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a b s t r a c t

We consider the problem of active sound control, in which some domain is protected
from the field generated outside. The active shielding is realized via the implementation
of additional sources in such a way that the total contribution of all sources leads to
the wanted effect. Mathematically the problem is reduced to seeking the source terms
satisfying some a priori described requirements and belongs to the class of inverse source
problems. From the application standpoint, this problem can be closely related to active
noise shielding and active vibration. It is important that along with unwanted field to be
shielded a wanted field is accepted in the analysis. The solution to the problem requires
only the knowledge of the total field at the perimeter of the shielded domain. For the first
time the active shielding sources are obtained for the nonlinear statement of the problem.
It is obtained via the theory of potentials, and the solution is represented in the form
of a simple layer. For this purpose, the theory of Calderón–Ryaben’kii potentials is first
extended to nonlinear formulations. In the solution, we also take into account the feedback
of the secondary sources on the input data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the problem of active shielding (AS) some domain is to be protected from the field (noise) generated outside. It is
realized via implementation of additional sources in such a way that the total contribution of all sources leads to the wanted
effect. Mathematically the problem is reduced to the search of the source terms, which satisfy some a priori described
requirements to the solution to an appropriate boundary value problem (BVP). Thus, the problem in question belongs to
the class of inverse source problems [1]. Reviews of the theoretical and experimental methods related to this problem can
be found in [2–8]. Most theoretical approaches assume some quite detailed information about the unwanted sources and
the properties of the medium. The JMC method by Jessel, Mangiante and Canévet, see, e.g, [5,9], based on Huygens’ source
reconstruction, requires only the information on the unwanted field at the perimeter of the shielded domain. Yet thismethod
is not used in case if a wanted field, generated in the domain to be protected, has to be taken into account. In addition, the
JMC method has only been applied to linear problems formulated in unbounded domains.
In [10,11], the linear AS problem is solved in a finite-difference formulation via the difference potentials. The solution

requires only the knowledge of the total field at the grid boundary of the shielded domain. This solution is extended
to hyperbolic systems of equations in [8]. The general solution for the case of Helmholtz-type equation with variable
coefficients is obtained in [12] and studied in detail in [7,13,14]. In [15], the problem of AS in composite domains is
formulated for the first time and its general finite-difference solution is obtained. The multi-domain problem of AS in a
continuous space is solved in [16]. In [17], the solution to the AS problem is extended to a continuous space for quite arbitrary
linear BVPs with constant and variable coefficients. A nonstationary AS problem is tackled via generalized nonstationary
potentials in [18]. As proven in [19], the obtained solution is even applicable to resonance regimes. A sensitivity analysis,
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done in [19], shows that the solution is robust. Obviously, this result is important for practical applications. A variable degree
of noise attenuation has recently been considered in paper [20]. The formulation of the problem corresponds to quite general
active sound control in composite domains.
In contrast to the previous studies, in the current paper we consider a nonlinear formulation. For the first time, the

nonlinear AS problem is solved under quite general conditions. The solution to the problem is based on the total field
supposed to bemeasured on the boundary of the domain to be shielded. In a practical realization this fieldwould bedisturbed
by the field generated by the secondary (additional) sources. An approach to resolve this diffraction problem is suggested.
It requires solving an auxiliary BVP. The BVP can efficiently be formulated and solved using the Difference Potential Method
in [10]. The application of the AS solution obtained in the general formulation is demonstrated on the examples of the
Linearized Euler Equations for aeroacoustics and the nonlinear Euler equations.
The general solution to the linear problem is obtained via the theory of potentials developed for linear BVPs in

[21,22,10,23]. It was Calderón who introduced the potentials for general elliptic problems. Ryaben’kii developed the theory
of potentials for general BVPs in finite-difference spaces. There is a deep analogy between these two theories, which were
historically elaborated completely independently for a long time. The discussion of this subject is beyond the scope of the
current paper. Some details can be found in [10,23]. To tackle the nonlinear AS problem, the theory of the potentials is
extended to nonlinear formulations. One should note that the definition of the nonlinear potential and its properties proved
in this paper have a general meaning and can be applied beyond the AS problem.

2. General formulation of the AS problem

We consider the following generalized mathematical formulation of the AS problem. Assume that some field (sound)W
is described by a BVP supposed to be well posed in a domain D ⊆ Rm:

L(W ) ≡
m∑
1

∂F i

∂xi
+ b = f , (1)

W ∈ ΞD, (2)

where
{
xi
}
is a Cartesian coordinate system;W , f , b and F i are vector-functions with the dimension of p; b = b(W ) ∈ C ,

F i = F i(W ) ∈ C1, F i(0) ≡ 0, (i = 1, . . . ,m); ΞD is some space of functions specified below. Here, operator L can be,
generally speaking, nonlinear.
The solution to BVP (1), (2) is considered in the generalized sense [24]. For this purpose we introduce the space of basis

functionsΦ ∈ C∞0 (D). Eq. (1) is then considered in the weak sense:

〈L(W ),Φ〉 = 〈f ,Φ〉

for anyΦ ∈ C∞0 (D), where 〈·, ·〉means a distribution.
Along with a distribution Ψ , we introduce restriction (or local element [24]) ΨΩ of Ψ to a domain Ω ⊂ D: for any test

functionΦ with suppΦ ⊂ Ω , the following equality holds

〈ΨΩ ,Φ〉 = 〈Ψ ,Φ〉.

For our further consideration, we also introduce characteristic function θΩ of a domain Ω: Ω ⊂ D, θΩ(x) = 1 if x ∈ Ω ,
θΩ(x) = 0 if x ∈ D \Ω . Thus, e.g., θΩg means the part of g supported onΩ .
Next, we consider a bounded domain D+: D+ ⊂ D, having smooth enough boundary Γ . The sources on the right-hand

side of (1) can be situated both in D+ and outside D+:

f = f + + f −, (3)
supp f + ⊂ D+,

supp f − ⊂ D− ≡ D�D+.

Here, f + is the source of a wanted field (sound), while f − is the source of an unwanted field (noise). It is supposed that f is
a regular function at least in some vicinity of the interface boundary Γ = D+ ∩ D−.
Assume that f ∈ FD, where FD is a linear space of functions f for which the solution to BVP (1), (2) exists and unique.

We also suppose that: f ∈ FD H⇒ θD+ f ∈ FD; W ∈ ΞD H⇒ L(W ) ∈ FD and L(0) = 0. In addition, in the domain D+
we require that if each of any two external sources does not generate any field (in D+), then their superposition does not
generate either. In other words, functions L(θD−U) : U ∈ ΞD create a linear manifold in FD.
We define the functional space ΞD as follows. The functions from ΞD are piece-wise smooth, bounded and satisfy some

boundary conditions on ∂D that may be inherited from physics. More precisely, we assume that

ΞD ⊂ Hs(D+) ∩ Hs(D−),

where s > 1/2, Hs is the Sobolev space.
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Fig. 1. Domain sketch.

Suppose that we know the fieldW (Γ ) on the boundary Γ . We assume that only this information is available from, say,
measurements. In particular, the distribution of the sources f on the right-hand side is unknown.
The AS problem is reduced to the search of additional sources G on D− (see Fig. 1) such that the solution to the following

BVP

L(W ′) = f + G, (4)

suppG ⊂ D−,
W ′ ∈ ΞD

coincides on the subdomain D+ with the solution to BVP (1), (2) if f − ≡ 0:

L(W+) = f +, (5)
W+ ∈ ΞD.

Thus, we seek G such that

W ′D+ = W
+

D+ . (6)

It is to be noted that the statement of the problem given above is a generalization of the statement of linear AS
problem [10,7,17]. It appears that the AS problem in question has a solution in the form of a simple-layer source term
under quite general conditions.
The general solution to the linear AS problem is obtained via the theory of the Calderón–Ryaben’kii potentials [10], [23].

Then, this approach can be extended to the nonlinear formulation.

3. Calderón–Ryaben’kii potentials

Let us consider a linear BVP (1), (2) such that

F i = Ai(x)W (i = 1, . . . ,m), (7)

where Ai(x) ∈ C1(D), b = B(x)W , B(x) ∈ C(D).
One can introduce an operator PD+ : ΞD+ → ΞD+ ,ΞD+ = {UD+ | U ∈ ΞD} as follows. The classical definition [10] is given

by:

Definition 1.

PD+VD+(x)
def
= VD+ −

∫
D+
Gr(x, y)LV (y)dy.

Here, Gr is Green’s function of the linear BVP (1), (2).
We can also introduce the following definition of the operator PD+ via distributions, which does not exploit Green’s

function:

Definition 2.

PD+VD+
def
= L−1D+(θD−LV ), (8)

where L−1D+g
def
= L−1g|D+ .

It appears that in the case of regular functions these definitions are equivalent [23].
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Assume now that U+ = L−1f + and U− = L−1f
−
; here, U+,U− ∈ ΞD, supp f

−
⊂ D−. Then, one can immediately verify

the following important properties of the potential [10,15]:

PD+U
+

D+ = 0D+ , (9)

and

PD+U
−

D+ = U
−

D+ . (10)

Hence, from the linearity of the problem we obtain:

PD+UD+ = U
−

D+ , (11)

where U = L−1(f + + f
−
).

Thus, the field generated in D+ does not contribute to the potential PD+ determined on this domain, while the field
generated outside D+ is projected by the operator PD+ onto itself. Hence, the operator PD+ operates as a projection [10].
Next, following [10,23] we introduce the notion of a clear trace Tr(Γ )UD+ :

Tr(Γ )VD+ = Tr(Γ )WD+ ⇒ PD+VD+ = PD+WD+ . (12)

Here, V ,W ∈ ΞD, Tr(Γ ) is a boundary operator:ΞD → ΞΓ ,ΞΓ ⊂ Hs−1/2(Γ ) [23].
Then, we arrive at the definition of the potential with density ξΓ :

PD+Γ ξΓ
def
= PD+VD+ , (13)

where ξΓ = Tr(Γ )V . Thus, the value of the potential PD+Γ ξΓ is fully determined by its density ξΓ [10].
Next, let us introduce a trace operation as follows. Let Γ +ε be smooth manifolds parallel to Γ in the sense of [25, Ch. 2]:

Γ +ε ⊂ D
+, Γ +ε → Γ if ε → 0. Then, the trace operator Tr+Γ : H

s(D+)→ Hs−1/2(Γ ) is given by

Tr+Γ UD+
def
= lim

ε→0
TrΓ+ε UD+ , (14)

where

TrΓ+ε UD+
def
= UD+(x), x ∈ Γ +ε .

Similar, in D− we introduce the trace operator Tr−Γ : H
s(D−)→ Hs−1/2(Γ ) and

Tr−Γ UD−
def
= lim

ε→0
UD−(x), x ∈ Γ −ε . (15)

One can see that for the case of operator L determined by (1), (7) the clear trace of potential PD+ is given by Tr
+

Γ .
The potential PD+Γ ξΓ can be found by the following proposition proven in [23].

Proposition 1.

PD+Γ ξΓ = −L
−1
D+AnξΓ δ(Γ ), (16)

where ξΓ = Tr+Γ VD+ , V ∈ ΞD, An =
∑
Aini, n is the outward normal to the boundary Γ .

4. Nonlinear potentials

Let us now consider the nonlinear formulation of the problem. For this purpose we introduce a nonlinear potential. It is
easy to see that Definition 2, in fact, can immediately be applied to the nonlinear problem:

Definition 3.

PD+(VD+)
def
= L−1D+(θD−L(V )). (17)

Definition 3 can be rewritten as the set of simultaneous equations:{
PD+(VD+) = GrD+(g − gD+),
GrD+(g) = VD+ ,

(18)

where V ∈ ΞD, L(V ) ∈ FD, Gr := L−1 is Green’s operator, GrD+(g)
def
= L−1D+(g).

Then, we arrive at the following identity:

PD+(GrD+(g)) = GrD+(g − gD+). (19)
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Equality (19) can be considered as the generalized nonlinear Green’s identity.
Next, for any test functionΦ we have

〈L(V ),Φ〉 = −
m∑
1

〈F i,∇iΦ〉 + 〈b,Φ〉 = −
m∑
1

∫
D
F i∇iΦdx+ 〈b,Φ〉

= −

m∑
1

∫
D+
F i∇iΦdx−

m∑
1

∫
D−
F i∇iΦdx+ 〈b,Φ〉

= −

m∑
1

∫
D+
∇i(F iΦ)dx+

m∑
1

∫
D+
∇iF iΦdx−

m∑
1

∫
D−
∇i(F iΦ)dx+

m∑
1

∫
D−
∇iF iΦdx+ 〈b,Φ〉

= 〈{L(V )} ,Φ〉 +
∫
Γ

[Fn(V )]Γ Φ = 〈{L(V )} + [Fn(V )]Γ δ(Γ ),Φ〉. (20)

Here, {L(V )} is the part of L(V ) supported on D \ Γ , Fn =
∑m
1 F

ini, [.]Γ means the discontinuity across the boundary Γ :

[W ]Γ
def
= Tr−ΓW − Tr

+

ΓW .

Hence,

g − gD+ = θD−L(V )+ [Fn(V )]Γ δ(Γ ). (21)

Assume that ξΓ = Tr+Γ VD+ . Then,

g − gD+ = L(θD−V )− Fn(ξΓ )δ(Γ ) (22)

and the potential PDΓ (ξΓ+) can be represented by

PD+Γ (ξΓ ) = GrD+ (L(θD−V )− Fn(ξΓ )δ(Γ )) , (23)

where V ∈ ΞD.
It appears that, as in the linear case, the potential, in fact, only depends on its density.

Proposition 2. The potential PD+(UD+) is fully determined by ξΓ = Tr+Γ UD+ .

Proof. The solution to BVP

L(V ) = g − gD+ ≡ L(θD−U)− Fn(ξΓ )δ(Γ ),
V ∈ ΞD

is given by V = U−, where U− = Gr(f −).
Next, consider V̂ = Gr(−Fn(ξΓ )δ(Γ )). Then,

L(V ) = L(θD−U)+ L(θD− V̂ )+ L(θD+ V̂ ).

Hence, L(θD−V ) = L(θD−U)+ L(θD− V̂ ) and θD+V = θD+U−.
Let us change g by g̃ ∈ FD on D− in such a way that Tr+Γ Gr(̃g) = Tr

+

Γ Gr(g) = Tr
+

Γ UD+ . Then,

g̃ − gD+ = L(θD− Ũ)− Fn(ξΓ )δ(Γ ),

where Ũ = Gr(̃g). Since g̃ − gD+ ∈ FD, we obtain

Gr(̃g − gD+) =
{
U−D+ if x ∈ D+,
Ṽ−D− if x ∈ D−,

(24)

where L(θD− Ṽ ) = L(θD− Ũ)+ L(θD− V̂ ), Ṽ ∈ ΞD.
Thus, PD+Γ (ξΓ ) = U

−

D+ . �

Corollary 1. We can now generalize Proposition 1.

PD+Γ (ξΓ ) = GrD+(−Fn(ξΓ )δ(Γ )). (25)

It is immediately obtained from (24) by setting ŨD− = 0D− .
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It is important to note that, similar to the linear case, the nonlinear potential is a projection.
One can see that if supp L(V ) ⊂ D+, V ∈ ΞD, then from Definition 3 it immediately follows that PD+(VD+) = 0D+ . In

turn, if supp L(V ) ⊂ D−, then PD+(VD+) = VD+ .
In the case of BVP (1), (2),

PD+(W )
def
= L−1D+(f

−) = W−D+ , (26)

whereW− = L−1(f −).
Thus, the nonlinear potential operator is also a projection.
Finally, let us consider requirements to the problem, under which functions L(θD−U) : U ∈ ΞD create a linear subspace.

For this purpose, we introduce sets

F−D = {f | ∃U ∈ ΞD : f = L(θD−U)}

and

F−Γ = {f | ∃U ∈ ΞD : f = L(θD−U), supp f ∈ Γ }.

One can see that F−D is the factorspace of FD with regard to F
−

Γ . Thus, F
−

D is a linear space provided that F
−

Γ is a linear space.
Obviously, the latter statement is true if the operator L is linear in any vicinity of the boundary Γ . In a general case, we can
linearize the operator L in a vicinity of Γ . It can be done if Γ nowhere coincides with the characteristic hypersurface. This
follows from the Cauchy–Kovalevskaya Theorem; see, e.g., [26].

5. Solution to the nonlinear AS problem

Let us now consider the solution to the nonlinear AS problem. It can be obtained via the nonlinear potentials introduced
in the previous section.
From Proposition 2 and the projection property, it follows that if WΓ is the total field at the boundary Γ , then

PD+Γ (WΓ ) = W−D+ . Hence, function PD+Γ (WΓ ) gives us the field to be annihilated in D+.
Similar to the linear case, the condition of the noise cancelation on D+ is the following:

PD+(W
′) = L−1D+(θD−L(W

′)) = 0D+ .

Since

θD−L(W
′) = θD−L(W )+ G = L(θD−W )− Fn(WΓ )δ(Γ )+ G,

we arrive at the following condition:

L−1D+
(
L(θD−W )− Fn(WΓ )δ(Γ )+ G

)
= 0D+ .

One can choose G = −θD−L(W ) = Fn(WΓ )δ(Γ ) − L(θD−W ), and this source term provides, of course, the exact noise
cancelation in the entire domain D. Meanwhile, if we require noise cancelation only in D+, then we can only retain the
single-layer source term

G0 = Fn(WΓ )δ(Γ ). (27)

It is clear that if the problem in question is linear, then

G0 = AnWΓ δ(Γ ).

This solution to the AS problem coincides with the one obtained in [17].
It is to be noted that the AS solution (27) does not explicitly depend on the boundary conditions. Although the boundary

conditions are not explicitly specified, we are able to obtain the AS source term if the BVP in question is well posed.

6. Feedback of the secondary sources. Nonstationary effects

The realization of the secondary source (27) is based on the knowledge (measurement) of WΓ . Once the AS source is
implemented, the field both in the shielded domain D+ and outside changes. Moreover, the fieldW ′ is a piece-wise function
having a discontinuity across the boundary Γ . Thus, the implementation of the AS source results in some uncertainty
especially in a nonstationary case. To overcome this problem, we suggest the following procedure.
Let us consider the potential PD+Γ (W ′Γ−) where W

′

Γ−

def
= Tr−ΓW

′. It corresponds to consideration of domain D+ε ⊃ D
+

bounded by Γ −ε : Γ
−
ε ⊂ D

−,Γ −ε → Γ if ε → 0. Then,

PD+Γ (W
′

Γ−
) = lim

ε→0
PD+ε Γ−ε (W

′

Γ
−
ε
).

Thus, thanks to the projection property (26), we arrive at the following equality:

PD+Γ (W
′

Γ−
) = W−D+ .
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Hence, the potential PD+Γ (W ′Γ−) gives us the field to be canceled.
Next, we have

PΓ (W ′Γ )
def
= Tr(Γ )PD+Γ (W

′

Γ−
) = W−Γ .

Then, from (27), the simple-layer AS source term can be determined by

G′0 = Fn(PΓ (W
′

Γ−
))δ(Γ ) ≡ Fn(W−Γ )δ(Γ ). (28)

This AS source term leads to the cancelation of the noise fieldW−D+ . Indeed, let us now consider the following BVP:

L(W ′) = f − + Fn(W−Γ )δ(Γ ),

W ′ ∈ ΞD.

Its solution is given by

W ′ =
{
0 on D+,
W− on D−. (29)

Hence, PD+(W ′D+) = L
−1
D+(f

−
+ Fn(W−Γ )δ(Γ )) = 0D+ , and the field in D

+ is fully determined by the internal sources.
Thus, the measurements should be done on the external boundary, and the realization requires the solution of a BVP

because the operator PΓ is non-local.
In the linear case, to calculate the potential, we can apply a spectralmethod as used in theMethod of Difference Potentials

[10]. In this approach, a set of basis functions {φj(Γ )}, (j = 1, . . . ,N) is introduced on Γ . The potentials PΓ φj(Γ ) can
be calculated in advance. Then, the potential PΓW ′Γ can quickly be obtained as soon as we approximate W

′
Γ by the basis

functions. In the nonlinear case, of course, the problem becomes more complicated.
One should note that the AS solution (27) is also applicable to a nonstationary AS problem in Rm+1 with homogeneous

initial data in the cylinder KT = D× (0, T ) (T > 0):

L(W ) ≡ Wt +
m∑
1

∂F i

∂xi
= f , (30)

W ∈ ΞD,
W (x, 0) = 0.

In addition to the stationary formulation, we assume that the spaceΞD consists of the functions smooth enoughwith respect
to the time variable: ΞD ⊂ Cp(KT ) and satisfying homogeneous initial conditions. We consider the generalized solution to
initial BVP (30):∫ T

0

∫
D
(L(W )− f ,Φ)dxdt = 0, (31)

for any Φ ∈ C∞0 (KT ), where (·, ·) means a scalar product. The proof, then, mostly repeats the stationary case with the
replacement of b byWt .
Next, we consider two examples illustrating the application of the AS solution, obtained in the general formulation, to

particular governing equations.

7. Linearized Euler equations

First, we consider a linear acoustic problem described by the Linearized Euler equations:

1
ρ0c20

(p′t + (u0,∇)p
′)+

1
ρ0c20

(u′,∇)p0 +∇ · u′ =
1
ρ0c20

f (p) + qvol, (32)

ρ0(u′t + (u0,∇)u
′
+ (u′,∇)u0)+∇p′ = f(u) + fvol,

where (a, c) denotes the scalar product of vectors a and c, u′ is the particle velocity, p′ is the sound pressure, c0 is the sound
speed; the velocity u0 and the pressure p0 correspond to some main ‘‘reference’’ flow; qvol is the volume velocity per a unit
volume and fvol is the force per a unit volume [3].
In this case, we have

W = (u′1, u
′

2, u
′

3, p
′)T , (33)

where u′j (j = 1, 2, 3) are the coordinates of u
′ in a Cartesian coordinate system.
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Then, the matrix An is given by

An =


n1 n2 n3

vn

ρ0c20
ρ0vn 0 0 n1
0 ρ0vn 0 n2
0 0 ρ0vn n3

 , (34)

where vn = u0 · n.
Thus, from (7) and (27) we obtain the following AS source terms:

qvol = (u′ · n|Γ +
vn

ρ0c20
p′
|Γ )δ(Γ ), (35)

fvol = (p′|Γ n+ ρ0vnu
′

|Γ )δ(Γ ).

It can be seen that the AS terms (35) take into account flux through the boundary Γ .
The other example demonstrates the application of the general AS solution (27) to a nonlinear problem.

8. Euler equations

Let us now consider the nonlinear Euler equations:

L(U) = Ut +
3∑
1

F i(U)xi , (36)

where

U = (ρ, ρu1, ρu2, ρu3, E)T , (37)

F i(U) = uiU + p(0, δ1i, δ2i, δ3i, ui)T (38)

where ρ is the density; u1,u2,u3 are the velocity coordinates in a Cartesian coordinate system {xi} (i = 1, 2, 3); E is the total
energy density; p is the pressure; δij = 1 if i = j, δij = 0 if i 6= j.
The AS solution is then given by:

G0 = δ(Γ ) (39)

× (ρVn, ρu1Vn + pn1, ρu2Vn + pn2, ρu3Vn + pn3,HVn)TΓ (40)

where Vn = u · n, H = E + p.

9. Conclusion

The theory of Calderón–Ryaben’kii potentials has been used to obtain the general solution to the linear AS problem. The
solution only requires the knowledge of the total field (wanted and unwanted) at the perimeter of the shielded domain. The
theory of the potentials has been extended to nonlinear BVPs. Green’s identity has been derived for the nonlinear potential.
On the basis of the nonlinear potentials, the solution to the inverse source nonlinear AS problem has been obtained in the
formof a simple-layer source term. The solution is able to take into account the feedback of the secondary sources on the field
measured on the boundary. The obtained AS solutions can be applied to the Linearized Euler Equations and the nonlinear
Euler equations.
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