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a b s t r a c t

Convolutions of independent random variables often arise in a natural way in many
applied areas. In this paper, we study various stochastic orderings of convolutions of
heterogeneous gamma random variables in terms of the majorization order [p-larger
order, reciprocal majorization order] of parameter vectors and the likelihood ratio order
[dispersive order, hazard rate order, star order, right spread order, mean residual life order]
between convolutions of two heterogeneous gamma sets of variables wherein they have
both differing scale parameters and differing shape parameters. The results established in
this paper strengthen and generalize those known in the literature.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Convolutions of independent random variables often arise in a natural way in many applied areas including applied
probability, reliability theory, actuarial science, nonparametric goodness-of-fit testing, and operations research. Since the
distribution theory is quite complicated when the convolution involves independent and non-identical random variables,
it is of great interest to investigate stochastic properties of convolutions and derive bounds and approximations on some
characteristics of interest in this setup. Many results in this direction have appeared in the literature; see, for example,
[3,20,4,11,14,9,16,23–29,12,13,2,5]. Because exponential distribution has a nice mathematical form and the unique
memoryless property, most of these references treated only the convolutions of exponential random variables. It is well
known that gamma distribution is one of the most commonly used distributions in statistics, reliability and life testing that
includes exponential distribution as its special case (when its shape parameter is 1). Moreover, the gamma distribution
can be widely applied in actuarial science as most total insurance claim distributions have quite similar shape to gamma
distributions: non-negatively supported, skewed to the right and unimodal (see [7]). Let X be a gamma random variable
with the shape parameter r and scale parameter λ. Then, in its standard form X has the probability density function

f (x; r, λ) =
λr

Γ (r)
xr−1 exp(−λx), x > 0.
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It is an extremely flexible family of distributions with decreasing, constant, and increasing failure rates when 0 < r <
1, r = 1 and r > 1, respectively. In this paper, various stochastic orders are studied for convolutions of heterogeneous
gamma random variables.

We shall be using the concepts of majorization and related orders in our discussion. The notion of majorization is quite
useful in establishing various inequalities. Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement of the components of the
vector x = (x1, . . . , xn).

Definition 1.1. (i) A vector x = (x1, . . . , xn) ∈ ℜ
n is said to majorize another vector y = (y1, . . . , yn) ∈ ℜ

n (written as

x
m
≽ y) if

j−
i=1

x(i) ≤

j−
i=1

y(i) for j = 1, . . . , n − 1,

and
∑n

i=1 x(i) =
∑n

i=1 y(i);

(ii) A vector x ∈ ℜ
n is said to weakly supmajorize another vector y ∈ ℜ

n (written as x
w
≽ y) if

j−
i=1

x(i) ≤

j−
i=1

y(i) for j = 1, . . . , n;

(iii) A vector x ∈ ℜ
n
+
is said to be p-larger than another vector y ∈ ℜ

n
+
(written as x

p
≽ y) if

j∏
i=1

x(i) ≤

j∏
i=1

y(i) for j = 1, . . . , n.

Clearly, x
m
≽ y implies x

w
≽ y, and x

p
≽ y is equivalent to log(x)

w
≽ log(y), where log(x) is the vector of logarithms of the

coordinates of x. Also, Khaledi and Kochar [8] showed that x
m
≽ y implies x

p
≽ y for x, y ∈ ℜ

n
+
. The converse is, however, not

true. For example, (1, 5.5)
p
≽ (2, 3), but clearly the majorization order does not hold.

For more details on majorization and p-larger orders and their applications, see [15,4,8]. Recently, Zhao and
Balakrishnan [25] introduced a new partial order, called reciprocal majorization order.

Definition 1.2. The vector x ∈ ℜ
n
+
is said to reciprocal majorize another vector y ∈ ℜ

n
+
(written as x

rm
≽ y) if

j−
i=1

1
x(i)

≥

j−
i=1

1
y(i)

for j = 1, . . . , n.

From [12], the following implication holds:

x
w
≽ y H⇒ x

p
≽ y H⇒ x

rm
≽ y

for any two non-negative vectors x and y. On the other hand, the
rm
≽ order does not imply the

p
≽ order. For example, from

the definition of the
rm
≽ order, it follows that (1, 4)

rm
≽

 4
3 , 2


, but clearly the

p
≽ order does not hold between these two

vectors.
Let us first recall some results in the literature that are most pertinent to the main results of this paper. Let Xλ1 , . . . , Xλn

be independent exponential random variables with respective hazard rates λ1, . . . , λn, and let Xλ∗
1
, . . . , Xλ∗

n be another set
of independent exponential random variables with respective hazard rates λ∗

1, . . . , λ
∗
n . Boland et al. [3] showed that

(λ1, . . . , λn)
m
≽ (λ∗

1, . . . , λ
∗

n) H⇒

n−
i=1

Xλi ≥lr

n−
i=1

Xλ∗
i
; (1.1)

see [22,18] for a comprehensive discussion on various stochastic orders. Bon and Pǎltǎnea [4] subsequently showed that

(λ1, . . . , λn)
p
≽ (λ∗

1, . . . , λ
∗

n) H⇒

n−
i=1

Xλi ≥hr

n−
i=1

Xλ∗
i
, (1.2)

and they also focused on the special case when one convolution involved identically distributed random variables. Kochar
and Ma [11] established that

(λ1, . . . , λn)
m
≽ (λ∗

1, . . . , λ
∗

n) H⇒

n−
i=1

Xλi ≥disp

n−
i=1

Xλ∗
i
. (1.3)



960 P. Zhao / Journal of Multivariate Analysis 102 (2011) 958–976

Let Y(r, λ1), . . . , Y(r, λn) be independent gamma random variables with respective shape parameter vector r = (r, . . . , r)
(r ≥ 1) and scale parameter vector λ = (λ1, . . . , λn), and let Y(r, λ∗

1)
, . . . , Y(r, λ∗

n) be another set of independent gamma
random variables with respective shape parameter vector r and scale parameter vector λ∗

= (λ∗

1, . . . , λ
∗
n). Korwar [14]

extended the above results in (1.1) and (1.3) to the case of gamma random variables with different scale parameters but
with a common shape parameter (≥ 1) that

λ
m
≽ λ∗

H⇒

n−
i=1

Y(r, λi) ≥lr

n−
i=1

Y(r, λ∗
i )

; (1.4)

and

λ
m
≽ λ∗

H⇒

n−
i=1

Y(r, λi) ≥disp[≥hr]

n−
i=1

Y(r, λ∗
i )
. (1.5)

Khaledi and Kochar [9] further improved the result in (1.5) by relaxing majorization order to p-larger order:

λ
p
≽ λ∗

H⇒

n−
i=1

Y(r, λi) ≥disp[≥hr]

n−
i=1

Y(r, λ∗
i )
. (1.6)

One of the basic criteria for comparing variability in probability distributions is dispersive order.

Definition 1.3. A random variable X is said to be less dispersed than another random variable Y (denoted by X ≤disp Y ) if

F−1(v)− F−1(u) ≤ G−1(v)− G−1(u)

for 0 ≤ u ≤ v ≤ 1, where F−1 and G−1 are the right continuous inverses of the distribution functions F and G of X and Y ,
respectively.

A weaker order, which was called the right spread order in [6] and the excess wealth order in [21] is defined as below.

Definition 1.4. X is said to be less right spread than Y (denoted by X ≤RS Y ) if∫
∞

F−1(p)
F(t)dt ≤

∫
∞

G−1(p)
G(t)dt, 0 ≤ p ≤ 1.

The following implication is well known,

X ≤disp Y H⇒ X ≤RS Y H⇒ Var(X) ≤ Var(Y ).

The right spread order is closely related to the NBUE order comparing the relative aging property.

Definition 1.5. X is said to be more NBUE (new better than used in expectation) than Y (denoted by X ≤NBUE Y ) if

1
E(X)

∫
∞

F−1(p)
F(t)dt ≤

1
E(Y )

∫
∞

G−1(p)
G(t)dt, 0 ≤ p ≤ 1.

It is obvious that the NBUE order is equivalent to the right spread order when E(X) = E(Y ), however, they are distinct
when E(X) ≠ E(Y ) (cf. [10]).

Definition 1.6. X is said to be smaller than Y in the star order (denoted by X ≤∗ Y ) if G−1F(x)/x is increasing in x on the
support of X .

Also, it is known that the star order implies NBUE order.
Recently, Kochar and Xu [13] investigated the star order and right spread order and obtained that

(λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) H⇒ Y(r, λ1) + Y(r, λ2) ≥∗ Y(r, λ∗
1)

+ Y(r, λ∗
2)

(1.7)

and

(1/λ1, 1/λ2)
m
≽ (1/λ∗

1, 1/λ
∗

2) H⇒ Y(r, λ1) + Y(r, λ2) ≥∗ Y(r, λ∗
1)

+ Y(r, λ∗
2)
. (1.8)

With the aid of (1.8), they also proved that

λ
rm
≽ λ∗

H⇒

n−
i=1

Y(r, λi) ≥RS

n−
i=1

Y(r, λ∗
i )
. (1.9)
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All the results in (1.4)–(1.9) are conditioned to the case when gamma random variables involved in convolutions
have common shape parameters. However, convolutions of independent gamma random variables with different shape
parameters often occur naturally in many problems, and especially in reliability theory. Let us consider a reliability scenario
wherein there is a redundant standby system without repair consisting of n gamma components with different scale
parameters and also different shape parameters. After the first failure, one standby component is put into operation at
once; next, after the second failure, another standby component is put into operation, and so on. Finally, the system fails at
the failure of the last component. Clearly, the lifetime of the system is just a convolution of n gamma lifetimes. It will be of
great interest to investigate ordering properties of convolutions in this setup.

In this paper we shall further pursue this problem under gamma framework and establish some more general
results in which the convolutions involved have different scale parameters and also different shape parameters. Let
Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r = (r1, . . . , rn)
(ri ≥ 1) and scale parameter vector λ = (λ1, . . . , λn), and let Y(r∗1 , λ∗

1)
, . . . , Y(r∗n , λ∗

n) be another set of independent gamma
random variables with respective shape parameter vector r∗

= (r∗

1 , . . . , r
∗
n ) (r

∗

i ≥ 1) and scale parameter vector λ∗
=

(λ∗

1, . . . , λ
∗
n). Suppose there exists some permutation π such that πr = r↑, πr∗

= r∗

↑
, πλ = λ↓ and πλ∗

= λ∗
↓, where

the components of λ↓ and λ∗
↓ are in descending order, and the components of r↑ and r∗

↑
are in ascending order. We then

establish that

r
m
≽ r∗ and λ

w
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(r∗i , λ∗
i )
, (1.10)

λ
p
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥disp

n−
i=1

Y(ri, λ∗
i )

(1.11)

and

r
m
≽ r∗ and λ

p
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥hr

n−
i=1

Y(r∗i , λ∗
i )
. (1.12)

Yu [24] focused on the special case when one set of gamma random variables is i.i.d. and obtained some similar results
to those in (1.10)–(1.12). It should be remarked here that the results of Yu [24] are not direct consequences of our results
obtained here since they have a less restrictive condition on the parameters.

Let Y(ri, λi) [Y(ri, λ∗
i )

], i = 1, 2, be two independent gamma random variables with Y(ri, λi)[Y(ri, λ∗
i )

] having the shape
parameter ri and scale parameter λi [λ∗

i ]. We prove that, if λ1 ≥ λ2, λ
∗

1 ≥ λ∗

2 and r1 ≤ r2, then

(λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥∗ Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
, (1.13)

and if λ1 ≤ λ2, λ
∗

1 ≤ λ∗

2 , then

(1/λ1, 1/λ2)
m
≽ (1/λ∗

1, 1/λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥∗ Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
. (1.14)

With the aid of (1.14), we also show that

(1/λ1, . . . , 1/λn)
m
≽ (1/λ∗

1, . . . , 1/λ
∗

n) H⇒

n−
i=1

Y(ri, λi) ≥RS

n−
i=1

Y(ri, λ∗
i )

(1.15)

and

r
m
≽ r∗ and (1/λ1, . . . , 1/λn)

m
≽ (1/λ∗

1, . . . , 1/λ
∗

n) H⇒

n−
i=1

Y(ri, λi) ≥mrl

n−
i=1

Y(r∗i , λ∗
i )
. (1.16)

Zhao and Balakrishnan [27] obtained some results similar to those in (1.10)–(1.12) and (1.14)–(1.16) for convolutions of
Erlang random variables (i.e., gamma random variables with integer valued shape parameters). It is apparent that the results
in (1.10)–(1.16) established in this paper generalize and strengthen the corresponding ones listed in (1.1)–(1.9) known in
the literature.

2. Likelihood ratio ordering

The following result gives the density function of a convolution of two gamma distributions with different scale and
shape parameters.
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Theorem 2.1. Let Y(ri, λi) (i = 1, 2) be two independent gamma random variables with Y(ri, λi) having the density function

f (y; ri, λi) =
yri−1λ

ri
i

Γ (ri)
exp(−λiy), y > 0.

Suppose that λ1 > λ2 and r1 < r2. Then, the density function of Y(r1, λ1) + Y(r2, λ2) is given by

f (y; r1, r2, λ1, λ2) = k(y; r1, r2, λ1, λ2)
∫ 1

0
g(w, y; r1, r2, λ1, λ2)dw, (2.1)

where

k(y; r1, r2, λ1, λ2) =
λ
r1
1 λ

r2
2

2r1+r2−1Γ (r1)Γ (r2)
yr1+r2−1 exp


−

cy
2


g(w, y; λ1, λ2) = (1 − w2)r1−1 

(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)

,

and where y > 0, 0 < w < 1, c = λ1 + λ2, θ = (λ1 − λ2)/2.

Proof. By the convolution formula, the density function of Y(r1, λ1) + Y(r2, λ2) can be written as

f (y; r1, r2, λ1, λ2) =

∫ y

0
f (x; r1, λ1)f (y − x; r2, λ2)dx

=

∫ y

0

1
Γ (r1)

xr1−1λ
r1
1 exp(−λ1x)

1
Γ (r2)

(y − x)r2−1λ
r2
2 exp[−λ2(y − x)]dx.

Changing the variable x of integration to u = x/y yields that

f (y; r1, r2, λ1, λ2) =
λ
r1
1 λ

r2
2 yr1+r2−1

Γ (r1)Γ (r2)

∫ 1

0
ur1−1(1 − u)r2−1 exp{−[λ1u + λ2(1 − u)]y}du. (2.2)

By making the transform u → z = (2u − 1)θ , it follows that

f (y; r1, r2, λ1, λ2) =
λ
r1
1 λ

r2
2 yr1+r2−1 exp


−

cy
2


Γ (r1)Γ (r2)2r1+r2−1θ

∫ θ

−θ


1 +

z
θ

r1−1 
1 −

z
θ

r2−1
exp(−yz)dz.

Split the interval (−θ, θ) of integration into (−θ, 0) and [0, θ) and make the change of variable z = −w for the interval
(−θ, 0) to give∫ θ

−θ


1 +

z
θ

r1−1 
1 −

z
θ

r2−1
exp(−yz)dz

=

∫ 0

−θ


1 +

z
θ

r1−1 
1 −

z
θ

r2−1
exp(−yz)dz +

∫ θ

0


1 +

z
θ

r1−1 
1 −

z
θ

r2−1
exp(−yz)dz

=

∫ θ

0


1 −

w

θ

r1−1 
1 +

w

θ

r2−1
exp(yw)dw +

∫ θ

0


1 +

w

θ

r1−1 
1 −

w

θ

r2−1
exp(−yw)dw

=

∫ θ

0


1 −

w2

θ2

r1−1 [
1 −

w

θ

r2−r1
exp(−yw)+


1 +

w

θ

r2−r1
exp(yw)

]
dw

=

∫ 1

0
θ(1 − w2)r1−1 

(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)

dw,

the last equality can be deduced by changing the variablew of integration tow/θ . Thus, we obtain the required result. �

Before stating our main result, we first present two useful lemmas. The first one turns out to be a useful tool for showing
the monotonicity of a fraction whose numerator and denominator are integrals or summations.

Lemma 2.2 ([17]). Let Θ be a subset of real line and U be a non-negative random variable having a cdf belonging to a
stochastically ordered family P = {H(·|θ), θ ∈ Θ}, that is, for θ1, θ2 ∈ Θ,H(·|θ1)≤st(≥st)H(·|θ2)whenever θ1 < θ2. Suppose
a real function ψ(u, θ) on R ·Θ is measurable in u for each θ such that Eθ [ψ(U, θ)] exists. Then,

(i) Eθ [ψ(U, θ)] is increasing in θ if ψ(u, θ) is increasing in θ and increasing (decreasing) in u;
(ii) Eθ [ψ(U, θ)] is decreasing in θ if ψ(u, θ) is decreasing in θ and decreasing (increasing) in u.
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Lemma 2.3. (a) For 0 < w1 < w2 and α ≥ 1, the function

g(y) =
exp(−w2y)+ α exp(w2y)
exp(−w1y)+ α exp(w1y)

is increasing in y ∈ (0, ∞);
(b) For a > 0 and θ2 > θ1 > 0, the function

ζ (w) =
(1 − w)a exp(−θ2w)+ (1 + w)a exp(θ2w)
(1 − w)a exp(−θ1w)+ (1 + w)a exp(θ1w)

is increasing inw ∈ (0, 1).

The proof of the above lemma is given in the Appendix.

Theorem 2.4. Let Y(ri, λi) (Y(ri, λ∗
i )
), i = 1, 2 be two independent gamma random variables with Y(ri, λi) (Y(ri, λ∗

i )
) having the

shape parameter ri and scale parameter λi (λ∗

i ). If λ1 ≥ λ2, λ
∗

1 ≥ λ∗

2 and 1 ≤ r1 ≤ r2, then

(λ1, λ2)
w
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥lr Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Proof. To prove the required result, it follows from A.8.a of [15] that we have to show that the result holds for majorization
and convolution is decreasing in λi (i = 1, 2) according to likelihood ratio order, which is actually true from Theorem 1.C.9
of [22] and the fact that a gamma random variable Y(r, λ) is decreasing in λ in the sense of the likelihood ratio order. Thus, it
is enough to prove that

(λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥lr Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Now assume that (λ1, λ2)
m
≽ (λ∗

1, λ
∗

2). We then have λ2 ≤ λ∗

2 ≤ λ∗

1 ≤ λ1. The proof will be done by distinguishing three
cases.
Case (i): λ1 = λ∗

1
In this case, we have λ1 = λ∗

1 and λ2 = λ∗

2 , and the result is trivially true.
Case (ii): λ1 ≠ λ∗

1 and λ∗

1 ≠ λ∗

2
Let f (1, y) = f (y; r1, r2, λ1, λ2) and f (2, y) = f (y; r1, r2, λ∗

1, λ
∗

2). It suffices to prove that

∆(y) =
f (1, y)
f (2, y)

∝

 1
0 (1 − w2)r1−1


(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)


dw 1

0 (1 − w2)r1−1 [(1 − w)r2−r1 exp(−θ∗yw)+ (1 + w)r2−r1 exp(θ∗yw)] dw
= Eyψ(W , y)

is increasing in y ∈ (0, ∞), where θ = (λ1 − λ2)/2 > (λ∗

1 − λ∗

2)/2 = θ∗ and

ψ(w, y) =
(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)
(1 − w)r2−r1 exp(−θ∗yw)+ (1 + w)r2−r1 exp(θ∗yw)

for w ∈ (0, 1). Here, the distribution function of the random variable W belongs to the family P = {H(·|y), y ∈ ℜ+} with
densities

h(w|y) = c(y)(1 − w2)r1−1 
(1 − w)r2−r1 exp(−θ∗yw)+ (1 + w)r2−r1 exp(θ∗yw)


and a normalizing constant c(y) such that

 1
0 h(w|y)dw = 1. From Lemma 2.3, it follows that ψ(w, y) is increasing both in

y ∈ (0, ∞) andw ∈ (0, 1). On the other hand, note that, for y2 ≥ y1 > 0,

h(w|y2)
h(w|y1)

∝
(1 − w)r2−r1 exp(−θ∗y2w)+ (1 + w)r2−r1 exp(θ∗y2w)
(1 − w)r2−r1 exp(−θ∗y1w)+ (1 + w)r2−r1 exp(θ∗y1w)

is also increasing inw ∈ (0, 1) from Lemma 2.3(b). Thismeans thatH(·|y1)≤lr H(·|y2)which in turn implies thatH(·|y1)≤st
H(·|y2)whenever 0 < y1 ≤ y2. By using Lemma 2.2 now, Eyψ(W , y) is increasing in y ∈ (0, ∞), which completes the proof
of this case.
Case (iii): λ1 ≠ λ∗

1 and λ∗

1 = λ∗

2
In this case, we have

f (2, y) =
(c/2)r1+r2yr1+r2−1

Γ (r1 + r2)
exp


−

cy
2


,
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where c = λ∗

1 + λ∗

2 . Thus, it follows that

∆(y) =
f (1, y)
f (2, y)

∝

∫ 1

0
(1 − w2)r1−1 

(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)

dw

=

∫ 1

0
(1 − w2)r1−1

{(1 − w)r2−r1 cosh(θyw)+ [(1 + w)r2−r1 − (1 − w)r2−r1 ] exp(θyw)}dw

is increasing in y ∈ (0, ∞) since both cosh(θyw) and exp(θyw) are increasing in y ∈ (0, ∞). �

The following theorem is a natural extension of Theorem 2.4.

Theorem 2.5. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let
Y(r1, λ∗

1)
, . . . , Y(rn, λ∗

n) be another set of independent gamma random variables with respective shape parameter vector r and scale
parameter vector λ∗

= (λ∗

1, . . . , λ
∗
n). Suppose there exists some permutation π such that πλ = λ↓, πλ∗

= λ∗
↓ and πr = r↑,

where the components of λ↓ and λ∗
↓ are in descending order, and the components of r↑ are in ascending order. Then,

λ
w
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(ri, λ∗
i )
.

Proof. Without loss of generality, let us assume that λ1 ≤ · · · ≤ λn, λ
∗

1 ≤ · · · ≤ λ∗
n and r1 ≥ · · · ≥ rn. From the definition

of the
w
≽ order, it is known that λ

w
≽ λ∗ is equivalent to

∑j
i=1 λi ≤

∑j
i=1 λ

∗

i , 1 ≤ j ≤ n. Note that there must exist some λ′
n

such that

λ′

n ≥ max{λn, λ∗

n} and (λ1, . . . , λn−1, λ
′

n)
m
≽ λ∗.

Let Y(rn, λ′
n)

be a gamma random variable with the shape parameter rn and scale parameter λ′
n, which is independent of

Y(ri, λi) (1 ≤ i ≤ n − 1), it then holds that Y(rn, λn) ≥lr Y(r1, λ′
n)
. Since the convolution of gamma distributions whose shape

parameter is greater than or equal to 1 has a logconcave density, it follows that
n−

i=1

Y(ri, λi) ≥lr

n−1−
i=1

Y(ri, λi) + Y(rn, λ′
n)

by applying Theorem 1.C.9 of [22]. Now we find that it is enough to prove that

λ
m
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(ri, λ∗
i )
.

By the nature of majorization, it suffices to prove the result for the case that (λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) and λi = λ∗

i , i = 3,
. . . , n. From Theorem 2.4, it follows that

Y(r1, λ1) + Y(r2, λ2) ≥lr Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Since
∑n

i=3 Y(ri, λi)
∑n

i=3 Y(ri, λ∗
i )


has a logconcave density, applying Theorem 1.C.9 of [22] once again yields that

n−
i=1

Y(ri, λi) = Y(r1, λ1) + Y(r2, λ2) +
n−

i=3

Y(ri, λi) ≥lr Y(r1, λ∗
1)

+ Y(r2, λ∗
2)

+

n−
i=3

Y(ri, λ∗
i )

=

n−
i=1

Y(ri, λ∗
i )
. �

Lemma 2.6. (a) For w > 0 and β ≥ α ≥ 1, the function

ϑ(y) =
1 + β exp(wy)
1 + α exp(wy)

is increasing in y ∈ (0,∞);
(b) For y > 0 and 0 < r1 ≤ r∗

1 ≤ r∗

2 ≤ r2 and r1 + r2 = r∗

1 + r∗

2 , the function

κ(w) =
(1 − w)r2(1 + w)r1 exp(−yw)+ (1 − w)r1(1 + w)r2 exp(yw)

(1 − w)r
∗
2 (1 + w)r

∗
1 exp(−yw)+ (1 − w)r

∗
1 (1 + w)r

∗
2 exp(yw)

is increasing inw ∈ (0, 1).

The proof of the above lemma is given in the Appendix.
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Theorem 2.7. Let Y(ri, λi) (Y(r∗i , λi)), i = 1, 2 be two independent gamma random variables with Y(ri, λi) (Y(r∗i , λi)) having the
shape parameter ri (r∗

i ) and scale parameter λi. If r1 ≤ r2, r∗

1 ≤ r∗

2 and λ1 ≥ λ2, then

(r1, r2)
m
≽ (r∗

1 , r
∗

2 ) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥lr Y(r∗1 , λ1) + Y(r∗2 , λ2).

Proof. Assume (r1, r2)
m
≽ (r∗

1 , r
∗

2 ) to hold, we then have r1 ≤ r∗

1 ≤ r∗

2 ≤ r2. If r2 = r∗

2 , then r1 = r∗

1 and hence the result is
trivially true. In the following, we assume that r2 > r∗

2 . Let g(1, y) = f (y; r1, r2, λ1, λ2) and g(2, y) = f (y; r∗

1 , r
∗

2 , λ1, λ2).
From (2.1), we have to prove that

Ξ(y) =
g(1, y)
g(2, y)

∝

 1
0 (1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)dw 1
0 (1 − w)r

∗
2−1(1 + w)r

∗
1−1 exp(−θyw)+ (1 − w)r

∗
1−1(1 + w)r

∗
2−1 exp(θyw)dw

= Eyϕ1(W , y)

is increasing in y ∈ (0, ∞), where θ = (λ1 − λ2)/2 and

ϕ1(w, y) =
(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)

(1 − w)r
∗
2−1(1 + w)r

∗
1−1 exp(−θyw)+ (1 − w)r

∗
1−1(1 + w)r

∗
2−1 exp(θyw)

for w ∈ (0, 1). Here, the distribution function of the random variable W belongs to the family P = {H1(·|y), y ∈ ℜ} with
densities

h1(w|y) = c1(y)

(1 − w)r

∗
2−1(1 + w)r

∗
1−1 exp(−θyw)+ (1 − w)r

∗
1−1(1 + w)r

∗
2−1 exp(θyw)


and a normalizing constant c1(y) such that

 1
0 h1(w|y)dw = 1. For fixedw ∈ (0, 1), it can be seen that

ϕ1(w, y) ∝
(1 − w)r2−r1 exp(−θyw)+ (1 + w)r2−r1 exp(θyw)

(1 − w)r
∗
2−r∗1 exp(−θyw)+ (1 + w)r

∗
2−r∗1 exp(θyw)

∝
1 +

 1+w
1−w

r2−r1 exp(2θyw)

1 +
 1+w
1−w

r∗2−r∗1 exp(2θyw)
,

which is increasing in y ∈ (0, ∞) forw ∈ (0, 1) and θ > 0 according to Lemma 2.6(a). On the other hand, ϕ1(w, y) is also
increasing inw ∈ (0, 1) for θy > 0 from Lemma 2.6(b). In addition, for y2 ≥ y1 > 0,

h1(w|y2)
h1(w|y1)

∝
(1 − w)r

∗
2−r∗1 exp(−θy2w)+ (1 + w)r

∗
2−r∗1 exp(θy2w)

(1 − w)r
∗
2−r∗1 exp(−θy1w)+ (1 + w)r

∗
2−r∗1 exp(θy1w)

is also increasing inw ∈ (0, 1) from Lemma 2.3(b). From this one gets that H1(·|y1)≤lr H1(·|y2)which in turn implies that
H1(·|y1)≤st H1(·|y2) whenever 0 < y1 ≤ y2. By using Lemma 2.2 now, Eyϕ1(W , y) is increasing in y ∈ (0, ∞), which
completes the entire proof. �

Upon using a proof quite similar to that of Theorem 2.5, we can obtain the following result.

Theorem 2.8. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let Y(r∗1 , λ1),
. . . , Y(r∗n , λn) be another set of independent gamma random variables with respective shape parameter vector r∗

= (r∗

1 , . . . , r
∗
n )

where each component is greater than or equal to 1 and scale parameter vector λ. Suppose there exists some permutation π such
that πr = r↑, πr∗

= r∗

↑
and πλ = λ↓. Then,

r
m
≽ r∗

H⇒

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(r∗i , λi).

Finally, we give a result more general than those in Theorems 2.5 and 2.8, which can be used to compare heterogeneous
gamma convolutions in terms of the likelihood ratio order wherein both shape parameter vectors and scale parameter
vectors are different.

Theorem 2.9. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let Y(r∗1 , λ∗
1)
,

. . . , Y(r∗n , λ∗
n) be another set of independent gamma random variables with respective shape parameter vector r∗

= (r∗

1 , . . . , r
∗
n )
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Fig. 1. Plot of the ratio f (t; 3, 1, 1, 3)/f (t; 2, 2, 2, 3) between the densities of convolutions.

where each component is greater than or equal to 1 and scale parameter vector λ∗
= (λ∗

1, . . . , λ
∗
n). Suppose there exists some

permutation π such that πr = r↑, πr∗
= r∗

↑
, πλ = λ↓ and πλ∗

= λ∗
↓. Then,

r
m
≽ r∗ and λ

w
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(r∗i , λ∗
i )
.

Proof. Let Y(r1,λ∗
1)
, . . . , Y(rn,λ∗

n) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) and scale parameter vector λ∗
= (λ∗

1, . . . , λ
∗
n). Upon using Theorems 2.5 and 2.8, we have

n−
i=1

Y(ri, λi) ≥lr

n−
i=1

Y(ri, λ∗
i )

≥lr

n−
i=1

Y(r∗i , λ∗
i )
. �

In order to illustrate the result obtained in Theorem 2.9, we provide the following numerical example. Let (X1, X2) be a
vector of independent heterogeneous gamma random variables with shape parameter vector (r1, r2) = (3, 1) and scale
parameter vector (λ1, λ2) = (1, 3). Let (X∗

1 , X
∗

2 ) be an another vector of independent heterogeneous gamma random
variables with shape parameter vector (r∗

1 , r
∗

2 ) = (2, 2) and scale parameter vector (λ∗

1, λ
∗

2) = (2, 3). Obviously, it holds

that r1 ≥ r2, r∗

1 ≥ r∗

2 , λ1 ≤ λ2, λ∗

1 ≤ λ∗

2, (r1, r2)
m
≽ (r∗

1 , r
∗

2 ) and (λ1, λ2)
w
≽ (λ∗

1, λ
∗

2). It can be seen from Fig. 1 that the ratio
f (t; 3, 1, 1, 3)/f (t; 2, 2, 2, 3) between the densities of convolutions is increasing in t ∈ ℜ+ which is in accordance with the
result of Theorem 2.9.

3. Dispersive ordering and hazard rate ordering

Lemma 3.1 ([19]). Let {Fa|a ∈ ℜ} be a class of distribution functions, such that Fa is supported on some interval (x(a)− , x
(b)
+ ) ⊆

(0,∞) and has a density fa which does not vanish on any subinterval of (x(a)− , x
(b)
+ ), where x(a)− and x(b)+ mean the left and right

end points, respectively. Then,

Fa ≤disp Fa∗ , a, a∗
∈ ℜ, a ≤ a∗

if and only if F ′
a(x)/fa(x) is decreasing in x, where F ′

a is the derivative of Fa with respect to a.

Theorem 3.2. Let Y(ri, λi) (Y(ri, λ∗
i )
), i = 1, 2 be two independent gamma random variables with Y(ri, λi) (Y(ri, λ∗

i )
) having the

shape parameter ri and scale parameter λi (λ∗

i ). If λ1 ≥ λ2, λ
∗

1 ≥ λ∗

2 and 1 ≤ r1 ≤ r2, then

(λ1, λ2)
p
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥disp Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Proof. Suppose (λ1, λ2)
p
≽ (λ∗

1, λ
∗

2). We then have that λ2 ≤ λ∗

2 and λ1λ2 ≤ λ∗

1λ
∗

2 . There must exist some λ′

1 such that
λ′

1 ≥ λ1 and λ′

1λ2 = λ∗

1λ
∗

2 . Let Y(r1, λ′
1)

be a gamma random variable with the shape parameter r1 and scale parameter
λ′

1, independent of Y(r2, λ2). Since a gamma random variable Y(r, λ) is decreasing with the scale parameter λ in the sense
of the dispersive order, it follows that Y(r1, λ1) ≥disp Y(r1, λ′

1)
. Moreover, it is known that the gamma distribution whose

shape parameter is greater than or equal to 1 has logconcave density. Applying this and Theorem 3.B.9 of [22], it follows
that

Y(r1, λ1) + Y(r2, λ2) ≥disp Y(r1, λ′
1)

+ Y(r2, λ2).
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Thus, it reduces to proving the theorem under the conditions λ2 ≤ λ∗

2 ≤ λ∗

1 ≤ λ1 and λ1λ2 = λ∗

1λ
∗

2 . If λ1 = λ∗

1 , then λ2 = λ∗

2
and hence the result is trivially true. In what follows we only need to give the proof for the case when λ1 ≠ λ∗

1 and λ∗

1 ≠ λ∗

2
as a limiting argument can be used to prove the result when λ∗

1 = λ∗

2 . Let a1 = log λ1, a2 = log λ2, a∗

1 = log λ∗

1, a
∗

2 = log λ∗

2
and a1 + a2 = a∗

1 + a∗

2 = d. We then have a1 > a2 and a∗

1 > a∗

2 . Also, the following relation holds:

(a1, a2)
m
≽ (a∗

1, a
∗

2).

Upon setting a1 = a and using (2.2), we get

f (y; r1, r2, a) =
er1aer2(d−a)yr1+r2−1

Γ (r1)Γ (r2)

∫ 1

0
ur1−1(1 − u)r2−1 exp{−[eau + ed−a(1 − u)]y}du.

Taking the derivative with respect to a for f (y; r1, r2, a) and after simplifications, we have

f ′(y; r1, r2, a) =
(r1 − r2)er1aer2(d−a)yr1+r2−1

Γ (r1)Γ (r2)

∫ 1

0
ur1−1(1 − u)r2−1 exp{−[eau + ed−a(1 − u)]y}du

−
r1e(r1+1)aer2(d−a)y(r1+1)+r2−1

Γ (r1 + 1)Γ (r2)

∫ 1

0
ur1(1 − u)r2−1 exp{−[eau + ed−a(1 − u)]y}du

+
r2er1ae(r2+1)(d−a)yr1+(r2+1)−1

Γ (r1)Γ (r2 + 1)

∫ 1

0
ur1−1(1 − u)r2 exp{−[eau + ed−a(1 − u)]y}du

= (r1 − r2)f (y; r1, r2, a)− r1f (y; r1 + 1, r2, a)+ r2f (y; r1, r2 + 1, a). (3.1)

Note that the Laplace transform of f (y; r1, r2, a) is given by

L(f (y; r1, r2, a)) =


ea

s + ea

r1 
ed−a

s + ed−a

r2

, (3.2)

and taking the Laplace transform of both sides of (3.1) and applying (3.2) yields that

L(f ′(y; r1, r2, a)) = r1[L(f (y; r1, r2, a))− L(f (y; r1 + 1, r2, a))] + r2[L(f (y; r1, r2 + 1, a))− L(f (y; r1, r2, a))]

=

[
sr1(s + ed−a)

ed
−

sr2(s + ea)
ed

] 
ea

s + ea

r1+1 
ed−a

s + ed−a

r2+1

. (3.3)

Now apply the relation L
 y

0 f ′(u; r1, r2, a)du


= L(f ′(y; r1, r2, a))/s and (3.3) to give that

L(F ′(y; r1, r2, a)) =
r1(s + ed−a)− r2(s + ea)

ed


ea

s + ea

r1+1 
ed−a

s + ed−a

r2+1

= −
r1(ea − ed−a)

ed


ea

s + ea

r1+1 
ed−a

s + ed−a

r2+1

−
(r2 − r1)

ed−a


ea

s + ea

r1 
ed−a

s + ed−a

r2+1

. (3.4)

Upon taking the inverse Laplace transforms of both sides of (3.4) and dividing it by f (y; r1, r2, a), we obtain

F ′(y; r1, r2, a)
f (y; r1, r2, a)

= −
r1(ea − ed−a)

ed
f (y; r1 + 1, r2 + 1, a)

f (y; r1, r2, a)
−
(r2 − r1)

ed−a

f (y; r1, r2 + 1, a)
f (y; r1, r2, a)

. (3.5)

It can be readily verified that both

f (y; r1 + 1, r2 + 1, a)
f (y; r1, r2, a)

and
f (y; r1, r2 + 1, a)
f (y; r1, r2, a)

are increasing in y > 0 for 1 ≤ r1 ≤ r2, and hence the left hand side of (3.5) is decreasing in y since a > d − a and r1 ≤ r2.
Therefore, the desired result follows from Lemma 3.1. �

The following theorem is a natural extension of Theorem 3.2.

Theorem 3.3. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let
Y(r1, λ∗

1)
, . . . , Y(rn, λ∗

n) be another set of independent gamma random variables with respective shape parameter vector r and scale
parameter vector λ∗

= (λ∗

1, . . . , λ
∗
n). Suppose there exists some permutation π such that πλ = λ↓, πλ∗

= λ↓ and πr = r↑.
Then,

λ
p
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥disp

n−
i=1

Y(ri, λ∗
i )
.
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Proof. Without loss of generality, let us assume that λ1 ≤ · · · ≤ λn, λ
∗

1 ≤ · · · ≤ λ∗
n and r1 ≥ · · · ≥ rn. λ

p
≽ λ∗ is equivalent

to
∏j

i=1 λi ≤
∏j

i=1 λ
∗

i , 1 ≤ j ≤ n. It is easy to see that there exists some λ′
n ≥ max{λn, λ∗

n} such that

j∏
i=1

λi ≤

j∏
i=1

λ∗

i , 1 ≤ j ≤ n − 1 and
n∏

i=1

λi =

n∏
i=1

λ∗

i .

Let Y(rn, λ′
n)

be a gamma random variable with the shape parameter rn and scale parameter λ′
n, independent of Y(ri, λi) (1 ≤

i ≤ n − 1), it then follows that Y(rn, λn) ≥disp Y(rn, λ′
n)
. Since the convolution of gamma distributions with shape parameter

greater than or equal to 1 has a logconcave density, it follows that

n−
i=1

Y(ri, λi) ≥disp

n−1−
i=1

Y(ri, λi) + Y(rn, λ′
n)

by applying Theorem 3.B.9 of [22]. Denote

a = (a1, . . . , an) = (log λ1, . . . , log λn), a∗
= (a∗

1, . . . , a
∗

n) = (log λ∗

1, . . . , log λ
∗

n),

we then find that it is enough to prove that

a
m
≽ a∗

H⇒

n−
i=1

Y(ri, eai ) ≥disp

n−
i=1

Y
(ri, e

a∗i )
.

By the nature of majorization, it suffices to prove the result for the case when (a1, a2)
m
≽ (a∗

1, a∗

2) and ai = a∗

i , i = 3,
. . . , n. From Theorem 3.2, it follows that

Y(r1, ea1 ) + Y(r2, ea2 ) ≥disp Y
(r1, e

a∗1 )
+ Y

(r2, e
a∗2 )
.

Since
∑n

i=3 Y(ri, eai )
∑n

i=3 Y(ri, eλ
∗
i )


has a logconcave density, applying Theorem 3.B.9 of [22] once again yields that

n−
i=1

Y(ri, λi) = Y(r1, ea1 ) + Y(r2, ea2 ) +
n−

i=3

Y(ri, eai ) ≥disp Y
(r1, e

a∗1 )
+ Y

(r2, e
a∗2 )

+

n−
i=3

Y
(ri, e

a∗i )
=

n−
i=1

Y(ri, λ∗
i )
. �

Finally, we give a general resultwhich can be used to compare heterogeneous gamma convolutions in terms of the hazard
rate order wherein both shape parameter vectors and scale parameter vectors are different. Let X and Y be two random
variables with distribution functions F and G, respectively. Bagai and Kochar [1] then showed that X ≤disp Y and F or G being
IFR (increasing failure rate) implies that X ≤hr Y . Using this and the fact that the convolution of IFR distributions is still IFR,
we immediately get the following result from Theorems 2.5 and 3.3.

Theorem 3.4. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let Y(r∗1 , λ∗
1)
,

. . . , Y(r∗n , λ∗
n) be another set of independent gamma random variables with respective shape parameter vector r∗

= (r∗

1 , . . . , r
∗
n )

where each component is greater than or equal to 1 and scale parameter vector λ∗
= (λ∗

1, . . . , λ
∗
n). Suppose there exists some

permutation π such that πr = r↑, πr∗
= r∗

↑
, πλ = λ↓ and πλ∗

= λ∗
↓. Then,

r
m
≽ r∗ and λ

p
≽ λ∗

H⇒

n−
i=1

Y(ri, λi) ≥hr

n−
i=1

Y(r∗i , λ∗
i )
.

Let (X1, X2) be a vector of independent heterogeneous gamma random variables with shape parameter vector (r1, r2) =

(3, 1) and scale parameter vector (λ1, λ2) = (1, 3). Denote by h(t; 3, 1, 1, 3) the hazard rate function of convolution
between X1 and X2. Let (X∗

1 , X
∗

2 ) be another vector of independent heterogeneous gamma random variables with shape
parameter parameter (r∗

1 , r
∗

2 ) = (2, 2) and scale parameter vector (λ∗

1, λ
∗

2) = (1.5, 2), and denote by h(t; 2, 2, 1.5, 2) the

hazard rate function of convolution between X∗

1 and X∗

2 . It is clear that r1 ≥ r2, r∗

1 ≥ r∗

2 , λ1 ≤ λ2, λ
∗

1 ≤ λ∗

2, (r1, r2)
m
≽ (r∗

1 , r
∗

2 )

and (λ1, λ2)
p
≽ (λ∗

1, λ
∗

2) (but the
w
≽ order does not hold between these two vectors). It can be seen from Fig. 2 that

h(t; 3, 1, 1, 3) ≤ h(t; 2, 2, 1.5, 2) for all t ∈ ℜ+ which is in accordance with the result of Theorem 3.4.

4. Star ordering and right spread ordering

We shall need the following lemma for proving the main result, which is originally due to [19, p. 429].
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Fig. 2. Plots of hazard rate functions of two gamma convolutions.

Lemma 4.1. Let {Fa|a ∈ ℜ} be a class of distribution functions, such that Fa is supported on some interval (x(a)− , x
(b)
+ ) ⊆ (0,∞)

and has a density fa which does not vanish on any subinterval of (x(a)− , x
(b)
+ ). Then,

Fa ≤∗ Fa∗ , a, a∗
∈ ℜ, a ≤ a∗

if and only if F ′
a(x)/xfa(x) is decreasing in x, where F ′

a is the derivative of Fa with respect to a.

Theorem 4.2. Let Y(ri, λi) (Y(ri, λ∗
i )
), i = 1, 2 be two independent gamma random variables with Y(ri, λi) (Y(ri, λ∗

i )
) having the

shape parameter ri > 0 and scale parameter λi (λ∗

i ). If λ1 ≥ λ2, λ
∗

1 ≥ λ∗

2 and r1 ≤ r2, then

(λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥∗ Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Proof. Assume that (λ1, λ2)
m
≽ (λ∗

1, λ
∗

2). We then have λ2 ≤ λ∗

2 ≤ λ∗

1 ≤ λ1 and λ1 + λ2 = λ∗

1 + λ∗

2 = c . If λ1 = λ∗

1
then λ2 = λ∗

2 , and the result is trivially true. We only need to prove the result for the case when λ1 ≠ λ∗

1 and λ∗

1 ≠ λ∗

2
since the case when λ∗

1 = λ∗

2 can be readily obtained by a limiting argument. Letting λ1 = λ ∈ (c/2, c], we can rewrite
Y(r1, λ1) + Y(r2, λ2) as Y(r1, λ) + Y(r2, c−λ) and from (2.2) its density is given by

f (y; r1, r2, λ) =
λr1(c − λ)r2yr1+r2−1

Γ (r1)Γ (r2)

∫ 1

0
ur1−1(1 − u)r2−1 exp{−[λu + (c − λ)(1 − u)]y}du.

Taking the derivative with respect λ for f (y; r1, r2, λ) and after simplifications, we have

f ′(y; r1, r2, λ) =


r1
λ

−
r2

c − λ


λr1(c − λ)r2yr1+r2−1

Γ (r1)Γ (r2)

∫ 1

0
ur1−1(1 − u)r2−1 exp{−[λu + (c − λ)(1 − u)]y}du

−
r1
λ

λ(r1+1)(c − λ)r2y(r1+1)+r2−1

Γ (r1 + 1)Γ (r2)

∫ 1

0
ur1(1 − u)r2−1 exp{−[λu + (c − λ)(1 − u)]y}du

+
r2

c − λ

λr1(c − λ)(r2+1)yr1+(r2+1)−1

Γ (r1)Γ (r2 + 1)

∫ 1

0
ur1−1(1 − u)r2 exp{−[λu + (c − λ)(1 − u)]y}du

=


r1
λ

−
r2

c − λ


f (y; r1, r2, λ)−

r1
λ
f (y; r1 + 1, r2, λ)+

r2
c − λ

f (y; r1, r2 + 1, λ). (4.1)

It is known that the Laplace transform of f (y; r1, r2, λ) can be written as

L(f (y; r1, r2, λ)) =


λ

s + λ

r1 
c − λ

s + c − λ

r2
, (4.2)

and taking the Laplace transform of both sides of (4.1) and applying (4.2) yields that

L(f ′(y; r1, r2, λ)) =
r1
λ

[L(f (y; r1, r2, λ))− L(f (y; r1 + 1, r2, λ))]

+
r2

c − λ
[L(f (y; r1, r2 + 1, λ))− L(f (y; r1, r2, λ))]

=
s

λ2(c − λ)2
[r1(s + c − λ)(c − λ)− r2(s + λ)λ]


λ

s + λ

r1+1 
c − λ

s + c − λ

r2+1
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=
sr1
λ2


λ

s + λ

r1+1 
c − λ

s + c − λ

r2
−

sr2
(c − λ)2


λ

s + λ

r1 
c − λ

s + c − λ

r2+1

. (4.3)

Now apply the relation L
 y

0 f ′(u; r1, r2, λ)du


= L(f ′(y; r1, r2, λ))/s and (4.3) to give that

L(F ′(y; r1, r2, λ)) =
r1
λ2


λ

s + λ

r1+1 
c − λ

s + c − λ

r2
−

r2
(c − λ)2


λ

s + λ

r1 
c − λ

s + c − λ

r2+1

. (4.4)

Upon taking the inverse Laplace transforms of both sides of (4.4) and dividing it by yf (y; r1, r2, λ), we obtain

F ′(y; r1, r2, λ)
yf (y; r1, r2, λ)

=
r1
λ2

f (y; r1 + 1, r2, λ)
yf (y; r1, r2, λ)

−
r2

(c − λ)2

f (y; r1, r2 + 1, λ)
yf (y; r1, r2, λ)

. (4.5)

Hence, according to Lemma 4.1, it suffices to prove that

f (y; r1 + 1, r2, λ)
yf (y; r1, r2, λ)

is decreasing while

f (y; r1, r2 + 1, λ)
yf (y; r1, r2, λ)

is increasing in y > 0. It is seen from Theorem 2.1 that

f (y; r1 + 1, r2, λ)
yf (y; r1, r2, λ)

∝

 1
0


(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 + w)r2−1(1 − w)r1 exp(θyw)


dw 1

0


(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 + w)r2−1(1 + w)r1−1 exp(θyw)


dw

= Eyψ2(W , y),

where θ = (λ1 − λ2)/2 and

ϕ2(w, y) =
(1 − w)r2−1(1 + w)r1 exp(−θyw)+ (1 − w)r1(1 + w)r2−1 exp(θyw)

(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)

for w ∈ (0, 1). Here, the distribution function of the random variable W belongs to the family P = {H2(·|y), y ∈ ℜ} with
densities

h2(w|y) = c2(y)

(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)


and a normalizing constant c2(y) such that

 1
0 h2(w|y) dw = 1. It can be verified that

ϕ2(w, y) = 1 − w
(1 − w)r1−1(1 + w)r2−1 exp(θyw)− (1 − w)r2−1(1 + w)r1−1 exp(−θyw)
(1 − w)r1−1(1 + w)r2−1 exp(θyw)+ (1 − w)r2−1(1 + w)r1−1 exp(−θyw)

= 1 − w


1 −

2 1+w
1−w

r2−r1 exp(2θyw)+ 1


are decreasing both inw ∈ (0, 1) and y ∈ (0, ∞). In addition, for y2 ≥ y1 > 0,

h2(w|y2)
h2(w|y1)

∝
(1 − w)r2−r1 exp(−θy2w)+ (1 + w)r2−r1 exp(θy2w)
(1 − w)r2−r1 exp(−θy1w)+ (1 + w)r2−r1 exp(θy1w)

is increasing in w ∈ (0, 1) from Lemma 2.3(b). From this one gets that H2(·|y1)≤lr H2(·|y2) which in turn implies that
H2(·|y1)≤st H2(·|y2)whenever 0 < y1 ≤ y2. By using Lemma 2.2 now, Eyϕ2(W , y) is decreasing in y ∈ (0, ∞). To conclude,
we finally need to prove that

f (y; r1, r2 + 1, λ)
yf (y; r1, r2, λ)

∝

 1
0


(1 − w)r2(1 + w)r1−1 exp(−θyw)+ (1 + w)r2(1 − w)r1−1 exp(θyw)


dw 1

0


(1 − w)r2−1(1 + w)r1−1 exp(−θ∗yw)+ (1 + w)r2−1(1 + w)r1−1 exp(θ∗yw)


dw

= Eyψ3(W , y)

is increasing in y ∈ (0, ∞), where

ϕ3(w, y) =
(1 − w)r2(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2 exp(θyw)

(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)



P. Zhao / Journal of Multivariate Analysis 102 (2011) 958–976 971

for w ∈ (0, 1). Here, the distribution function of the random variable W belongs to the family P = {H3(·|y), y ∈ ℜ} with
densities

h3(w|y) = c3(y)

(1 − w)r2−1(1 + w)r1−1 exp(−θyw)+ (1 − w)r1−1(1 + w)r2−1 exp(θyw)


and a normalizing constant c3(y) such that

 1
0 h3(w|y) dw = 1. Note that

ϕ3(w, y) = 1 + w
(1 − w)r1−1(1 + w)r2−1 exp(θyw)− (1 − w)r2−1(1 + w)r1−1 exp(−θyw)
(1 − w)r1−1(1 + w)r2−1 exp(θyw)+ (1 − w)r2−1(1 + w)r1−1 exp(−θyw)

= 1 + w


1 −

2 1+w
1−w

r2−r1 exp(2θyw)+ 1


are increasing both inw ∈ (0, 1) and y ∈ (0, ∞). Moreover, it is known from the discussion above thatH3(·|y1)≤st H3(·|y2)
whenever 0 < y1 ≤ y2. By using Lemma 2.2 once again, Eyϕ3(W , y) is increasing in y ∈ (0, ∞). Thus, we finish the entire
proof. �

In the next result we shall present a different condition on the scale parameter vectors of gamma convolutions for star
ordering to hold.

Theorem 4.3. Let Y(ri, θi) (Y(ri, θ∗
i )
), i = 1, 2 be two independent gamma random variables with Y(ri, θi) (Y(ri, θ∗

i )
) having the

shape parameter ri and scale parameter θi = 1/λi (θ∗

i = 1/λ∗

i ). If λ1 ≥ λ2 and λ∗

1 ≥ λ∗

2 , then

(λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, θ1) + Y(r2, θ2) ≥∗ Y(r1, θ∗
1 )

+ Y(r2, θ∗
2 )
.

Proof. Following a similar argument to the proof in Theorem4.2,we only need to prove the result for the casewhenλ∗

1 ≠ λ∗

2 .

Assume (λ1, λ2)
m
≽ (λ∗

1, λ
∗

2) to hold and let λ = λ1, λ
∗

= λ∗

1 and λ1 + λ2 = c. We then have λ ≥ λ∗ > c/2. Thus,
Y(r1, θ1) + Y(r2, θ2) can be rewritten as λY(r1, 1) + (c − λ)Y(r2, 1) and its distribution function is given by

F(t; r1, r2, λ) =

∫∫
x1r1−1e−x1

Γ (r1)
x2r2−1e−x2

Γ (r2)
dx1dx2,

where the integration is over the region x1, x2 ≥ 0 and λx1 + (c − λ)x2 ≤ t , and hence it can be rewritten as

F(t; r1, r2, λ) =
1

Γ (r1)Γ (r2)

∫ t/λ

0

∫ (t−λx1)/(c−λ)

0
x1r1−1e−x1x2r2−1e−x2dx2dx1.

Making the transforms

r = x1 + x2, s =
x1

x1 + x2
one gets

F(t; r1, r2, λ) =
1

Γ (r1)Γ (r2)

∫ 1

0
sr1−1(1 − s)r2−1

∫ t/h(s)

0
r r1+r2−1e−rdrds, (4.6)

where h(s) = λs + (c − λ)(1 − s). Taking the derivative with respect to λ, we get

F ′(t; r1, r2, λ) =
t r1+r2

Γ (r1)Γ (r2)

∫ 1

0

sr1−1(1 − s)r2−1(1 − 2s)
[h(s)]r1+r2+1

e−t/h(s)ds.

In addition, it can be seen from (4.6) that the density function of Y(r1, θ1) + Y(r2, θ2) is given by

f (t; r1, r2, λ) =
t r1+r2−1

Γ (r1)Γ (r2)

∫ 1

0

sr1−1(1 − s)r2−1

[h(s)]r1+r2
e−t/h(s)ds.

Upon applying Lemma 4.1, we find that it suffices to prove that

F ′(t; r1, r2, λ)
tf (t; r1, r2, λ)

=

 1
0

sr1−1(1−s)r2−1(1−2s)
[h(s)]r1+r2+1 e−t/h(s)ds 1

0
sr1−1(1−s)r2−1

[h(s)]r1+r2 e−t/h(s)ds
= Etψ(S, t)

is decreasing in t ∈ (0, ∞), where

ϕ(s, t) =
1 − 2s
h(s)
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for s ∈ (0, 1). The distribution function of the random variable S belongs to the family P = {H(·|t), t ∈ ℜ} with densities

h(s|t) = c(t)
sr1−1(1 − s)r2−1

[h(s)]r1+r2
e−t/h(s)

and a normalizing constant c(t) such that
 1
0 h(s|t) ds = 1. It can be readily checked that ϕ(s, t) are decreasing both in

s ∈ (0, 1) and t ∈ (0, ∞). On the other hand, for t2 ≥ t1 > 0, we have

h(s|t2)
h(s|t1)

∝ exp


−
t2 − t1
h(s)


is increasing in s ∈ (0, 1) which implies that H(·|t1)≤st H(·|t2) whenever 0 < t1 ≤ t2. By using Lemma 2.2, it follows that
Etϕ(S, t) is decreasing in t ∈ (0, ∞). �

Remark 4.4. Theorem 4.3 here extends Theorem 3.6 in [13] wherein they only gave the result for the special case when the
gamma distributions have common shape parameters.

Next, we present the result on the right spread order.

Theorem 4.5. Let Y(ri, λi) (Y(ri, λ∗
i )
), i = 1, 2 be two independent gamma random variables with Y(ri, λi) (Y(ri, λ∗

i )
) having the

shape parameter ri and scale parameter λi (λ∗

i ). If λ1 ≥ λ2, λ
∗

1 ≥ λ∗

2 and 1 ≤ r1 ≤ r2, then

(λ1, λ2)
rm
≽ (λ∗

1, λ
∗

2) H⇒ Y(r1, λ1) + Y(r2, λ2) ≥RS Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Proof. From the definition of
rm
≽ order, (λ1, λ2)

rm
≽ (λ∗

1, λ
∗

2) implies that

1
λ2

≥
1
λ∗

2
,

1
λ1

+
1
λ2

≥
1
λ∗

1
+

1
λ∗

2
.

To obtain the required result, we now need to distinguish two cases.
Case (a): 1

λ1
≥

1
λ∗
1

In this case, we have
1
λ1

≥
1
λ∗

1
,

1
λ2

≥
1
λ∗

2
,

which implies that

Y(r1, λ1) ≥RS Y(r1, λ∗
1)
, Y(r2, λ2) ≥RS Y(r2, λ∗

2)
.

Since a gamma random variable with shape parameter greater than or equal to 1 has logconcave density function, the result
follows from Theorem 3.C.7 of [22].
Case (b): 1

λ1
< 1

λ∗
1

In this case, we have
1
λ2

≥
1
λ∗

2
≥

1
λ∗

1
>

1
λ1
.

It can be seen that there exists some λ′

2 such that

1
λ2

≥
1
λ′

2
≥

1
λ∗

2
and

1
λ1

+
1
λ′

2
=

1
λ∗

1
+

1
λ∗

2
.

Note that

Y(r1, λ1) + Y(r2, λ2) ≥RS Y(r1, λ1) + Y(r2, λ′
2)
,

and hence it will be enough if we could prove that

Y(r1, λ1) + Y(r2, λ′
2)

≥RS Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Since 
1
λ1
,
1
λ′

2


m
≽


1
λ∗

1
,
1
λ∗

2


,

it follows from Theorem 4.3 that

Y(r1, λ1) + Y(r2, λ′
2)

≥∗ Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
,
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which in turn implies that

Y(r1, λ1) + Y(r2, λ′
2)

≥NBUE Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
. (4.7)

Let Y = Y(r1, λ1)+Y(r2, λ′
2)
with distribution and survival functions F and F , respectively. Similarly, let Y ∗

= Y(r1, λ∗
1)

+Y(r2, λ∗
2)

with distribution and survival functions G and G, respectively. From (4.7) and the definition of ≥NBUE order, we then have

1
µF

∫
∞

F−1(u)
F(x) dx ≥

1
µG

∫
∞

G−1(u)
G(x) dx (4.8)

for all u ∈ (0, 1], where µF (µG) denotes the mean of Y (Y ∗). It can be readily seen that

µF =
r1
λ1

+
r2
λ′

2
= r1


1
λ1

+
1
λ′

2


+ (r2 − r1)

1
λ′

2

and

µG =
r1
λ∗

1
+

r2
λ∗

2
= r1


1
λ∗

1
+

1
λ∗

2


+ (r2 − r1)

1
λ∗

2
,

which implies that µF ≥ µG as r1 ≤ r2. Using this and (4.8) one gets∫
∞

F−1(u)
F(x) dx ≥

∫
∞

G−1(u)
G(x) dx,

that is,

Y(r1, λ1) + Y(r2, λ′
2)

≥RS Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
,

which completes the proof. �

Theorem 4.6. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let Y(r1, λ∗
1)
,

. . . , Y(rn, λ∗
n) be another set of independent gamma random variables with respective shape parameter vector r and scale

parameter vector λ∗
= (λ∗

1, . . . , λ
∗
n). Suppose there exists some permutation π such that πλ = λ↓, πλ∗

= λ∗
↓ and πr = r↑.

Then, 
1
λ1
, . . . ,

1
λn


m
≽


1
λ∗

1
, . . . ,

1
λ∗
n


H⇒

n−
i=1

Y(ri, λi) ≥RS

n−
i=1

Y(ri, λ∗
i )
.

Proof. Without loss of generality, let us assume that λ1 ≥ · · · ≥ λn, λ
∗

1 ≥ · · · ≥ λ∗
n and r1 ≤ · · · ≤ rn. By the nature of

majorization, it suffices to prove the result for the case when
1
λ1
,
1
λ2


m
≽


1
λ∗

1
,
1
λ∗

2


(4.9)

and λi = λ∗

i , i = 3, . . . , n. Since (4.9) implies that

(λ1, λ2)
rm
≽ (λ∗

1, λ
∗

2),

it follows from Theorem 4.5 that

Y(r1, λ1) + Y(r2, λ2) ≥RS Y(r1, λ∗
1)

+ Y(r2, λ∗
2)
.

Note that
∑n

i=3 Y(ri, λi)
∑n

i=3 Y(ri, λ∗
i )


has a logconcave density, using this and Theorem 3.C.7 of [22] yields that

n−
i=1

Y(ri, λi) = Y(r1, λ1) + Y(r2, λ2) +
n−

i=3

Y(ri, λi) ≥RS Y(r1, λ∗
1)

+ Y(r2, λ∗
2)

+

n−
i=3

Y(ri, λ∗
i )

=

n−
i=1

Y(ri, λ∗
i )
. �

Similar to Theorem 3.4, we also give a general result on the mean residual life order. As the convolution of DMRL
(decreasing mean residual life) distributions is still DMRL, using Theorem 3.C.5 of [22], one can get the following result
from Theorems 2.5 and 4.6.

Theorem 4.7. Let Y(r1, λ1), . . . , Y(rn, λn) be independent gamma random variables with respective shape parameter vector r =

(r1, . . . , rn) where each component is greater than or equal to 1 and scale parameter vector λ = (λ1, . . . , λn), and let
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Fig. 3. Plots of mean residual life functions of two gamma convolutions.

Y(r∗1 , λ∗
1)
, . . . , Y(r∗n , λ∗

n) be another set of independent gamma random variables with respective shape parameter vector r∗
=

(r∗

1 , . . . , r
∗
n ) where each component is greater than or equal to 1 and scale parameter vector λ∗

= (λ∗

1, . . . , λ
∗
n). Suppose there

exists some permutation π such that πr = r↑, πr∗
= r∗

↑
, πλ = λ↓ and πλ∗

= λ∗
↓. Then,

r
m
≽ r∗ and


1
λ1
, . . . ,

1
λn


m
≽


1
λ∗

1
, . . . ,

1
λ∗
n


H⇒

n−
i=1

Y(ri, λi) ≥mrl

n−
i=1

Y(r∗i , λ∗
i )
.

Let (X1, X2) be a vector of independent heterogeneous gamma random variables with shape parameter vector (r1, r2) =

(3, 1) and scale parameter vector (λ1, λ2) = (1, 3). Denote by ϕ(t; 3, 1, 1, 3) the mean residual life function of convolution
between X1 and X2. Let (X∗

1 , X
∗

2 ) be another vector of independent heterogeneous gamma random variables with shape
parameter parameter (r∗

1 , r
∗

2 ) = (2, 2) and scale parameter vector (λ∗

1, λ
∗

2) = (1.5, 1.5), and denote by ϕ(t; 2, 2, 1.5, 1.5)

the mean residual life function of convolution between X∗

1 and X∗

2 . Note that r1 ≥ r2, r∗

1 ≥ r∗

2 , λ1 ≤ λ2, λ
∗

1 ≤ λ∗

2, (r1, r2)
m
≽

(r∗

1 , r
∗

2 ) and


1
λ1
, 1
λ2

 m
≽


1
λ∗
1
, 1
λ∗
2


(but the

p
≽ order does not hold between (λ1, λ2) and (λ∗

1, λ
∗

2)). It can be seen from Fig. 3
that ϕ(t; 3, 1, 1, 3) ≥ ϕ(t; 2, 2, 1.5, 1.5) for all t ∈ ℜ+ which is in accordance with the result of Theorem 4.7.

Remark 4.8. It is remarkable that the main results of this paper in Theorems 2.9, 3.3, 4.2 and 4.6 strengthen and generalize
the corresponding those of Theorem 3.4 in [14], Theorem 2.1 in [9], Theorem 3.3 in [13] and Theorem 4.2 in [12] from
convolutions of independent gamma random variables with common shape parameters to ones with different shape
parameters. As stated in some counterexamples provided in the literature, these results cannot be extended in general
to the case where convolutions have different shape parameters. However, here we have established the extension under
the restriction that the components of the shape vector are ordered in an opposite way with those of the scale vector.
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Appendix

Proof of Lemma 2.3. (a) Derivative of g with respect to y is

g ′(y)
sgn
= [−w2 exp(−w2y)+ αw2 exp(w2y)][exp(−w1y)+ α exp(w1y)]

− [−w1 exp(−w1y)+ αw1 exp(w1y)][exp(−w2y)+ α exp(w2y)]
= {−w2 exp[−(w1 + w2)y] − αw2 exp[(w1 − w2)y] + αw2 exp[(w2 − w1)y] + α2w2 exp[(w1 + w2)y]}

− {−w1 exp[−(w1 + w2)y] − αw1 exp[(w2 − w1)y] + αw1 exp[(w1 − w2)y] + α2w1 exp[(w1 + w2)y]}
= (w1 − w2) exp[−(w1 + w2)y] + α(w1 + w2) exp[(w2 − w1)y] − α(w1 + w2) exp[(w1 − w2)y]

+α2(w2 − w1) exp[(w1 + w2)y]
≥ (w2 − w1){exp[(w1 + w2)y] − exp[−(w1 + w2)y]}

+α(w1 + w2){exp[(w2 − w1)y] − exp[−(w2 − w1)y]}
≥ 0,

which implies that g(y) is increasing in y > 0.
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(b) Taking the derivative with respect tow for ζ (w), we have

ζ ′(w)
sgn
= [−a(1 − w)a−1 exp(−θ2w)− θ2(1 − w)a exp(−θ2w)+ a(1 + w)a−1 exp(θ2w)+ θ2(1 + w)a exp(θ2w)]

× [(1 − w)a exp(−θ1w)+ (1 + w)a exp(θ1w)] − [−a(1 − w)a−1 exp(−θ1w)− θ1(1 − w)a exp(−θ1w)
+ a(1 + w)a−1 exp(θ1w)+ θ1(1 + w)a exp(θ1w)] × [(1 − w)a exp(−θ2w)+ (1 + w)a exp(θ2w)]

= (θ2 − θ1)(1 + w)2a exp[(θ1 + θ2)w] − (θ2 − θ1)(1 − w)2a exp[−(θ1 + θ2)w]

+


a

1 − w
+

a
1 + w

+ θ1 + θ2


(1 − w2)a{exp[(θ2 − θ1)w] − exp[(θ1 − θ2)w]}

≥ (θ2 − θ1)(1 − w)2a{exp[(θ1 + θ2)w] − exp[−(θ1 + θ2)w]}

+


a

1 − w
+

a
1 + w

+ θ1 + θ2


(1 − w2)a{exp[(θ2 − θ1)w] − exp[−(θ2 − θ1)w]}

≥ 0.

So we can conclude that the function ζ (w) is increasing inw ∈ (0, 1). �

Proof of Lemma 2.6. (a) The required result can be readily obtained only by noting that

ϑ ′(y)
sgn
= (β − α)w exp(wy) ≥ 0.

(b) Take the derivative with respect tow for κ(w) to give

κ ′(w)
sgn
=

[
r1

1 + w
−

r2
1 − w

− y

(1 − w)r2(1 + w)r1e−wy

+


r2

1 + w
−

r1
1 − w

+ y


· (1 − w)r1(1 + w)r2ewy
]

× [(1 − w)r
∗
2 (1 + w)r

∗
1 e−wy

+ (1 − w)r
∗
1 (1 + w)r

∗
2 ewy

]

−

[
r∗

1

1 + w
−

r∗

2

1 − w
− y


(1 − w)r

∗
2 (1 + w)r

∗
1 e−wy

+


r∗

2

1 + w
−

r∗

1

1 − w
+ y


· (1 − w)r

∗
1 (1 + w)r

∗
2 ewy

]
× [(1 − w)r2(1 + w)r1e−wy

+ (1 − w)r1(1 + w)r2ewy
].

Simplifying the above expression by routine calculations one gets

κ ′(w)
sgn
= ε1 + ε2 + ε3 + ε4,

where

ε1 =


r1

1 + w
−

r2
1 − w

−
r∗

1

1 + w
+

r∗

2

1 − w


(1 − w)r2+r∗2 (1 + w)r1+r∗1 e−2yw

;

ε2 =


r2

1 + w
−

r1
1 − w

−
r∗

2

1 + w
+

r∗

1

1 − w


(1 − w)r1+r∗1 (1 + w)r2+r∗2 e2yw;

ε3 =


r1

1 + w
−

r2
1 − w

−
r∗

2

1 + w
+

r∗

1

1 − w
− 2y


(1 − w)r

∗
1+r2(1 + w)r1+r∗2 ;

ε4 =


r2

1 + w
−

r1
1 − w

−
r∗

1

1 + w
+

r∗

2

1 − w
+ 2y


(1 − w)r1+r∗2 (1 + w)r

∗
1+r2 .

Now we find that it will be enough if we could prove that δ1 = ε1 + ε2 ≥ 0 and δ2 = ε3 + ε4 ≥ 0. Note that

δ1 = ε1 + ε2

≥


r2 − r∗

2

1 + w
+

r∗

1 − r1
1 − w

+
r1 − r∗

1

1 + w
+

r∗

2 − r2
1 − w


(1 − w)r2+r∗2 (1 + w)r1+r∗1 e−2yw

=

[
(r1 + r2)− (r∗

1 + r∗

2 )

1 + w
+
(r∗

1 + r∗

2 )− (r1 + r2)
1 − w

]
(1 − w)r2+r∗2 (1 + w)r1+r∗1 e−2yw

= 0

and

δ2 = ε3 + ε4

≥


r2 − r∗

1

1 + w
+

r∗

2 − r1
1 − w

+
r1 − r∗

2

1 + w
+

r∗

1 − r2
1 − w


(1 − w)r

∗
1+r2(1 + w)r1+r∗2
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=

[
(r1 + r2)− (r∗

1 + r∗

2 )

1 + w
+
(r∗

1 + r∗

2 )− (r1 + r2)
1 − w

]
(1 − w)r

∗
1+r2(1 + w)r1+r∗2

= 0.

Thus, the desired result follows. �
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