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a b s t r a c t

Let E be a nonsupersingular elliptic curve over the finite field with
pn elements. We present a deterministic algorithm that computes
the zeta function and hence the number of points of such a curve
E in time quasi-quadratic in n. An older algorithm having the same
time complexity uses the canonical lift of E, whereas our algorithm
uses rigid cohomology combined with a deformation approach. An
implementation in small odd characteristic turns out to give very
good results.
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1. Introduction

Elliptic curves are a central research object in mathematics, not only centuries and decades ago,
but even todaywith a lot of important unsolved problems concerning such curves. Themost notorious
example is of course the conjecture of Birch and Swinnerton-Dyer (1965), a solution of which is worth
a million dollars (Millenium Prize Problems, 2000). In recent times elliptic curves over finite fields
have drawn the attention of cryptographers, as Koblitz (1987) and Miller (1986) suggested exploiting
the group structure on such curves for creating a trapdoor one-way function. The motivation for this
proposal is that computing discrete logarithms — i.e. solving equations of the kind x · P = Q for given
points P and Q on E and an unknown integer x— is considered to be very hard for most elliptic curves,
while computing the group operation and hence the product x ·P can be done very fast. Such one-way
functions can be used in many cryptographic protocols, for example Diffie–Hellman key exchange
(Diffie and Hellman, 1976) or ElGamal encryption (ElGamal, 1985). A very broad exposition can be
found in the book by Cohen et al. (2006). An important parameter required for estimating the security
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level of this kind of application is the order of the group involved, in this case hence the order of the
elliptic curve — it should for example have one large prime factor. We will further on give a brief
overview of the large amount of work that has been done on this point counting subject. For now, we
content ourselves with noting that determining the number of rational points on curves over a finite
field of characteristic 2 and of sizes suitable for cryptography can be accomplished in time (far) less
than a second (Vercauteren, 2003).

1.1. The zeta function and supersingular curves

Let Fq be the finite field with q elements and E an elliptic curve defined over Fq; then the zeta
function of E is defined as follows:

Z(T ) := exp

(
∞∑
k=1

#E(Fqk)
k

T k
)
,

where #E(Fqk) is the number of Fqk-rational points on E (seen as a projective curve). It is well-known
that Z(T ) is actually a rational function, or more precisely

Z(T ) =
qT 2 − tT + 1
(1− T )(1− qT )

, t ∈ Z, |t| ≤ 2
√
q.

A proof of this theorem of Hasse and Weil can be found for example in §V.2 of Silverman (1992). The
integer t in the zeta function is called the trace of Frobenius (also called just the trace), for reasons
that will become clear further on in this paper. It is not hard to see that the number #E(Fq) of Fq-
rational points on E is precisely q+ 1− t . We can conclude that counting the number of points on E
is equivalent to computing its zeta function or its trace t .
Curves for which t ≡ 0 mod p are called supersingular, and in §V.4 of Silverman (1992) an easy

criterion is given for deciding whether a given curve is supersingular. These curves are quite rare and
there are only a few possible values for their trace; a list with a proof can be found in Waterhouse
(1969).
We note that if we are given the zeta function of E over Fq, it is easy to find the zeta function over

extension fields of Fq. Indeed, if we denote with Zk(T ) the numerator of the zeta function of E over
Fqk , then an easy calculation shows that Zk(T ) equals the following resultant:

Zk(T ) = ResX (Z1(X); Xk − T ). (1)

1.2. Point counting algorithms

In the following overview we limit our exposition to nonsupersingular elliptic curves over finite
fields with q := pn elements, where p is a small prime number (e.g. p ≤ 7). For the complexity
estimates – which are always meant bitwise – we use the classical Big-Oh notation O, together with
the Soft-Oh notation Õ as defined in von zur Gathen and Gerhard (2003, Definition 25.8) that ignores
logarithmic factors. Using the above remarkwe ignore the dependency on p of the algorithms,which is
irrelevant for very small primes. In all complexity estimates asymptotically fast arithmetic is assumed;
see Bernstein (in press). The algebraic closure of a field kwill be denoted by k̄.
A very nice and complete overview of the history of elliptic curve point counting can be found

in Chapter 17 of the book by Cohen et al. (2006). The first general algorithm is due to Schoof, and
improvements by Elkies and Atkin have led to the well-known sea algorithm, which runs in heuristic
time Õ(n4) and requires O(n2)memory. It is often called ‘`-adic’, because it works by computing the
trace of Frobenius modulo prime numbers ` 6= p. Having done this for enough small primes `, this
allows one to recover the trace.
A different approachwas considered by Satoh,who found that p-adicmethodsmight bemuchmore

efficient for small primes p than the technique of Schoof. Satoh’s method is based on the canonical lift
E of the curve E. LetQq be the unramified degree n extension of the p-adic fieldQp; then E is defined
to be the unique (up to isomorphism) lift of E to an elliptic curve overQq which has an endomorphism
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ring that is isomorphic to the one of E, with the isomorphism given by reduction modulo p. The idea
then is to approximate the j-invariant J of this canonical lift modulo an appropriate power of p and
afterwards analyze the action of the qth-power Frobenius on the lift in order to compute its trace. In
later optimizations of the algorithm twomain steps arose. Firstwehave to solve a polynomial equation
ψ(J, Jσ ) = 0 over Qq, where J is congruent modulo p to the j-invariant of E and σ : Qq → Qq is the
Frobenius automorphism. A second step consists of computing the normNQq/Qp of an element of Qq.
Satoh’s original algorithm (Satoh, 2000) worked in time Õ(n3) and required O(n3) memory space.
After a lot of improvements by Vercauteren et al. (2001), Mestre’s agmMestre (2000) and Satoh et al.
(sst) (2003) and others, a computation time of Õ(n2.5) and space O(n2) were achieved. The fastest
method however, working for all finite fields of small characteristic, is the algorithm of Harley, as
described in his e-mail (Harley, 2002). It requires time Õ(n2) and memory O(n2), and does not need
any precomputations, in contrast to sst. The basic improvements of Harley are fast ways to compute a
good representation ofQq, to solve equations of the kind aXσ+pbX+c = 0 overZq and to compute the
normNQq/Qp of an element ofQq. A complete description can be found in Section 3.10 of Vercauteren
(2003).

1.3. An Õ(n2), O(n2) algorithm using a rigid lift

In this paper we describe a new algorithm that has the same complexities as Harley’s result, but
is based on a different approach. Kedlaya (2001) gave an algorithm for computing the zeta function
of a hyperelliptic curve of genus g over Fpn for odd p in time Õ(g4n3) and space O(g3n3). It uses not
the canonical lift (for elliptic curves), but a rigid lift, which is trivial to compute. If we take the de
Rham cohomology of this lifted curve, a Lefschetz fixed point theorem of Monsky and Washnitzer
tells us that the characteristic polynomial of the Frobenius operator on this cohomology yields the
zeta function of the curve. Three points are crucial. First, if the lift is well-chosen (it has to preserve
the geometry of the curve)we can effectively compute in thisMonsky–Washnitzer cohomology due to
it being isomorphic to the de Rham cohomology of the algebraic lift. Second, because Kedlaya cuts out
Weierstrass points, the action of the pth-power Frobenius is readily computable. And third, factoring
the qth-power Frobenius in repeated applications of the pth-power Frobenius makes sure that the
power series appearing converge well enough. Later on Denef and Vercauteren (2006) extended
Kedlaya’s method to the technically more challenging case of characteristic 2.
Lauder (2004) started using deformation in order to compute the zeta function of higher

dimensional varieties. This works by placing the variety in a well-chosen one-parameter family,
say with formal parameter Γ , and computing the general matrix F(Γ ) of the pth-power Frobenius.
As shown earlier by Dwork (1963) such a matrix satisfies a differential equation, the Picard–Fuchs
equation of the deformation, and this equation allows fast calculation of F(Γ )modulo a certain power
of Γ . In a next step the matrix F(Γ ) is specialized to F(γ ) for some γ ∈ Qq and computing the matrix
of the qth-power Frobenius from this F(γ ) yields then the zeta function. In Hubrechts (2008, 2007)
we followed a suggestion of Denef and Lauder of trying to combine such a deformationwith Kedlaya’s
and Denef and Vercauteren’s algorithms, which resulted in an Õ(n2.667) algorithm for hyperelliptic
curves in certain families. The most time-consuming step in these algorithms is the computation of
the ‘norm’ of the matrix F(γ ), i.e. the product of its conjugates in the right order. For elliptic curves
we show in this paper that all curves can be placed in a good family and that we can reduce the
matrix-norm computation to calculating the norm of just one element ofQq. Using Harley’s fast norm
computation algorithm this gives then the aforementioned complexities. We note that Harley’s other
basic improvements are also used in our algorithm.
We now briefly sketch the structure of this paper. In Section 2 we describe how to place an elliptic

curve in a good linear family defined over the prime field. In the next two sections we repeat in a
concise way how the theory of Hubrechts (2008, 2007) allows us to compute efficiently the matrix of
the pth-power Frobenius for curves in such a family. In addition we explain how to recover a p-adic
integral matrix of this Frobenius operator, which is not guaranteed by the original algorithms of these
papers. In the fifth section is shown how to compute the trace of the qth-power Frobenius from this
matrix and in the last section we present an overview of our algorithm and some results obtained
with an implementation of (a variant of) it.
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2. The curve placed in a one-parameter family

Let E be a nonsupersingular elliptic curve over a finite field Fq, given by its Weierstrass equation

Y 2 + (aX + b)Y = X3 + cX2 + dX + e with a, b, c, d, e ∈ Fq. (2)

We will show in this section how to efficiently reduce the equation for E to another equation over Fq,
defining E ′, such that this last one can be tackled directly using the deformation technique of Sections 3
and 4. The resulting elliptic curve E ′ will be isomorphic either to the original curve or to its quadratic
twist, denoted by Twist(E). It is well-known (and easily proven) that the trace of Frobenius t of E
equals minus the trace of Frobenius of Twist(E), and hence it suffices to work with E ′. Note that it
will be clear in each case which one of the two isomorphisms, E ′ ∼= E or E ′ ∼= Twist(E), holds. We
have to stress that these results are certainly not new, but we did not find a good reference and the
explicit way to find the curve E ′, along with a bound on the computational complexity of this step, is
an important part of the algorithm.

2.1. Odd characteristic

Let p be an odd prime and Fq the finite field of cardinality q = pn. Wemay suppose that the elliptic
curve E over Fq is given by

Y 2 = X3 + aX2 + bX + c, a, b, c ∈ Fq. (3)

If p 6= 3 the translation X 7→ X − a/3 removes the term with X2 in (3), so we can suppose in this case
that a = 0. If moreover c = 0 this can be written as Y 2 = X3 + γ̄ X with γ̄ := b, a form suitable for
Section 3, so we may assume that c 6= 0. Similarly we can assume that b 6= 0. The notation (Fq)2 will
be used for the set of squares of Fq.

Proposition 1. Suppose that bc 6= 0 and that E is given by Y 2 = X3 + bX + c. Let γ̄ := b3/c2 and let E ′
be the elliptic curve over Fq defined by Y 2 = X3 + γ̄ X + γ̄ . If b/c ∈ (Fq)2 we have that E ′ ∼= E (over Fq),
and otherwise E ′ ∼= Twist(E).

Proof. Let d := b/c. The equation of E ′ is then given by Y 2 = X3+ bd2X + cd3 and hence satisfies the
conclusions in the proposition. �

Now let us consider the case p = 3.When a = 0 in (3) the curve is supersingular because its j-invariant
is zero. For a 6= 0 the translation X 7→ X − b

2a removes the linear term in (3), so we can suppose for
the next proposition that a 6= 0 and b = 0.

Proposition 2. Let E be given by Y 2 = X3 + aX2 + c where ac 6= 0. Define γ̄ := c/a3 and the elliptic
curve E ′ with equation Y 2 = X3+X2+ γ̄ . If a ∈ (Fq)2 we have that E ′ ∼= E, and otherwise E ′ ∼= Twist(E).

Proof. If we ‘twist’ E using a−1, we find immediately the result Y 2 = X3 + X2 + c/a3. �

We can conclude that given any elliptic curve over Fq with q odd, we can always find γ̄ ∈ Fq and
some polynomial Q (X,Γ ) over Fp such that the following holds: Q (X,Γ ) is monic of degree 3 in X
and linear in Γ and it suffices to compute the zeta function of Y 2 = Q (X, γ̄ ). In addition, Q (X,Γ ) and
γ̄ can be computed very fast. Indeed, the complexity is dominated by verifying whether b/c (or a) is
a square in Fq and as x ∈ (F×q )

2 is equivalent to x(q−1)/2 = 1, this can certainly be done in time Õ(n2)
and space O(n). For practical purposes a much faster algorithm can be found in Cohen et al. (2006,
Section 11.3.5).
In Section 3wewill need that Y 2 = Q (X, 0) defines an elliptic curve over Fp, but this can always be

achieved by the translation Γ 7→ Γ + α for some α ∈ Fp. It is interesting to make the degree in Γ of
the resultant ResX (Q (X,Γ ); ∂∂X Q (X,Γ )) as small as possible (wherewe interpretQ (X,Γ ) ∈ Z[X,Γ ]
for the moment). In Proposition 1 this will be 3 and in Proposition 2 we find degree 2. If γ̄ ∈ (Fq)2 in
Proposition 1, we can twist over 1/

√
γ̄ and find Y 2 = X3+ X + γ̄ ′ for some γ̄ ′ ∈ Fq, which also gives

a resultant of degree two. Although this requires the computation of a square root in Fq, it might still
be advantageous in the end.
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It is a classical result that for every elliptic curve you can find an isomorphic curve with equation
Y 2 = X(X − 1)(X − λ̄) — called the Legendre form — which after the substitution Γ − 1 ← λ̄
also satisfies the requirements needed in Section 3. However, often the isomorphism, or even the
parameter λ̄ itself, is not defined over the base field Fq, and hence this Legendre form would allow us
only to compute the zeta function of E over some extension field of Fq.

2.2. Characteristic 2

Wenow take q = 2n and E the elliptic curve overFq given by (2). The fact that E is not supersingular
is easily seen to be equivalent to a 6= 0. The translation X 7→ X + b/a shows that we can suppose
that b = 0, and with b = 0 the translation Y 7→ Y +

√
e gives that we can take e = 0 as well. Finally

Y 7→ a3Y and X 7→ a2X gives the form

Y 2 + XY = X(X2 + AX + B), A, B ∈ Fq

as the equation for the curve E. Hilbert’s Satz 90 shows that α2 + α + A = 0 has a solution α ∈ Fq
if and only if TrFq/F2(A) = 0. If this trace equals 1 we can take α in a degree 2 extension of Fq. The
change of variables Y 7→ Y +αX yields then the elliptic curve E ′ with equation Y 2+XY = X(X2+B).
The conclusion is that E ′ ∼= E over Fq if TrFq/F2(A) = 0; otherwise we have E

′ ∼= Twist(E).
Analogously we can find for supersingular curves an equation Y 2+ γ̄ Y = X3+X2 or Y 2+ γ̄ Y = X3

with properties similar to the above. We do not work this out, as we do not need it anyway.
Define H(X) := X , Qf (X,Γ ) := X2 + Γ + 1 and γ̄ := B; then we have proven that it suffices to

compute the zeta function of the elliptic curve with equation

Y 2 + H(X) · Y = H(X) · Qf (X, γ̄ + 1),

whereH(X),Qf (X,Γ ) ∈ F2[X,Γ ] and γ̄ ∈ Fq. Moreover, the equation Y 2+H(X)·Y = H(X)·Qf (X, 0)
also defines an elliptic curve. Again the above transformations can be done very fast in practice. The
most time-consuming step is computing TrFq/F2(A), which can easily be done in time Õ(n2), or in time
O(n2) using the algorithm in Shoup (1999). The memory requirements are only O(n).

3. pth-power Frobenius in odd characteristic

Nowthatwehaveput our elliptic curve –possibly up to a quadratic twist – in a linear family,wewill
showhow to compute thematrix of the pth-power Frobenius on itsMonsky–Washnitzer cohomology.
This cohomology was first applied by Kedlaya (2001) in an algorithm to count the number of points
on hyperelliptic curves in odd characteristic. We have worked out the deformation approach in great
detail in Hubrechts (2008) and we will give a short summary in this section, specified to genus 1 and
with Fp as base field. We refer the reader to the original paper for more details.

3.1. A sketch of the deformation theory

We assume in this section that p is an odd prime. Let Q̄ (X,Γ ) ∈ Fp[X,Γ ] be of the form explained
at the end of Section 2.1, in particular monic of degree 3 in X and squarefree for Γ = 0. Suppose that
we need the zeta function of the elliptic curve E : Y 2 = Q̄ (X, γ̄ ) for some parameter γ̄ algebraic over
Fp, and let the finite field Fq = Fpn be defined as Fp[x]/ϕ̄(x) with ϕ̄(x) the minimal polynomial of γ̄
over Fp.

Remark 3. The general case can indeed be reduced to this setting. Suppose that we are given Fpm and
γ̄ ∈ Fpm with 1 ≤ n ≤ m; then Shoup (1999) shows how to compute the minimal polynomial of γ̄
over Fp in time O(m2), with which we can denote Fq in the form explained above. Having computed
the zeta function over Fq and if n < m, we can use formula (1) to conclude the algorithm.

Denote with Qp the field of p-adic numbers and with Qq the unique degree n unramified extension
of Qp. In fact we need a very specific representation of Qq, which will be explained at the end of
Section 3.2. We write Zp and Zq for the rings of integers of these fields. The Frobenius automorphism
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on Qq — the lift to Qq of the map x 7→ xp on Fq — is denoted by σ . The valuation on Qq is written as
ord, normalized to ord(p) = 1. The Teichmüller lift γ of an element γ̄ ∈ Fq is defined as the unique
root of unity in Qq that reduces modulo p to γ̄ .
The Monsky–Washnitzer construction starts with a degree preserving lift Q (X,Γ ) ∈ Zp[X,Γ ] of

Q̄ (X,Γ ). Define the resultant

r(Γ ) := ResX

(
Q (X,Γ );

∂

∂X
Q (X,Γ )

)
.

Thenwe find that r̄(0) and r̄(γ̄ ) (where ¯denotes the reductionmodulo p) are both nonzero due to the
fact that 0 and γ̄ give (nonsingular) elliptic curves.Write r(Γ ) =

∑
riΓ i and letρ ′ be the largest index

i such that ord(ri) = 0. Then we define R(Γ ) :=
∑ρ′

i=0 riΓ
i, so that R(Γ ) has as leading coefficient a

unit in Zp and R(Γ ) ≡ r(Γ ) mod p. Define the ring SĎ := Qp[Γ , 1/R(Γ )]Ď and the SĎ-module

T Ď :=
Qp[X, Y , 1/Y ,Γ , 1/R(Γ )]Ď

(Y 2 − Q (X,Γ ))
.

Here Ď denotes the overconvergent completion as defined in Kedlaya (2001), e.g. Qq[Γ ]Ď consists of
all power series in Γ that converge on a disk strictly bigger than the unit disk. On T Ď there act two
differential operators, namely d : T Ď → T ĎdX : v 7→ ∂v

∂X dX , and the connection ∇ : T
Ď
→ T ĎdΓ :

v 7→ ∂v
∂Γ
dΓ satisfying dΓ = ∇X = 0. The submodule H−MW of T

ĎdX/dT Ď is defined as the eigenspace
corresponding to the eigenvalue −1 under the elliptic involution and is a free SĎ-module of rank 2.
With Fp as the pth-power Frobenius map on H−MW and Fp(dΓ ) := d(Fp(Γ )), we find the following
commutative diagram:

H−MW
∇

−−−−→ H−MWdΓyFp yFp
H−MW

∇
−−−−→ H−MWdΓ .

(4)

The basis used in Hubrechts (2008) for H−MW is the pair {dX/
√
Q , XdX/

√
Q }, and with F(Γ ) as matrix

for the map Fp w.r.t. this basis and G(Γ ) for ∇ , diagram (4) gives the differential equation

∂

∂Γ
F(Γ )+ F(Γ )G(Γ ) = pΓ p−1G(Γ p)F(Γ ). (5)

Let γ be the Teichmüller lift of γ̄ in Zq; then the matrix F(γ ) is precisely the matrix of the pth-power
Frobenius on the Monsky–Washnitzer cohomology of the curve Y 2 = Q (X, γ ) as found by Kedlaya
(2001).

3.2. Computational issues

In Section 5 we will need the matrix F(γ ) up to a certain p-adic precision N = O(n). Following
the algorithm in Hubrechts (2008) with g = a = κ = 1 and limiting ourselves to Steps 1 to 7 of the
algorithm, this can be achieved in time Õ(n2) and space O(n2).
There are two important points to note. First, we will need that F(γ ) is p-adic integral, which

is a priori only guaranteed with our chosen basis if p > 3 (see Section 3.5 of Kedlaya (2004)).
Two possible solutions emerge. We can imitate the proofs of our earlier paper, but now with the
basis {dX/

√
Q 3, XdX/

√
Q 3}, which does give an integral matrix as explained in Kedlaya (2004). The

asymptotic complexity estimates will remain the same in this case; this is the solution used in the
implementation that wemade. Another possible work-around is to compute thematrix of the change
between the two bases, a matrix that can be shown to become integral after multiplication with p
and is easily retrieved using the reduction algorithm of Kedlaya (2001). Transforming F(γ ) using this
matrix yields then an integral matrix of Frobenius.
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Second, in the algorithm a particular representation of Qq = Qp[x]/ϕ(x) is used, namely ϕ(x) has
to be a Teichmüller modulus lift of ϕ̄(x). This means that both polynomials are congruentmodulo p and
thatϕ(x) is amonic divisor of xq−x. Equivalentlywe can say thatϕ(x) is theminimal polynomial of the
Teichmüller lift γ of γ̄ . In Cohen et al. (2006, Section 12.1.2) a very efficient algorithm for computing
ϕ(x) is given, originally due toHarley, that computesϕ(x)modulo pO(n) in time Õ(n2) and spaceO(n2).

4. Second-power Frobenius in characteristic 2

As proven in Section 2.2, it suffices to consider elliptic curves given by
Y 2 + XY = X(X2 + γ̄ + 1), γ̄ ∈ Fq, q = 2n. (6)

Again we will explain briefly how to compute the matrix of the second-power Frobenius on the
Monsky–Washnitzer cohomology of the curve. It was first shown by Denef and Vercauteren (2006)
how to do this in time Õ(n3) and space O(n3), and in Hubrechts (2007) we extended this result so
that it worked faster and used less memory in one-dimensional families. We will now sketch how
this works; all details can be found in our earlier paper.

4.1. Computing the matrix of Frobenius

We suppose as in the previous section that Fq is given as F2[x]modulo the minimal polynomial of
γ̄ . Define Q2, Qq, Z2, Zq, σ and γ ∈ Zq as before and let H(X) := X and Qf (X,Γ ) := X2 + Γ + 1.
The polynomial c(Γ ) from Hubrechts (2007) is just equal to 1 in our case. The resultant needed is
r(Γ ) = ResX (H;Qf · ∂H∂X ) = Γ + 1 and clearly both r̄(0) and r̄(γ̄ ) are nonzero in Fq. Moreover,
defining R(Γ ) as before yields R(Γ ) = r(Γ ). The ring SĎ is defined as SĎ := Q2[Γ , 1/(Γ + 1)]Ď and
the SĎ-module T Ď as

T Ď :=
Q2[X, Y , 1/X,Γ , 1/(Γ + 1)]Ď

(Y 2 + XY − X(X2 + Γ + 1))
.

Using the definitions of d, ∇ and H−MW as before we find again diagram (4) and Eq. (5) with B :=

{YdX, XYdX} as basis for H−MW . Here too we get F(γ ) with precision N = O(n), again using the
Teichmüller modulus representation of Qq. However, in order to get an integral matrix our chosen
basis does not suffice. Indeed, from the proof of Proposition 11 from Hubrechts (2007) it follows that
only 26 · F(γ ) is guaranteed to be integral. We will show in the next subsection how this problem
can be solved. The conclusion will be that we have to compute F(γ )modulo 2N+13 and can transform
this matrix afterwards into a matrix of Frobenius modulo 2N (w.r.t. a different basis) with integral
coefficients. As follows from the algorithm of Hubrechts (2007), we can find this approximation of
F(γ ) in time Õ(n2) and space O(n2).
We would like to mention that Gerkmann (2008) considered a deformation for the same family

Y 2 + XY = X(X2 + γ ) that we used above.

4.2. An integral matrix of Frobenius

We will now show how to remedy the ‘integrality problem’. The eigenvalues of the qth-power
Frobenius map are the reciprocal zeros of the numerator of the zeta function, and are hence p-adic
integers. This implies that a Zq-submodule of maximal rank ofH−MW does exist that is stable under this
map. Indeed, in Section 5 we will show that the two eigenvalues are different; hence the submodule
spanned by corresponding eigenvectors satisfies this condition. Edixhoven (2003, Proposition 5.3.1)
showed how to find a basis for a submodule that is stable under Fp, and Denef and Vercauteren (2007)
applied this to their characteristic 2 situation. We will show that D := {

dX
2Y+X ,

XdX
2Y+X } is such an

‘integral basis’. It might be possible to reconstruct the algorithm explained above using this basis,
but in this section we will explain how to use the matrix of the change of basis in order to achieve an
integral matrix of Frobenius.
We now briefly recall the result of the erratum (Denef and Vercauteren, 2007), specialized to

our situation. The modules H1 and H−1 are as defined in Denef and Vercauteren (2006); essentially
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they are the modules T ĎdX/dT Ď and H−MW from above, but specialized to Γ = γ . The curve E :
Y 2 + XY − X(X2 + γ + 1) = 0 is a smooth and proper curve over Zq, and E\{P∞} is affine, with
P∞ the point at infinity of E. Let D = kP∞ be a divisor on E for some k ≥ 2. We define a Zq-module
L as consisting of those differentials ω on E\{P∞} that satisfy the following two conditions. First, we
require that div(ω)+D ≥ 0, and second, each termwith valuation less than−1 in the local expansion
of ω at P∞ is integrable over Zq. Then the image of L in H1 is independent of the choice of the divisor
D and invariant under the pth-power Frobenius, and L generates H1. Hence we have also that L ∩ H−1
generates H−1 .
To see thatD is a basis for this Zq-module L ∩ H−1 one can work as follows. Recall from Denef and

Vercauteren (2006) that with t := X/Y as local parameter at P∞, we have

X = t−2 ·

(
1+

∞∑
i=1

αit i
)
and Y = t−3 ·

(
1+

∞∑
i=1

βit i
)

with all αi and βi in Zq. One verifies easily that, with a := dX/(2Y + X) and b := XdX/(2Y + X),
equalities

a =

(
−1+

∞∑
i=1

γit i
)
dX and b =

(
−t−2 +

∞∑
i=−1

δit i
)
dX

hold, and from the expansion (7) below it follows that also all γi and δi are in Zq. Moreover, a and b
satisfy the integrability condition explained above and are hence both in L∩H−1 . AsD certainly forms
aQq-vector space basis for (L∩ H−1 )⊗Qq, we only have to verify that it is a generating set for L∩ H−1
as Zq-module. This follows immediately: if for some α, β ∈ Qq we have αa+ βb ∈ L, then α, β ∈ Zq.
We need a lower bound on the valuation of the matrix of change of basis and its inverse. The

differential forms YdX and XYdX from B have poles of order 6 and 8 respectively at the point P∞. If
we take D = 8P∞, both forms satisfy the condition div(ω)+D ≥ 0, and 4ω forω ∈ B will also satisfy
the second condition on the integrability. Indeed, during integration only−7, . . . ,−1 can appear as
denominators, and 4 divided by one of these is always integral in Z2. This implies that both 4YdX and
4XYdX are in the Zq-module L∩ H−1 , which hasD as basis, and hence the matrix defining the change
of basis fromD toB has valuation at least−2.
For the inverse we have to reduce the basis D to B and use Lemmata 2 and 3 of Denef and

Vercauteren (2006). As

dX
2Y + X

=
(2Y + X)dX

4X(X2 + γ + 1)+ X2
=
2Y + X
X2

dX ·

(
∞∑
k=0

(−4)k
(
X +

γ + 1
X

)k)
, (7)

an easy computation gives as lower bound for the valuation of the matrix of this change of basis

min
{
min
k≥3
(1+ 2k− 3− blog2(k)c);min

k≥0
(1+ 2k− 3− blog2(k+ 3)c)

}
= −3.

Computing this last matrix, denoted with B, modulo 2M with M = O(n) is easy using the reduction
formulae in Denef and Vercauteren (2006), but this would require time Õ(n3). We can see however
that we do not need Bmodulo such a large power of 2. Indeed, let B′ be any invertible matrix over Qq
such that F ′ := (B′−1)σ F(γ )B′ is integral, then B′ gives the change to a new (and a priori unknown)
basis, and the resulting integral matrix F ′ is still a matrix of Frobenius. So let B′ ≡ B mod 2α for some
α; then if B′−1 exists and (B′−1)σ F(γ )B′ is integral, we are done. We will show that α = O(1) suffices.
As a consequence, the algorithm of Denef and Vercauteren (2006) allows us to compute B′ in time
Õ(n2) and space O(n2).
From the valuation bound −2 on B−1 above we see that ord(det B) is not larger than 4, and

hence working with α ≥ 5 suffices already in order to be able to invert B′ (which has to be done
to the maximal required precision). It is not hard to verify that B′−1 ≡ B−1 mod 2α−4. By writing
B = B′+2αB′′ and B−1 = B′−1+2α−4B′′′ for integral matrices B′′ and B′′′, we can compute the product
(B′−1)σ F(γ )B′ and see that it is integral as soon as α ≥ 13. Hence taking α := 13 suffices. The loss
in precision in this product is at most 2 + 6 + 3 ≤ 13; hence it suffices certainly to compute F(γ )
modulo 2N+13.
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5. An eigenvalue of the qth-power Frobenius

In this section we will first show that it suffices to compute an approximation of one eigenvalue of
thematrix of the qth-power Frobenius, and that this can be reduced to computing a ‘semi-eigenvalue’
of F(γ ), in fact an eigenvalue of the σ -linear Frobeniusmap Fp. In a second subsectionwe explain how
to solve this last problem, by showing that we can always satisfy certain conditions required for an
algorithm that computes solutions of a specific type of p-adic equation.

5.1. Reduction to an ‘eigenvalue’ of F(γ )

Suppose that E is a nonsupersingular elliptic curve over Fq, where q = pn, and F = F(γ ) is the
p-adic integral matrix of the pth-power Frobenius on its Monsky–Washnitzer cohomology overQq, as
explained in the two previous sections. For

F := Fσ
n−1
· Fσ

n−2
· · · Fσ · F ,

the matrix of the qth-power Frobenius, Kedlaya (2001) and Denef and Vercauteren (2006) showed
that for the zeta function Z(T ) of E over Fq we have

Z(T ) =
det(1− F T )
(1− T )(1− qT )

.

As we can write qT 2 − tT + 1 for the numerator of the zeta function, it follows immediately that
det(F ) = q and Tr(F ) = t . Let λ1 and λ2 be the eigenvalues of F ; then obviously λ1, λ2 ∈ Zq and
we will prove in the next subsection that we may suppose that ord(λ1) = 0 and hence ord(λ2) =
ord(q/λ1) = n. We are trying to compute t = Tr(F ) = λ1 + q/λ1. The Hasse–Weil bound says for
nonsupersingular curves that |t| < 2

√
q; hence we only need to compute λ1 modulo pN with

N := dlogp(4
√
q)e = dn/2+ logp(4)e = O(n). (8)

It is clear that – except for some trivial cases –we haveN ≤ n, soλ2 = q/λ1 ≡ 0 mod pN . To conclude,
it suffices to computeλ1modulo pN in order to find the zeta function of E: the trace t is then the unique
rational integer congruent to λ1 modulo pN that satisfies |t| < 2

√
q.

If we have matrices C and D over Zq such that F = CσDC−1 with D in upper triangular form, this
implies

F = C ·
(
Dσ

n−1
· Dσ

n−2
· · ·Dσ · D

)
· C−1,

and withµ the upper diagonal element of D this gives that the normNQq/Qp(µ) is an eigenvalue ofF .
We will show in Section 5.2 that such µwith valuation 0 exists and can be found efficiently provided
that E is not supersingular. It is easily seen that a factorization F = CσDC−1 over Qq cannot exist if
the curve is supersingular: the product of the two diagonal elements of D has valuation one, and the
sum of their norms has in this case valuation at least one. This is clearly impossible as the valuation is
a map from Qq to the integers.
Having foundµwe still have to compute its norm. For this we can apply an algorithm fromHarley,

which uses an adaptation ofMoenck’s extended gcd algorithm in order to compute a certain resultant.
Indeed, if Zq = Zp[x]/ϕ(x)with ϕ(x) a monic irreducible polynomial, and µ(x) ∈ Zp[x]/ϕ(x), then

NQq/Qp(µ) = Resx(µ(x);ϕ(x)).

A complete description of the algorithm has been given by Vercauteren (2003, Section 3.10.3). It
requires Õ(n2) time and O(n2) space. As noted there, in order for the algorithm to work well, µ(x)
should have as leading coefficient a unit in Zp. This is however easily forced: supposeµ(x) mod p has
degree n−1−r; then xrµ(x) satisfies this condition. Moreover, xr itself satisfies the condition as well;
hence computing N (µ) = N (xrµ(x))/N (xr) gives the required result. Note that xr is a Teichmüller
lift withN (xr) = ((−1)nϕ(0))r , and its norm can thus be computed much faster.
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5.2. Computation of an ‘eigenvalue’ µ of F(γ )

In this subsection≡will always mean ‘congruencemodulo p’, unless ‘mod pN ’ is explicitly written.
Wewill need an algorithm of Harleywith the following input and output; it can be found as Algorithm
12.23 in Cohen et al. (2006). Note that this algorithm requires Zq to be given as Zp[x] modulo a
Teichmüller modulus in order to be efficient.
INPUT: A polynomial ψ(X, Y ) ∈ Zq[X, Y ], x0 ∈ Zq, such that

ψ(x0, xσ0 ) ≡
∂ψ

∂X
(x0, xσ0 ) ≡ 0,

∂ψ

∂Y
(x0, xσ0 ) 6≡ 0.

OUTPUT: An element α ∈ Zq such that

ψ(α, ασ ) ≡ 0 mod pN , α ≡ x0.

Following the complexity estimates found in Cohen et al. (2006), it is easily shown that if the degree
of ψ is fixed, the algorithm runs in time Õ(nN) and space O(nN).

Write F = F(γ ) as
(
f1 f2
f3 f4

)
with all fi in Zq and consider the system of equations(

f1 f2
f3 f4

)(
1
α

)
= µ

(
1
ασ

)
, or

{
f1 + αf2 = µ,
f3 + αf4 = µασ .

(9)

It is clear that if we can find a solution (α, µ) ∈ Zq × Z×q for (9), this yields a factorization of
F = (Cσ )DC−1, which is of the kind that we are looking for. Here C and D can e.g. be taken as

C =
(
1 0
α 1

)
, D =

(
µ f2
0 f4 − ασ f2

)
.

Eliminating µ from the system of Eqs. (9) gives

α(ασ f2 − f4)+ (ασ f1 − f3) = 0. (10)

If f1 ≡ f2 ≡ 0, certainly one of f3, f4 will not be zero modulo p, as ord(det(F)) = 1. In this case we can
work with the eigenvector (α 1)T instead of (1 α)T . So we can suppose that at least one of f1 or f2 is
nonzero modulo p. Let

xσ0 :=
(
f4 mod p
f2 mod p

)
, or xσ0 :=

(
f3 mod p
f1 mod p

)
.

If both definitions make sense, det(F) ≡ 0 implies that they are equal modulo p. Computing the
corresponding x0 is easy finite field arithmetic. We define the polynomial ψ(X, Y ) by

ψ(X, Y ) := X(Yf2 − f4)+ (Yf1 − f3) ∈ Zq[X, Y ].

Our choice of xσ0 guarantees that ψ(x0, x
σ
0 ) ≡ 0 and also

∂

∂X
ψ(x0, xσ0 ) = x

σ
0 f2 − f4 ≡ 0.

Note that this last inequality holds even if f2 ≡ 0. We will show immediately that ∂
∂Yψ(x0, x

σ
0 ) 6≡ 0

follows from nonsupersingularity. The algorithm from the beginning of this section allows us now
to compute α ∈ Zq (with α ≡ x0) and hence also µ, both with precision N = O(n), in time Õ(n2)
and space O(n2). Indeed, denote with β ∈ Zq the exact solution of ψ(β, βσ ) = 0 and β ≡ x0. Then
the above algorithm computes α as an approximation of β such that ψ(α, ασ ) ≡ 0 mod pN . Writing
α = β + β ′ we know that β ′ ≡ 0. If we substitute β + β ′ in ψ(α, ασ ), we find

[βσ (βf2 + f1)− (βf4 + f3)]+ β ′σ (βf2 + f1)+ β ′
[
βσ f2 + β ′σ f2 − f4

]
≡ 0 mod pN .
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The sum between the first square brackets is zero, and as βf2 + f1 is a unit in Zq (see below) and the
last sum between square brackets is zero modulo p, a trivial induction argument shows that pN |β ′σ
and hence β ′ ≡ 0 mod pN . This implies that α is indeed computed with precision N . In addition,
eliminating α from (9) yields

µ(f4 − ασ f2) = f1f4 − f2f3,

which equals det(F) and has valuation 1. As f4 − ασ f2 ≡ 0, it is impossible that ord(µ) > 0 as well,
whence µ ∈ Z×q .
Suppose that 0 ≡ ∂

∂Yψ(x0, x
σ
0 ) = x0f2 + f1. If f2 ≡ 0 this would imply f1 ≡ 0, which we excluded.

Define f ′i := fi/f2; then

f ′1 ≡ −x0, f ′4 ≡ x
σ
0 ≡ x

p
0, f ′3 ≡ f

′

1f
′

4 ≡ −x
p+1
0 .

As a consequence

F ≡ f2

(
−x0 1
−xp+10 xp0

)
and Fσ · F ≡

(
0 0
0 0

)
.

This implies that the trace of F is congruent to zero modulo p, and hence the curve under
consideration is supersingular.

6. Conclusion and implementation results

Combining all steps explained in Sections 2–5 above, we have found a deterministic algorithm that
for every nonsupersingular elliptic curve overFpn —given by aWeierstrass equation— can compute its
zeta function in time Õ(n2) and spaceO(n2).Wewill now give a list of themain steps of the algorithm.
For ease of exposition we assume that we are working in odd characteristic and with an ‘integral ba-
sis’ for the Monsky–Washnitzer cohomology H−MW . We do not mention in the algorithm that we only
compute approximations modulo a certain power of p and Γ of the objects involved; both precisions
are O(n). If pn is so small that N > n in (8), we can use a naive point counting algorithm.

INPUT: A finite field Fpn and a monic squarefree degree 3 polynomial Q (X) ∈ Fpn [X].
OUTPUT: The zeta function of the elliptic curve Y 2 = Q (X) over Fpn .
STEP 1: Put the curve in a one-parameter family Y 2 = Q (X, γ̄ ) with γ̄ ∈ Fpn , as explained in
Section 2. In particular, Q (X,Γ ) ∈ Fp[X,Γ ]. This step could require a quadratic twist. Determine
ϕ̄(x) ∈ Fp[x], the minimal polynomial of γ̄ , as in Shoup (1999) and define Fpm := Fp[x]/ϕ̄(x).
STEP 2: Determine and solve the differential equation and find F(Γ ) ∈ Zp[[Γ ]]2×2 modulo a
sufficiently large power of Γ .
STEP 3: Lift ϕ̄(x) to a Teichmüller modulus ϕ(x) so that Zpm = Zp[x]/ϕ(x) and x = γ .
STEP 4: Compute F(γ ) by substituting γ in F(Γ ).
STEP 5: Compute a solution (α, µ)with ord(µ) = 0 for one of the equations

F(γ ) ·
(
1
α

)
= µ

(
1
ασ

)
or F(γ ) ·

(
α
1

)
= µ

(
ασ

1

)
.

STEP 6: Compute the rational integer t1 ≡ NQpm /Qp(µ) modulo an appropriate power of p, such
that |t1| < 2

√
pm. Compute then the resultant

pnT 2 − tT + 1 = ResX (pmX2 − t1X + 1; Xn/m − T ).

STEP 7: Change the sign of t if a quadratic twist was required and return

pnT 2 − tT + 1
(1− T )(1− pnT )

.

Wenowpresent a few timing results obtainedwith an implementation of this algorithm.We note that
we did not use Harley’s Õ(n2) norm algorithm for Step 6, but instead the — far easier to implement
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and in practice probably faster for reasonable n — algorithm of Satoh et al. (2003). This method
runs in time Õ(n2.5) given some precomputations. These precomputations require time Õ(n3), but
are completely integer arithmetic and hence extremely fast. In our algorithm we cannot consider
them as precomputation (they depend on ϕ̄(x), the minimal polynomial of the parameter γ̄ ), so our
implementation has as theoretical complexity Õ(n3). In Step 2 the matrix F(0) as boundary condition
for the differential equation is computed using an implementation of Kedlaya’s algorithm made by
Michael Harrison for odd characteristic, and using our own non-optimized implementation of Denef
and Vercauteren’s algorithm for characteristic 2. We note that in this last case all Frobenius matrices
turn out to be integral, which simplifies the algorithm a lot.
The implementation has been made for the computational algebra system Magma V2.13-15,

and the timing results were obtained on an AMD Opteron 875 Dual Core, running at 2.2 MHz
and with 32 GB of physical memory available. The author wants to thank Alan Lauder for making
this machine available. The algorithm received as input a random elliptic curve over Fpn , given
by its Weierstrass equation. For p = 2 a random curve with Eq. (6) was given. All times are in
seconds.

p\n 50 100 250 500 1000 2000 4000 8000

2 .13 .30 1.35 4.85 20 94 528 3199
3 .15 .40 1.98 7.49 33 151 771 4807
5 .46 1.12 5.39 22.54 93 485 2228 —
7 1.54 3.97 27.71 129.70 675 3713 19167 —

It is interesting to note that for n� 0 almost all computation time goes to Steps 3, 5 and 6, the last
two being roughly comparable in required time. For example, for pn = 34000 we have as total time 771
seconds, where Step 5 uses 209 seconds and Step 6 uses 438 seconds. For pn = 74000 the computation
of ϕ(x) takes 17082 seconds. A conclusion that could be drawn from this is that for such big fields our
algorithm should work faster than Harley’s — as long as in either algorithm the same norm algorithm
and no precomputation is used — because Harley’s algorithm needs a computation similar to Step 5
but with an equation ψ of higher degree involving a lot more monomials, and exactly the same field
polynomial and norm computation.
Step 2 can be considered as precomputation, meaning that it depends only on the field size (and

the structure of the family in which the curve lives). For n large enough this step is of minor influence,
but for fields of cryptographic size it is worth looking at the time needed for just one curve, ignoring
the precomputation. The following table gives some of these times for some small field sizes, hence
ignoring the time for Step 2 of the algorithm.

pn 250 2100 2250 350 3100 3250 550 5100 5250 750 7100

Time .07 .18 .82 .08 .26 1.59 .18 0.61 4.05 1.08 3.14

Harley’s algorithm for computing the Teichmüller modulus is only practical for p ≤ 7. For larger
primes we have therefore used an algorithm of Satoh (2002), which is reasonably fast in practice
although it runs in time Õ(n3). Below are some results for such higher characteristic.

pn 11100 11500 17100 17500 29100 29500 101100 1009100

Time 5.27 369 6.65 495 10.99 647 59.62 4076

To conclude, we compare for a few field sizes the time needed for each step of the algorithm
separately. The second column in the following table gives a more precise complexity estimate of
each step (based on a closer inspection of the algorithms behind the step), where M(X) denotes the
time required to multiply two elements of X .
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2100 21000 3100 31000 5100 51000 17100

1 O(n2) .00 .04 .00 .46 .01 .78 .02
2 O(n ·M(Zp[X]≤n mod pdn log ne)) .12 7.16 .14 2.11 .51 7.23 2.48
3 O(log n ·M(Zpn mod pn)) .04 1.89 .05 4.50 .26 40.88 3.24
4 O(M(Zpn mod pn)) .01 .59 .02 1.11 .04 5.10 .19
5 O(log n ·M(Zpn mod pn)) .07 4.70 .08 10.29 .13 15.74 .30
6 O(log n ·M(Zpn mod pn)) .06 5.42 .11 14.40 .17 23.64 .41
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