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Methods of nonstandard analysis are used to construct a Markov semigroup 
representing the stochastic evolution of an infinite spin system with finite 
range interaction by means of a hyperfinite spin system. The hyperfinite spin 
system is then used to derive classical results about phase transitions of the 
stochastic Ising model without the use of thermodynamic limits. 

1. INTRODUCTION 

An infinite spin system is constructed as follows. Let fl be a d-dimensional 
integer lattice. For x: = (xi ,..., xd) E (1 and Y > 0, let I/ x 11 = rnax,ciGd 1 xi 1 
and B,,, = {y E (1: // y - x I/ < Y}. Equipped with the product topology, 
S = (-1, + l}” is a compact metric space. An element 7 E S is called a con- 
figuration and y(x), x E /l, is called the spin at X. For each x E (1 and 7 E S, let 
71~ be the configuration obtained from 7 by reversing the spin at X; that is, 
7&y) is -T(X) if y = x and v(y) if y # X. The set of real-valued continuous 
functions on S will be denoted by C(S) with the usual supremum norm. Iff is a 
function and J is in the domain off, f IJ will denote the restriction off to J. 
The collection of finite subsets of fl will be denoted by 9 and, for JE 9, Y(J) 
will denote the set of cylindrical functions on S with base J. Letting Y = 
(JJEB Y(J), the set of cylindrical or tame functions on S, 7 is a dense subset 
C(S) by the Stone-Weierstrass Theorem. We are given a function c: fl x S --f R 
satisfying 

(i) there is an ME R such that 0 < C(X, 7) < 111 for all x E -4, 7 E S, and 

(ii) there is an L E R such that c(x, 7) = c(x, 0 whenever x g/l and 

77 iBh,L) = t hz,L) . 

The functions c(x, .), x E fl, are called speed functions and control the 
stochastic evolution of a spin system as follows. If the system is in the configura- 
tion 7 at a given time, the probability that the spin at a single site x E fl will be 
reversed in a subsequent time interval of length dt is c(x, 7) dt $- o(dt) while 
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the probability that spins will be reversed at two or more sites in the same time 
interval is &lt). This heuristic description of the stochastic evolution of a spin 
system can be formulated more precisely by defining an operator Sz on .9- as 
follows: 

(1.1) 

The problem then becomes one of determining whether or not there is a Markov 
semigroup of operators (T(t): t > 0} on C(S) having infinitesimal generator 
which is an extension of Q. There are also problems connected with the unique- 
ness of the semigroup, the existence of invariant measures for the semigroup, 
and uniqueness of invariant measures. This approach to spin systems, and 
interacting particles in general, was formulated by Spitzer [15] and extensively 
treated by him in the case in which A is replaced by a finite set. Dobrushin [1], 
Holley [3], and Liggett [8] proved the first existence and uniqueness theorems 
for the Markov semigroups, the latter two making use of the Hille-Yosida 
Theorem. 

Using methods of nonstandard analysis, we will treat some of the same prob- 
lems by constructing a spin model on a “large” rectangle containing all the 
points of .A and having the formal properties of a spin system based on a finite 
number of sites. In the case of the finite range speed functions assumed above, 
this approach yields simple proofs of existence theorems and has the advantage 
of representing the time evolving infinite spin system in terms of a spin system 
having the formal properties of a finite spin system. 

2. HYPERFINITE SPIN SYSTEMS 

We will employ a denumerably comprehensive, i.e., $-saturated, enlargement 
of a structure containing the real numbers R (see [ 141 for terminology and nota- 
tion). Consider *A - {(x1 ,..., xd): x1 ,..., xd E *Z} and *S = *({-I, i-1)“) 
If 5 E *S and A is an internal subset of *II, we will let [T, flA be the element of 
*S which is equal to q on A and [ on *A N A. Let *c denote the nonstandard 
extension of the function c of the preceding section, let y be a fixed element of 
*N - iV, let r = B,,, , let Sr be the set of internal mappings from r into 
{ - 1, + 1}, and let C(S,) be the set of internal hyperreal-valued functions on Sr 
with the maximum norm. If f is any function on *S and + E *S, fm will denote 
the function on Sr defined by&(v) = f([~, (6]r). We will make use of the stan- 
dard part map st, defined for 71 E S, by St,? = q In . 

We can now define an operator analogous to the operator Q given by (1.1). 
For each 4 E *S, an operator Sz,,, on C(S,) is defined by the equation 

Qr,,f(d = sr *4x, [77, Clr> w?s) - fhh rl E si- 3 f E C(G). (2.1) 
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Each Qr,, is an internal bounded operator on C(Sr) with // Qr,, j/ < 2M / I’ 1 , 
where 1 I’ I is the internal cardinality of r, and Qr,,l = 0. We can therefore 
define an internal Markov semigroup of operators {Sr,4(t): t E *[O, oo)} on 
C(Sr) subject to the boundary condition $ by putting SrPd(t) = exp(tQr,,). The 
following result is known in other contexts (cf. [6]). 

LEMMA 1. Iff~r(]), JEW, andn~ *IV, thenj/i2~,,*j,l) < Ilfll2”M”n! x 

exp[l J I + n(z + lY1. 

Proof. Define operators M$, U, , x E r, on C(Sr) by putting U,f(T) = 

f (TX) - f (7) and Mzf (rl) = *+, [T, blr)f (rl) for 71 E Sr , f E C(S& Note that 
Uz*fm = 0 iff E Y(J) and x 6 J. Iff E Y(J), then Q,,,*f* = ‘&- M,U,*f* and 
more generally, 

Since the order of summation can be interchanged 

Fix x1 ,..., x+r . Then M U, T&-l n-1 . . . Mz, Uz, *f* involves only the functions 

*f* > *+1 > .), *+z > .),..., *+%-I , 
... u &En-l.L . 

.) and is cylindrical with base J v B,+ u 

... u BCel,L . 

The summation over x, can therefore be reduced to J u Bs,+ u 

Since II Mz, II < M and II urn II d 2, 

II QiL*f* II 

G 2M(I J I + (n - 1) W + lY) 1 .** c II W,JLl .-- Mz,Uzl*f, II . 
XIEi- q-p 

Repeating this argument, 

II QF,b*f6 II G 2nJVlf II fi (I J I + @ - 1) (2~5 + IId) 
k=l 

< PM” Ilf II (I J I + n(2L + l)T 

< PM” II f I/ n! exp(l J I + n(2L + l)d). 

Recalling that a hyperreal-valued function g on Sr is S-continuous if g(v) N 
g(t) whenever 7, 5 E Sr with st,y = St&, we now show that SF,*(t) f is S-con- 
tinuous for suitable f and t E O+, the set of finite nonnegative hyperreal numbers. 

LEMMA 2. If f E C(S), 4, #E *S, 5, 7 E S, with st,[ = strT, and t E Of 
satisfies 2Mt exp(2L + l)d < 1, then Sr,d(t) *fd(T) N Srsd(t) *f+(t). 
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Proof. Suppose f G Y(j), J E 9, t satisfies the stated condition, and n E N. 
Since J2: **fd involves only the tame functions *f *c(xI , .) for x1 E J, *c(xz , .) 
for x2 E bs,.L u J, etc., and these functions are unaffected by the boundary 
condition, Q;4,,*f6(T) = 52;4,&*fti(t). S ince this is true for all 71 E N and N is 
external in *N there is an a E *N N N such that !2p,,*f6(T) = L2;4,,,*f,(t) for 
0 < n -5 01. Noting that 

we have 

Using Lemma 1, the right side is dominated by the infinitesimal 

2 II f II eIJi c tn2”Mm exp n(2L + l)d. 
n>ai1 

This proves the assertion for f~ .Y. The extension to f~ C(S) is immediate 
since Y is dense in C(S). 

According to Lemma 2, the boundary condition 4 has only an infinitesimal 
effect on S,,(t) *fd; we note in passing that the hyperfinite rectangle r has the 
same effect as can be seen from examining the above proof. In view of this fact, 
we will drop the “P from the notation so that Q,, and S,,(t) become Q* and 
SJt), respectively. Until noted otherwise, 4 will be a fixed element of “S. 

We will make repeated use of the following facts. Let f be a finite-valued 
S-continuous internal function on Sr . The standard part “f of f is then defined 
on 5’ by “f (7) = “[f (“7 Ir)]. The standard function “f is continuous on S and 
11 *(“f)d -f 1) /v 0. (See [12], p. 116). 

LEMMA 3. If t E B I- and f E C(S,) is a finite-valued S-continuous function 

on s,, then S*(t) f is jnite-valued and S-continuous on S, . 

Proof. If we can establish the assertion for t E 0~ satisfying 2Mt exp(2L + l)d 
< 1, then the assertion would hold for all t E Co + by the semigroup property. 
Consider such t only. We know from Lemma 2 that the assertion is true for 
S6(t) *fd whenever f~ C(S). Suppose now that f E C(S,) is finite-valued and 
S-continuous. Since the set {n E “N: I f(E)] < n for all E E Sr} has a finite first 
element, /j f 11 is finite and ~1 Sm(t)fll < I/f /I < co for all t E Uf. Since 
\if - *(“f)J N 0 and Sm(t) *(“f)+ is S- continuous, S*(t) f is S-continuous. 

For t E *[O, +co) and 71 E S, define a transition function Ut*(q, .) by means 
of the equation 

X&)f(d = Jsrf (5) U,*(T, d0 f E W,). 
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Although S,+(t) is really an internal matrix operator, we will employ the usual 
notation of Markov processes. Then for each 7 E Sr , U,~(V, *) is a probability 
measure on the algebra GI of internal subsets of S, and for each A E ol, U,*( ,, A) 
is measurable relative to the algebra GE By the semigroup property, for 
s,~E*[O, co), TESS, and AE@ 

Having constructed the semigroup S+(t), we will now show how the semigroup 
induces a Markov semigroup in the standard model for the reals. 

To do this, we will make use of the following result. Let v be an internal 
measure on 0! and let q, be the measure on the external u-algebra u(a) obtained 
by first taking the standard part of v and then taking the Caratheodory extension. 
We then let vs denote the image of v,, on g(S), the Bore1 subsets of S; that is, 
s(A) = vs(st;‘A) for A E a(S). If fE C(S), then 

S,f dvs = s, “(*fd) dvo = s, *f4 dv. 

Further details can be found in [9] and [lo]. 
For t E *[O, co) and 17 E S r, let ‘Utd(v, .) be the probability measure on the 

external u-algebra u(a) constructed as above. If 17 E S, t E [0, co), and A E a(S), 

Put 

and following the usual notational custom, Tt*f = js f (5) Tt( ., d[) for bounded 
Bore1 measurable functions f on S. We now show that {T,Q: t E [0, co)} is a 
Feller semigroup. 

LEMMA 4. If f E C(S) and t E [0, co), then Ttdf E C(S); mmeovfl, if 77 E S, 
A EL#(S), and s, t E [0, a), then 

T,m,,(q, A) = 
f Ttm(& A) Ts% do. 

Proof. Since f is uniformly continuous on S, *fm is S-continuous and finite- 
valued on S’r . By Lemma 3, S,(t)* fb is S-continuous and finite-valued on Sr . 
Since 

409/69,‘2-5 
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the last integral is just the standard part of SJt) *j+ and is continuous on S. 
This shows that T,*f E C(S). Suppose now that A is a standard cylinder set in S 
(that is, the indicator function of A is tame). Then 

Since U,*(., st-lA) is S-continuous and finite-valued on Sr , the non-standard 
extension of “Utd( ., st$A) is infinitesimally close to ?Ytd( ., st$A) and therefore 

Since the first and last terms are real, they are equal. The assertion can be 
extended to A E~#(S) by a monotone class argument. 

Consider now the effect of the boundary condition $ on the T,* semigroup. 
By Lemma 2, if 4, IJ E *S andf E C(S), then Tt*f = Tt*f for small t and there- 
fore for all t by the semigroup property. Thus, T,* is independent of 4 (and the 
hyperfinite rectangle r also) and the “4” will be dropped from the notation so 
that T,* becomes simply T, . 

THEOREM 5. The family of operators {T,: t E [0, 00)) is the unique Feller 
semigroup whose generator is an extension of the operator Q dejined by (1.1). 
Moreover, for each f E C(S), 17 E S, and t E [0, CO), T,f(y) = “[S,+(t) *f+(*T IT)] 
for any choice of 4 E “S. 

Proof. To show that Tt is a strongly continuous semigroup on C(S), we 
need only prove strong continuity at t = 0. If f E Y(J), J E 9, and 77 E S, then 

and 
I m,“*fb(*rl Ir)l < llf II YM”n! exp[l J I + nW + l)dl 

I W) *f4*7 Ii-) - *fb(*T Ir)l G llf II eiJl ns;l,(oi [2Mt exp(2L + l)T 

Given standard E > 0, there is a standard 6 > 0 such that right side is less than 
E for t E (0,9 Since Tif(4 = S+(t) *fd(*T Id andf(rl) = *fd(*q II-), I Ttf(4 - 
f (s)l < 2~ for t E (0,6) and 7 E S. This shows that Ttf is continuous at t = 0 
whenever f E .F. The extension to f E C(S) is immediate since Y is dense in 
C(S). It remains only to show that I 

lim Ttf -f = Qf -- 
t+o+ t 
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for each f E 9. Suppose f E Y(J), / E 9. First note that for 71 E Sr and small t 

eiJit-l 1 [2Mt exp(2L + l)d]“. 
ne*N 
n>z 

The right side can be made less than a standard positive number by taking t 

to be less than some standard positive number (uniformly in 7). Since 

X+(t) *fm(*s Ir) = Ttf (rl), *fd*v L-1 =f (4, and %*fd*q lr) = Qf (4 for rl E 8 
the assertion follows. Uniqueness follows as in [6]. 

The second statement in the above theorem is the basis for the claim that the 
Markov semigroup defining an infinite spin system can be represented in terms 
of a spin system having the formal properties of a finite spin system. 

We will now look into the existence of invariant measures for the T, semigroup. 
Recall that the probability measure p is invariant for the T, semigroup if 
s Ttf dp = sf dp for all f E C(S). Since the functions *c(x, [T, +lr) are strictly 
positive on S, , the semigroup Sd(t) is internally irreducible and therefore has a 
unique invariant internal measure YQ defined on 0L. We will let vs* denote the 
measure on 9?(S) induced by v*. 

THEOREM 6. For each $ E *S, vf is invariant for the Tt se&group. 

Proof. Suppose f E C(S) and t E [0, co). Then 

I Ttf dvsd N 
s *(T,f h dv*. 

s ST 

Since T,f is the standard part of the S-continuous finite-valued function 

s&> *fm , *(Ttfld (4 = S&>*f&d for all rl E ST and 

1, Ttf dvs” N Isr S&t) *fd dv” = s, *fd dv* Y S,f dv,“. 

As has been pointed out, the Ti semigroup is independent of the hyperfinite 
rectangle r and the boundary condition +. The measures ~~6, however, may 
very well depend upon the boundary condition and conceivably upon the rectan- 
gle r. It is not known if each invariant measure for the Tt semigroup is one of the 
vs* or in the weak*-closure of the convex hull of the vs*. 

3. STOCHASTIC ISING MODEL 

In this section we specialize by looking at a particular choice of the speed 
functions which define the stochastic Ising model. For this purpose, let /3 be a 



348 HELMS AND LOEB 

positive real parameter (inverse temperature) and let h be a real parameter 
(strength of external field). We define speed functions c(x, 7) on fl x S by 

The speed functions depend upon the parameters p and h but the notational 
dependence will be suppressed. These functions satisfy the conditions imposed 
in Section 1 and define an operator Q on Y by (1.1). The nonstandard extension 
*c(x, 7) (as a function of X, 7, p, h) is defined by the above equation provided the 
objects therein are interpreted properly; in particular, /3 and h will be regarded 
as hyperreal parameters. Consider now the hype&rite rectangle r of the 
preceding section. The internal operator defined by (2.1) depends upon the 
parameter h and will be denoted by .R,,, (the dependence upon /3 will be sup- 
pressed for the time being) and the internal semigroup generated by L?,,, will be 
denoted by S&t). The semigroup of operators on C(S) induced by the S,,,(t) 
will be denoted by Th(t). Applying the transfer principle to a well known result, 
the unique internal invariant probability measure for the ShVd(t) semigroup is 
given by the density 

~r,h.dd = =W, k W’ exp [j- C C 
Da- /[lb--lc]/=l 

h 41~ (39 h h- (4 + h C +9] 
xcr 

(3.1) 
for 7 E Sr where Z(I’, h, +) is the normalizing constant 

WY k 4) = C exp [$- C C 
n’s, m- ~lt-q=i 

[% blr (Y) [% 6lr tx) + h C +I] - 
m- 

This result is true no matter what rectangle is used, standard or nonstandard. 
Expectations relative to the probability density prsh,* will be denoted by E:,J*]. 
If + = + 1 or + = - 1, the density pr.h.4 will be denoted by ~yf,~ or P;,~, 
respectively, and the corresponding expectations by E:,h or EF,~ , respectively. 
Straightforward arguments show that 

I ar I 
~logZ(~,h,+1)-~logZ(~,h,-l)~~B~ 

I Z(r, h, +l)l d Zrl exp(l r I (W + h)) 
(3.2) 

where ar is the boundary of i? Moreover, the set of configurations S, can be 
considered a lattice whereby 71 3 5, 7, 5 E Sr , is interpreted pointwise. As such 
it makes sense to speak of increasing functionsf on Sr . It is known (cf. [5] or [7]) 
that if f is increasing on S, and - 1 < + < # < + 1 for 4, $ E *S then 
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It is also known (cf. [5] or [7]) that if J C Z C r, where J E zZ~ and z’ is an internal 
subset of I’, and f E F(J) is increasing on S, , then 

Kdf 1 < -Gdf 1 G -G,h[f 1 < -mf I. (3.4) 

It is also easily seen that the probability densities P$,~ are translation invariant; 
that is, &JT) = &+r,h(7V~), y E *A, where T+, is the translation operator 
mapping S, onto S,,, defined by s,~(x) = 7(.x - y), x E Z + y. The following 
lemma has a standard version in terms of an expanding sequence of standard 
rectangles (cf. [2] or [7]). 

LEMMA 7. If /3 and h are standard real numbers, then E;,,[?l(O)] ‘v 

G,,Kl/l r !> CM v,(r>l. 

Proof. Consider ‘E$,Jr)(O)] and standard E > 0. We know that there is an 
internal rectangle 2YC *A (namely r) such that Ei,J7(0)] is within E of 
“E,+,,[rl(O)]. By the transfer principle there is a standard rectangle Z C A for which 
Z?,+,,[~(O)] is within E of “E:,,[q(O)]; that is 

E,+,,W)l < E,f,,W)l + 6. 

Letting r, = {y E P ,Z + y E r}, it follows from (3.4) that for y E r,, 

&h(~)l G %+dv(~)I = ~~.MO)l < ~%,h(o)l + E. 

Therefore, 

E,f.h [&J y; 
0 

V(Y)] < -%ih(O)l + E. 

Since 

and the internal cardinality of r N r, is at most / ar j 1 Z / , where X’ is the 
boundary of r, 

and 

Er+,h [~“j c T(Y)] < E;,&(o)] + 2~. 
YW 

On the other hand consider y E r and the number E$&~(O)]. Using the 
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transfer principle, there is a standard rectangle ZV such that &&7(O)] < 
E;t_,,,[~(O)] + E. Since ZV C r, by (3.4) 

and 

This completes the proof. 
Consider now the internal functions F+(h) and F-(h) defined on *R by 

Both F+ and F- are continuous functions on *R. According to (3.2), F+(h) N 
F-(h) for each h E *R. It is also easily seen that 

and that 

(3.5) 

where ITar;., is the variance relative to the probability density p;,?, . The func- 
tions F.; and F- are therefore continuous convex functions on *R. It is also 
known from the Yang and Lee Circle Theorem (cf. [l I] or [13]) that both F,~ and 
F- can be continued analytically from (0, cc) to Re z > 0 and from (-cc, 0) 
to Re z < 0 in the hypercomplex plane. By (3.2), 1 F+(h)\ < log 2 -1. ,Bd -+- h 
and i FL(h)’ is finite for finite /3 and h. Consider now standard h f 0 and a fixed 
standard /3. <\n application of the Cauchy integral formula shows that F:(h) 
is finite for such h. Making use of this fact and the convexity of Fk , an elementary 
argument shows that 

F;(h) N S - lim F& + 4 - Fi(h) 
Ah+0 Ah (3.6) 

where the limit is taken over standard Ah. Since F+(h) and F-(h) are finite and 
F+.(h) ‘v F-(h), we can define a standard function G(h) = “F*(h). Clearly G 
is convex, differentiable at any standard h f 0, and G’(h) =FL(h) for such h. It 
follows from (3.5) that E:,Jr)(O) N E;,J?(O)] for h E R - (0). Since the same 
argument holds for any standard x E r, E~+,J~(x)] e E;,,[q(x)] for all such X. By 
(3.3) E:,?,[q(.y)] ‘v E;,,[v(x)] N E:,JT(x)] for all + E *S. Letting CL,&* = (p::,,), , 
the measure on g(S) induced by p:,, via the standard part map, &+[~(x)] = 
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%b?c41 = J%“M41 f or all x ~/l and # E *S. This is enough to show that 

ph + = ph- = ph* for all 4 E *S and h E R -{O} (cf. [7]). 
Note that we have not shown that the T&(t) semigroup has a unique invariant 

measure, but only that tag* is independent of $ E *S for h E R N (0). Uniqueness 
is known from the work of Holley [4]. 

We now consider the critical case h = 0 (no external field). In this case, the 
parameter fi plays a role and the notation will reflect the dependence upon /3; 
e.g., W, P, A, 9% Fi-(B, h), E~,B,hC.l, etc. Up to the point where it was asserted 
that F&I, .) can be continued analytically into the hypercomplex plane, every- 
thing still applies. In particular, G(/3, h) = OF&, h) is defined unambiguously 
for finite /3, h and we need only consider circumstances under which F&I, .) is 
complex analytic in a standard neighborhood of h = 0. The partition function 
Z(F, /3, h, +I) can be written 

-VT B, h, +l) = exp[W - A) I r II gde”“) 

where 8, is a polynomial (cf. [13]). Clearly analyticity of log Z(I’, /3, ., f 1) is 
determined by the zeros of the polynomial 9, . According to a well-known result 
(see p. 82 of [13]), L?~(z) has no zeros inside the circle in the hypercomplex plane 
defined by 

I I & < [2 exp(e20d - 1) - 11-l. 

The point z = 1 will be in the interior of this circle provided 2dj3 < log(1 + 
log Q). If we consider only standard /3 for which this inequality holds, then 9&) 
will have no zeros in a standard neighborhood of z = 1. This means that 
log Z(F, /3, ., +l) (and log Z(r, /3, h, - 1) = log Z(r, /3, --h, + 1)) has an 
analytic extension to a standard E neighborhood of h = 0. This is all that is 
required to show that for sufficiently small standard fi, &s = pi,0 = p& for all 
# E *S. The usual argument using Peierl’s inequality can be used to show that 
&$s # pi,a for sufficiently large fi (cf. [13]). 

All of the results of this section are known, except for the use of nonstandard 
analysis to derive them. In this case, the significance lies not so much in new 
proofs of old theorems but rather in the use of the S,,(t) semigroup as a model 
for a large but infinite number of particles with spins. In the standard approach 
to spin systems, one must let the number of sites in a finite system become 
infinite in order to exhibit phase transition (that is, a failure of F+ to be analytic 
at a point) whereas in real life all spin systems are finite and do not exhibit phase 
transitions. Hyperfinite spin systems make more sense in this regard; the func- 
tions FTt are internally differentiable but not S-differentiable at h = 0 for large /3. 
Relative to the internal scale, phase transition cannot occur, but relative to the 
external standard scale, phase transition can occur. 
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