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Despite fluctuations in dietary iron intake and intermittent losses through bleeding, the plasma iron concen-
trations in humans remain stable at 10–30 μM. While most of the iron entering blood plasma comes from
recycling, appropriate amount of iron is absorbed from the diet to compensate for losses and maintain
nontoxic amounts in stores. Plasma iron concentration and iron distribution are similarly regulated in
laboratory rodents. The hepatic peptide hepcidin was identified as the systemic iron-regulatory hormone.
In the efferent arc, hepcidin regulates intestinal iron absorption, plasma iron concentrations, and tissue
iron distribution by inducing degradation of its receptor, the cellular iron exporter ferroportin. Ferroportin
exports iron into plasma from absorptive enterocytes, from macrophages that recycle the iron of senescent
erythrocytes, and from hepatocytes that store iron. In the more complex and less well understood afferent
arc, hepatic hepcidin synthesis is transcriptionally regulated by extracellular and intracellular iron concentra-
tions through a molecular complex of bone morphogenetic protein receptors and their iron-specific ligands,
modulators and iron sensors. Through as yet undefined pathways, hepcidin is also homeostatically regulated
by the iron requirements of erythroid precursors for hemoglobin synthesis. In accordance with the role of
hepcidin-mediated iron redistribution in host defense, hepcidin production is regulated by inflammation as
well. Increased hepcidin concentrations in plasma are pathogenic in iron-restrictive anemias including
anemias associated with inflammation, chronic kidney disease and some cancers. Hepcidin deficiency causes
iron overload in hereditary hemochromatosis and ineffective erythropoiesis. Hepcidin, ferroportin and their
regulators represent potential targets for the diagnosis and treatment of iron disorders and anemias. This
article is part of a Special Issue entitled: Cell Biology of Metals.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade, molecular understanding of systemic iron regula-
tion greatly expanded on the physiological analysis of these processes
worked out in the preceding fifty years. This review is focused on the
iron regulatory hormone hepcidin and its role in systemic iron homeosta-
sis. For a detailed discussion of the related subjects of iron transport
through membranes, intracellular iron transport and the connection
between iron and erythropoiesis the reader is referred to many excellent
reviews dedicated to those areas. Although the primary emphasis is on
molecular mechanisms, we could not ignore the clinical roots of this
work and the inspiration provided by its diagnostic and therapeutic
applications. The references are selective rather than encyclopedic, and
reflective of the authors' view of this area.
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2. Iron homeostasis

2.1. Iron is conserved, recycled and held in storage

In response to the poor bioavailability of iron in many environments,
humans and animals have evolved highly efficient mechanisms for iron
conservation [1]. The daily losses of iron, 1–2 mg in adults, represent
less than 0.1% of the 3–4 g of total iron in the human body, and must
be replaced from dietary sources to maintain iron balance. Daily dietary
iron requirements are about 8 mg for adult men and 18 mg for adult
women with menstrual iron losses [2]. Nonmenstrual iron losses occur
predominantly through desquamation of epithelial cells in the intestine
and the skin, and throughminor bleeding. Importantly, the losses of iron
cannot substantially increase through physiologic mechanisms, even if
iron intake and stores become excessive. Most of the iron in the body
is in hemoglobin of red cells which contain about 1 mg of iron per mil-
liliter of erythrocytes, or about 2–3 g of iron total. In contrast, blood plas-
ma contains only 2–3 mg of iron, bound to transferrin, the plasma iron
carrier that is the exclusive source of iron for erythropoiesis. The life
span of human erythrocytes is about 120 days, so every day the oldest
1/120 of erythrocytes are degraded by macrophages and their iron con-
tent is returned to plasma transferrin. The recycling of erythrocytes gen-
erates a stream of 20–25 mg of iron a day, causing plasma iron to turn
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over every 2 h or so. The iron-transferrin is mostly destined for erythro-
cyte production in the bone marrow. Other cells contain and require
much less iron, and some are able to utilize non-transferrin bound
iron as well. In the average adult male, about 1 g of iron is held in stor-
age mostly in the hepatocytes and macrophages in the liver and red
pulp macrophages in the spleen but the amount stored is much lower
in most women of reproductive age, in part due to blood losses from
menstruation and parturition. Hepatocyte and macrophage iron is
stored in cytoplasmic ferritin and is readily mobilized during period of
high iron demand.

2.2. Species differences in iron metabolism

Other vertebrate species have similar distribution of body iron, but
the relative proportion of daily iron absorption, recycling and losses
may differ from those observed in humans. These variations are of
particular importance in species used as models for studying iron
metabolism. In laboratory mice, for example, dietary iron absorption
and losses seem to be proportionally far greater than those in
humans. The average life span of mouse erythrocytes is close to
40 days [3] and the adult mouse has about 0.6–1 ml of packed
erythrocytes (assuming blood volume of 7% of 20–30 g adult mouse
weight and hematocrit of 45–50% [4]) or about 0.6–1 mg of iron in
hemoglobin. Each day about 15–25 μg of iron is recycled and used
for the production of new RBCs. Regarding the daily losses, when
mice are placed on iron-deficient diet (~4 ppm Fe) for 2 weeks, at
least 200–250 μg Fe is depleted from their iron stores [5], indicating
that they normally lose ~15–20 μg Fe per day, i.e. an amount similar
to their daily erythropoiesis needs. Thus on an iron-sufficient diet,
similarly high amount of iron will be absorbed each day. In contrast,
daily iron absorption and losses in humans represent 5–10% of the
iron recycling amount. Furthermore, standard mouse chow has high
iron content (about 350 ppm or about ten times the daily dietary
requirement [6]), and leads to significant iron loading even in healthy
mice, potentially confounding studies of iron regulation. Therefore,
studies in animal models of iron homeostasis and its disorders need to
consider the species differences in iron stores and fluxes, and take into
account the disproportionately strong effect of diet on iron homeostasis
in mice. The iron turnover parameters in mice as compared to humans
are summarized in Table 1.

2.3. Consequences of impaired iron homeostasis

Both iron deficiency and iron excess cause cellular and organ
dysfunction. Low plasma iron concentrations (hypoferremia) restrict
iron uptake by erythrocyte precursors, limiting hemoglobin synthesis
and causing anemia. In nonerythroid cell types, the synthesis of other
ferroproteins may be compromised affecting muscle performance and
the maintenance of epithelia undergoing rapid turnover. At the other
extreme, high plasma iron concentrations that exceed the iron-
binding capacity of transferrin generate complexes with other plasma
proteins as well as with organic anions such as citrate. The non-
Table 1
Comparative iron turnover parameters in adult humans vs. mice.

Approximate adult
normal values

Human Mouse

Erythrocyte lifespan 120 d 40 d
Total erythrocyte iron 2000–3000 mg 0.6–1 mg
Daily erythrocyte iron
turnover (DEIT)

17–25 mg 15–25 μg

Daily iron absorption 1–2 mg 5–10% of DEIT 15–20 μg ~100% of DEIT
Daily dietary Fe
requirement

8–18 mg 50–100% of DEIT 140 μg (35 ppm×4 g) 5–10×
DEIT

Normal dietary
iron source

Heme and nonheme
omnivore

Nonheme herbivore
transferrin bound iron (NTBI) is avidly taken up by hepatocytes and
other parenchymal cells by as yet poorly understood pathways. In
humans, rapid and excessive accumulation of intracellular iron causes
cell and tissue damage, presumably by iron-catalyzed generation of
reactive oxygen species, with specific tissue toxicities dependent on
both the rate and the extent of iron accumulation. Cardiac and
endocrine tissue damage is a characteristic of rapid iron accumulation
while slower iron accumulation predominantly targets hepatocytes.
Laboratory rodent models, with the exception of the Mongolian gerbil
[7], appear resistant to iron toxicity. The molecular basis of these
differential toxicities is not known.

2.4. Iron regulation and host defense

Iron is essential for nearly all microbes, and microbial pathogens
utilize multiple and often complex iron uptake mechanisms to obtain
it. Disruption of these uptakemechanisms attenuatesmicrobial viability
and pathogenicity [8]. Multicellular hosts limit iron availability to
microbes by coupling it to protein carriers (e.g. ferritin, transferrin,
lactoferrin, ovotransferrin) or utilizing it in ferroproteins, all forms of
iron not readily accessible to most invading microbes. Further targeting
microbial vulnerability to iron deprivation, the host rapidly responds to
microbial invasion by decreasing total iron concentration in extracellular
fluids, presumably to slow down microbial proliferation. The response
appears to be evolutionarily ancient as infection-related mechanisms of
iron sequestration have been described not only in humans, mice and
other vertebrates but also in invertebrates including echinoderms [9].
As will become clear, the molecular mechanisms of these responses are
closely tied to homeostatic iron regulation.

3. Hepcidin and its receptor ferroportin control systemic iron
homeostasis

3.1. Hepcidin

Hepcidin [10,11] is a 25 amino acid peptide hormone that inhibits
iron entry into the plasma compartment from the three main sources
of iron: dietary absorption in the duodenum, the release of recycled
iron from macrophages and the release of stored iron from hepato-
cytes (Fig. 1). Multiple signals reflecting systemic iron stores and
concentrations, erythropoietic activity and host defense converge to
regulate hepcidin production and thereby affect iron homeostasis.
Hepatocytes have evolved as the predominant producers of the
iron-regulatory hormone hepcidin, perhaps because of their location
astride the portal venous system that delivers iron absorbed in the in-
testine, because of their involvement in iron storage, or because of
their proximity to Kupffer cells that sense pathogens and recycle
erythrocytes. The production of hepcidin is regulated by iron, so
that more hepcidin is produced by hepatocytes when iron is
abundant, limiting further iron absorption and release from stores.
When iron is deficient, hepatocytes produce less or no hepcidin,
allowing more iron to enter plasma. Both diferric plasma transferrin
and stored iron in hepatocytes can stimulate hepcidin synthesis, by
distinct mechanisms [5].

In addition to iron, hepcidin is homeostatically regulated by the
erythropoietic requirement for iron [12]. During active erythropoiesis
hepcidin production is suppressed, making more iron available for
hemoglobin synthesis. The nature of the suppressive signal is unknown
but there is evidence that it could be a circulating factor produced by
erythroid precursors in the bone marrow (the erythroid factor).

Apart from hepatocytes which are the main source of circulating
hepcidin, other cell types such as macrophages [13] and adipocytes
[14] express hepcidin mRNA, but at a much lower level. The relevance
of the extrahepatic hepcidin production is still unclear, but it could
have a role in local regulation of iron fluxes.
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Fig. 1. Hepcidin has a central role in maintenance of iron homeostasis. Hepcidin synthesis is regulated at the transcriptional level by multiple stimuli. Intracellular and extracellular
iron concentrations increase hepcidin transcription, as does inflammation, whereas increased erythropoietic activity suppresses hepcidin production. In turn, hepcidin regulates
plasma iron concentrations by controlling ferroportin concentrations on iron-exporting cells including duodenal enterocytes, recycling macrophages of the spleen and liver, and
hepatocytes.
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Hepcidin has been found only in vertebrates, and may be missing
in avians [15]. It is likely that invertebrates and avians have alterna-
tive regulatory mechanisms that control iron absorption and systemic
iron distribution but these have not yet been identified.

3.2. Iron delivery to plasma is dependent on the cellular iron exporter
ferroportin

Iron that is absorbed from the diet by intestinal enterocytes, or
recycled by macrophages or stored in hepatocytes must ultimately
transit from the cytoplasm of the cells, across their cell membrane,
to the plasma iron carrier protein, transferrin. Although it is not yet
known how iron reaches the cell membrane before export, it appears
that elemental iron can only exit from cells via the iron exporter
ferroportin [16], a multipass transmembrane protein. Ferroportin
does not bear any significant structural similarities to other
membrane transport proteins, but is highly conserved and has been
identified in mammals, other vertebrates, as well as in species as
distant as Caenorhabditis elegans and Arabidopsis thaliana. Ferroportin
topology and mechanism of iron transport are far from understood,
and are important unresolved questions in iron biology. In humans,
ferroportin is abundant in duodenal enterocytes, splenic and hepatic
macrophages, and to a lesser extent in hepatocytes, all cells known
to export iron. Ferroportin is also found in the lung [17,18], in renal
tubules [19] and in erythrocyte precursors in the bone marrow [20]
where its function is less obvious. Ferroportin expression on most
other cell types is minimal and they do not appreciably export iron.
With the exception of cells that are shed from the body, the iron
from cells lacking ferroportin is probably recovered after they under-
go cell death and are recycled by macrophages.

3.3. Hepcidin-induced loss of ferroportin decreases iron transfer to
plasma and causes hypoferremia

A single injection of synthetic hepcidin into mice exerts a prolonged
hypoferremic effect lasting up to 48 h, despite the clearance of hepcidin
from circulation within a few hours [21]. Experiments with cells
engineered to express ferroportin [22], and primary cells or cell lines
naturally expressing ferroportin [23] show that hepcidin inhibits
ferroportin-dependent iron efflux. In vivo, hepcidin-induced block of
iron efflux frommacrophages, hepatocytes and enterocytes into plasma
explains how hepcidin causes hypoferremia, as the small plasma iron
pool is rapidly depleted by the consumption of iron, predominantly
for hemoglobin synthesis by erythrocyte precursors.

Hepcidin inhibits iron efflux by directly binding to ferroportin [22],
presumably inducing a conformational change, and triggering the
endocytosis of bothmolecules, with consequent lysosomal degradation.
The prolonged effect of hepcidin may reflect the time required to
resynthesize ferroportin and deliver it to the cell membranes.

Hepcidin binding to ferroportin is dependent on the extracellular
loop of ferroportin containing the amino acid cysteine (C) in position
326. Cells expressing the C326Smutant ferroportin export iron normally
but fail to bind radioactive hepcidin and continue exporting iron in the
presence of hepcidin [24]. Affected members of a family carrying a
heterozygous C326S mutation developed severe iron overload [25],
indicating that the hepcidin-resistant ferroportin acts dominantly.
Several other natural autosomal dominant mutations were described
that allow hepcidin binding but appear to interfere with internalization
of the ligand–receptor complex resulting in similar hepcidin-resistant
phenotype. The specifics of the hepcidin-induced conformational
change and the molecular pathways mediating the internalization of
ferroportin are an area of active study.

In the duodenum, ferroportin is located on the basolateral
membrane of enterocytes but dietary iron absorption is dependent
on iron uptake on their apical surfaces. Indeed, the expression of the
apical iron transporter DMT1 (divalent metal transporter 1) is highly
regulated by systemic iron status [26]. To coordinate apical absorp-
tion of iron with the basolateral transfer of iron to plasma, the effect
of hepcidin on basolateral ferroportin must be communicated to the
apical iron absorption mechanisms to decrease apical uptake. Three
potential mechanisms may be involved: in the first, cellular iron
accumulation, caused by diminished iron export after hepcidin
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binding to ferroportin, inactivates iron-regulatory proteins (IRP-1 and
IRP-2) that bind the 3′ iron-regulatory element (IRE) of DMT1 mRNA,
thereby destabilizing the mRNA and decreasing the synthesis of api-
cal DMT1 [26]. In the second mechanism, cellular iron, a co-factor of
oxygen-sensing prolyl hydroxylases, induces the hydroxylation of
hypoxia-inducible factor HIF-2α leading to its degradation, and re-
moving its stimulatory effect on the transcription of DMT-1 [27].
The third mechanism involves the activation of ubiquitin ligases trig-
gered by the binding of hepcidin to ferroportin, the diffusion of the
ubiquitin ligases in the cytoplasm, and the transubiqitination and
proteasomal degradation of DMT1 and perhaps other apical trans-
porters [28]. The relative role of these or other mechanisms in the
regulation of apical ferrous or heme iron transport by hepcidin
remains to be elucidated.
3.4. Hepcidin deficiency increases iron transfer to plasma, causing systemic
iron overload

Whenhepcidin production is inadequate due to autosomal recessive
mutations in the hepcidin gene or genes encoding hepcidin regulators
[29–31], the hemochromatosis gene (HFE, most commonly mutated in
hereditary hemochromatosis in populations of European ancestry),
transferrin receptor 2 (TfR2) or hemojuvelin, the iron exporter
ferroportin is overexpressed on the basolateralmembranes of duodenal
enterocytes and increases dietary iron absorption. Macrophages also
overexpress cell membrane ferroportin and avidly export iron, leading
to relative depletion of macrophage intracellular iron. Greater influx
of iron into plasma raises plasma iron concentration, saturating
transferrin with iron, and generating NTBI. NTBI is rapidly taken up by
hepatocytes, cardiac myocytes and endocrine cells causing tissue
damage and organ failure. Considering that hepatocytes do express
ferroportin, hepcidin deficiency would be expected to increase also
export of hepatocyte iron. Paradoxically, the liver is the primary organ
affected by chronic iron overload. This is likely a consequence of avid
uptake of NTBI by hepatocytes and their more limited capacity for
iron export, resulting in the net accumulation of excess iron.
3.5. Structural determinants of the hepcidin–ferroportin interaction

Hepcidin is a bent β-hairpin stabilized by four disulfide bonds [11].
The loosely structured N-terminus appears essential for activity, as the
removal of 5 N-terminal amino acids essentially ablates the bioactivity
of the peptide,measured as the ability to induce ferroportin endocytosis
[32]. The appearance of N-terminally truncated 20-amino acid form in
human plasma and urine suggests that this inactivation pathway may
be biologically relevant. More detailed hepcidin mutagenesis studies
indicate that the two phenylalanine side chains, F4 and F9, are also
important for bioactivity [33]. In fact, the first nine N-terminal amino
acids of hepcidin are sufficient to cause ferroportin internalization
[33]. With some modifications, this minihepcidin can even match or
exceed the potency of native hepcidin [33].

Mutagenesis of ferroportin confirmed the importance of C326, Y333
and F324 for hepcidin binding. Modeling of the hepcidin–ferroportin
interaction indicated that F4-Y333 and F9-F324 may make important
contacts, and that C326 is involved in a thiol-dependent interaction
with hepcidin, perhaps involving the disulfide framework of hepcidin
[33]. It was previously reported that a 20 amino acid peptide based on
the ferroportin segment involved in hepcidin binding could mimic the
interaction of the whole ferroportin molecule with its ligand [34].
However, the interaction of this putative “hepcidin-binding domain
(HBD) peptide”with hepcidin was entirely nonspecific [33] suggesting
that hepcidin-binding loop on ferroportin must have a specific confor-
mation for the binding to occur, or that additional areas of ferroportin
may interact with hepcidin and stabilize the binding.
4. Hepcidin regulation

4.1. Hepcidin production by hepatocytes is transcriptionally regulated by
iron

Like other hormones, hepcidin is feedback-regulated by the
substance whose concentration it controls, iron. In principle, the
feedback requiresmolecules that function as intracellular or extracellu-
lar iron sensors coupled to one or more transduction pathways that
regulate hepcidin synthesis or secretion by hepatocytes. Genetic and
biochemical evidence suggests that the two transferrin receptors, TfR1
and TfR2, together with the membrane protein HFE that interacts
with both receptors, may serve the function of holotransferrin (diferric
transferrin) sensors [35,36]. HFE is structurally related to MHC class I
molecules. Its binding to TfR1 is competitively inhibited by holotrans-
ferrin. With increasing concentrations of holotransferrin, HFE is dis-
placed from the complex with TfR1, as the binding site of HFE
overlaps with that of holotransferrin. Free HFE interacts with TfR2,
which itself is stabilized by holotransferrin binding. The FeTf/HFE/TfR2
complex then stimulates hepcidin expression through an incompletely
understood pathway. It has beenproposed that the complex potentiates
BMP and/or MAPK pathway signaling [36,37] but further work is
needed to delineate the molecular interactions involved.

4.2. The BMP pathway regulates hepcidin transcription

The BMP pathway with its canonical signaling system utilizing
cytoplasmic Smads is the key pathway for the regulation of hepcidin
transcription [38]. The BMP pathway regulates many other processes,
including embryonicmorphogenesis, bone development and remodeling
and tissue repair. In the liver, this pathway appears to have been
specifically adapted for iron regulation through a combination of factors,
including a membrane-anchored coreceptor hemojuvelin [38,39] and, in
mice, an iron-specific ligand BMP6 [40,41]. Hemojuvelin is not required
for other, iron-unrelated BMP functions, and the nonredundant function
of BMP6 in bone development appears to be minor [42]. In contrast,
BMP6 and hemojuvelin are essential for normal iron homeostasis in
mice as their loss [40,41,43,44] ablates the hepcidin response to acute
iron loading and impairs the response to chronic iron loading [5,45]. In
humans, hemojuvelin mutations result in severe hepcidin deficiency
and have been shown to be the main cause of juvenile hemochromatosis
[39] but the lack of similarly pathogenic humanmutations in BMP6 raises
the question of species differences in thesemechanisms. BMPs other than
BMP6, including BMP2, 4, 5, 7, 9, are also able to induce hepcidin
expression in vitro [46], but their physiological role in iron regulation
remains to be determined. Although the cellular source of BMPs that
affect hepatocyte hepcidin production is not known with certainty,
analysis of BMP mRNAs in murine liver cell subpopulations suggests
that sinusoidal epithelial cells and stellate cells in the liver could be
significant producers [47].

BMP receptors are tetramers of serine/threonine kinase receptors,
usually with two type I and two type II subunits. Recent data indicate
that the BMP receptor involved in iron regulation utilizes both Alk2
and Alk3 as type I subunits [46,48], and ActRIIA or possibly BMPRII
as type II subunits [46]. It is not clear whether certain combinations of
subunits fulfill specialized functions or act redundantly. Downstream,
liver-specific disruption of Smad4 not only ablated hepcidin production
[49] but also induced hepatic inflammation and premature mortality,
presumably through the loss of anti-inflammatory activity of TGF-β
which also depends on Smad4 signaling.

It needs to be clarified how BMP receptors and hemojuvelin, neither
known to sense iron directly, interact with iron-sensing molecules. Two
other membrane proteins, the receptor neogenin and a serine protease,
matriptase-2 (MT-2, also called transmembrane protease serine 6 or
TMPRSS6) also influence hepcidin synthesis, likely by modulating
hemojuvelin concentration on the cell membrane [50,51]. The
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concentration of MT-2 on hepatocytes is acutely increased by iron defi-
ciency [47] and the correspondingmRNA slowly inducedby ironoverload
[52] but it is not yet clear how much each of these apparently
contradictory responses contribute to regulation of hepcidin peptide
concentration.

Along with stimulation of hepcidin synthesis by holotransferrin,
hepatocytes can also increase hepcidin synthesis in response to stored
intracellular iron. The relevant intracellular sensors and mechanisms are
not known, but iron-dependent ubiquitin ligases [53] and prolyl
hydroxylases [54] are candidates because of their dependence on iron
and their association with hypoxia-related regulatory processes. In
contrast, iron regulatory proteins IRP1 and IRP2 involved inposttranscrip-
tional regulation of many iron- and erythrocyte-related proteins do not
directly regulate hepcidin [55]. Further downstream, BMP6 mRNA was
shown to increase in the liver ofmice subjected to iron loading suggesting
that BMP6 concentrations could reflect the hepatocyte intracellular iron
levels [56]. However, hepcidin increase after chronic iron loading is still
observed in BMP6-deficient mice [5] so other pathways for hepcidin
stimulation by intracellular ironmust exist. Fig. 2 summarizes our current
understanding of hepcidin regulation by iron.
4.3. Hepcidin synthesis by hepatocytes is suppressed by erythropoietic
activity

Erythropoietic precursors in the bone marrow are the main
consumers of iron from holotransferrin, and erythropoiesis is wholly
dependent on this source of iron, as illustrated by the profound effect
of transferrin deficiency on erythropoiesis, most recently reviewed by
Bartnikas et al. [57]. Appropriately, expansion of a precursor popula-
tion in response to bleeding or the administration of erythropoietin
suppresses hepcidin, possibly through a mediator released by the
bone marrow which exerts its effect on hepatocytes [12]. The
In
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suppressive effect of erythropoiesis on hepcidin is particularly prom-
inent in diseases with ineffective erythropoiesis where erythrocyte
precursors massively expand but mostly undergo apoptosis rather
than mature into erythrocytes. This mechanism is responsible for
low hepcidin [58,59] in β-thalassemia. The BMP family member
growth differentiation factor GDF-15 [60], released by erythroid
precursors and other cell types during cellular stress or apoptosis,
may contribute to the pathological suppression of hepcidin seen in
β-thalassemia and other anemias with expanded but ineffective
erythropoiesis [61]. However, GDF-15 is not responsible for the
physiologic hepcidin suppression in response to hemorrhage-
induced stress erythropoiesis [62], and the physiologic erythroid
suppressor of hepcidin is not yet known.
4.4. Inflammation increases hepcidin synthesis through IL-6 and other
mediators

Hepcidin synthesis by hepatocytes is transcriptionally regulated by IL-
6 [63] through the STAT-3 signaling pathway [64–66]. This and possibly
other mechanisms increase hepcidin production and blood hepcidin
concentrations during infections and systemic inflammatory diseases.
Inflammation-induced hepcidin increase causes the hypoferremia that
develops early during infections or inflammatory diseases. Although the
efficacy of this mechanism in host defense against specific microbes
remains to be shown, increased susceptibility of patients with even
relativelymild forms of hereditary hemochromatosis to certain infections
(e.g. [67]) suggests that this pathological response likely evolved to limit
the multiplication of iron-dependent extracellular microbes. As with
other host defense mechanisms, there is a price to be paid: iron seques-
tration and hypoferremia due to inflammation-related hepcidin increase
may limit the availability of iron for erythropoiesis, and contribute to
anemia of inflammation (also known as anemia of chronic disease).
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4.5. Impaired renal clearance of hepcidin leads to its accumulation

Recent studies indicate that hepcidin in blood plasma may circulate
in association with α2-macroglobulin [68]. However, the affinity of the
binding protein for hepcidin is relatively low (about 200–300 nM) so
that a substantial proportion of hepcidinwill be unbound at physiologic
concentrations. Due to its small size (2.7 kDa), hepcidin readily passes
through the glomerular membrane but like other small proteins is
then taken up and degraded in the proximal tubule. A small fraction
of the filtered hepcidin passes intact into urine where it is readily
detectable. Chronic kidney diseases impair the clearance of hepcidin
leading to its accumulation in plasma [69] where it may contribute to
iron sequestration in macrophages and limit the availability of iron for
erythropoiesis. This mechanism may contribute significantly to anemia
of chronic kidney diseases. Hepcidin is efficiently cleared during hemo-
dialysis suggesting that iron utilization could be improved by more
frequent or more effective hemodialysis [70].

4.6. Hepcidin-independent regulation of ferroportin

Although hepcidin has only been found in vertebrates [15], ferro-
portin is present already in simple invertebrates such C. elegans, as
well as in plants. Invertebrate ferroportins generally lack the extracel-
lular cysteine (C326 in humans) shown to be essential for hepcidin
binding, indicating that the twomolecules coevolved to interact. Con-
sistent with its earlier evolutionary history, ferroportin expression is
also regulated in hepcidin-independent cell-autonomous manner by
heme and iron [71]. Similarly to the mechanism of regulation of
heme oxygenase-1, heme causes a rapid increase in ferroportin tran-
scription by promoting the nuclear accumulation of the transcription-
al regulator Nrf2, leading to the displacement of Bach1 transcriptional
repressor from the Maf recognition element (MARE)/antioxidant re-
sponsive element (ARE) sequence in the ferroportin promoter. This
mechanism is important for iron export from macrophages after ery-
throphagocytosis. Iron controls Fpn translation through the iron-
regulatory protein/iron-regulatory element (IRE/IRP) system. One of
the two splice forms of ferroportin mRNA contains an IRE in the 5′
untranslated region. When intracellular iron levels decrease, IRP1/2
bind to the 5′ IRE blocking the translation of ferroportin. This mecha-
nism likely prevents excessive depletion of intracellular iron which
would be detrimental to cellular functions. Conversely, when intra-
cellular iron levels increase, such as after erythrophagocytosis and
heme degradation in macrophages, increased ferroportin translation
will ensure the export of recycled iron from macrophages. It is still
unknown to what extent different levels of regulation contribute to
determining the ultimate concentrations of ferroportin protein. The
ferroportin splice variant lacking the 5′ IRE is a relatively minor com-
ponent of total ferroportin mRNA in most tissues but it makes up 25%
of total FPN mRNA in the duodenum and about 40% in the bone mar-
row, where it is particularly abundant in erythroid precursors [20].
This form is not translationally repressed in iron-deficient cells and,
during severe iron deficiency, may promote the altruistic release of
iron from duodenal enterocytes and erythroid precursors to meet
the minimal iron needs of deprivation-sensitive cells in other organs.

5. Iron overload disorders due to hepcidin deficiency or resistance
to hepcidin

5.1. Hereditary hemochromatosis

Hereditary hemochromatosis is a group of primary genetic disorders
of iron homeostasis in which hyperabsorption of dietary iron leads to
iron accumulation in tissues, iron-mediated injury and organ dysfunc-
tion [31]. Iron accumulates because humans and many animals lack
compensatory mechanisms that would significantly increase iron
excretion in response to iron excess. Although the absorption of iron
takes place in the duodenum, mouse models have demonstrated that
the primary cause of most forms of hereditary hemochromatosis is
insufficient production of hepcidin by hepatocytes [72], resulting in
ineffective regulation of duodenal iron absorption and excessive delivery
of iron to plasma. The severity of the hepcidin deficiency determines the
rate of progression of iron overload and the clinical course. In the juvenile
forms of the disease, due to mutations in the hepcidin gene or the
hemojuvelin gene, little or no hepcidin is detectable in plasma [69].
Juvenile hemochromatosis is highly penetrant, both genders are equally
affected, and clinical problems, including endocrinopathies and cardio-
myopathy, develop in late childhood or early adulthood. In the less
severe, adult forms of the disease hepcidin synthesis is partially respon-
sive to acute and especially chronic iron loading but hepcidin concentra-
tions are insufficient relative to iron load. As iron is lowered to normal
levels by venesections (each milliliter of packed erythrocytes contains
about 1 mg of iron), frank hepcidin deficiency becomes manifest. The
adult forms of the disease include a rare form due to autosomal reces-
sive mutations in transferrin receptor 2, and the most common form
due to autosomal recessive mutations in the HFE gene. HFE mutations
are highly prevalent in populations of northern European ancestry,
but the disease is incompletely penetrant and affects men more
frequently and more severely than women [73]. The majority of
genetically affected individuals are identified because of laboratory
abnormalities or family history rather than overt disease. Factors such
as alcohol intake, obesity, other modulating genes, and possibly the
heme content of the diet may co-determine the rate of progression. If
untreated, a small percentage of affected individuals will develop
cirrhosis sometimes progressing to liver cancer.

Although iron depletion through phlebotomy is effective treatment, it
eventually worsens hepcidin deficiency, increasing iron absorption and
necessitating additional therapeutic phlebotomies. Furthermore,
phlebotomy is not suitable for all patients because of poor vascular access,
adverse physiological responses to phlebotomy, the inconvenience of
travel to phlebotomy centers or other burdens. In the future, therapeutic
correction of hepcidin deficiency may offer additional treatment options
for patients suffering from hereditary hemochromatosis.

5.2. Iron-loading anemias

A severe iron overload disorder develops in most patients with β-
thalassemia, even if they do not receive blood transfusions. Unless
effectively treated by iron chelators, iron overload is the major
cause of serious morbidity and mortality in this disease. In β-
thalassemia, defective β-globin production in erythroid precursors
causes excess α-chains to precipitate, leading to the apoptosis of
precursors during their maturation in the marrow. The resulting
anemia stimulates erythropoietin production, which in turn causes
massive expansion of erythroid precursors in the marrow and
elsewhere, but fails to correct the anemia because the precursors
undergo apoptosis. In the absence of transfusions, iron overload is
due to the hyperabsorption of dietary iron. Like in hereditary hemo-
chromatosis, low hepcidin is the cause of iron hyperabsorption [74].
Recent studies implicated two members of the BMP family, growth
differentiation factor (GDF) 15 and Twisted Gastrulation (TWSG1),
as candidate bone marrow-derived hepcidin suppressors in β-
thalassemia [60,75], although additional hepcidin-suppressing
erythroid factor(s) may exist.

In β-thalassemia patients treated with regular transfusions, iron
overload is primarily the consequence of the treatment, and hepcidin
levels are normal or even increased, although still deficient considering
the iron overload [74]. Transfusions partially correct the anemia, acutely
and chronically decreasing erythropoietin secretion [76]. The stimulus
to erythroid expansion is diminished, as is presumably the production
of hepcidin-suppressive mediators, thus allowing hepcidin levels to
rise. There is early evidence that circulating hepcidin concentrations
affect the distribution of iron between the macrophage storage
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compartment (favored by higher hepcidin concentrations) and
parenchymal cells including cardiac myocytes and hepatocytes (favored
by low hepcidin) [74]. The balance of iron between these two compart-
mentsmay have implications for the rate of progression of cardiomyopa-
thy. Other iron-loading anemias such as congenital dyserythropoietic
anemias [77] display similar iron pathology but are much less common.

Iron overload in β-thalassemia is treated by chelators. These can have
serious adverse effects and patient compliance is frequently a problem. In
the future, hepcidin supplementation may become an alternative or
addition to the chelation therapy, at least in untransfused patients.

Hepcidin therapy may also have an unexpected beneficial effect on
ineffective erythropoiesis. It was recently reported that moderate
overexpression of hepcidin in a mouse model of β-thalassemia not
only decreased iron overload, but also improved erythropoiesis [78].
Although the mechanism is still being elucidated, hepcidin-mediated
reduction in plasma iron may prolong the lifespan of erythrocytes in
β-thalassemia by reducing heme production in erythroid precursors,
consequently limiting the α globin/heme aggregate formation and
associated ROS production.

6. Iron-restrictive disorders due to hepcidin excess or ferroportin
deficiency

6.1. Iron-refractory iron deficiency anemia

The pathological effects of pure hepcidin excess were first shown
in transgenic mouse models of hepatic hepcidin overexpression. The
hepcidin-overproducing mice displayed severe hypoferremia and
microcytic anemia that was resistant to oral iron administration and
difficult to treat even with parenteral iron [79]. The phenotype is
mirrored in two human disorders: rare hepatic adenomas that over-
express hepcidin [80], and more common familial iron-refractory
iron deficiency anemia (IRIDA), an autosomal recessive disorder
caused by mutations ablating or inactivating a negative regulator of
hepcidin, the membrane protease MT-2 (also called TMPRSS6)
[81,82]. Despite severe iron deficiency which would be expected to
physiologically suppress hepcidin production, patients with IRIDA
show high normal or even increased serum hepcidin. Recent studies
demonstrated that matriptase-2 cleaves membrane hemojuvelin
[51]. In the absence of matriptase-2, hemojuvelin presumably
accumulates on hepatocyte membranes acting as a coreceptor of the
BMP pathway and driving hepcidin transcription, even in the
presence of iron deficiency.

6.2. Anemia of inflammation

Chronic inflammatory disorders including infections, rheumatologic
disorders and inflammatory bowel disease are associated with
hypoferremia and anemia, the latter classically mild to moderate and
normocytic but sometimes microcytic and hypochromic, and resistant
to iron therapy. Although systematic studies of blood hepcidin concen-
trations in these diseases have not yet been published, small studies
indicate that hepcidin is increased in many patients with these disor-
ders [83]. Inflammatory stimulation of hepcidin production through IL-
6 and other pathways is well documented, and would be expected to
produce a clinical picture of anemia of inflammation. Indeed, a mouse
model of moderate hepcidin overproduction results in mild microcytic
anemia and resistance to erythropoietin [84]. Unlike in primary disorders
of hepcidin overproduction, such as those due tomatriptase-2mutations
or in the transgenic mouse models of hepcidin excess, hypochromia and
microcytosis are seen only in a minority of patients with anemia of in-
flammation, perhaps because the latter condition is generally less severe,
of shorter duration, and may have a fluctuating course. It is likely that in
individual disease states other effects of inflammation contribute, includ-
ing shortened erythrocyte survival due to macrophage activation or
opsonization of erythrocytes, erythropoietic suppression due to the
direct effect of cytokines on erythrocyte precursors, and partial inhibition
of erythropoietin production.

6.3. Anemia of chronic kidney diseases

Historically, the anemia of CKD was solely attributed to decreased
erythropoietin production by the diseased kidneys. Later
measurements showed that erythropoietin levels are increased in
most patients with anemia of CKD but that this increase may not be
adequate for the severity of anemia. Arguing against the role of
simple erythropoietin deficiency, many patients with CKD require
high doses of erythropoiesis-stimulating agents to maintain
acceptable hemoglobin concentrations. Moreover, the administration
of high doses of parenteral iron potentiated the effect of
erythropoiesis-stimulating agents even in patients with apparently
adequate iron stores as indicated by serum ferritin [85,86]. These
observations suggest that CKD patients commonly suffer from an
iron-restrictive disorder. More recent studies indicate that CKD
patients have high circulating hepcidin levels [87], likely due to the
decreased renal clearance of the peptide augmented by the hepcidin
induction by inflammation related to the underlying disease process
or hemodialysis. High circulating hepcidin would be expected to
cause iron sequestration in macrophages, restrict iron flow to the
erythropoietic marrow, and contribute to the pathogenesis of anemia.

6.4. Anemia of cancer

Anemia accompanies somemalignancies at diagnosis but becomes
much more common as the disease progresses, or as a result of
chemotherapy and radiation. Depending on the specifics of the
disease process, blood loss, malnutrition, infiltration of erythropoietic
bone marrow by tumor and cytotoxic injury to the erythropoietic
precursors may contribute to anemia. The anemia of some malignan-
cies, including Hodgkin's disease [88] and multiple myeloma [89,90],
resembles anemia of inflammation and is accompanied by increased
hepcidin production stimulated by inflammatory cytokines. In other
cancers, the contribution of inflammation, increased hepcidin and
iron restriction to the pathogenesis of anemia is less well
characterized and is likely to vary depending on the type and size of
the tumor, specific sites of involvement and the individual host's
inflammatory response to the malignant process.

6.5. Ferroportin disease

Ferroportin disease [91] is a syndrome of severely increased
serum ferritin, often normal or even low plasma transferrin satura-
tions, and iron accumulation predominantly in macrophages. It is
caused by many distinct autosomal dominant missense mutations in
ferroportin, resulting in impaired macrophage iron export either
due to decreased synthesis or membrane trafficking of ferroportin,
or due to the impairment of its iron transport function. The lack of
association with nonsense mutations suggests that the missense mu-
tations have a dominant negative effect. Unless exacerbated by fac-
tors such as alcoholic liver disease or hepatitis C, the disorder is
often clinically silent. Treatment of ferroportin disease with phlebot-
omy can lead to anemia even before iron stores are depleted,
revealing an iron-restrictive disorder, i.e. impairment of the maximal
iron export capacity of macrophages involved in recycling of iron
from senescent erythrocytes.

7. Diagnostic and therapeutic potential of hepcidin

7.1. Measurement of hepcidin in blood and other fluids

Two types of hepcidin assays are coming into research use: immuno-
assays based on anti-hepcidin antibodies that use a reference standard of
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synthetic hepcidin [69,92], andmass spectrometric assays that detect the
characteristic mass of the active 25 amino acid hepcidin species or its
fragments, and quantify the intensity of the peak(s) relative to a spiked
internal standard [93–96]. Serum or plasma measurements may be pref-
erable to the urinary measurements which, although less invasive, re-
quire a creatinine measurement to correct for the varying
concentrating activity of the kidneys, thus potentially introducing a
source of additional error. Despite discrepancies in the absolute values
and normal ranges measured by the various assays, they generally corre-
late very well [97]. The differences between assays are probably due to
the troublesome tendency of hepcidin to aggregate and adhere to sur-
faces, affecting the peptide standards. All reported studies found very
low hepcidin levels in iron deficiency, β-thalassemia intermedia, or juve-
nile forms of hereditary hemochromatosis, and somewhat higher levels
in adult forms of hereditary hemochromatosis. They also detected diur-
nal variationsmanifested by the lowermorning and the higher afternoon
hepcidin concentrations, and observed the gender difference, with lower
hepcidin concentrations in women than in men. Patients with secondary
iron overload from transfusions have high hepcidin values unless they
have exuberant ineffective erythropoiesis as is the case in some patients
with β-thalassemia major. Patients with iron-refractory iron deficiency
anemia have high normal or even high hepcidin values, despite often
severe iron deficiency. Inflammatory disorders, multiple myeloma,
Hodgkin disease andmany cancers also show increased serumhepcidin
values. Hepcidin is markedly elevated in infections where it may play a
role in host defense by decreasing circulating iron concentrations, and
limiting the availability of this essential nutrient to microbes.

7.2. Hepcidin agonists and antagonists

Because of the key role of hepcidin deficiency or hepcidin excess in the
pathogenesis of various iron disorders, agonists or antagonists of hepcidin
would be expected to improve the treatment of patients with these
disorders. Hepcidin agonists should be useful for preventing or treating
iron overload in most forms of hereditary hemochromatosis and in β-
thalassemia. Minihepcidins, small peptide hepcidin analogs, have proven
effective in controlling plasma iron concentration or preventing iron
overload in mouse models [33], but their safety and efficacy in humans
remain to be established. BMP6 or other BMPs were shown to stimulate
hepcidin synthesis [98], but it remains to be determined if they can be
used without activating other BMP-dependent pathways.

Hepcidin antagonists should be useful for the treatment of iron-
restrictive anemiaswith elevated hepcidin concentrations, and for poten-
tiating the effect of erythropoiesis-stimulating agents by increasing iron
availability for erythropoiesis. In principle, hepcidin could be antagonized
by targeting its synthesis, its interaction with ferroportin, or ferroportin
endocytosis. Among agents decreasing hepcidin production, anti-IL6 re-
ceptor antibody showed considerable activity in reversing anemia of in-
flammation in monkeys [99], but it remains to be seen whether the
toxicity profile of this agent will allow its widespread use in anemia. In-
terfering with the BMP pathway using soluble hemojuvelin or a small-
molecule inhibitor dorsomorphin, reversed the anemia in the rat model
of anemia of inflammation [100]. As mentioned before, the usefulness
of the BMP pathway inhibitors will depend on how selective they are
for the hepcidin-regulatory pathway as compared to other important re-
lated pathways. Hepcidin-neutralizing monoclonal antibodies were
shown to reverse anemia in a mouse model of inflammation [101], and
most recently, an antibody targeting ferroportin has been described
[102], which raises serum iron in monkeys presumably by interfering
with hepcidin binding to ferroportin.

8. Conclusion

The interaction of hepcidin with ferroportin constitutes the key
control step in systemic iron homeostasis. Although much progress
has been made in the short time since the molecules were discovered,
the molecular regulation and interaction of the two partners is an
active area of investigation, with important implications for human
and other vertebrate biology and therapeutics.
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