-

detti et al., 2011), etc. This implementation would equip the

system with additional flexibility and redundancy and could

also account for the observed interindividual differences in

placebo responses and blocking them with various drugs. A

study employing the monetary incentive delay task (Knutson

et al., 2000) showed that individual responsiveness in the dopa-

minergic system during this task was predictive of the placebo

hypoalgesic effect (Scott et al., 2007). It is tempting to speculate

that volunteers showing a large contribution of dopaminergic

effects to placebo hypoalgesia would demonstrate a high vulner-

ability to a DA antagonist (e.g., haloperidol), whereas others

could be more naloxone sensitive. Further studies are required

to test the hypothesis that different individuals employ different
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modulatory neurotransmitter systems in placebo hypoalgesia.

Such a finding could potentially explain the large interindividual

differences that have been observed in this domain (Enck

et al., 2013).

Reporting Bias

Placebo effects (Hróbjartsson and Gøtzsche, 2004) and placebo

hypoalgesia in particular (Clark, 1969) have been criticized to

simply reflect a reporting bias. Based on a study in which the

effects of placebo hypoalgesia were estimated using signal

detection theory, the authors argued that this analysis indicated

that the reduced number of pain responses in the placebo con-

dition reflected an increase in the amount of noxious stimulation

volunteers were willing to endure before calling it pain, rather

than a decrease in their thermal sensitivities (Clark, 1969).

Many years later it has been argued that providing direct central

nervous (Benedetti, 2013; Eippert et al., 2009b; Wager et al.,

2004) or autonomic (Eippert et al., 2009b; Nakamura et al.,

2012) measures in placebo studies can favor a sensory discrim-

ination effect and make an exclusive reporting bias unlikely. The

proposed hierarchical predictive coding framework takes amore

neutral position and would argue that the decision and the sen-

sory discrimination component are not separable in ameaningful

sense, or in other words, there is no clear point in a hierarchical

system where sensory processing ends and the decision pro-

cess begins; both the sensory perception and the decision

component are implemented throughout the hierarchy. In other

words, signal changes in both the spinal cord and the rACC

are probably responsible for what Clark (1969) describes as

‘‘. an increase in the amount of noxious stimulation Ss

[subjects] were willing to endure before calling it pain.’’

A Putative System

Converging anatomical data from rats, cats, and monkeys sug-

gests a strong degree of reciprocity in the connectional architec-

ture of the ‘‘descending system,’’ as evidenced between spinal

cord and RVM (Basbaum and Fields, 1979; Basbaum et al.,

1978; Carlton et al., 1985; Craig, 1995; Sugiyo et al., 2005),

RVM and PAG (Abols and Basbaum, 1981; Basbaum et al.,

1976; Beitz, 1982a, 1982b; Mantyh, 1982, 1983a), PAG and

AMY (Aggleton et al., 1980; Beitz, 1982b; Hopkins and Holstege,

1978; Mantyh, 1983b; Rizvi et al., 1991; Volz et al., 1990), PAG

and HT (Aimone et al., 1988; Cameron et al., 1995; Mantyh,



Figure 3. A Putative System Mediating Placebo Hypoalgesia
Note the recurrent nature of all connections in the hypothetical system
(simplified by omitting several connections and areas). Whereas the cortical
and subcortical projections all converge onto the PAG-RVM-spinal cord sys-
tem, there are many cortical systems potentially mediating different aspects of
placebo hypoalgesia. For instance, the projections from the rACC to the PAG
(green) might resemble expectation effects in a more general fashion, whereas
the projections from the vmPFC and the HT (red) might mediate the value
aspect of placebo hypoalgesia.
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1982, 1983b; Sakai et al., 1990), AMY and AI and rACC/vmPFC

(Aggleton et al., 1980; Carmichael and Price, 1995; Krettek and

Price, 1977; Mcdonald et al., 1996; Mufson et al., 1981;

Russchen, 1982), as well as HT and AI and rACC/vmPFC (Floyd

et al., 2001; Jasmin et al., 2004; Kita and Oomura, 1981; Mesu-

lam et al., 1983; Musil and Olson, 1988; Ongür et al., 1998; Room

et al., 1985); note that due to brevity, we are not discussing all

projections (such as direct ones between rACC/vmPFC and

PAG) here. There are only very few exceptions to this reciprocity,

such as rather light connections from the dorsal horn of the

spinal cord to the RVM (Lima, 2009; but these could for example

be compensated by spinal input to PAG and HT: Dostrovsky and

Craig, 2013; Lima, 2009) or inconclusive evidence for reciprocal

connections between HT and AI in the cat.

The notion of a recurrent hierarchical model also shifts the

focus from the analysis of regional activity toward the analysis

of interregional effects. In agreement with this notion, many

studies have consistently observed placebo hypoalgesia-related

changes of functional coupling in human functional neuroimag-

ing studies (Bingel et al., 2006; Craggs et al., 2007; Petrovic

et al., 2002; Wager et al., 2007). The interregional coupling

between the rACC and the PAG was found to be increased dur-

ing placebo hypoalgesia (Bingel et al., 2006; Petrovic et al., 2002;

Wager et al., 2007). Furthermore, this increased coupling was

attenuated by naloxone and furthermore correlated to behavioral

reports of hypoalgesia and activation changes in sensory-related

pain-processing areas (SII) (Eippert et al., 2009b).

As placebo hypoalgesia is subject to numerous influences

such as expectations, motivations, and emotions (Price et al.,
2008), such a system might implement these modulatory effects

in a parsimonious fashion, by drawing upon different cortical

ensembles for different modulatory effects, but at the same

time utilize a final common pathway such as the PAG-RVM-

spinal cord system (Figure 3). This notion is supported by a

comprehensive network analysis study (Wager et al., 2007). In

this data set, an increase of opioid release in rACC, PAG, VTA,

VS, and AMY was seen for heat stimuli only, whereas the lateral

PFC, AI, and the AMY showed decreases to warm stimuli. The

authors concluded that the mechanism for areas that only

respond to heat stimuli is the potentiation of opioid release,

whereas decreases that are related to warm stimuli could be

related to the reduction of anticipatory threat. Our framework

would offer a slightly different interpretation: the increase in

opioid release would be related to signaling predictions along

the rACC-PAG system, whereas the decreases of opioidergic

release in AMY and AI would be related to signaling predictions

of decreased threat (Lundh, 1987; Price et al., 2008).

Placebo effects have also been explained by referring to a

desire expectation model of emotions (Price and Barrell, 1984;

Price et al., 2008). In addition to simpler models relying mainly

on expectations, this model adds a desire component implying

that in analgesia studies, volunteers have the desire to terminate

pain. Previous studies have shown that the interaction of ‘‘desire

for pain relief’’ and ‘‘expected pain relief’’ contributes sig-

nificantly to placebo hypoalgesia. The model further predicts a

parallel decrease of negative emotions, which has been

observed behaviorally (Vase et al., 2003; Verne et al., 2003)

and has been suggested by fMRI studies showing signal

changes in areas implicated in anxiety and emotion regulation

in placebo hypoalgesia studies (Bingel et al., 2006; Price et al.,

2008; Wager et al., 2011).

The role of negative emotions in mechanisms of the placebo

effect is also part of a cognitive-emotion model (Flaten et al.,

2011; Lundh, 1987). Here, it is argued that illness often involves

negative psychological aspects such as anxiety, sadness, or

depression and an important part of the placebo effect is the

development of ‘‘healing’’ beliefs. These beliefs are thought to

counteract negative psychological aspects and thus have a

positive influence on physical health (i.e., pain in placebo hypo-

algesia). Conceptually, these cognitive-emotion models are in

agreement with a hierarchical Bayesian model of placebo hypo-

algesia. Althoughwe initially explained the idea of suchmodels in

a single chain of recurrent brain areas (i.e., rACC-PAG-RVM-

spinal cord), this system is more complex, as many regions are

not only connected to areas up or down in the hierarchy, but

rather to other areas (Figure 3). This suggests that top-down pre-

dictions in this framework do not only originate from a single area

higher up in the hierarchy but from many regions (e.g., AI, rACC,

and AMY) converging on lower tier structures (and vice versa)

(Adams et al., 2013). Many cortical and subcortical regions

such as the AI, the rACC, the AMY, and the HT have recurrent

connections with the PAG. It is thus possible that the manifold

of contextual effects that are part of most psychological theories

of placebo hypoalgesia (Flaten et al., 2011; Lundh, 1987; Price

et al., 2008) such as anxiety reduction, emotions, beliefs, and

desire are mediated by overlapping projections in this system.

For instance, AMY and AI might be involved in signaling
Neuron 81, March 19, 2014 ª2014 Elsevier Inc. 1231



Figure 4. Predictions from the Bayesian
Framework for Different Magnitudes and
Precisions of the Prior Expectation in
Placebo Hypoalgesia Experiments
The red Gaussian distribution characterizes the
prediction (e.g., expectation; prior). Both different
magnitudes (A and B versus C and D) and pre-
cisions (A and C versus B and D) are implemented.
The blue Gaussian distribution characterizes the
incoming sensory data (constant across condi-
tions; likelihood). Based on the Gaussian model
this leads to the posterior distribution (green) that
resembles the placebo effect.
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fear-related predictions (Figure 3, gray), whereas the vmPFC and

HT might mediate predictions with respect to value or desire

(Figure 3, red).

Predictions
TheproposedBayesian frameworkmakes certainbehavioral pre-

dictions that can be tested experimentally. Importantly, all these

approaches have in common that the precision and the magni-

tude of either the prediction or the incoming sensory signals is

varied independently. Only this allows testing crucial predictions

from themodel such as (1) how the precision of the prediction and

the data affect placebo hypoalgesia, evenwhen themagnitude is

kept constant, and (2) how the precision of the prediction ismedi-

ated by modulatory neurotransmitter systems such as dopamine

and opioids. Figure 4 summarizes these hypotheses in an exper-

iment in which the precision of the placebo manipulation (e.g.,

previous experience or expectation) is varied. As there might be

interactions between differences in magnitude and variability of

the prediction, a full factorial 23 2 design is depicted.

Intuitively, all distributions can be interpreted as ‘‘approxi-

mated histograms,’’ e.g., in conditions A and B the average

expectation is about 40 on a VAS, whereas it is 50 in conditions

C and D. The width of the distribution indicates the variability

(low precision in B and D as compared to A and C. The distribu-

tion of the painful stimulation with a mean of VAS 60 is identical

for all conditions. According to our framework, high expectation

with high precision should lead to the strongest placebo

response (green posterior distribution in A), whereas a low

expectation with low precision should lead to the weakest pla-

cebo response (green posterior distribution in D). As outlined

above, this manipulation will have a limit, namely when the

expectation (prior) is ‘‘too far away’’ from the incoming data (like-
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lihood). This would lead to a dramatic

revisiting of the model to explain the

incoming data, i.e., the initial model of a

treatment reducing pain would be

replaced by a model that entails a decep-

tion (i.e., no treatment).

Conversely, one could manipulate the

magnitude and the precision of the

incoming sensory data. This is relevant,

as in clinical conditions such as IBS or

fibromyalgia the precision of the sensory

signal (i.e., ongoing pain) might be more

variable as compared to well-defined
experimental pain stimuli. In this 2 3 2 design (Figure 5), the

expectation (red) is kept constant across conditions. However,

now the incoming sensory stimulus (blue) is varied in magnitude

(i.e., intensity: A and B versus C and D or precision: A and C

versus B and D. According to the presentedmodel, the strongest

placebo hypoalgesic effect should be obtained with a highly var-

iable painful stimulus (low precision; green posterior in B and D.

On a related account, a meta-analysis has shown that a longer

stimulus duration can result in a larger magnitude of placebo

hypoalgesia (Vase et al., 2009). This could be due to a higher

variability (i.e., lower precision) of average perception of longer

stimuli, as volunteers have to integrate pain sensations over a

longer time period. In future studies, it would be useful to obtain

continuous ratings of perceived pain in paradigms with longer

painful stimulation in order to assess the variability and to allow

further model-based analyses (Cecchi et al., 2012).

Predictions for Population-Based Neuronal Data

Many studies have revealed behavioral evidence for predictive

coding schemes (Clark, 2013; Knill and Pouget, 2004). Conse-

quently, it would be interesting to reveal a possible neuronal

implementation of this framework (O’Reilly et al., 2012). Using

fMRI or other population-based techniques for this endeavor is

not trivial, because both the top-down prediction and the

bottom-up prediction error will contribute to the observed signal

changes in such an area. The matter is further complicated by

the fact that one cannot assume a simple 1:1 contribution of

both processes (Egner et al., 2010).

However, a finessed experimental design might allow some

inferences about the interplay between prediction and prediction

errors, which would suggest a predictive coding framework in

the context of pain. In analogy with Egner and colleagues

(2010), one could employ a painful and a nonpainful hot stimulus



Figure 5. Predictions from the Bayesian
Framework for Different Magnitudes and
Precisions of the Incoming Sensory
Information in Placebo Hypoalgesia
Experiments
The blue Gaussian distribution characterizes the
incoming sensory data (likelihood). Both different
magnitudes (A and B versus C and D) and pre-
cisions (A and C versus B and D) are implemented.
The red Gaussian distribution characterizes the
prediction (e.g., expectation), which is kept con-
stant across conditions. Based on the Bayesian
model, this leads to the posterior distribution
(green) that resembles the effect of the placebo
manipulation.
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in the context of different levels of pain expectation (Figure 6). A

cortical region that shows nociceptive-specific responses, such

as the posterior insula (Garcia-Larrea, 2012; Mazzola et al.,

2012), should show a constant response to all painful stimuli irre-
Neuron 81
spective of the expectation of pain. On

the contrary, for hot stimuli the activity in

this area should be dependent on the

level of pain expectation. This distinction

comes about because the response to

the painful stimulus is a combination of

prediction error or surprise (higher activa-

tion with low expectation; Figure 6A; see

also Ploghaus et al., 2000 for an early

study on prediction errors in the context

of pain) and prediction (higher with high

expectation; Figure 6B), leading to a con-
stant response across expectation levels (Figure 6C). In contrast,

nonpainful hot stimuli should lead to an increase in activation

with increasing pain expectation. Importantly, if the assumption

of pain specificity is violated (i.e., the region in question also
Figure 6. Predictions for Regional Activity
Changes in a Predictive Coding Framework
Based on Egner et al. (2010).
(A) For a painful stimulus and a nonpainful stim-
ulus, the signal component due to prediction
increases with the expectation of pain.
(B) In contrast, the signal component due to
surprise decreases with increasing prediction but
only for the painful stimulus.
(C) Based on the sum of (A) and (B), an area
involved in a predictive coding scheme should
show a relatively constant activation for a painful
stimulus and at the same time an increase for a
nonpainful hot stimulus with increasing pain
expectation. Note that in case of an area that re-
sponds equally well to pain and nonpainful hot
stimuli, the response pattern for both should be
identical.
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responds to nonpainful hot stimuli), the ensuing activation

pattern would not wrongly suggest a predictive coding frame-

work but simply show identical activation levels for pain and non-

painful hot stimuli (i.e., equal activation levels in Figure 6C). In

addition, this experimental design could be adapted to a phar-

macological fMRI study that would allow investigating the role

of the dopaminergic and opioidergic system in the hypothesized

effects.

Ongoing Activity

In a perceptual decision making study Hesselmann and

colleagues (2010) observed that fluctuations in ongoing neural

activity, as indexed by fMRI, biased perceptual decisions toward

correct inference but not toward a specific percept: hits (detec-

tion of near-threshold stimuli) were preceded by significantly

higher activity than both misses and false alarms. Based on

this observation, they concluded that the observed activity prob-

ably corresponds to the precision of later-occurring prediction

errors (see also Coste et al., 2011).

Translated into the context of our predictive coding framework

for placebo hypoalgesia, we would predict that prestimulus ac-

tivity fluctuations, e.g., in the PAG, are related to the placebo hy-

poalgesic effect. This seems plausible, as a previous study has

already demonstrated the negative predictive value of prestimu-

lus PAG activity for pain perception (Ploner et al., 2010; see also

Brodersen et al., 2012). Furthermore, if the hypothesis that pre-

cision is mediated by opioidergic signaling in this system is cor-

rect, we would expect that the predictive value of prestimulus

activity is not related to placebo hypoalgesia if volunteers were

treated with an opioid antagonist.

Conclusion
Here we have taken a Bayesian perspective on placebo hypo-

algesia and have aimed to explain fundamental findings in

terms of a hierarchical neurobiological model based on the

framework of predictive coding. We have applied this frame-

work only to placebo hypoalgesia and in some cases to expec-

tation-induced modulation of acute pain in healthy volunteers,

leaving aside important topics such as central sensitization

and pathophysiological (Woolf, 2011) or psychological pro-

cesses in chronic pain patients (Morley, 2008). It will be an

exciting endeavor to see how the ideas developed here and

extensions thereof can be applied to clinical populations

(Edwards et al., 2012).
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