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Abstract

The verification of security protocols has attracted a lot of interest in the formal methods community,
yielding two main verification approaches: i) state exploration, e.g. FDR [8] and OFMC [2]; and ii) theorem
proving, e.g. the Isabelle inductive method [12] and Coral [13]. Complementing formal methods, Abadi
and Needham’s principles aim to guide the design of security protocols in order to make them simple
and, hopefully, correct [1]. We are interested in a problem related to verification but far less explored:
the correction of faulty security protocols. Experience has shown that the analysis of counterexamples or
failed proof attempts often holds the key to the completion of proofs and for the correction of a faulty
model. In this paper, we introduce a method for patching faulty security protocols that are susceptible to
an interleaving-replay attack. Our method makes use of Abadi and Needham’s principles for the prudent
engineering practice for cryptographic protocols in order to guide the location of the fault in a protocol as
well as the proposition of candidate patches. We have run a test on our method with encouraging results.
The test set includes 21 faulty security protocols borrowed from the Clark-Jacob library [5].
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1 Introduction

Computer security is a major concern for IT. Users are reluctant to deliver confiden-

tial information over an insecure, hostile network. Computer crimes have already

yielded countless losses. To ensure security, users use protocols. A security protocol

is a set of rules and conventions whereby one or more agents agree about each others’

1 We are grateful to Alan Bundy, Graham Steel and the reviewers for their useful comments on an earlier
draft of this paper. The research reported here was supported by ITESM CCEM-0302-05.
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identity, usually ending up in the possession of one or more secrets [12]. Security

protocols consist of only a few messages but amazingly they are very hard to get

right. For example, the detection of a flaw in the 3-message Needham-Schroeder

public key (NSPK) protocol took roughly 17 years [7].

The verification of security protocols has attracted a lot of interest in the formal

methods community, yielding two main verification approaches: i) state exploration,

e.g. FDR [8] and OFMC [2]; and ii) theorem proving, e.g. the Isabelle inductive

method [12] and Coral [13]. Model checking tools are capable of determining

whether or not a (finite abstraction of a) protocol is valid. The verification process

usually takes a few seconds and, in the case of unsatisfiability, a counterexample (a

protocol attack) is output. Theorem proving may be slower, but has a wider range

of application, as demonstrated by [13].

Complementing formal methods, Abadi and Needham’s principles aim to guide

the design of security protocols in order to make them simple and, hopefully, cor-

rect [1]. Abadi and Needham arrived at their principles by noticing some common

features hard to analyse among protocols. If these features are avoided, protocols

tend to become more readable and, more importantly, correct.

We are interested in a problem related to verification but far less explored:

the correction of faulty security protocols. A flawed protocol is a mal-formulation.

Mal-formulations is central to theory refinement. They often become evident by

the appearance of a failed proof attempt, possibly yielding a counterexample. The

analysis of this evidence often holds the key to the completion of proofs and for the

correction of a faulty model.

The correction of faulty security protocols requires to develop a set of patching

methods capable of dealing with a general class of faults. In this paper, we introduce

a method for patching an interesting class of faulty security protocols, which we have

baptised interleaving-replay attacks. A replay attack is a form of network attack in

which a valid data transmission is maliciously or fraudulently repeated or delayed. 2

According to the Paul Syverson’s taxonomy, [14], interleaving attack is the replay

of messages from outside the current run of the protocol requiring that two protocol

runs overlap in execution.

Roughly, for carrying out our patching method it is necessary to follow a full

verification cycle (Section 2). This cycle involves mainly three phases: i) to verify

a faulty security protocol and obtain its counterexample; ii) to patch the faulty

security protocol through a patching framework; and iii) to verify the newer protocol

version. The crux of our patching method lies on phase ii), which rest upon Abadi

and Needham’s principles for the prudent engineering practice for cryptographic

protocols (Section 3). These principles are applied to guide the location of the fault

in a protocol as well as the proposition of candidate patches. To automatically patch

a faulty security protocol, our method first analyses the protocol description in order

to identify the rôle played by all components of each message (Section 4). Then,

it analyses the protocol counterexample, obtained in phase i), in order to identify

2 http://en.wikipedia.org/wiki/Replay attack
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non-trivial message parts shared in its runs, and using heuristics, it analyses these

observations in order to both diagnose a possible fault and suggest a candidate patch

(Section 5). We also present the methodology used in the invention of our patching

method (Section 6). Finally, we have run a test on our method with encouraging

results (Section 7). The test set includes 21 faulty security protocols borrowed from

the Clark-Jacob library [5]. In addition, we also report a large number of results to

validate phase iii) using the AVISPA tool.

2 A Full Verification Cycle

A full verification cycle will aid to security protocol designers in creating best secu-

rity protocols, and thereby, to reduce risks after implementation. This cycle consists

of three phases. In a first phase we use a model checker or a theorem prover to de-

tect counterexamples illustrating that the security protocol is faulty. As a result

we obtain an interleaving of (in general) several protocol runs that violate security

requirements modeled within the specification of the model checker or the theorem

prover.

In a second phase we must patch the faulty security protocol through a patching

framework. This patching framework is a set of patching methods capable of dealing

with a general class of faults. Each patching method has the form presented in

figure 1 (name, input, preconditions, flaw and effect). A patching method may be

split into two steps.

The first step is to find out those protocol messages which cause the failure of

the protocol. Our patching method, for instance, makes interesting observations on

the counterexample, using the rôle played by all components of each message. We

analyzed various protocols for such situations and formalized them as preconditions

for so-called problem location. In section 5 we concentrate on a particular example

(the NSPK protocol) in which the identity of principals is crucial for the security of

the protocol. The violation of this principle can be observed on a technical level of

protocol traces by the fact that message parts that are (in some sense) confidential

in one protocol run are reused in a second.

In the second step of the patching framework we have to change the protocol

in order to avoid the particular fault. Therefore, we use this technical description

of problem location as preconditions for specific rules that resolve such conflicts.

Besides these preconditions, the method has a flaw part that consists of a verbose

description of the flaw it attempts to fix, and the effect part (patch) that formalizes

the changes to be made to the protocol. The changes, among faulty messages,

resting upon Abadi and Needham’s principles. In our patching method, for instance,

principle 3 suggests the solution: we introduce the agent names into the faulty

message part to disambiguate the context in which the message part can occur.

The result is that the messages modified no longer can be used in both protocol

runs.

In a third phase of the full verification cycle we have to verify the new version

of the protocol in order to know whether the security protocol is free of flaws, or in
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the worst case, to be no longer susceptible to the same counterexample. For this,

we must again use a model checker or a theorem prover. In this paper particularly

we have used the AVISPA tool, a model checker, to deal with the first and the

third phase of the full verification cycle. In the following sections we will explain a

method for patching interleaving-replay attacks in more detail.

3 Abadi and Needham’s Principles

Abadi and Needham’s principles are a guideline for the design of security protocols.

They are concerned with two main issues: i) the messages involved in a protocol,

together with their content; and ii) the trust relations held by the participants.

Principle 1 deals with protocol messages and their content: every message should

say what it means, the interpretation of the message should depend only on its

content. It encompasses principles 3—10. Principle 3, naming, prescribes that

the agent names relevant for a message should all be derivable either from the

encryption keys that have been applied or other data, including the explicit mention

of the agent names. Principle 4, encryption, is a guideline for the correct use of

encryption; it prescribes being clear why encryption is performed (is it done for

providing authenticity? or confidentiality?). Principle 5, signing (encrypted) data,

specifies that the appearance of a signature does not necessarily imply that the

signing agent knows the message content. Principle 10, encoding, prescribes being

careful about message format: principals should be able to associate, from the

message content, which step the message corresponds to of whatever protocol they

are running. Principles 6—8 are a guideline for establishing message freshness and

message association. Principle 6 prescribes being clear about the properties that are

being assumed about nonces; principle 7 dictates being cautious about the use of

predictable nonces; and principle 8 is an account of aspects of prudent practice in the

use of timestamps. Finally, principle 9 prescribes being sure about the acceptability

of the use of a key.

Conversely, principle 2 deals with the participants’ trust relations: the conditions

for a message to be acted upon should be clearly set out so that someone reviewing

a design may see whether they are acceptable or not. It comprehends principle 11.

Trust relations introduce dependencies, e.g. who is to be trusted on the generation

of a session key? Whether these dependencies are acceptable should be founded on

a policy, instead of a logic. 3

4 Security Protocols

As pointed out by [1], most flaws in security protocols have their root in an improper

use of cryptographic primitives. A protocol designer may miss the rôle played

by a message component or overestimate the security guarantees provided by an

encrypted message. We are currently developing a theory that will allow us to

identify the one or the several rôles played by each message component.

3 Thus, so far principles 2 and 11 are not used within our mechanism for correcting faulty security protocols.
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4.1 Basic Ingredients

Our method makes use of Paulson’s formalisation of agent population and message

structure [12]. There are three kinds of agents: the server, S, an absolutely trusted

agent, the friendly agents (A,B, . . .), and a Dolev-Yao spy, Spy [6].

Messages comprise agent names, nonces, time-stamps, shared keys (used in sym-

metric cryptography), public or private keys (used in asymmetric cryptography),

and session keys. The notation {|X1, . . . ,Xn−1,Xn|} is used to abbreviate the com-

pound message MPair X1 . . . (MPair Xn−1 Xn). The symbols Kab, Kas and Kbs

denote specific shared keys; K+
a , K+

b and K+
s denote specific public keys; and K−

a ,

K−
b and K−

s denote the corresponding private keys. The symbols Na, Nb and Nc

denote nonces; and Ta, Tb and Ts denote time-stamps. We write {|M |}K to denote

the encryption of message M under key K.

Unlike Paulson, we specify a protocol as a sequence of steps, each of which is

of the form: n. A → B : M , meaning that, at step n, A sends B the message M ,

which B receives. Notice that each step involves two communicating events: the

sending and the reception of the associated message. A protocol counterexample,

which consists of a number of parallel protocol runs, is then specified as a sequence

of session steps, each of which is of the form S : n. A → B : M , denoting the nth

step of session S.

4.2 Message Parts and their Rôles

An agent may play one of two rôles in a protocol: initiator or responder. An

initiator is the agent requesting a session in a protocol and a responder is any agent

answering to that request. Usually, the initiator starts the run in a protocol, thus:

initiator(P )
def
= sender(P, 1)

responder(P )
def
= {r :Agent |r �= initiator(P ) ∧ r �= S ∧ r ∈ participants(P )}

where participants(P ) (respectively sender(P, n)) return all the participating agents

(respectively the sender of the nth step) in protocol P .

In a protocol, each message component carries out a specific rôle. The rôle of a

message component can sometimes be found via a syntactic analysis. Following [11]:

A secret distributor is a ciphered message carrying a secret. A secret is a mes-

sage that is never sent in clear during the execution of the protocol. The function

symbol secretDist(P ) is used to denote the set of all secrets in protocol P ; in

symbols:

secretDist(P )
def
= {{|M |}K | {|M |}K ∈ parts msgOf(P )

∧ ∃m∈parts M.∀M1∈msgOf(P ). m /∈msg2set(M1)}
where parts is Paulson’s operation on sets of messages, msgOf(P ) returns the

messages exchanged in protocol P and where msg2set(M) returns the set of com-

ponents comprising message M .

An authenticator is a ciphered message component that is used to provide evi-

dence of the message sender’s identity.
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As shown below, these simple notions allow us to make interesting observations

both in a protocol and in one of its counterexamples.

5 A Method for Patching Interleaving-Replay Attacks

To explain the rationale behind our patching mechanism, we shall show an example

correction of a faulty security protocol, namely: the NSPK protocol:

1 A → B : {|Na,A|}K+

B

2 B → A : {|Na,Nb|}K+

A

3 A → B : {|Nb|}K+

B

The NSPK protocol seems right at first glance, but it is faulty. Lowe found

that an intruder could impersonate one agent holding concurrently a session with

another agent [7]:

s1 : 1. A → Spy : {|Na,A|}K+

Spy

s2 : 1. Spy(A) → B : {|Na,A|}
K+

B

s2 : 2. B → Spy(A) : {|Na,Nb|}K+

A

s1 : 2. Spy → A : {|Na,Nb|}
K+

A

s1 : 3. A → Spy : {|Nb|}K+

Spy

s2 : 3. Spy(A) → B : {|Nb|}K+

B

5.1 Failure Detection

In Lowe’s attack, an identical instance of message 2, {Na,Nb}
K+

A
, is used in two

independent runs (traces s1 and s2). The deceived agent, A, the initiator of the

first trace, is the intended recipient of both instances of message 2, but she cannot

distinguish who built or sent it. Thus, while B knows that A has recently partic-

ipated in a run of the protocol, he cannot tell whether A is running it apparently

with him.

In this attack, the spy has accomplished an interleaving-replay attack: after

monitoring a (possibly partial) run of a protocol, he has replayed in another different

run of the protocol one or more messages, impersonating a friendly agent. As we

can see such runs of the protocol interleave in execution. If the corresponding agent

does not have any mechanism to distinguish who originated an inward message or

whom such a message is intended for, or cannot associate with that message a time

line, then she will be deceived. Often, the messages that the spy selects for replay

contain one or more secret distributors.

Thus, replay faulty security protocols violate Abadi and Needham’s third prin-

ciple, namely:
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Principle 3: If the identity of a principal is essential to the meaning of a message,

it is prudent to mention the principal’s name explicitly in the message.

Patching the protocol by adding the name of the agent sending message 2, B in this

case, as suggested by the third principle, we arrive at the fixing Lowe has found [8]:

1 A → B : {|Na,A|}
K+

B

2 B → A : {|B, Na,Nb|}K+

A

3 A → B : {|Nb|}
K+

B

Our method for patching replay faulty security protocols is shown in Figure 1.

It is a 4-tuple, consisting of input information, preconditions, flaw and effects. The

method is applicable if the method preconditions hold, considering both the input

protocol and one of its counterexamples. Preconditions specify properties of either

the protocol or the counterexample. They are expressed in a meta-logic involving

the symbols introduced in Section 4. The flaw consists of an informal description

of the design principle that the protocol is thought to violate. Effects specify the

way in which the protocol should be modified. The newer version of the protocol

is expected, in the worst case, to be no longer susceptible to an interleaving-replay

attack, and, in an ideal case, to be robust enough to survive any attack.

Input: Protocol P , Counterexample C

Preconditions (problem location:)

{|M |}K ∈ secretDist(P )

∧ tr1 ∈ Traces(C) ∧ tr2 ∈ Traces(C) ∧ tr1 �= tr2

∧ S1 :n1. A → B : m1 ∈ tr1 ∧ {|M |}K ∈ parts msg2set(m1)

∧ S2 :n2. A′ → B′ : m2 ∈ tr2 ∧ {|M |}K ∈ parts msg2set(m2)

∧ (initiator(P ) /∈ msg2set(M) ∨ responder(P ) /∈ msg2Set(M))

Flaw: Protocol possibly violates Abadi & Needham’s principle #3,

the initiator or the responder is omitted in M

Effect (patch:)

For every step in the protocol, n. A → B : m,

where {|M |}K ∈ parts msg2set(m),

add, as described in Section 5.2, A and B to M forming M ′,
and then replace M with M ′ in m.

Fig. 1. The interleaving-replay patching method

5.2 Patch Formation

In our method, patching an interleaving-replay faulty protocol amounts to adding

agent names to a collection of secret distributors. This addition process, however,

attempts to avoid the introduction of redundancies and the introduction of confu-

sions.
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Sometimes the name of a participant agent can be safely deduced in a cyphered

message from the encryption key. So, to avoid the introduction of redundancies, we

apply the following well-known consequences of encryption techniques:

Authenticity in asymmetric cryptography: Any message encrypted under K−
b

comes originally from B, as long as B is not compromised.

Confidentiality in asymmetric encryption: Any message encrypted under K+
a

can be decrypted only by A (as long as A is not compromised) using his private

key K−
a .

Authenticity in symmetric encryption: Anything that A receives encrypted

under the long-term key she shares with the trusted sever, Kas, comes originally

from the server, as long as A did not send it. This applies similarly with A and

the server interchanged.

To avoid message confusion, we look back at the protocol description. We need

to ensure that the new message component or even the entire new message does not

have a structure that is similar to another one in the protocol. In case of a potential

message confusion, we introduce all names using some ordering, e.g. sender first and

then responder(s), see CCITT X.509(3) protocol in table 2.

6 Development Methodology

We now outline the methodology used in the invention of our patching method.

Firstly, we distinguished two sets of faulty security protocols:

Development: this class consists of a few protocol examples that were used for

designing the patching method. For this to make sense, the development faulty

protocol must have a similar flaw (at least be subject to the same kind of attack)

and they should be different in size, type of cryptography used, participants

(involving a trusted server or not), etc. The method was tested by hand on the

development set before implementation;

Testing: this class contains example protocols used for testing the robustness of

the method, and was considered only when the development was complete. The

testing set includes the development set but also contains examples that were not

used during development.

Secondly, we attempted to keep the development protocol examples as dissimilar

as possible.

Thirdly, we gathered examples from different sources, e.g., books, research re-

ports, etc., and from the Clark-Jacob library, which turned out to be the definitive

source.

For the interleaving-replay patching mechanism, the development set included

only four protocols, namely: the NSPK protocol, the Wide-Mouth Frog (WMF)

protocol, the Denning-Sacco PK protocol, and the Abadi and Needham version of

the Otway-Rees protocol.
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Id Protocol Name Cryptography Attack Fixed

type type

1 Andrew Secure RPC Symmetric CR

2 BAN concrete ASRPC Symmetric IR
√

3 CCITT X.509 (1) (+) Asymmetric IR
√

4 CCITT X.509 (3) (+) Asymmetric IR
√

5 Denning-Sacco SK Symmetric CR

6 Denning-Sacco PK Asymmetric IR
√

7 Kao Chow Auth-V.1 Symmetric CR

8 KSL Symmetric IR
√

9 Neumann Stubblebine Symmetric TF

10 NSPK (+) Asymmetric IR
√

11 Needham Schroeder SK Symmetric CR

12 Otway-Rees Symmetric TF

13 O&R BAN version Symmetric IR
√

14 SPLICE/AS Asymmetric IR
√

15 Hwang-Chen SPLICE/AS Asymmetric IR
√

16 C-J modified SPLICE/AS Asymmetric CR

17 TMN Symmetric CR

18 WMF protocol Symmetric IR
√

19 Woo and Lam Mutual Symmetric IR
√

20 Woo and Lam Pi (+) Symmetric TF

21 BAN modified Yahalom Symmetric IR
√

Table 1
The validation test set

7 Results

Once our method has patched a protocol, it is required to know whether the new

version of the protocol is free of flaws, in the worst case, to be no longer susceptible

to the same interleaving-replay attack (phase three of the full verification cycle).

For this, we have used the AVISPA tool v.1.0 (Automated Validation of Internet

Security Protocols and Applications). 4 For verifying a protocol in this tool, one

must formulate the protocol and the properties to be verified (e.g. secrecy or/and

authentication) in a high-level protocol specification language (HLPSL). Then, we

must prove the protocol into one of the four different back-end search engines: the

On the Fly Model Checker (OFMC), the Constraint-Logic-Based Attack Searcher

(CL-AtSe), the SAT-based Model-Checker (SATMC) and the Tree Automata based

on Automatic Approximations for the Analysis of Security Protocols (TA4SP). The

first two back-ends, OFMC [3] and CL-AtSe [15], were used for the experimental

proofs corresponding to phases one and three of the full verification cycle.

Tables 1—5 summarise our results. Table 1 includes our validation test set. It

consists of 21 faulty protocols, borrowed from the Clark-Jacob library. The Clark-

Jacob library comprehends 50 protocols, 26 of which are known to be faulty. So our

validation test set contains all but five known faulty security protocols. The flaw in

the faulty protocols that were left out from our validation test set have nothing to

do with a replay attack.

4 Available via http://www.avispa-project.org/
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In Table 1, protocols annotated with (+) aim to provide authentication; the

remaining protocols aim to achieve both authentication and session key distribu-

tion. The attack type is annotated with “IR”, “TF” and “CR”. “IR” abbreviates

interleaving-replay, “TF” abbreviates type flaw 5 and “CR” abbreviates a classic

replay 6 . Protocols marked with
√

were patched. The patched version of the

protocols are described in Tables 2—3.

Protocol New Description Comment

Name

BAN concrete 1.A → B : A, Na This patch is similar to

ASRPC 2.B → A : {| A, B , Na, Kpab|}Kab that proposed by Lowe

3.A → B : {|Na|}Kpab in [9].

4, B → A : Nb

CCITT X.509 1.A → B : A, {|Ta, Na, B, Nxa, This patch is similar to

(1) {| A , Nya|}
K

+

B

|}
K

−

A

that proposed by Abadi

and Needham in [1].

CCITT X.509 1.A → B : A, {|Ta, Na, B, Nxa, Here, one of two experimen-

(3) {| A , Nya|}
K

+

B

|}
K

−

A

tal patches is presented.

2.B → A : B, {|Tb, Nb, A, Na, Nxb, This patch is similar to

{| A, B , Nyb|}
K

+

A

|}
K

−

B

that proposed by Burrows,

3.A → B : A, {| B , Nb|}
K

−

A

Abadi and Needham in [4].

Denning-Sacco 1.A → S : A, B This patch is the same as

PK 2.S → A : {|A, K+

A
, T s|}

K
−

S

, that proposed by

{|B, K+

B
, T s|}

K
−

S

Abadi-Needham in [1].

3.A → B : {|A, K+

A
, T s|}

K
−

S

,

{|B, K+

B
, T s|}

K
−

S

,

{|{| B , Kab, Ta|}
K

−

A

|}
K

+

B

Table 2
Patched protocol descriptions, first part

Our method is thus able to identify an interleaving-replay attack and a candidate

patch in 12 faulty protocols out of 21. Interestingly, our experiments have shown

that even though our patching method suggests a different candidate patch when

input two different counterexamples for the same faulty protocol, the verification

in AVISPA tool have turned out successful in both candidate patches (protocols 4,

13, 18 and 19).

Protocols that could not be patched lie outside the scope of our method; that is,

they are not interleaving-replay faulty protocols. For instance, protocols 5 and 16

lack of aliveness of the responder according to Lowe’s hierarchy [10]. Lowe’s Patch

5 A type flaw attack is when an agent has no mechanism to identify a field that was originally intended to
have one type and it is subsequently interpreted as having another type. For example, an agent that waits
to receive a message of the form {|A, Kab, T b|}KB , receives the message {|A, Na, Tb|}KB , in this case, he
accepts naively nonce Na by key Kab.
6 According to Paul Syverson’s taxonomy [14], a classic replay is an attack not requiring contemporaneous
runs. Classic replays have been identified lacking a time reference.
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Protocol New Description Comment

Name

KSL 1.A → B : Na, A This patch is similar to

2.B → S : Na, A, Nb, B that proposed by Lowe in

3.S → B : {| B , Nb, A, Kab|}KB
, [9]. Instead of adding the

{|Na, B, Kab|}KA
responder name B, in

4.B → A : {|Na, B, Kab|}KA
, such a secret distributor,

{|Tb, A, Kab|}Kbb, Nc, Lowe changes the order as

{|Na|}Kab follows: {|A, Nb, Kab|}KB
.

5.A → B : {|Nc|}Kab The effect is the same,

6.A → B : Nma, {|Tb, A, Kab|}Kbb to make the secret

7.B → A : Nmb, {|Nma|}Kab distributors of step 3

8.A → B : {|Nmb|}Kab different one another.

NSPK 1.A → B : {|Na, A|}
K

+

B

This patch is the same

2.B → A : {| B , Na, Nb|}
K

+

A

as that proposed by

3.A → B : {|Nb|}
K

+

B

Lowe in [7].

O&R BAN 1.A → B : M, A, B, {|Na, M, A, B|}KA
Similar to CCITTX.509

version 2.B → S : M, A, B, {|Na, M, A, B|}KA
, (3) protocol our method

Nb, {|M, A, B|}KB
proposed two different

3.S → B : M, {|Na, Kab|}KA
, patches in two different

{| A , Nb, Kab|}KB
counterexamples (Here,

4.B → A : M, {|Na, Kab|}KA
only one is presented).

Table 3
Patched protocol descriptions, second part

is extending the protocols by adding a nonce handshake.

Tables 2—4 show the output of our patching method. For each protocol, they

describe the new specification. Changes amount to the inclusion of agent names,

enclosed in boxes in the new description of the protocol.

Table 5 shows the total elapsed verification time (TEVT) and the back-end

(OFMC or CL-Atse) used to verify the new protocol description. The experiments

were carried out on a PC with 1.6 GHz Pentium IV processor and 512Mb RAM.

8 Conclusions and Further Work

In this paper, we have presented a method for patching faulty security protocols

that are susceptible to an interleaving-replay attack. Using Abadi and Needham’s

guidance on agent naming, our mechanism patches a protocol by adding the nec-

essary names to the protocol messages so they no longer can be replayed without

notice. The patches proposed by our mechanism are natural, hence making the

fault identification and correction processes look pretty trivial. Yet, this is not the

case, since this type of design error has systematically appeared throughout the

literature, as shown in tables 2–4. A recent example faulty protocol susceptible to

an interleaving replay attack is the Asokan-Ginzboorg protocol, as shown by [13].

We have carried out a large number of experiments to validate our method.

For instance, it has been tested on 21 faulty security protocols (borrowed from the
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Protocol New Description Comment

Name

SPLICE/AS 1.C → Sa : C, S, N1 This patch becomes the

2.Sa → C : Sa, {| S , Sa, C, N1, K+

S
|}

K
−

Sa

version of Hwang-Chen

3.C → S : C, S, {|C, Tc, Lc,{|N2|}
K

+

S

|}
K

−

C

Splice/as protocol.

4.S → Sa : S, C, N3 Although this version is

5.Sa → S : Sa, {| C , Sa, S, N3, K+

C
|}

K
−

Sa

faulty, our method also

6.S → C : S, C, {|S, f2(N2)|}
K

+

C

patches it. See following

row.

Hwang-Chen 1.C → Sa : C, S, N1

SPLICE/AS 2.Sa → C : Sa, {|Sa, C, N1, S, K+

S
|}

K
−

Sa

3.C → S : C, S, {|C, Tc, Lc,{| C , N2|}
K

+

S

|}
K

−

C

4.S → Sa : S, C, N3

5.Sa → S : Sa, {|Sa, S, N3, C, K+

C
|}

K
−

Sa

6.S → C : S, C, {|S, f2(N2)|}
K

+

C

WMF 1.A → S : A, {|B, Ta, Kab|}KA
See the following row

protocol 2.S → B : {| B , A, Ts, Kab|}KB
comment.

Woo and 1.P → Q : P, N1 Similar to WMF

Lam 2.Q → P : Q, N2 protocol our method

Mutual 3.P → Q : {|P, Q, N1, N2|}KP
proposed two different

Auth. 4.Q → S : {|P, Q, N1, N2|}KP
, patches in two

{|P, Q, N1, N2|}KQ
different counter-

5.S → Q : {| P , Q, N1, N2, Kpq|}KP
, examples (Here, only

{|P, N1, N2, Kpq|}KQ
one is presented).

6.Q → P : {| P , Q, N1, N2, Kpq|}KP
,

{|N1, N2|}Kpq

7.P → Q : {|N2|}Kpq

BAN 1.A → B : A, Na The patch is similar to

Yahalom 2.B → S : B, Nb, {|A, Na|}KB
that proposed by

3.S → A : Nb, {| A , B, Kab, Na|}KA
, Paulson in [12].

{|A, Kab, Nb|}KB

4.A → B : {|A, Kab, Nb|}KB
, {|Nb|}Kab

Table 4
Patched protocol descriptions, third part

Clark-Jacob library) and 25 counterexamples. Our method has successfully dealt

with 16 countexamples and has shown to be able successfully to patch 12 of these

protocols.

Our method is usually able to patch an interleaving-replay faulty protocol that

violates Abadi and Needham’s principle 3. But it cannot always deal with replay

faulty protocols that violate a time line reference (classic replays) or run internal

attacks. For example, it did not succeed in patching the Andrew Secure RPC

protocol:

(i) A → B : A, {|Na|}Kab

J.C.L. Pimentel et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 117–130128



Protocol Name Tool TEVT(sec)

BAN concrete ASRPC OFMC 34.34

CCITT X.509 (1) OFMC 0.10

CCITT X.509 (3) OFMC 2.27

Denning-Sacco PK OFMC 0.33

KSL OFMC 17.26

NSPK CL-AtSe 28.8

O&R BAN version OFMC 4.15

SPLICE/AS CL-AtSe 8.43

Hwang-Chen SPLICE/AS CL-AtSe 35.15

WMF protocol CL-AtSe 0.70

Woo and Lam Mutual OFMC 0.35

BAN modified Yahalom OFMC 0.74

Table 5
The total elapsed verification time

(ii) B → A : {|Na + 1, Nb|}Kab

(iii) A → B : {|Nb + 1|}Kab

(iv) B → A : {|Kabp,Nbp|}Kab

Here, the origin of the error has nothing to do with agent naming, but with a time

reference. In particular, notice that nonce Nbp is used as an acknowledgment, but

Nbp’s structure has no relation with Na.

We plan on further validating our method with other faulty protocols. In ad-

dition, we will analyse other faulty protocols, as that presented above, in order to

propose new patching methods.
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