
1 November 2001

Physics Letters B 519 (2001) 212–218
www.elsevier.com/locate/npe
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Abstract

We compute theO(α2
s ) correction to the decay rateηc → γ γ and discuss its implications for precision quarkonium physics.

We study the suitability of the ratioΓ (J/ψ → e+e−)/Γ (ηc → γ γ ), in which the non-perturbative or soft effects cancel
throughO(αs), for extracting fundamental parameters of QCD at low energies. We show that whenO(α2

s ) corrections are
included, this ratio cannot be predicted with a high degree of confidence.

PACS: 13.20.Gd; 13.40.Hq; 12.39.Pn

The physics ofcc̄mesons (charmonium) is a mature
field with a long history. Discovery of theJ/ψ reso-
nance at SLAC and Brookhaven in the autumn of 1974
is often called “November revolution”, to emphasize
its importance for the development of QCD and of the
Standard Model. Already the early theoretical papers
on the subject interpreted the observed narrow reso-
nance as the non-relativistic bound state ofcc̄ quarks
and thus initiated studies of heavy quarks in QCD [1].

During almost thirty years since the discovery of the
first charmonium, both experimental and theoretical
studies of these mesons have been successfully pushed
forward. The spectrum, lifetimes and branching ratios
have been precisely measured. Further progress is
expected at the planned dedicated facility CLEO-c [2].
On the theoretical side, various attempts have been
made to improve the description of these hadrons. In
particular a lot of effort went into determining how
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well thecc̄ bound states can be described if one starts
directly from the QCD Lagrangian.

An important recent development has been the
introduction of effective field theory techniques for
describing hadrons consisting of two non-relativistic
heavy quarks [3,4]. The non-relativistic Quantum
Chromodynamics (NRQCD) takes full advantage of
the fact that the quarks in thecc̄ bound state are non-
relativistic. The QCD and NRQCD Lagrangians are
matched perturbatively at energy scales around the
charm quark massmc ≡m∼ 1.7 GeV.

In recent years the effective field theory approach
to non-relativistic bound states has been extended fur-
ther. It has been noticed that two additional scales, the
heavy quark momentummv and the heavy quark bind-
ing energymv2, exist in quarkonia and, for sufficiently
heavy quarks, permit perturbative treatment. Unfortu-
nately, this is not quite possible for charmonium be-
cause thec quark mass is too small and thereforemv ∼
mv2 ∼ΛQCD. However, we still haveΛQCD �m and
therefore there is a chance that integrating out hard
(k ∼m) modes and matching QCD at NRQCD pertur-
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batively is a sensible thing to do. If the soft effects are
universal, they cancel in ratios of various observables
and a clean perturbative QCD prediction emerges.

For various observables, this approach has been
taken at orderO(αs) and the common perception is
that it works rather well. Let us consider the simplest
decays of the ground state charmonia,J/ψ → e+e−
andηc → γ γ . To orderO(αs ) the decay rates can be
written as

Γψ ∼ψ2(r = 0)

(
1+ xψ · αs

π

)
,

(1)Γη ∼ψ2(r = 0)

(
1+ xη · αs

π

)
,

whereψ(r) is the charmonium wave function andxψ,η
are numbers which can be determined by perturbative
matching of the QCD and NRQCD Lagrangians.
Taking the ratio of these two decay widths, one obtains
a prediction that is free from any non-perturbative
uncertainties,

(2)
Γψ

Γη
∼ 1+ (xψ − xη)αs

π
,

and can be either compared to the data provided
αs(m) is known or used to extract the value ofαs .
For example, the CLEO Collaboration has recently
[5] determined the strong coupling constantαs(mc)
from the branching ratio ofηc → γ γ calculated to
next-to-leading order inαs . Since the ratio (2) is
independent of the wave functions, its comparison
with measurements has often been considered a solid
test of perturbative QCD.

In the past few years the development of techniques
for non-relativistic effective field theories has under-
gone an important transition and we can now study
the next order in the strong coupling constant expan-
sion. Interestingly, in doing so one encounters new
conceptual difficulties. The most important problem
is that the hard Wilson coefficient of the operator re-
sponsible for the decay in the leading order becomes
infrared divergent at two loops, which implies that
the wave function at the origin becomes scale depen-
dent. If this scale dependence were the same for spin
triplet J/ψ and singletηc states, this would not pose
a difficulty since it would cancel in the ratio. How-
ever, this is not the case and the divergent parts of
the Wilson coefficients are spin-dependent. This im-
mediately implies that withO(α2

s ) accuracy the wave

Fig. 1. Diagrams not considered in this Letter: “light-by-light”
scattering contributions.

functions at the origin ofJ/ψ andηc becomediffer-
ent and therefore the ratio of the corresponding decay
widths is sensitive to some soft-scale effects. Since it
is rather difficult to compute these effects accurately,
the QCD-based prediction for the ratio of decay widths
Γ (J/ψ → e+e−)/Γ (ηc → γ γ ) acquires a large the-
oretical uncertainty. This is the principal message we
would like to get across in this Letter.

The remaining part of this Letter is organized as
follows. We first consider hard renormalization factors
of the non-relativistic operators responsible for the
decaysηc → γ γ and J/ψ → e+e−. We then show
how the soft effects are taken into account in our
calculation and derive our final result for the ratio of
the decay rates ofJ/ψ → e+e− andηc → γ γ .

The hard renormalization factor for the spin-singlet
decay operator has been evaluated very recently [6],
extending an earlier QED result obtained for the para-
positronium decay [7,8].

We did not include the diagrams shown in Fig. 1
in our final result. We have checked with a rough
approximation that this finite and gauge-invariant
subset contributes only insignificantly.

Our result for the hard renormalization factor for
the singlet decay operator is (we use dimensional
regularization withD = 4− 2ε)

(3)1−
(

5

2
− π2

8

)
CF
αs

π
+ s2(µ)CF

(
αs

π

)2

,

whereαs = αs(m) and

s2(µ)= CF sA +CAsNA +NLTRsL +NHTRsH ,
sA(µ)= −21.0− π2

(
1

4ε
+ ln

µ

m

)
,

sNA(µ)= −4.79− π2

2

(
1

4ε
+ ln

µ

m

)
,

sL = 41

36
− 13

144
π2 − 2

3
ln2− 7

24
ζ3 
 −0.565,

(4)sH = 0.22.
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In the above equationµ is the factorization scale that
separates relativistic and non-relativistic momenta in
the NRQCD framework.

The matching coefficient for the vector current,
relevant for the decayJ/ψ → e+e−, can be found in
Eqs. (10)–(15) of Ref. [9] (see also [10]). Divergences
in the matching coefficients of the two currents are
different. In theMS renormalization scheme the ratio
of the decay widths is (we useCF = 4

3, CA = 3,
TR = 1

2, NL = 3,NH = 1)

R≡ Γ (J/ψ → e+e−)
Γ (ηc → γ γ )

= 1

3Q2
c

[
1− 0.62αs(m)+ α2

s

(
2.64− 2.37 ln

m

µ

)]

(5)×
(
ψ2
ψ(0)

ψ2
η (0)

)
µ

.

Obviously, the wave functions at the origin become
renormalization scheme and factorization scale depen-
dent and Eq. (5) indicates that they must be different
for J/ψ andηc . Since they can no longer be elimi-
nated in the ratio of the decay widths, one looses pre-
dictive power. Note also that Eq. (5) involves theMS
renormalized wave functions, which cannot be directly
determined even on the lattice. Let us stress that to
reach these conclusions one only has to integrate out
relativistic degrees of freedom. No assumption about
the dynamics of the bound state (besides its quantum
numbers) is necessary.

To cancel the divergences of the Wilson coefficients
we have to calculate certain soft effects. For charmo-
nium, which is not a Coulombic bound state, a com-
pletely “honest” calculation is not possible. However,
we will show that with plausible assumptions one can
determine the soft contribution to the ratio of two de-
cay widths using experimental data one+e− → cc̄.
Two types of relativistic corrections have to be con-
sidered: to the amplitude and to the wave function at
the origin. It turns out that the former are the same for
J/ψ → e+e− andηc → γ γ and cancel in the ratio
(for this reason they were not included in Eq. (5)). As
for the latter, only spin-dependent effects can survive
in the ratio. We assume that the only operator in the
non-relativistic Hamiltonian responsible for the hyper-

fine splitting is

(6)δH = −παsCF
4dm2 [σi, σj ][Σi,Σj ]δ(�r),

where the Pauli matricesσ andΣ act, respectively,
on spins of the charm quark and of the antiquark.
This operator follows from a one-gluon exchange
diagram and its QED analog is the hyperfine splitting
operator in the Breit Hamiltonian. With this operator
we compute the wave functions at the origin,

ψ2
ψ(0)= 1+ · · · + 2CFαsπ

m2

(
2

3
+ 10

9
ε

)
G̃(0,0),

(7)ψ2
η (0)= 1+ · · · − 2CFαsπ

m2
(2+ 6ε)G̃(0,0),

whereG̃(0,0) is the reduced Green’s function of the
non-relativisticcc̄ state, computed at the ground state
energyE1 (at this level we neglect the difference
betweenJ/ψ andηc masses),

(8)G̃(0,0)=
∑
n

′ |ψn(0)|2
E1 −En ,

and the prime means that the sum does not include the
ground stateJ/ψ (n= 1). The dots in Eq. (7) indicate
that spin-independent corrections are also present but
they drop out in the ratio of the decay widths.

The Green’s function at the origin is divergent and
it is precisely the divergence needed to cancel that
in the ratio of the two hard Wilson coefficients. To
illustrate this, we first consider an academic example
of ultra-heavy quarkonia, where binding effects can
be computed in the Coulomb approximation. In this
case, the Green’s function at the origiñG(0,0) can be
extracted from Ref. [11] and reads

(9)G̃(0,0)= −CFαsm
2

4π

(
1

4ε
+ 3

2
− ln

mαsCF

µ

)
.

We now substitute this result in to Eq. (7) and obtain
the ratio of the decay widths of the spin-triplet and
spin-singlet ultra-heavy quarkonia,

ΓQ�Q→e+e−

ΓQ�Q→γ γ

= 1

3Q2
c

[
1− 0.62as

(10)+ a2
s (2.37 lnas − 1.8)

]
,

where as = αs(mQ). The coefficient of thea2
s lnas

term, 4C2
F /3 
 2.37, agrees with [12].
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We now turn to the more difficult case of charmo-
nium, where one can not use the Coulomb approxi-
mation for the low energy dynamics. We will still use
the hyperfine splitting operator, Eq. (6), to describe
the hyperfine splitting; for this reason Eqs. (7) are still
valid. The challenge is to compute the Green’s func-
tion G̃(0,0) in dimensional regularization without in-
voking the Coulomb approximation.

We will perform such computation in two differ-
ent ways dealing either with the observed cross sec-
tion e+e− → cc̄ or with a simple potential model con-
structed to describe charmonium. It will be clear that
both calculations could be improved. Here, our pri-
mary goals are to demonstrate how they can be carried
out using simple approximations and to give reason-
able estimates of the second order corrections to the
ratio of the two decay widths.

We first describe the calculation which utilizes
experimental data one+e− → cc̄. To this end, we
separate the Green’s function into a contribution of
charmonium resonances and that of the continuum,

(11)G̃(0,0)=Gres(0,0)+Gcont
E1
(0,0).

The former is finite and can be computed using
available data on the spectrum ande+e− decay widths
of the spin 1 resonances,

G̃res(0,0)= 1

16Q2
cπα

2

∑
n

′M2
nΓψ(n)→e+e−

M1 −Mn
(12)≈ −0.073 GeV2,

where we have employed the mass and width informa-
tion on the first sixψ resonances [13].

The continuum contribution is, on the other hand,
divergent. To determine this divergence using as little
input information as possible, we proceed in the
following way. We consider continuum contribution as
a function ofE,

(13)G̃cont
E (0,0)=

∑′

En>0

|ψn(0)|2
E −En ,

and take the derivative with respect toE. We then
solve the resulting differential equation and obtain

(14)G̃cont
E1
(0,0)= G̃cont

Ei
+

E1∫
Ei

dE
d

dE
G̃cont
E (0,0).

We can further use the relation betweenRc =
σ(e+e− → cc̄)/σ (e+e− → µ+µ−) and the Green’s
functionsG̃(0,0) to relate Eq. (14) to experimental
data. We obtain

(15)G̃cont
E1
(0,0)= G̃cont

Ei
− m2

8π2

∞∫
0

dEK(E)Rc(E),

where the functionK(E) is given by

(16)K(E)= E1 −Ei
(E −E1)(E −Ei) .

The divergence inG̃(0,0) now resides inG̃cont
Ei

and the integral in Eq. (15) is finite. For the initial
condition G̃cont

Ei
we can choose a “deep Euclidean”

pointEi → −∞, where perturbative calculations are
justified and wherẽGcont

Ei
can be determined with, in

principle, arbitrary precision. We therefore see that the
divergent part of the Green’s function can be extracted
from perturbative calculations and the finite part can
be obtained fromRc (other options are to compute
the finite part using a potential model for quarkonium
or NRQCD on the lattice). This separation solves the
problem in principle and provides a way to determine
theMS charmonium wave functions without assuming
that the bound state is Coulombic; the only true model-
dependence remaining in this calculation is the form
of the operator responsible for the hyperfine splitting,
Eq. (6).

The data onRc is not quite precise yet. Its high
energy asymptotics (in the non-relativistic sense) is
fixed since the dependence on the initial energyEi in
Eq. (15) should cancel. We therefore write

(17)Rc(E)= 2

(√
E

m
+ πCFαs

2

)
+Rnpt

c (E).

ForRnpt
c (E) we choose:

(18)R
npt
c (E)= −πCFαsθ(E0 −E),

with E0 = √
s0 − 2m and

√
s0 = 4 GeV. This ansatz

is motivated by the data onRc in [14] where one sees
that there is no need for a large second term in Eq. (17)
below 4 GeV. On the other hand we do need this term
at higher energies, since otherwise “perturbative” and
“non-perturbative” expressions do not match.
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We obtain

G̃cont
E1
(0,0)

(19)

= m2

4π

[√−E1

m
−CFαs

(
1

4ε
− ln

√
−4mE1

µ2

+ 1

2
− 1

2
ln
E0 −E1

E1

)]
.

The soft contributions to the decay width ratio are
obtained by employing Eqs. (12) and (19) in Eq. (7).
Before combining them with the hard contributions in
(5), we note that the BLM effects [15] were computed
in Ref. [16] for the rates ofJ/ψ → e+e− and
ηc → γ γ . These corrections turn out to have different
signs and are enhanced in the ratio. For this reason,
we decided to eliminate them by choosing different
scales for the strong coupling constant in the Wilson
coefficients forJ/ψ → e+e− andηc → γ γ . We then
find
ΓJ/ψ→e+e−

Γηc→γ γ

(20)

= 1

3Q2
c

[
1− 1.7aS=1 + 1.1aS=0

+α2
s

(
1.19 ln

E1 −E0

m
+ 3.66

+ 1.8

√
−E1

mα2
s

− 1.64

αsm2

)]
,

whereaS=0 = αs(1.95m) andaS=1 = αs(0.63m) and
the charm mass should be expressed in GeV. The scale
of the coupling constant in the second order correction
is not specified; we will useαs = 0.3 for the estimates.
The inverse power ofαs in the square brackets arises
because we have used experimental data to compute
the contribution of the resonances tõG(0,0) and also
used the energy of the ground stateE1 =MJ/ψ − 2m
to estimate the continuum contribution. This spoils the
homogeneity inαs .

Employing, for the sake of illustration,αs = 0.3,
αs(0.63m)= 0.35 andαs(1.95m)= 0.26 in Eq. (20),
one finds

(21)

ΓJ/ψ→e+e−

Γηc→γ γ

= 1

3Q2
c

[
1− 0.32+ f2(m)+O

(
α3
s

)]
,

where the three terms in the brackets are the tree level,
theO(αs) and theO(α2

s ) corrections, respectively. As

Fig. 2. The second order correction in Eq. (21) as a function of the
charm quark mass.

shown in Fig. 2, the second order correction depends
strongly on the value of the charm quark mass. It is
large and very sensitive to the form ofRnpt

c assumed
in Eq. (17). For example, if we use the Coulomb
approximation to estimate the value of the wave
function in the continuum, we obtain a negative result
for the second order correction. Within our model for
the continuum, we estimate

(22)

ΓJ/ψ→e+e−

Γηc→γ γ

= 1

3Q2
c

[
1− 0.32+ 0.3± 0.1+O

(
α3
s

)]
.

As we mentioned earlier, another possibility to
obtain the Green’s function necessary to compute the
ratio of two decay widths is to use either QCD on
the lattice or potential models. Here we would like to
illustrate this point by considering a simple potential
model. This will allow us to check that the estimate,
Eq. (22), is reasonable. Although the potential model
below is really simple, the calculation can be repeated
with more sophisticated potentials, provided that,
at short distances, these potentials match the QCD
analog of the Coulomb potential.

To describe charmonium, we will use the Schrödin-
ger equation with the potential

(23)V (r)= −CFαs
r

+ br + V0,

whereb = 0.18 GeV2 andV0 is adjusted to give the
correct mass of the 1S state (J/ψ) for given values of
m andαs .

To compute the Green’s functionG(0,0) we solve
the Schrödinger equation following the treatment in
[17] and obtain the following representation for the
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full (including the ground state) Green’s function:

(24)

GE(0,0)= lim
r→0

− m

4π

[
1

r
−CFαsm ln(r)+B(E)

]
,

where the functionB(E) is derived from the larger
limit of the ratio of two solutions of the Schrödinger
equation with prescribed behavior at the origin (see
[17]). In order to obtain the Green’s function in
dimensional regularization, which is needed for our
purposes, we write

GE(0,0)≡GE −GE1 +GE1

(25)= − m

4π
B(E)+ m

4π
B(E1)+GE1.

We then take the limitE1 → −∞, perturbatively
compute the Green’s functionGE1 and derive

lim
E1→−∞

m

4π
B(E1)+GE1

(26)= −m
2CFαs

4π

(
1

4ε
− ln

m

µ

)
+ c,

wherec is

c= lim
E1→−∞

[
m

4π
B(E1)+ m2

4π

√−E1

m

− m2CFαs

4π

(
− ln

√−4E1

m
+ 1

2

)]
(27)= −m

2CFαs

8π

(
−1+ 2γE + 2 lnm

)
,

andγE is the Euler constant.
In order to compute the reduced Green’s function

G̃(0,0) Eq. (8), we find the first eigenvalue numeri-
cally and remove the pole fromB(E).

We have computed the ratio of two decay widths for
different values ofαs and the mass of the charm quark.
We obtain

ΓJ/ψ→e+e−

Γηc→γ γ

(28)= 1

3Q2
c

[
1− 0.32+ 0.20± 0.05+O

(
α3
s

)]
.

We see that the result of the potential model calcula-
tion is relatively close to the result of Eq. (22). The
advantage of the potential model calculation is its fair
stability against variations inαs andm. We take the
result in Eq. (28) as our final estimate.

In spite of the fact that the model leading to Eq. (28)
is quite simple, we believe that Eq. (28) is important
in that it clearly shows the magnitude of second
order QCD corrections one might expect for such
observables.

It is interesting to note that there is a strong can-
cellation between the first and second order effects
in Eqs. (22), (28). Neglecting all the radiative cor-
rections and usingΓψ→e+e− = 5.26 keV, we de-
rive Γηc→γ γ = 7.01 keV, rather close to the central
value reported by CLEO Collaboration [5]Γ exp

ηc→γ γ =
[7.06± 0.8(stat)± 0.4(sys)± 2.3(br)] keV.

We conclude that Eqs. (20), (21), (28), the principal
results of this Letter, illustrate an unexpected problem
in the theory of heavy quarkonia at the two-loop level.
In recent years we have learned how to integrate
out relativistic degrees of freedom efficiently and
it seemed as if we could improve the accuracy of
our predictions. This turns out not to be the case.
The reason is that atO(α2

s ) the soft and relativistic
effects do not decouple completely, as it happens at
O(αs), and therefore, in general, one cannot avoid
non-perturbative effects by taking ratios of different
observables. We have shown how, in principle, the soft
contribution can be estimated using experimental data
or potential models.

With the QCD corrections as big as in Eq. (28),
the determination ofαs(mc) from charmonia decay
rates, as, e.g., in Ref. [5], does not look trustworthy,
regardless of the fact that the numerical values ofαs
turn out to be in a theoretically sensible range. On the
other hand, it is interesting to point out that the ratio
of the decay rates ofηc → γ γ to ηc → gg, actually
used in Ref. [5] for determination ofαs , is free from
the soft effects we discussed in this Letter, since it
refers to the same initial state. It would therefore be
interesting to compute second order QCD corrections
to this ratio since in this case the hard corrections alone
might provide an unambiguous answer.

Among various charmonium decays, onlyJ/ψ →
e+e− andηc → γ γ have now been studied toO(α2

s ).
Clearly these are the two simplest channels since they
do not involve any complications related to the dynam-
ics of hadrons in the final state. If the understanding of
even those simplest decays encounters such difficul-
ties, one should exercise great care when extracting
physical information from more complicated charmo-
nium decays.
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