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Methods of nonstandard analysis are used to construct a Markov semigroup
representing the stochastic evolution of an infinite spin system with finite
range interaction by means of a hyperfinite spin system. The hyperfinite spin
system is then used to derive classical results about phase transitions of the
stochastic Ising model without the use of thermodynamic limits.

1. INTRODUCTION

An infinite spin system is constructed as follows. Let /4 be a d-dimensional
integer lattice. For x = (%;,..., x5) €4 and r >0, let || x| = max, ;< | ;|
and B, , ={yeAd:lly — x| <r}. Equipped with the product topology,
S ={—1, +1}4 is a compact metric space. An element n € S is called a con-
figuration and n{x), x € 4, is called the spin at x. For each xe 4 and € S, let
7, be the configuration obtained from 7 by reversing the spin at x; that is,
1y) 18 —n(x) if y = x and 5(y) if ¥ ## x. The set of real-valued continuous
functions on § will be denoted by C(S) with the usual supremum norm. If fis a
function and [ is in the domain of f, f |, will denote the restriction of f to J.
The collection of finite subsets of 4 will be denoted by & and, for J€ 2, 7(])
will denote the set of cylindrical functions on S with base J. Letting J =
Usez Z (J), the set of cylindrical or tame functions on S, 7 is a dense subset
C(S) by the Stone-Weierstrass Theorem. We are given a function e: 4 x S— R
satisfying

(i) thereis an M e R such that 0 < ¢(x, ) < M forallxe 4, n€.S, and

(ii) there is an Le R such that ¢(x, 1) = c(x, §) whenever xe ./ and
7 18,0y = €l -

The functions c(x, -), x €, are called speed functions and control the
stochastic evolution of a spin system as follows. If the system is in the configura-
tion 7 at a given time, the probability that the spin at a single site x € 4 will be
reversed in a subsequent time interval of length A¢ is ¢(x, n) At + #(dt) while
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the probability that spins will be reversed at two or more sites in the same time
interval is o(4t). This heuristic description of the stochastic evolution of a spin
system can be formulated more precisely by defining an operator 2 on .7 as
follows:

Qf ) = 3 e, ) [f () — )], feT, nes. (L.1)

zeaA

The problem then becomes one of determining whether or not there is a Markov
semigroup of operators {T(¢t):t > 0} on C(S) having infinitesimal generator
which is an extension of 2. There are also problems connected with the unique-
ness of the semigroup, the existence of invariant measures for the semigroup,
and uniqueness of invariant measures. This approach to spin systems, and
interacting particles in general, was formulated by Spitzer [15] and extensively
treated by him in the case in which /1 is replaced by a finite set. Dobrushin [1],
Holley [3], and Liggett [8] proved the first existence and uniqueness theorems
for the Markov semigroups, the latter two making use of the Hille-Yosida
Theorem.

Using methods of nonstandard analysis, we will treat some of the same prob-
lems by constructing a spin model on a “large” rectangle containing all the
points of A and having the formal properties of a spin system based on a finite
number of sites. In the case of the finite range speed functions assumed above,
this approach yields simple proofs of existence theorems and has the advantage
of representing the time evolving infinite spin system in terms of a spin system
having the formal properties of a finite spin system.

2. HYPERFINITE SPIN SYSTEMS

We will employ a denumerably comprehensive, i.e., R,-saturated, enlargement
of a structure containing the real numbers R (see [14] for terminology and nota-
tion). Consider *A = {(xy,..., ®g): ¥y ,..., ¥4 € *Z} and *§ = *({—1, +1}4)
If £ € *S and A4 is an internal subset of */, we will let [, £],, be the element of
*S which is equal to p on 4 and & on *4 ~ A. Let *c denote the nonstandard
extension of the function ¢ of the preceding section, let y be a fixed element of
*N~N, let I'= B, ,, let Sy be the set of internal mappings from I into
{—1, 413}, and let C(Sy) be the set of internal hyperreal-valued functions on Sp
with the maximum norm. If f is any function on *S and ¢ € *S, f, will denote
the function on S defined by f,(3) = f([n, $]r). We will make use of the stan-
dard part map st defined for ne Sp by sty =7 1,4.

We can now define an operator analogous to the operator £ given by (1.1).
For each ¢ € *S, an operator 2. , on C(Sr) is defined by the equation

Qroftn) =3 *clx [ dlr) () —f),  neSr, feC(Sr)-  (21)

xel
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Each £, is an internal bounded operator on C(Sy) with | @ 4| <2M | I'],
where | I'| is the internal cardinality of I', and £ ,1 = 0. We can therefore
define an internal Markov semigroup of operators {Sp 4(¢): ¢ € *[0, c0)} on
C(Sr) subject to the boundary condition ¢ by putting Sy ,(t) = exp(¢£2,. ). The
following result is known in other contexts (cf. [6]).

Lemvia 1. IffeT(]), J€ D, andne *N, then | Q2 ,*f, | < || f|| 22Mn! x
exp[| J| + »(2L + 1)9].

Proof. Define operators M, , U,, xe I, on C(Sy) by putting U, f(n) =

J(z) — f(n) and Mof(n) = *c(x, [1, $]r) f(n) for n € Sr, f € C(Sr). Note that
U, =0iffeT(Jyand x ¢ J. If fe T(]), then Qr ,¥f, = 3 cr MUY, and
more generally,

-qu,d)*fcb = Z Z Mac,,Uac,,"'Mmancl*fé-

» &l x el
Since the order of summation can be interchanged

L=y Y M UM, U

Lp—1" Lp—1
z, €l x, el

MwlUml*fda

Fix % ,..., %,_; . Then Mac"_lan_1 MxlUw] *f, involves only the functions
*fo, *e(x1, ), *e(xg, )yeor, *e(x,1, ) and is cylindrical with base JU B, ; U
ey B,,”_l_ 1 - The summation over x, can therefore be reduced to J U B, LV
U Bmﬂ_l,L . Since || Mac” | <M and | Umn <2,

[ 25, I
S2M(J1+(r—=DRL+E1DH Y -~ Y M, U, -~ MU,

x €l &, &l

Repeating this argument,

1985 <20 A TT AT+ G = DEL+ 1)

S2MFI T |+ #(2L + 1)%)
<M f | atexp(] | + (2L + 1)9),
Recalling that a hyperreal-valued function g on S is S-continuous if g(n) ~

g(€) whenever v, £ € Sy with stpn = strf, we now show that Sy ,(#) f is S-con-
tinuous for suitable f and ¢ € @', the set of finite nonnegative hyperreal numbers,

LemMma 2. If fe C(S), ¢, $€*S, & neSr with stpf = styn, and te O+
satisfies 2M¢t exp(2L -+ 1)% << 1, then Sp 4(t) *f4(n) == Sr.u(t) *f,(&).
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Proof. Suppose f& 7 (]), ] € 2, t satisfies the stated condition, and ne N,
Since £27, ,*f, involves only the tame functions *f, *c(x, , -) for x; € J, *c(x,, *)
for %€ B, 1 U ], etc, and these functions are unaffected by the boundary
condition, Q7  *fy(n) = QF ,*f,(£). Since this is true for all ne N and N is
external in *N there is an a € *N ~ N such that QF *fy(n) = QF *f,(¢) for
0 <7 < . Noting that

[+

Sra®) ) = Y 02 fun) + Y 08 M),
o Wl
we have
tn 7 n
Sr.o(t) *faln) — Sr.u(t) *fulé) = Y T (27, fs(n) — 274 ()]

npatl 7

Using Lemma 1, the right side is dominated by the infinitesimal

20 fleVi Y t"2"Mm exp n(2L + 1)4.
n>atl
This proves the assertion for fe.7. The extension to fe C(S) is immediate
since J 1s dense in C(S).

According to Lemma 2, the boundary condition ¢ has only an infinitesimal
effect on Sp 4(2) *f,; we note in passing that the hyperfinite rectangle I" has the
same effect as can be seen from examining the above proof. In view of this fact,
we will drop the “I"™ from the notation so that 25 4 and Sy 4(¢) become £, and
S,(t), respectively. Until noted otherwise, ¢ will be a fixed element of *S.

We will make repeated use of the following facts. Let f be a finite-valued
S-continuous internal function on Sy . The standard part °f of f is then defined
on S by %f(y) = °[f(*n |r)]. The standard function °f is continuous on S and

I *Cf)s — f1l = 0. (See [12), p. 116).

LemMa 3. If te Ot and fe C(Sy) is a finite-valued S-continuous function
on Sp, then S,(t) f is finite-valued and S-continuous on Sp.

Proof. If we can establish the assertion for t € @ satisfying 2Mt exp(2L + 1)#
< 1, then the assertion would hold for all t € @+ by the semigroup property.
Consider such # only. We know from Lemma 2 that the assertion is true for
Sy(t) *f, whenever fe C(S). Suppose now that fe C(Sy) is finite-valued and
S-continuous. Since the set {n € *N: | f(£)| < n for all £ € Sp} has a finite first
element, || f| is finite and | Sy(t) fIl <|fll < oo for all te@". Since
Hf— *()ell = 0 and Sy() *(°f), is S-continuous, Sy(t) f is S-continuous.

For t € *[0, +o0) and 7 € S define a transition function U#(n, ‘) by means
of the equation

SA0f () = [ F(O Usttn, d8), e CSy)
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Although S,(¢) is really an internal matrix operator, we will employ the usual
notation of Markov processes. Then for each 5 e Sr, Ug(y, °) is a probability
measure on the algebra (7 of internal subsets of S and for each 4 € %, U2#(, A)
is measurable relative to the algebra (7. By the semigroup property, for
s, € *[0, 00), neSr, and Ae

Ubn, 4) = [ UXE 4) U, ).
Sr

Having constructed the semigroup S,(t), we will now show how the semigroup
induces a Markov semigroup in the standard model for the reals.

To do this, we will make use of the following result. Let » be an internal
measure on (¥ and let v, be the measure on the external o-algebra o((%) obtained
by first taking the standard part of » and then taking the Carathéodory extension.
We then let v; denote the image of v, on Z(S), the Borel subsets of .S; that is,
vs(A) = vy(st;*A) for A e B(S). If fe C(S), then

fsfdvs = fsp °(*f,) dvy ~ LF *f, dv.

Further details can be found in [9] and [10].

For ¢ € *[0, o0) and 7 € S, let °U#(n, *) be the probability measure on the
external o-algebra o((¥) constructed as above. If € S, ¢ € [0, ), and 4 € Z(S),
put

Tf(n, 4) = oUtd’(*ﬂ Ir, strtd)

and following the usual notational custom, T3¢ = [s f(£) Ty(", d¢) for bounded
Borel measurable functions f on S. We now show that {T(¢: 1€ [0, o0)} is a
Feller semigroup.

Lemma 4. If fe C(S) and t €0, ), then T2f e C(S); moreover, if n€ S,
Ae#(S), and s, t € [0, 0), then

Tt 0, 4) = [ T2 A) T, d9).

Proof. Since f is uniformly continuous on S, *f, is S-continuous and finite-
valued on Sr. By Lemma 3, Sy()* f, is S-continuous and finite-valued on S.
Since

Ss(t) Fo(*n Ir) = LF o(&) U(*n I, dE) =~ fs [f6(E)] °Us(*n I, d€)

= [ 1 T, d)

499/69/2-5
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the last integral is just the standard part of S,(t) *f, and is continuous on S.
This shows that T*f € C(S). Suppose now that 4 is a standard cylinder set in S
(that is, the indicator function of A4 is tame). Then

[, T A T, d6) = [ CULCEIr, o4) T, d6)

Since U(-, st~14) is S-continuous and finite-valued on S, the non-standard
extension of °U#(-, st;*A) is infinitesimally close to U2(:, st; A4) and therefore

[ 126 A TP, de) = [ UE st 4) ULy |, d8)
s Sr

= U?+s(*’7 Ir, StFlA) =~ Ti‘!b+s(")» 4).

Since the first and last terms are real, they are equal. The assertion can be
extended to A € %(S) by a monotone class argument.

Consider now the effect of the boundary condition ¢ on the 7',% semigroup.
By Lemma 2, if ¢, 4 € *S and f € C(S), then T;¢f =— T¥f for small # and there-
fore for all ¢ by the semigroup property. Thus, T;¢ is independent of ¢ (and the
hyperfinite rectangle I" also) and the “¢” will be dropped from the notation so
that T becomes simply T .

THEOREM 5. The family of operators {T,:tc[0, c0)} is the unique Feller
semigroup whose generator is an extension of the operator §2 defined by (1.1).
Moreover, for each fe C(S), n€ S, and te[0, o©), T, f(n) = °[Ss(t) *fo(*n )]
for any choice of ¢ € *S.

Proof. To show that T, is a strongly continuous semigroup on C(S), we
need only prove strong continuity at ¢ = 0. If fe 7(]), J€ Z, and 5 € S, then

| Q5% ) || 2"M ™t exp[] J | -+ n(2L 4 1)7]
and

| So(8) *fo(*n Ir) — *foCn D)l <l flle! 3 [2Mtexp(2L + 1)

NE*N~ {0}

Given standard € > 0, there is a standard 8 > 0 such that right side is less than
e for 1€ (0, 3). Since T, (n) = Sy(t) *f,(*n |r) and f(n) = *fu(*n |0}y | Tef(n) —
f(®)| < 2¢ for £€(0, 8) and n € S. This shows that T,f is continuous at £ =0
whenever f€.7. The extension to fe C(S) is immediate since .7 is dense in
C(S). It remains only to show that ‘

lim
t-04

Tyf—f _
_.i_t____i_Qf
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for each fe . Suppose fe T (]), J € Z. First note that for y € Sp and small ¢

Se(t) *fd’(’?t) — *fo(n) — Q) | < flleitt Y [2Mt expRL + 1)4].
foey
The right side can be made less than a standard positive number by taking ¢
to be less than some standard positive number (uniformly in 7). Since
Sot) o 1) = Tof (o), *ol™n 1) ~ F(n), and Q% (*n |r) =~ Qf (n) for n € 5,
the assertion follows. Uniqueness follows as in [6].

The second statement in the above theorem is the basis for the claim that the
Markov semigroup defining an infinite spin system can be represented in terms
of a spin system having the formal properties of a finite spin system.

We will now look into the existence of invariant measures for the 7, semigroup.
Recall that the probability measure p is invariant for the 7, semigroup if
[ T.f du = [fdu for all fe C(S). Since the functions *¢(x, [, $]r) are strictly
positive on Sy, the semigroup S,(t) is internally irreducible and therefore has a
unique invariant internal measure v® defined on (7. We will let vg® denote the
measure on Z(S) induced by »¢.

THEOREM 6. For each ¢ € *S, vs® is invariant for the T, semigroup.

Proof. Suppose fe C(S) and t € [0, o0). Then
f T,f dvg® ~ f K(Tof )y d°.
S Sr

Since T,f is the standard part of the S-continuous finite-valued function
Sst) *fo» *(Tef)o () =2 Sy(t)* fo(n) for all ne Sy and

fs T,f dvg ~ Lp S,(t) *f, dv® = LF *f, dyb ~ fs fave.

As has been pointed out, the 7', semigroup is independent of the hyperfinite
rectangle I" and the boundary condition ¢. The measures vg?, however, may
very well depend upon the boundary condition and conceivably upon the rectan-
gle I'. It is not known if each invariant measure for the T, semigroup is one of the
vs?® or in the weak*-closure of the convex hull of the vg?.

3. StocuasTiCc IsiNG MODEL

In this section we specialize by looking at a particular choice of the speed
functions which define the stochastic Ising model. For this purpose, let 8 be a
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positive real parameter (inverse temperature) and let & be a real parameter
(strength of external field). We define speed functions ¢{x, n) on 4 X S by

) =exp |~ & T a(nnte) — ).

ly—-alj=1

The speed functions depend upon the parameters 8 and % but the notational
dependence will be suppressed. These functions satisfy the conditions imposed
in Section 1 and define an operator £2 on .7 by (1.1). The nonstandard extension
*¢(x, 1) (as a function of x, 5, B, k) is defined by the above equation provided the
objects therein are interpreted properly; in particular, 8 and & will be regarded
as hyperreal parameters. Consider now the hyperfinite rectangle I' of the
preceding section. The internal operator defined by (2.1) depends upon the
parameter /4 and will be denoted by £;, , (the dependence upon 8 will be sup-
pressed for the time being) and the internal semigroup generated by £2,, , will be
denoted by S, 4(t). The semigroup of operators on C(.S) induced by the S, 4(¢)
will be denoted by T,(¢). Applying the transfer principle to a well known result,
the unique internal invariant probability measure for the S;, ,(t) semigroup is
given by the density

#rons(n) = Z(I by $)7" exp [ Y Y e ndlr@) + A Y n(x)J

xel’ ||ly—x|=1 xel’
(3.1)

for » € S where Z(I, k, ¢) is the normalizing constant

Z( )= ¥ exp[ T Y [l [n,¢]p<x)+hzn(x>]

neSy wel |ly—x|=1 xel’

This result is true no matter what rectangle is used, standard or nonstandard.
Expectations relative to the probability density ur.,, , will be denoted by Ef, ,[].
If $ = +1 or ¢ = —1, the density ur, s will be denoted by pfn or i,
respectively, and the corresponding expectations by Ef , or Ef. ;, , respectively.
Straightforward arguments show that

ar|

' (3.2)
| Z(, by +1)] < 27 exp(| T'| (Bd + h)

log Z(T', b, +1) — ——log Z(I' , —1) | < p 1oL 1

1
1Ty l

where oI is the boundary of I. Moreover, the set of configurations S can be
considered a lattice whereby 4 = ¢, 7, £ € Sp, is interpreted pointwise. As such
it makes sense to speak of increasing functions f on S . It is known (cf. [5] or [7])
that if f is increasing on Sy and —1 < ¢ < < +1 for ¢, € *S then

Erlf1 < EZALf] < EXalf] < Efalfl (3-3)
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It is also known (cf. [5] or [7]) that if ] C X' C I', where | € & and 2 is an internal
subset of I', and fe€ 9(]) is increasing on Sp, then

Ezalf1 < Eralf] < Efalf] < EZalf]. (3-4)

It is also easily seen that the probability densities 3 ; are translation invariant;
that is, w3 ,(n) = pE,, a(rm), ¥ € *4, where 7, is the translation operator
mapping Sy onto Sy, , defined by 7,5(x) = n(x — ), x € X + y. The following
lemma has a standard version in terms of an expanding sequence of standard

rectangles (cf. [2] or [7]).

Lemma 7. If B and h are standard real numbers, then L% ,[7(0)] ~
EEAQ T D) 2gez n(2)])-

Proof. Consider °Ef ;[n(0)] and standard ¢ > 0. We know that there is an
internal rectangle £ C *A (namely I') such that Ef,[5(0)] is within e of
°E} 4[n(0)]. By the transfer principle there is a standard rectangle X C A for which
E3 ,[7(0)] is within e of °E}. ,[4(0)]; that is

Ez al(0)] < Ef aln(0)] -+ e.
Letting I'y = {y e I': ¥ + y € I'}, it follows from (3.4) that for ye I,

Ef 3n(9)] < Ef vy aln(3)] = E3 4[7(0)] < Ef 4[7(0)] + e.

Therefore,
Bia i by )| < B0} + .
Since
Bia| i i 20| = L Bt T 0] = a1 ,ye;%n(y)]

and the internal cardinality of I ~ I'y is at most | o' | | 2|, where oI is the
boundary of I,

Bia |1 E o) = B[y 200

ys[‘o yel’

and

B |17 2 000] < BanO] + 26

On the other hand consider y € I' and the number Ejf_, ,[n(0)]. Using the
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transfer principle, there is a standard rectangle X, such that Ez Am(0)] <
Ef_, /[7(0)] 4 €. Since 2, C T, by (3.4)

ET [1(0)] < EZ 4[1(0)] < Ef_y a[n(0)] + € = Ef 4[n(3)] + €
and

[| T2, "(y)] E£[(0)] — e.

yel’
This completes the proof.
Consider now the internal functions F (k) and F_(k) defined on *R by

Fyh) = log Z(I', h, 4-1).

1
1]
Both F, and F_ are continuous functions on *R. According to (3.2), F (k) ~
F_(h) for each h e *R. It is also easily seen that

PUh) = | 3 10)| ~ Bl (35

yel

and that

Fi(h) = | T | Varf, [| ) n(y)]

yel’

where Varz , is the variance relative to the probability density uZ ), . The func-
tions F, and F_ are therefore continuous convex functions on *R. It is also
known from the Yang and Lee Circle Theorem (cf. [11] or [13]) that both F,_and
F_ can be continued analytically from (0, o) to Re 2 > 0 and from (-0, 0)
to Re 2 << 0 in the hypercomplex plane. By (3.2), | Fu(h) <log2 4 Bd - h
and | F.(%)! is finite for finite 8 and k. Consider now standard £ == 0 and a fixed
standard B. An application of the Cauchy integral formula shows that F (k)
is finite for such /. Making use of this fact and the convexity of . , an elementary
argument shows that

where the limit is taken over standard 4h. Since F (k) and F_(k) are finite and
F. (h) ~F_(h), we can define a standard function G(k) = °Fy(k). Clearly G
is convex, differentiable at any standard & # 0, and G'(h) ~ F (k) for such &. It
follows from (3.5) that Ef ,[n(0) ~ Ef ,[n(0)] for 2 e R ~ {0}. Since the same
argument holds for any standard x € I', Ef 3[n(*)] =~ Ef. 3[n(x)] for all such x. By
(3.3), E ()] ~ Er[n(x)] ~ E2[(x)] for all é & *S. Letting u® = (uf,)s -
the measure on #(S) induced by pf. , via the standard part map, E,*[n(x)] =
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Ey[9(x)] = E*[n(x)] for all xe A and ¢ € *S. This is enough to show that
pat = = pg® for all € xS and ke R ~ {0} (cf. [7]).

Note that we have not shown that the T;(¢) semigroup has a unique invariant
measure, but only that ;¢ is independent of ¢ € *S for 2 € R ~ {0}. Uniqueness
is known from the work of Holley [4].

We now consider the critical case A = 0 (no external field). In this case, the
parameter 8 plays a role and the notation will reflect the dependence upon §;
e.g., Z(I, B, h, $), Fu(B, ), E¥; ;[°], etc. Up to the point where it was asserted
that F.(B, -) can be continued analytically into the hypercomplex plane, every-
thing still applies. In particular, G(B, k) = °F.(B, k) is defined unambiguously
for finite B, & and we need only consider circumstances under which Fi(8, -} is
complex analytic in a standard neighborhood of 2 = 0. The partition function
Z(I, B, h, 1) can be written

Z(L, B, hy +1) = exp[(Bd — h) | I" |} Pr(e*)

where Z1. is a polynomial (cf. [13]). Clearly analyticity of log Z(I, B, -, +-1) is
determined by the zeros of the polynomial Z;- . According to a well-known result
(see p. 82 of [13]), # (=) has no zeros inside the circle in the hypercomplex plane
defined by

2

z+1

‘ < [2 exp(e®d — 1) — 1]

The point 2 == 1 will be in the interior of this circle provided 2df < log(1l +
log $). If we consider only standard 8 for which this inequality holds, then Z(z)
will have no zeros in a standard neighborhood of 2 = 1. This means that
log Z(I', B, -, +1) (and log Z(I', B, h, —1) =log Z(I', B, —h, +1)) has an
analytic extension to a standard e neighborhood of £ = 0. This is all that is
required to show that for sufficiently small standard 8, uj o == pg e = pg o for all
¢ € *S. The usual argument using Peierl’s inequality can be used to show that
Ria 7 pg o for sufficiently large 8 (cf. [13]).

All of the results of this section are known, except for the use of nonstandard
analysis to derive them. In this case, the significance lies not so much in new
proofs of old theorems but rather in the use of the Sy 4(¢) semigroup as a model
for a large but infinite number of particles with spins. In the standard approach
to spin systems, one must let the number of sites in a finite system become
infinite in order to exhibit phase transition (that is, a failure of F.; to be analytic
at a point) whereas in real life all spin systems are finite and do not exhibit phase
transitions. Hyperfinite spin systems make more sense in this regard; the func-
tions F,. are internally differentiable but not S-differentiable at & = 0 for large B.
Relative to the internal scale, phase transition cannot occur, but relative to the
external standard scale, phase transition can occur.
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